
Review 
s. S. Mester 

H. Benaroya 
Department of Mechanical and 

Aerospace Engineering 
Rutgers The State University of 

New jersey 
New Brunswick, Nj 

Periodic and Near-Periodic 
Structures 

Extensive work has been done on the vibration characteristics of perfectly periodic 
structures. This article reviews the different methods of analysis from several fields of 
study, for example solid-state physics and civil, mechanical, and aerospace engineer­
ing, used to determine the effects of disorder in one-dimensional (i-D) and 2-D peri­
odic structures. In the work examined, disorder has beenfound to lead to localization 
in J-D periodic structures. It is important to understand localization because it causes 
energy to be concentrated near the disorder and may cause an overestimation of 
structural damping. The implications of localization for control are also examined. 
© 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

The dynamic behavior of structures can be very 
complex. However, it is important to have a ba­
sic understanding of structural behavior to en­
sure a safe, efficient, and economical design. Air­
craft components, turbine blades, satellite 
antenna dishes, and large space structures are 
examples of just some of these structures. Typi­
cally, their dynamic behavior is found utilizing 
finite element analysis. For large structures, such 
as aircraft fuselages and turbine blades, this 
method is computationally costly. However, be­
cause these structures are composed of substruc­
tures, which are designed to be identical and uni­
formly joined to form a repetitive pattern, these 
structures can be categorized as periodic struc­
tures. When the geometric and material periodic­
ities are utilized in the mathematical modeling, 
the dynamic behavior can be represented as 
waves propagating through the structure. This 
allows the application of a well developed body 
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of knowledge about wave propagation. The 
amount of computation for periodic structures 
will depend only on the complexity of a substruc­
ture, not the number of substructures, thus re­
ducing the computation necessary to analyze the 
dynamics of a structure. 

However, in actual structures, the periodic 
properties deviate from the ideal. This departure 
from the ideal has been observed to cause locali­
zation. When localization occurs, energy is con­
fined near the disorder and the dynamic behavior 
of the structure changes. This has several conse­
quences. The localization may be misinterpreted 
as dissipative damping instead of spatial damp­
ing, which may lead to design errors causing un­
expected structural failure. Localization can also 
cause modes to disappear. Therefore, any con­
trol scheme such as modal control becomes ei­
ther ineffective or destabilizing. Indeed, the use 
and understanding of localization for structural 
applications may be an efficient means to achieve 
vibration isolation for a specific section of a 
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structure. Using wave propagation methods, the 
behavior of disordered structures can be effec­
tively studied. 

A broad review of the literature covering 
many aspects of periodic and near-periodic 
structures is given. Several approaches are given 
to analyze the dynamic behavior of periodic and 
near-periodic structures. Most of the methods 
use the periodic nature of the structure to reduce 
the amount of computation required to find the 
solution. The review points out that structures 
with slight deviations from a perfectly periodic 
pattern may behave drastically different than 
predicted by the periodic methods. Qualitatively, 
the criteria has been found to be the ratio be­
tween the amount of disorder and coupling 
strength. Although this criteria has been identi­
fied, work still needs to be done so that localiza­
tion can be predicted quantitatively. 

VIBRATIONS AND WAVES IN PERIODIC 
STRUCTURES 

Work from several different fields, such as solid­
state physics and civil, mechanical, and aero­
space engineering, related to the dynamics of pe­
riodic and nonperiodic structures is reviewed. 
The methods used to study solid-state crystallat­
tices are applied to analyze the dynamics of peri­
odic and near-periodic structures. The review 
first looks at vibrations and wave propagation in 
periodic structures and then examines near-peri­
odic structures. It ends with a look at the control 
aspects of these structures. 

Relation Between Vibrations and Waves 

The two different ways of representing structural 
motion, vibrations and waves, can be derived 
from each other (Feather, 1961). A vibrating 
string is used to illustrate the equiValence. Given 
the equation for the transverse displacement of a 
vibrating string 

. 1T'X 1T fi 
Y = A SID -z- cos T -V m t, (1) 

the procedure of resolution of vectors is used to 
derive the equations of wave motion. Equation 
(1) is resolved into two components of amplitUde 
A12 each. The components lead and lag the origi­
nal motion of Eq. (1) by the same angle, a. The 
form of the wave solution is assumed to be 

Y = YI + Y2 

= i cos (7 ~ t + a) (2) 

+ i cos (7 ~ t - a). 
Applying the parallelogram law, 

y2 = iyd2 + iY2i2 - 2iYliiY2i COS(1T - 2a) 

= 2 (if + 2 (if cos 2a, (3) 

where Y = A sin(1Txll). Thus, 

so, 

a = 1TX _ ~ 
I 2 ' 

(5) 

because cosine leads sine by an angle of 1T12. 
This results in 

A . 1T (T ) 
YI = 2" SID T m t + x 

(6) 

A . 1T (T ) Y2 = - 2" sm T m t - x . 

This represents two different simultaneous 
weave motions that sum to an equivalent of the 
vibrating motion. 

One-Dimensional (1-0) Perfect Structures 

A periodic structure is characterized by identical 
substructures that are joined to each other in a 
consistent manner to form the overall structure. 
There are many methods of analysis that can be 
utilized to find the dynamic response of these 
structures, such as finite element methods 
(FEMs), transfer matrix analysis, wave propaga­
tion analysis, and continuum modeling. The 
computational effort required for the analysis of 
the dynamic behavior of such structures can be 
greatly reduced by taking advantage of the peri­
odicity of the structure. 

The FEM can be used either by itself or in 
combination with another method. In classical 



vibration analysis, the modes are computed for 
the entire structure directly. However, for large 
structures many elements are needed for accu­
racy, increasing the computation cost. Thus, the 
size of the structure andlor accuracy of the anal­
ysis is limited by the amount of computational 
power available. When the periodicity of a struc­
ture is utilized, a repeated cell may be modeled 
and analyzed by the FEM to obtain its properties 
that are then used by a periodic method to find 
the behavior of the overall structure. Thus, un­
like the direct method, only one substructure 
needs to be analyzed regardless of the overall 
size of the structure. Denke, Eide, and Pickard 
(1975) use the FEM to determine the mechanical 
impedance matrix of a substructure, 

A = K - w 2M + jwC. (7) 

From the equation of motion, 

AX = Fext. (8) 

the transfer matrix is found as follows. First the 
substructure's interior degrees of freedom are 
eliminated by replacing them with equivalent 
loads and an equivalent impedance matrix at the 
substructure's boundaries. Partitioning the re­
sulting equation of motion as follows 

where the subscript, B, indicates that the values 
are for the substructure's boundaries and the 
subscripts, I and r indicate the left or right side of 
the substructure, respectively (see Fig. 1). It 
turns out that the transfer matrix is 

(10) 

Bardell and Mead (1989a,b) used a special FEM, 
known as the hierarchical FEM, to find the stiff­
ness and mass matrices of a flat rectangular panel 
and a cylindrically curved rectangular panel. In 
this case, the substructure is a super element in 
the hierarchical FEM. 

