2 research outputs found

    μ‹¬μΈ΅ν•™μŠ΅μ„ μ΄μš©ν•œ μ•‘μ²΄κ³„μ˜ μ„±μ§ˆ 예츑

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μžμ—°κ³Όν•™λŒ€ν•™ ν™”ν•™λΆ€,2020. 2. μ •μ—°μ€€.졜근 κΈ°κ³„ν•™μŠ΅ 기술의 κΈ‰κ²©ν•œ λ°œμ „κ³Ό 이의 ν™”ν•™ 뢄야에 λŒ€ν•œ μ μš©μ€ λ‹€μ–‘ν•œ 화학적 μ„±μ§ˆμ— λŒ€ν•œ ꡬ쑰-μ„±μ§ˆ μ •λŸ‰ 관계λ₯Ό 기반으둜 ν•œ 예츑 λͺ¨ν˜•μ˜ κ°œλ°œμ„ κ°€μ†ν•˜κ³  μžˆλ‹€. μš©λ§€ν™” 자유 μ—λ„ˆμ§€λŠ” κ·ΈλŸ¬ν•œ κΈ°κ³„ν•™μŠ΅μ˜ 적용 μ˜ˆμ€‘ ν•˜λ‚˜μ΄λ©° λ‹€μ–‘ν•œ 용맀 λ‚΄μ˜ ν™”ν•™λ°˜μ‘μ—μ„œ μ€‘μš”ν•œ 역할을 ν•˜λŠ” 근본적 μ„±μ§ˆ 쀑 ν•˜λ‚˜μ΄λ‹€. λ³Έ μ—°κ΅¬μ—μ„œ μš°λ¦¬λŠ” λͺ©ν‘œλ‘œ ν•˜λŠ” μš©λ§€ν™” 자유 μ—λ„ˆμ§€λ₯Ό μ›μžκ°„μ˜ μƒν˜Έμž‘μš©μœΌλ‘œλΆ€ν„° ꡬ할 수 μžˆλŠ” μƒˆλ‘œμš΄ μ‹¬μΈ΅ν•™μŠ΅ 기반 μš©λ§€ν™” λͺ¨ν˜•μ„ μ†Œκ°œν•œλ‹€. μ œμ•ˆλœ μ‹¬μΈ΅ν•™μŠ΅ λͺ¨ν˜•μ˜ 계산 과정은 μš©λ§€μ™€ 용질 λΆ„μžμ— λŒ€ν•œ λΆ€ν˜Έν™” ν•¨μˆ˜κ°€ 각 μ›μžμ™€ λΆ„μžλ“€μ˜ ꡬ쑰적 μ„±μ§ˆμ— λŒ€ν•œ 벑터 ν‘œν˜„μ„ μΆ”μΆœν•˜λ©°, 이λ₯Ό ν† λŒ€λ‘œ μ›μžκ°„ μƒν˜Έμž‘μš©μ„ λ³΅μž‘ν•œ νΌμ…‰νŠΈλ‘  신경망 λŒ€μ‹  λ²‘ν„°κ°„μ˜ κ°„λ‹¨ν•œ λ‚΄μ μœΌλ‘œ ꡬ할 수 μžˆλ‹€. 952κ°€μ§€μ˜ 유기용질과 147κ°€μ§€μ˜ 유기용맀λ₯Ό ν¬ν•¨ν•˜λŠ” 6,493κ°€μ§€μ˜ μ‹€ν—˜μΉ˜λ₯Ό ν† λŒ€λ‘œ κΈ°κ³„ν•™μŠ΅ λͺ¨ν˜•μ˜ ꡐ차 검증 μ‹œν—˜μ„ μ‹€μ‹œν•œ κ²°κ³Ό, 평균 μ ˆλŒ€ 였차 κΈ°μ€€ 0.2 kcal/mol μˆ˜μ€€μœΌλ‘œ 맀우 높은 정확도λ₯Ό 가진닀. μŠ€μΊν΄λ“œ-기반 ꡐ차 κ²€μ¦μ˜ κ²°κ³Ό μ—­μ‹œ 0.6 kcal/mol μˆ˜μ€€μœΌλ‘œ, μ™Έμ‚½μœΌλ‘œ λΆ„λ₯˜ν•  수 μžˆλŠ” 비ꡐ적 μƒˆλ‘œμš΄ λΆ„μž ꡬ쑰에 λŒ€ν•œ μ˜ˆμΈ‘μ— λŒ€ν•΄μ„œλ„ μš°μˆ˜ν•œ 정확도λ₯Ό 보인닀. λ˜ν•œ, μ œμ•ˆλœ νŠΉμ • κΈ°κ³„ν•™μŠ΅ λͺ¨ν˜•μ€ κ·Έ ꡬ쑰 상 νŠΉμ • μš©λ§€μ— νŠΉν™”λ˜μ§€ μ•Šμ•˜κΈ° λ•Œλ¬Έμ— 높은 양도성을 가지며 ν•™μŠ΅μ— μ΄μš©ν•  λ°μ΄ν„°μ˜ 수λ₯Ό λŠ˜μ΄λŠ” 데 μš©μ΄ν•˜λ‹€. μ›μžκ°„ μƒν˜Έμž‘μš©μ— λŒ€ν•œ 뢄석을 톡해 μ œμ•ˆλœ μ‹¬μΈ΅ν•™μŠ΅ λͺ¨ν˜• μš©λ§€ν™” 자유 μ—λ„ˆμ§€μ— λŒ€ν•œ κ·Έλ£Ή-기여도λ₯Ό 잘 μž¬ν˜„ν•  수 μžˆμŒμ„ μ•Œ 수 있으며, κΈ°κ³„ν•™μŠ΅μ„ 톡해 λ‹¨μˆœνžˆ λͺ©ν‘œλ‘œ ν•˜λŠ” μ„±μ§ˆλ§Œμ„ μ˜ˆμΈ‘ν•˜λŠ” 것을 λ„˜μ–΄ λ”μš± μƒμ„Έν•œ 물리화학적 이해λ₯Ό ν•˜λŠ” 것이 κ°€λŠ₯ν•  것이라 κΈ°λŒ€ν•  수 μžˆλ‹€.Recent advances in machine learning technologies and their chemical applications lead to the developments of diverse structure-property relationship based prediction models for various chemical properties; the free energy of solvation is one of them and plays a dominant role as a fundamental measure of solvation chemistry. Here, we introduce a novel machine learning-based solvation model, which calculates the target solvation free energy from pairwise atomistic interactions. The novelty of our proposed solvation model involves rather simple architecture: two encoding function extracts vector representations