Several articles have been written that exam­
ine the application of the transfer matrix method 
to the problem of dynamic analysis of periodic 
structures. The implementation of the method 
can involve some numerical difficulties in com-
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Figure 1 A linear chain oscillator used to develop the 
transfer matrix method. 

puting the chain product of the transfer matrix. 
Lin and McDaniel (1969) point out that the multi­
plication of many matrices can lead to significant 
roundoff errors. Instead of directly multiplying 
the matrices, the Cayley-Hamilton theorem is 
used. In general, the transfer matrix of a system 
with a k-dimensional state vector is k x k. Other 
properties of the transfer matrix is that it also is a 
transfer matrix in the other direction. The exis­
tence of an inverse also ensures that the transfer 
matrix is nonsingular. It is found that 

(11) 

which implies that the charact~ristic equation of 
the transfer matrix and its inverse are the same; 
they have the same set of eigenvalues. Because 
for every eigenvalue, A;, of [T] there is a corre­
sponding eigenvalue, >:; = 111..; of [T]-l, it can be 
concluded that the set of eigenvalues of the 
transfer matrix is pairwise reciprocal. Lin and 
McDaniel (1969) used a periodically supported 
Bernoulli-Euler beam to illustrate this method. 
The state vector of the beam is four-dimensional 
(4-D) so the transfer matrix is 4 x 4. However, 
they mention that an extensive catalog of basic 
transfer matrices has been compiled by Pestel 
and Leckie (1963), which can be used in the im­
plementation of this method to other structures. 
It was noted that the transfer matrix method is 
limited to I-D structures and some two-dimen­
sional (2-D) structures in which the spatial vari­
able can be separated. 

Meirovitch and Engels (1977) use the Z-trans­
form to find the solution of a transfer matrix 
problem. A structure with a 2-D state vector, dis­
placement, and force, is assumed to illustrate the 
method. Arbitrary external forces applied at the 
boundaries between the elements can be handled 
by adding an external force vector.!;, such that 
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(12) 

The Z-transform is defined as 

oc 

x(z) = Z[x;] = L XiZ- I • (13) 
;=0 

Taking the Z-transform of Eq. (12) and rearrang­
ing, results in 

X(z) = Z[zI - A]-IXO + [zI - A]-If*(Z). (14) 

The response, Xi, can be found by taking the in­
verse Z-transform and rearranging as such, 

;-1 

Xi = CPiXO + L CPi-k- Ifl, (15) 
k=O 

where CPi is the' 'fundamental matrix" of the sys­
tem. It is shown that CPi = Ai. Computing CPi from 
this method encounters the same numerical diffi­
culties noted by Lin and McDaniel (1969). In the 
Z-transform method, the roundoff error is over­
come by using the Leverrier algorithm to solve 
the following inverse Z-transform relation 

(16) 

Mter some manipulation, this yields 

(17) 

where Zj are the eigenvalues of matrix [A] and 

Xj = lim [(z - z)X(z)] 
z ....... Zj 

'l;'2n-1 2n-I-IH 
""'/=0 Zj / 

(18) 

in which H/ and (h are determined by the Lever­
rier algorithm. This results in a response of 

(19) 

Note that for a semiinfinite structure i ~ 00, so 
roots, Zj, with a magnitude greater than 1 cause 
Eq. (19) to diverge unless they are discarded. 
This requires that only half of the eigenvalues 

need to be found. For finite structures, the fact 
that the eigenvalues occur in reciprocal pairs al­
lows the Leverrier algorithm to reduce the order 
of the characteristic equation by a factor of two. 
In addition, this method does not require the 
eigenvectors of matrix A, only the eigenvalues, 
thus simplifying the computation and increasing 
the accuracy of the solution. From the analysis 
of an illustrative example, it is shown that a finite 
structure with heavy damping can be treated as 
semiinfinite because the response is virtually un­
affected by the motion at the other end. The finite 
structure in the example is composed of 20 sub­
structures and the response was computed for 
two boundary conditions: fixed-free and free­
free. Engels (1980) addresses the divergence of 
Eq. (19) due to eigenvalues with magnitudes 
greater than one. The method of approach is the 
same as in Meirovitch and Engels (1977). How­
ever, using the spectral form of matrix A, 

2n 

A = L XjZj 
j=1 

(20) 

the response of a semiinfinite structure with a 
load at the left end is found to be 

The response of an infinite structure due to an 
interior load is 

n n 
- ~ XT /-11'*' 

Ui - L.J 12jZj J /-1, 
~ XT /-1+*' Pi = - L.J IIjZj J /-1· 

j=1 j=1 

(22) 

For multiple loads the response is obtained by 
superposing the appropriate combination of the 
two solutions above. The solutions are found in 
terms of the known boundary conditions. 

Engels and Meirovitch (1978a) formulated a 
method that computes the natural frequencies of 
a structure in a systematic way. It can also han­
dle arbitrary excitations. The approach is a com­
bination of the Z-transform method explained in 
the two previous articles and Holzer's method. It 
is shown that 

Xi = Aixo = CPiXO. (23) 

The above equation can be partitioned as 



This is rewritten as 

UN = ~Nll Uo + iPNI2PO, 

PN = ~N21UO + ~N22PO. 