of the atomic and the molecular features from the given chemical structure, while the inner product between two atomistic features calculates their interactions, instead of black-boxed perceptron networks. The cross-validation result on 6,493 experimental measurements for 952 organic solutes and 147 organic solvents achieves an outstanding performance, which is 0.2 kcal/mol in MUE. The scaffold-based split method exhibits 0.6 kcal/mol, which shows that the proposed model guarantees reasonable accuracy even for extrapolated cases. Moreover, the proposed model shows an excellent transferability for enlarging training data due to its solvent-non-specific nature. Analysis of the atomistic interaction map shows there is a great potential that our proposed model reproduces group contributions on the solvation energy, which makes us believe that the proposed model not only provides the predicted target property, but also gives us more detailed physicochemical insights.1. Introduction 1 2. Delfos: Deep Learning Model for Prediction of Solvation Free Energies in Generic Organic Solvents 7 2.1. Methods 7 2.1.1. Embedding of Chemical Contexts 7 2.1.2. Encoder-Predictor Network 9 2.2. Results and Discussions 13 2.2.1. Computational Setup and Results 13 2.2.2. Transferability of the Model for New Compounds 17 2.2.3. Visualization of Attention Mechanism 26 3. Group Contribution Method for the Solvation Energy Estimation with Vector Representations of Atom 29 3.1. Model Description 29 3.1.1. Word Embedding 29 3.1.2. Network Architecture 33 3.2. Results and Discussions 39 3.2.1. Computational Details 39 3.2.2. Prediction Accuracy 42 3.2.3. Model Transferability 44 3.2.4. Group Contributions of Solvation Energy 49 4. Empirical Structure-Property Relationship Model for Liquid Transport Properties 55 5. Concluding Remarks 61 A. Analyzing Kinetic Trapping as a First-Order Dynamical Phase Transition in the Ensemble of Stochastic Trajectories 65 A1. Introduction 65 A2. Theory 68 A3. Lattice Gas Model 70 A4. Mathematical Model 73 A5. Dynamical Phase Transitions 75 A6. Conclusion 82 B. Reaction-Path Thermodynamics of the Michaelis-Menten Kinetics 85 B1. Introduction 85 B2. Reaction Path Thermodynamics 88 B3. Fixed Observation Time 94 B4. Conclusions 101Docto

    A Study on the High Temperature Deformation Behavior of Fe-28Al-5Cr Alloys

    No full text
    Maste
    corecore