(24) 

(25) 

Depending on whether the structure has free­
fixed, fixed-free, free-free, or fixed-fixed end 
conditions, the following yields the natural fre­
quencies of the system: 

det ~N" = o. (26) 

The roots of the characteristic determinant are 
found by Muller's method (1956). The method is 
iterative and requires only one evaluation of the 
characteristic determinant per iteration. How­
ever, the derivatives of the characteristic deter­
minant are not needed. Once a natural frequency 
is found it is divided out of the characteristic 
determinant and the next frequency is found. 
Then from the following relation 

Xi,k = ~i(Ak)XO,k. i = 1, 2, ... ,N, (27) 

the kth mode is fully given. Note that the internal 
forces Pi,k are also obtained. With the natural fre­
quencies and mode shapes found, the procedure 
of modal analysis can compute the response of 
the structure due to arbitrary loads. This method 
was originally developed for undamped struc­
tures, however it should be possible to apply this 
method to damped structures with some adjust­
ments to the method. 

Engels and Meirovitch (l978b) have modeled 
continuous systems as periodic structures. This 
builds on the Z-transform method. However, as 
the substructure becomes smaller the influence 
of the mass matrix vanishes when using the Z­
transform as derived previously. Thus the algo­
rithm has been reworked with the assumption of 
substructures with small lengths that approach 
zero. The method obtains the response of 
damped and undamped systems subject to har­
monically distributed loads. This covers the cur­
rent work done on the dynamic analysis of peri­
odic structures using transfer matrices based on 
the Holzer method. 

Extensive work has been done on the wave 
receptance theory. The contributions of Mead 
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and others are briefly reviewed. Mead (1973) has 
studied energy flow in I-D multicoupled struc­
tures using the receptance method. A multicou­
pled system is characterized by identical bays 
that are joined by more than one coordinate or 
degree of freedom. Letting R denote the Rth free 
wave, the energy of the wave is expressed as 
follows 

E = ~ Re[iw[F&][CXll - eUR(f3sy + ,Bss)]{FIR}], 

(28) 

where [F& is the transposed conjugate of {FIR} 
and 

(29) 

This gives the time-averaged energy crossing the 
junction between two elements. Energy is only 
propagated when JLR is imaginary. 

For imaginary propagation constants, a close 
approximation of the possible frequencies is ob­
tainable by an approach that uses Rayleigh's 
principle. The approximate frequencies are given 
by 

(30) 

Note that this method requires guessed values 
for {qRJ, but the error of wkj is only second order. 
It can be shown that this method has stationary 
properties, which allows for the exact frequen­
cies to be found after some rearrangement and 
differentiation. 

Mead (1975a) goes on to investigate the reflec­
tions of waves impinging on the ends of finite 
monocoupled structures. First, the concept of a 
characteristic wave receptance, 

is introduced. This is the ratio of the complex 
displacement at a coupling point in the infinite 
periodic structure to the complex (harmonic) 
force at that point when a single characteristic 
free wave travels through the system. Then for a 
finite structure with N bays the end receptances 
are 
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sinh(N - 1)JL 
aAA = all - aIr . h N (32) 

sm JL 

sinh JL 
aBA = aIr . h N . (33) 

sm JL 

The natural frequencies of a system with both 
ends free are found by letting aAA -,> 00 and with 
both ends fixed the natural frequencies are found 
by letting aAA = o. The above work is extended 
by Mead (1975a,b) to multicoupled structures 
with n coupling points between substructures. 
The method is the same as in the preceding refer­
ence, with the exception of the reflection of a 
characteristic wave at a boundary. For one inci­
dent wave there can be n reflected waves. How­
ever, in most structures the nonpropagating 
waves vanish before they reach the other end, so 
computing the natural modes and frequencies 
from the remaining waves is greatly simplified. 
Mead (1986) investigated a new approach to ana­
lyzing infinite uniform I-D structures supported 
periodically. In this approach, the supports are 
considered to be a "phased array" of forces and 
moments that can be analyzed using point direct 
receptances of an unconstrained structure. 
Based on the support conditions, the propagation 
constant can be found using equations relating 
displacements to forces, rotations to forces, dis­
placements to moments, and rotations to mo­
ments. The total response of the structure to a 
convected pressure field is the sum of the re­
sponse of the unconstrained structure and the 
phased array response, which is imposed by the 
loading and the constraints. Mead and Yaman 
(1990) use the method of phased arrays to exam­
ine finite uniform Euler-Bernoulli beams. The 
method uses the receptance function of the infi­
nite structure. Then the free waves are found 
using the boundary conditions at the ends of the 
structure and at the supports. 

In a continuum approach, the structure is 
modeled as an equivalent substitute continuum. 
Then using the properties of the equivalent con­
tinuum, the motion of the structure is predicted. 
Noor, Anderson, and Greene (1978) developed a 
method for developing continuum models for re­
petitive beam- and plate-like lattices with arbi­
trary configurations subjected to static, thermal, 
and dynamic loadings. The continuum models of 
the repeating elements are characterized by their 
thermoelastic strain and kinetic energies that al­
low the equations of motion and the constitutive 
relations to be derived. This is accomplished by 

expanding the nodal displacements of a typical 
element in a Taylor series and then equating the 
potential and kinetic energies of the lattice to the 
potential and kinetic energies of the continuum 
model. Using the assumption that the strain at 
the element boundaries must be the same for 
both elements, the dimensionality of the problem 
is reduced. Then the continuum model properties 
are derived so that the potential and kinetic ener­
gies of the lattice and the continuum model are 
the same. Once the properties are found, the 
continuum model's behavior can be analyzed and 
should directly correspond to the lattice's behav­
ior. This method is especially useful for lattice 
structures with a large number of panels where 
either a small number of finite elements are used 
for their analysis or analytic solutions are ob­
tained. The method has been extended to gener­
ate the analytic expressions for the substitute 
continuum properties of a large repetitive lattice 
structure. Application to beam-like and double­
layered plate-like lattices are illustrated by Noor 
and Mikulas (1988). 

2-D Perfect Structures 

Plane wave motion can be analyzed for 2-D 
structures that have periodicity in two orthogo­
nal directions, although not necessarily with the 
same period. The propagation constants in the x 
and y direction of a plane wave inclined at angle () 
to the x-axis of a plane periodic structure ori­
ented parallel to the x-y plane are 

fJ-x = klxcos (), and JLy = klysin (), (34) 

where Ix and Iy are the dimensions of the 2-D 
substructure and k is the propagation constant in 
the direction of the wave. The Rayleigh quotient 
method can be used to determine the frequencies 
for a given propagation constant, in a similar way 
as for the I-D case. The Rayleigh quotient 
method should be applicable to the three-dimen­
sional (3-D) case based on its physical interpreta­
tion (Mead, 1973). 

Mead, Zhu, and Bardell (1988) looked at a flat 
plate with an orthogonal array of uniform beams 
as reinforcement. Plane wave motion was con­
sidered with different propagation constants in 
the orthogonal directions. Hierarchical finite ele­
ments were used to set up the equations of mo­
tion for the substructure, which are solved as an 
eigenvalue problem. The structure has passbands 
and stop bands. 



Bardell and Mead (1989a,b) studied a cylindri­
cal superstructure consisting of cylindrically 
curved rectangular panels with orthogonal stiff­
eners. The propagation of plane waves were ana­
lyzed by examining the different propagation 
constants in the axial and circumferential direc­
tions. The propagation constants were found by 
solving the governing equations for free vibration 
as an eigenvalue matrix problem. The more real­
istic case of a point source is more complicated 
to analyze and so far has not been attempted. 
This would produce elliptical wave fronts. 

Anderson (1981) has estimated the buckling 
load of a lattice with repetitive geometry. Appli­
cations examined were an isogrid cylinder, a 
three element truss column, and a polygonal 
ring. The analysis of these 3-D structures was 
approached by assembling the substructure from 
a network of substructural members, such as 
rods, cables, and rings. 

As an extension of this work, Anderson inves­
tigated (1982) the vibration of prestressed shell­
and beam-like periodic lattice structures. Each 
member of the structure was represented by an 
exact dynamic stiffness matrix that was then 
used to solve an eigenvalue problem of the same 
order as the number of degrees of freedom for a 
node. The analysis was developed for a cylindri­
cal beam truss, beginning with the relation of 
forces and displacements of node 0 to its neigh­
boring nodes 

Fo = RUo + SUj' 

where 

(j represents neighboring node j) (35) 

Fr = [PI, Pz, P3 , M I , M z, M 3]; 

Ur = [UI, Uz, t/11, t/1z, t/13li. 
(36) 

The force and momentum along each local coor­
dinate is P and M, respectively. The matrices, R 
and S, are 6 x 6 matrices that are modified finite­
element stiffness matrices such that the exact be­
havior of all vibration modes of the element are 
represented without requiring intervening nodes. 
Then using finite-element transformation matri­
ces to write the equilibrium equations at a node 
in terms of the displacement of a typical node 
and the displacements of adjacent nodes, the 
equation is written as 

2: (GjUO + BjUj) = wZUo, (37) 
j 
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where Gj and H.i are the transformation of Rand 
S from local to global coordinates. The mass ma­
trix J includes only the concentrated masses at 
the nodes. Because the structure is periodic, 

(38) 

satisfies the equilibrium equations above. The 
axial coordinate is represented by x and <P is the 
circumferential coordinate. The mode shape has 
n circumferential waves and an axial half-wave­
length A.. Using Eq. (38) to eliminate the displace­
ments at the adjacent nodes in the equilibrium 
equation results in 

(K - wZJ)Uo = 0, (39) 

where K is the assembled global stiffness matrix 
as implemented by Anderson (1981). The desired 
eigenvalues are obtained by a Gaussian elimina­
tion method (Wittrick and Williams, 1971). The 
implementation of the theory developed by An­
derson is complicated due to the difficulties in 
dealing with boundary conditions because his 
method does not make any provisions for differ­
ent boundary conditions. 

Nagem and Williams (1989) used transfer ma­
trices and joint coupling matrices to compute the 
natural frequencies of a lattice structure. The 
matrices can also be used to analyze wave propa­
gation with some further work. The method is 
accurate and more efficient than FEM for situa­
tions that require many high frequency modes. 

Problems with Circular Geometries 

There are many different geometric configura­
tions of periodic structures that have been exam­
ined. The three primary ones are beam, circular 
assemblies, and lattices (trusses). Mead and Bar­
dell (1986, 1987) examined a cylindrical shell 
with discrete axial stiffeners and a cylindrical 
shell with periodic circumferential stiffeners. 
These were treated as 1-D periodic structures. 
The propagation constants were found by an ex­
act technique that finds the displacements in 
closed form. Stop and passbands were found. In 
a damped structure, the attenuation constants 
are all increased; however, some are more so 
than others. The pattern of the variation of the 
propagation constants is greatly changed. Nar­
row propagation zones can disappear due to 
moderate damping. The damping is hysteretic 
with the value of'Y} = 0.1 where 'Y} is the structural 
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loss factor. The effects of the various stiffeners 
are that as the spacing between stiffeners is de­
creased, the propagation zones are shifted to 
higher frequency bands and the attenuation con­
stants become smaller. There are four pairs of 
propagation constants for each structure: that is, 
eight possible traveling waves. The motion paral­
lel to the stiffeners is restricted to a sinusoidal 
variation while orthogonal to the stiffeners it can 
be arbitrary. 

Bardell and Mead (1989a,b) extended their 
study to cylindrical shells with orthogonal stiff­
eners. These structures are 2-D and the method 
of analysis is discussed above. Also investigated 
were thin cylinders with stringer stiffeners axi­
ally and frame stiffened circumferentially using 
the same method. Their experiments agree with 
the theory. 

Biperiodic Structures 

McDaniel and Carroll (1982) examined space 
structures that are biperiodic. Biperiodic struc­
tures have two types of substructural assemblies 
that alternate throughout the structure. Bipe­
riodic beam analysis has been done for two sup­
port cases: knife edge supports and elastic bipe­
riodic supports. The approach is similar to that of 
Ghatak and Kothari (1972). The method is based 
on the use of a chain of oscillators, in which the 
masses alternate between ml and m2. The trans­
fer matrix method is used to relate the slopes 
and moments between substructures of a beam. 
Different end conditions are simply postmulti­
plied in matrix form. Some 2-D problems can be 
solved as above if separation of variables can be 
applied to the system. The results yield fre­
quency propagation bands in which the natural 
frequencies are usually found. The frequency 
bands of periodic structures are divided into two 
bands for biperiodic structures. 

In application, perfectly periodic structures do 
not exist due to manufacturing and construction 
tolerances. Therefore, small random imperfec­
tions need to be considered. This leads to the 
study of near-periodic structures that has fol­
lowed a number of approaches: the receptance 
method on systems with one disorder, perturba­
tion approaches, and stochastic methods (See 
Mester, 1992). It has been found that imperfec­
tions in the periodicity of the structure can lead 
to a phenomena called localization. The follow­
ing gives an overview of this work. 

WAVE PROPAGATION IN NEAR-PERIODIC 
STRUCTURES 

Near-periodic structures are "periodic" struc­
tures that contain either one element that is not 
identical to the others, known as a single disor­
der, or many elements that deviate from an aver­
age repeated element by a small amount, known 
simply as disordered. Mead and Bansal (1978) 
developed a general theory for mono coupled pe­
riodic systems with a single disorder. Wave re­
ceptance methods were used. In a perfect system 
the forced waves would propagate without ob­
struction, but a disorder also causes characteris­
tic free waves to be generated from the disorder. 
The response is the sum of both. The ratios of the 
forces at the ends of the disordered substructure 
are 

(aw + - aAA)(aw+ + aBB) + f3ABf3BA 
(aw+ + aAA)(aw + + aBB) - f3ABf3BA 

(2aw+f3BA) 

(40) 

(41) 

where the subscripts A and B represent the left 
and right side of the disordered element. The dis­
turbance is taken to impinge upon the left side of 
the nonperiodic substructure. The subscripts i, r, 
and t indicate incident, reflected, and transmit­
ted. The subscript w+ implies that the recep­
tance function is for positive going waves. These 
expressions are in terms of the end receptances 
of the disorder, f3mn, and the characteristic wave 
receptance of the periodic system, a mn . This 
method has been extended by Mead and Lee 
(1984) to analyze I-D systems with a disorder 
that is a cluster of elements which is periodic, but 
is not the same periodicity as the rest of the sys­
tem. 

Ziegler (1977) uses Ploquet waves to examine 
the behavior of periodic and disordered compos­
ite materials. The method is based on a transfer 
matrix. The state vector consists of the displace­
ments of the left and right going waves. The anal­
ysis is continued by examining the complex state 
ratio, which is the ratio of a left going wave to the 
right going wave, through conformal mapping. 

Disorder in a system, such as the spinal 
column, where geometry as well as mass and 
stiffness change, can also be viewed as a per­
fectly periodic system that has been perturbed. 
Meirovitch and Engels (1978) derived an efficient 
perturbation technique to get the response of a 



disordered "periodic structure." The Z-trans­
form method as explained above is extended by a 
perturbation approach to obtain the response of 
almost periodic structures. Here, the transfer 
matrix A is no longer constant, but can be as­
sumed to be 

(42) 

where A ;0) is a constant matrix and e is a small 
parameter. Then 

i· = i~O) + ei~l) + e2i~2) + . (43) 
l I I I 

Inserting Eqs. (42) and (43) into Eq. (12) and 
equating like powers of e, results in 

X~l) = A(O)x~~l) + f~~l) I - 0 1 2 (44) .+1 • ., -", ... , 

where 

I 

liO) = Ii, Ii/) = 2: A ik)xi1- k), I = 1, 2, . 
k~l 

(45) 

Proceeding as with the periodic solution, the re­
sponse of the system can be found. The first or­
der approximation is usually sufficient for most 
problems. A 20 substructure axial single degree 
of freedom system was worked. The results for 
both perturbed and unperturbed were found, and 
both have similar responses except that the un­
perturbed system consistently has a slightly 
smaller displacement. This method can accom­
modate variations in all system parameters as 
long as the variations remain the same. 

Huang (1982) examined disordered structures 
by modeling them with periodic random parame­
ters. In this approach, the systems parameters 
such as mass, mAO), and local frequencies, q2(O) 
and p2(O), are expressed as random variables, 
each with a mean value and a variance of unity. 
This analysis is developed using an undamped 
set of blades on a disk. The equation of motion is 

-qij[(1 + 1]Q)X']' + [pij(1 + ~P) 
- w 2(1 + ,M)]X = O. (46) 

The functions M, P, and Q are random functions 
corresponding to mx , p, and q. The subscript 0 
denotes the mean value of the parameter. The 
Greek letters represent small parameters equal to 
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the standard deviations of the corresponding ran­
dom variables. The natural frequencies and mode 
shape functions are found through a perturbation 
method using only the first-order terms 

w 2 = A2 + ~JL2 + 1]v2 + 'p2 + ... 

X(O) = y(O) + ~u(O) + 1]v(O) + ,w(O) + . 
(47) 

Substituting Eq. (47) into Eq. (46), then collect­
ing like orders of~, 1], and " the natural frequen­
cies and mode shapes are found by the use of 
Fourier series expansion to be 

The mean value of w ~ is 

(49) 

and the standard deviation is a small quantity, on 
the same order as~, 1], and ,. The normal modes 
are shown to be orthogonal. Two results are 
found that differ from deterministic solutions. 
The first result is that the phase angles of the 
normal modes are no longer arbitrary, but they 
are independent of initial conditions. The other 
result is that normally resonance only occurs 
when kn = Wm and k = m, where n is the exciting 
frequency and k is the number of the harmonic of 
n. With the random parameter modeling, the 
above still holds; however, weak resonance oc­
curs when kn = Wm and k ¥= m. 

Soong and Bogdanoff (1963) looked at the ef­
fects of disorder on the natural frequencies of a 
linear chain. The analysis was conducted using 
both a deterministic and probabilistic approach. 
In the deterministic approach, an additional term 
was added to represent a deterministic change in 
a parameter. It was concluded that unless the 
inertial and elastic parameters are exactly 
known, the highest few natural frequencies may 
deviate considerably from the predicted values. 
The practical significance of this conclusion is 
that little confidence can be placed in the calcu­
lated values of the top few natural frequencies in 
view of the difficulty in estimating accurately the 
elastic constants in most engineering systems. 
On the other hand, the demonstrated stability of 
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the lowest few natural frequencies with respect 
to parameter variation increases our confidence 
in our ability to estimate these frequencies with 
considerable accuracy. For the probabilistic ap­
proach, the parameters are represented as a 
mean value plus a random variable with zero 
mean and a small variance with respect to unity. 
The arrived-at conclusions are the same as for 
the deterministic case. The probability distribu­
tion for the higher natural frequencies are spread 
over a relatively broad range of frequencies , such 
that neighboring natural frequencies distributions 
overlap. Thus, little confidence can be put into 
the prediction of the higher natural frequencies. 

Soong and Bogdanoff (1964) extended the 
above analysis to examine the impulsive admit­
tance and the frequency response of the disor­
dered chain. The impulsive admittance function 
was expanded as a series of statistically indepen­
dent random variables. It was shown that the 
mean of the disordered admittance function is 
the same as the deterministic admittance func­
tion. However, the standard deviation of the ad­
mittance function increases as the damping con­
stant decreases. Thus, an accurate prediction for 
the behavior of lightly damped structures is not 
possible if the parameter values are not exact. 
The mean of the frequency response deviates in­
creasingly from the deterministic frequency re­
sponse as the input frequency increases, but the 
standard deviation of the random model de­
creases as input frequency increases. 

Localization 

In disordered structures, a phenomenon called 
localization may occur in which energy is con­
fined near the disorder and the dynamic behavior 
of the structure changes. It is important to exam­
ine this effect for several reasons. This energy 
confinement can be mistaken for structural 
damping during physical testing. The results of 
the testing may be used to determine material 
properties for analysis and design. leading to er­
roneous designs. The confinement can possibly 
be used in a creative way to isolate critical areas 
of the structure from disturbances. 

Hodges (1982) used two examples, coupled 
pendula and a vibrating string, to study the ef­
fects of localization in disordered systems. In the 
system of coupled pendula, the disorder arises 
from the length of the pendula deviating from a 
uniform length. In the vibrating string, disorder is 
induced by constraining the string at irregular in-

tervals. Localization does not allow waves to 
propagate far from the source through energy 
confinement, not dissipation. It was shown that 
pendula of the same natural frequency have nor­
mal modes of behavior even as the coupling 
strength decreases. But as the pendula become 
more and more disordered, the coupling must be­
come stronger and stronger to maintain the nor­
mal modes. If the coupling strength is weak, then 
the pendula begin acting independently, barely 
affecting their neighbor. A string with masses 
and springs attached at irregular intervals was 
also examined. The wavelength was assumed to 
be much smaller than the fluctuation in interval 
spacing. The equations derived were for one de­
gree of freedom. The analysis was done in terms 
of wave propagation and reflection from struc­
tural irregularities. 

Bendiksen (1987) conducted a theoretical and 
numerical investigation into the possible localiza­
tion or confinement of vibratory modes in large 
space structures due to structural imperfections. 
Localization causes a global modal amplitude to 
become confined to a local region in the struc­
ture. Localization has serious effects on the con­
trol of structures. The study shows that mode 
localization is most likely to occur in structures 
with many weakly coupled substructures. Space 
structures with high model densities are in this 
category; thus it is important to include the effect 
of structural imperfections and disorder in de­
signing their control systems. Examples of large 
space structures are solar energy collectors, so­
lar sails, large astronomical telescopes, commun­
ication antennas, and space station structures. 
The approach uses ideas and results from differ­
ent fields such as solid-state physics, solid me­
chanics, and dynamics. In dynamic stability and 
control, it was shown that disorder can actually 
be stabilizing. However, a serious consequence 
of localization is that it destroys the regular fea­
tures of the modes, like regular spacing of the 
nodal points and lines, and the sinusoidal ampli­
tude modulation. The amplitude and phase rela­
tionships of sensor signals would become radi­
cally different from their expected values. Thus a 
control system tuned to the ideal system would 
attempt to control an essentially unknown sys­
tem. Preliminary results also indicate that the 
identification problem may also be a major chal­
lenge. This makes it difficult to apply adaptive 
control. The example used to illustrate the ap­
proach was a circular periodic monocoupled I-D 
structure like a bladed rotor. It has circular peri-



odicity and global periodicity due to the fact that 
the first and last substructures are adjacent. It is 
noted that structural coupling extended beyond 
adjacent substructures. The solution for a per­
fectly ordered dish was obtained. 

Imperfections were then introduced into the 
example of the dish. The stiffness matrix K was 
changed by an amount AK where AKI K is a ran­
dom variable with a uniform probability function 
on an interval [0, 0.05]. For KJK = 1 and 
KhlK = 10, strong localization occurred. The lo­
cation of the peaks could not be anticipated by a 
cursory inspection of the distribution of the im­
perfections, and different modes localized at dif­
ferent substructures. The recognizable features 
of the perfect modes, like nodal lines, were oblit­
erated. 

For multi degree of freedom systems, pertur­
bation methods were used. The perturbation 
equations are 

[M] = [M] + e[m] 

[K] = [K] + e[k], (50) 

where 13 ~ 1 and [m] and [k] are the same order as 
the unperturbed matrices. The perturbation 
method gives the insight that imperfections cause 
modes that were originally orthogonal to become 
coupled. Small changes cause the system to be­
have differently, thus the perturbation method is 
not valid because it violates the assumption that 
the change is small. The ratio 131 Ke is used to 
circumvent the violation of the assumption. Lo­
calization increases as the ratio of the disorder 
strength, 13, to interstructure coupling strength, 
Ke, increases. The ratio, elKe, is more important 
than just the degree of disorder, 13, itself. Ben­
diksen (1987) suggested that significant localiza­
tion results from structural irregularities within 
normal manufacturing tolerances. 

Pierre, Tang, and Dowell (1987) used a pertur­
bation method to study localization that is found 
in disordered multispan beams. The method 
found strongly localized modes without a global 
eigenvalue analysis of the entire system. Criteria 
that predicts the occurrence of strong localiza­
tion was found. For the first group of modes, 
strong localization occurs if the relative passband 
width of the tuned beam is of the order of, or 
smaller, than the relative spread in the frequen­
cies of the individual spans. It was suspected that 
if localization does not occur in the first two 
modes, then it will not occur in the higher modes; 
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but if it occurs in these modes then it will occur in 
the higher modes as well, but the severity will not 
increase. The accuracy of the method was exper­
imentally verified. It was discovered that small 
disorders in weakly coupled structures will cause 
localization. 

In structures with close eigenvalues, Pierre 
(1988) has shown that small structural irregulari­
ties result in both strong localization of mode 
shapes and abrupt veering away of the loci of the 
eigenvalues. Perturbation methods for the eigen­
value problem were applied to predict the occur­
rence of strong localization and eigenvalue loci 
veering, which turned out to be two effects of the 
same phenomenon. 

Ai = AOi + OAi + 02Ai 

Wi = WOi + OWi + 02Wi 

OAi = (WOi' lwo)e 

o - {'" (WOj, lWOi) } Wi - L.J \ _ \ WOi e. 
j#i "-Oi ''-OJ 

A criterion for localization is found to be 

(51) 

IAOr - Aosl ::s; O(I(wos , lwor)el), (52) 

where (WOi, lWOi) is an inner product, 13 is a small 
perturbation, and l is an operator that represents 
the equation of motion. Equation (52) indicates a 
violation of the perturbation assumptions of 
small variations about WOh because OWi has an 
order of magnitude of one or greater. Thus for 
closely spaced eigenvalues strong localizations 
most likely occur. Perturbations are taken to the 
second order, because the first-order method is 
not sensitive enough to small disorder (13 ::s; 10%). 

The transmission of steady-state harmonic vi­
bration from a local source of excitation in a 
nearly periodic assembly of monocoupled, multi­
component mode substructures was examined by 
Cha and Pierre (1991) using probabilistic meth­
ods. A transfer matrix formulation was used to 
derive analytical expressions for the localization 
factor in the limiting cases of strong and weak 
modal coupling. The localization factor increases 
rapidly with each successive passband. Typically 
the transition from weak to strong localization 
occurs from one passband to the next and severe 
vibration confinement is unavoidable at high fre­
quencies, even for a small disorder. 

Cai and Lin (1990) developed a new perturba­
tion scheme using probability theory to calculate 
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the average attenuation rate with respect to the 
distance of the transmission, called the localiza­
tion factor. Structural damping was also consid­
ered. The method is general and permits suc­
cessive improvements in accuracy. This was 
achieved by taking the reflections from nearby 
disordered cells successively and substituting the 
ensemble average for the sequential average of 
certain statistical properties of the cells on the 
basis of spatial ergodicity. They compare well 
with Monte Carlo simulations. 

A statistical investigation of the effects of dis­
order on the dynamics of I-D nearly periodic 
structures was presented by Pierre (1990). The 
problem of vibration propagation was examined 
when disorder was introduced. Analytical ex­
pressions for the localization factors (the expo­
nential decay constants) were obtained in the two 
limiting cases of weak and strong internal cou­
pling ratio and the excitation frequency. Both 
modal and wave propagation descriptions were 
used. The perturbation results were verified by 
Monte Carlo simulations. The phenomena of 
weak and strong localization was evidenced. Al­
though the former has little effect on the dy­
namics of most structures, the latter was shown 
to be of significant importance in structural dy­
namics. Weak internal coupling and small disor­
der has drastic effects on dynamic properties due 
to strong localization. 

Pierre (1990) studied the localization phenom­
enon for a generic model of I-D nominally peri­
odic system. An in depth examination of the fre­
quency dependence of localization effects in the 
weak and strong regimes was given. The distinc­
tion between weak and strong localization effects 
was classified. The localization factors for lim­
ited cases were evaluated by stochastic perturba­
tion methods. For strong coupling and large dis­
order, localization is insignificant for engineering 
structures because of the effects of damping and 
boundary conditions. The dependence of the lo­
calization factor upon frequency, coupling, and 
disorder was analyzed. The validity of the ana­
lytical results were verified by Monte Carlo simu­
lations. Weak localization occurs with strong (fi­
nite) internal coupling and weak disorder in 
which amplitude decay per site is small. Weak 
localization is of little concern because the decay 
is small, boundary conditions can effect the small 
localization factors significantly and obscure any 
notable disorder effects, and light damping is at 
least on the same order making weak localization 
of little interest, although in structures that con-

tain hundreds of substructures, weak localization 
can become significant. Strong localization hap­
pens in weakly coupled, weakly disordered sys­
tems. For strong localized vibrations only a few 
substructures participate and are more significant 
in engineering structures. 

Experiments have been conducted that con­
firm the existence of the localization phenome­
non in actual structures. The localization of the 
response of a 12 rib satellite antenna structure 
was predicted fairly well by Levine-West and 
Salama (1992) using the MSC/NASTRAN model 
that used the measured structural dimensions 
from off the actual experimental structure. 
Bouzit and Pierre (1993) conducted a physical 
investigation of a simply supported beam, which 
gave good agreement with theoretical analysis. 
These results indicated that the importance of 
considering localization is not just academic. 

Another way of looking at the dynamic behav­
ior of a structure is power flow or power propa­
gation analysis, which is closely related to wave 
propagation analysis. Instead of examining the 
wave motion at the different frequencies, the en­
ergy flow is considered. 

Keane and Price (1989) examine monocoupled 
and undamped structures via several different 
methods to obtain a better insight of the dynamic 
behavior of plated structures with welded stiffen­
ers. All the methods, wave, modal, receptance, 
and finite element, were found able to give simi­
lar results. This highlights the importance of cor­
rectly modeling the subject of analysis as com­
pared to the method of analysis. Localization 
due to a single disorder is explained as a result of 
a shift in the pass bands of a disordered element. 
The shifted passband admits natural frequencies 
that are now in the stop band of the rest of the 
elements. Therefore, the modes of these frequen­
cies become localized as they are attenuated 
traveling through the stop bands of the periodic 
elements. They suggested that Anderson locali­
zation for most engineering structures has little 
effect and for those that are effected, such as 
highly random or weakly coupled structures, 
should not be analyzed using periodic or near­
periodic methods. 

Zhong and Williams (1991) investigated locali­
zation for high frequency modes of disordered 
structures using an analogy between computa­
tional structural mechanics and optimal control. 
The simplectic matrix approach was used to ob­
tain the eigenvalues of the structure as well as 
the limits of the pass bands. 



POWER PROPAGATION IN NETWORKS 

The following studies developed methods to ana­
lyze vibrational energy propagation in structural 
networks. The methods are generalized to be ap­
plicable to any arbitrary structural network. 
However, as in other analysis methods, periodic 
structures simplify the analysis. 

Mead (1985) investigated the power flow in 
Timoshenko . beams and examined the power 
transmission and reflection at constraints. Von 
Flotow (1986a) combined several mathematical 
methods to form a systematic approach in ana­
lyzing the disturbance propagation in a structural 
network. The concepts used were traveling wave 
modes and scattering matrices from microwave 
circuit analysis. Continuum models of periodic 
members were used. Members were described in 
the frequency domain by the propagation coeffi­
cients of their intrinsic wave modes, while junc­
tions were represented by frequency dependent 
wave-mode reflection and transmission coeffi­
cients grouped in a junction scattering matrix. 
The component impulses were calculated by a 
combination of analysis and the fast Fourier 
transform algorithm. The convolution of the im­
pulse responses gave the network response. Par­
allel processing will be needed in order to get real 
time solutions. 

Miller and von Flotow (1989) looked at struc­
tural networks as the assembly of slender I-D 
members. Each member was defined by two 
junctions. Junctions may be terminations or the 
interconnections of many members. Elastic dis­
turbance propagation and power flow in net­
works were considered. Spatially local models 
were assembled into a global frequency domain 
description. The global response description was 
then examined to find the local and global power 
flow. The method can be used to determine the 
disturbance transmission paths. The method also 
helps the designer choose and evaluate control 
procedures for the structure. 

Structural component models of wave propa­
gation were assembled into a global model and 
power flow at all levels was investigated. 
Component net power flow provided local infor­
mation about the dissipation and energy trans­
mission of members and junctions. The combina­
tions of wave modes present in a member or 
junction was determined by the global network 
behavior. Total network power flow showed 
which components have the most vibrational en­
ergy. The power relations showed the physical 
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paths that dominate the extraction of energy. 
The global modeling method led to detailed re­
sponse predictions. The method is limited to net­
works of 1-D members but could be extended to 
higher dimensions. 

Cai and Lin (1991) examined power flow in 
structures. The members were treated as a multi­
channel waveguide, and the structure was con­
sidered as a network. Three analytical tools were 
used: individual waveguides, junctions where the 
waveguides meet, and boundaries where either 
displacements or forces are zero or a mixture. 
All three may be represented by a wave scatter­
ing matrix that relates incoming waves to outgo­
ing waves in a structural element. 

Zhang and Zhang (1991) investigated ways of 
reducing the vibrational energy flow in a periodi­
cally supported beam. The relation between the 
location of the excitation and the transmitted 
energy flow was examined. The location where 
the excitatIon would minimize the transmitted 
energy can be found for different propagation 
bands. The power is split in half, regardless of 
the excitation location, and each half flows in an 
opposite direction from the excitation. The effect 
of damping is that power is reduced near the 
bounding frequencies of the odd propagation 
zones. 

STRUCTURAL CONTROL WITHOUT 
IMPERFECTION 

Once the dynamics of these periodic structures 
are understood, the next step is to apply this un­
derstanding to control the behavior of the struc­
tures to meet the requirements of the task they 
were designed to accomplish. This can be done 
either actively or passively. Active control re­
quires sensors, actuators, and controllers. Pas­
sive control is designed into the system so that 
the desired behavior is inherent. It appears that 
some form of active control will be required for 
imperfectly periodic structures. Here, some rep­
resentative work on the control of waves in 
structures is summarized. 

Von Flotow and Schafer (1986) approached 
the vibrational control of a hanging beam by two 
methods that turned out to be very similar. They 
are velocity (direct) feedback and wave absorb­
ing controllers. The wave absorbing controllers 
were designed to minimize the reflection of en­
ergy. The experimental results indicated that 
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more work needs to be done in order to realize 
these theoretical wave-absorbing controllers. 

Von Flotow (1986b) investigated active con­
trol of propagating disturbances by modifying the 
natural disturbance propagation path. The distur­
bance energy was shunted into unimportant ar­
eas of the structure or absorbed by "wave ab­
sorbers." This method though is not practical for 
low frequency or large amplitude disturbances. 

Pines and von Flotow (1988) conducted an an­
alytical and experimental investigation to deter­
mine if the propagation of bending waves along a 
uniform beam can actively be blocked. Strain 
gauge sensors drove piezoceramic actuators as a 
dynamic compensator, designed in the frequency 
domain, but independent of the boundary condi­
tions. The experimental results were promising 
although not completely successful. 

Bennighof and Meirovitch (1989) compared 
two methods of actively suppressing traveling 
waves in structures. When higher modes were 
damped out passively, independent modal-space 
control could be concentrated on the lower 
modes. But when the modal frequencies were 
closely spaced, direct feed back control was bet­
ter because of the large number of modes that 
needed to have energy dissipated. The model 
method is a global method, while the direct feed­
back method is local. However, both methods 
tend to concentrate the actuator forces near the 
localized disturbance. It should be noted that the 
modal method can only control as many modes 
as there are actuators. 

A frequency dependent cost function includ­
ing both power flow and control effort was mini­
mized by Miller, Hall, and von Flotow (1989) to 
find the optimal feedback compensation for 
structural waveguides at junctions. Wave models 
try to control all frequencies that propagate 
through a structure; modal models single out the 
frequencies that correspond to modes. Wave 
models cannot show global resonant behavior, 
but they show that critical locations can be iso­
lated. Also weave modeling requires fewer de­
grees of controller freedom to implement con­
trol. Wave modeling can be used to create 
control schemes to locally suppress vibration and 
create dynamic isolation. 

Hagwood, Chung, and von Flotow (1990) 
modeled the effects of dynamic coupling between 
a structure and an electrical network through the 
piezolectric effect. This laid the groundwork for 
optimizing the use of piezolectric materials as 
sensors and actuators in active structural con-

trol. The mechanical and electrical coordinates 
were obtained by Hamilton's principle using a 
Rayleigh-Ritz formulation. 

These articles indicate several control ap­
proaches. Although the approaches are general, 
their application to periodic structures should 
capitalize upon the unique features of these 
structures such as reduced computation and pas­
sive filtering. Additionally, it is expected that the 
effects of imperfections, that is, localization, can 
have a serious impact on the propagation of en­
ergy through a structure. Thus, any effective 
control strategy must account for localization ef­
fects. 

This work was prepared in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy of 
the first author. The work was performed under the 
support of the Federal Aviation Administration Tech­
nical Center. 

APPENDIX: SELECTED ABSTRACTS ON 
PERIODIC AND NEAR PERIODIC 
STRUCTURES 

Anderson, M. S., 1981, "Buckling of Periodic Lattice 
Structures," AIAA Journal, Vol. 19, pp. 782-788. 

Equations are developed for the buckling of a gen­
eral lattice structure that has repetitive geometry. 
Equilibrium at a typical node is expressed using fi­
nite-element techniques, and the only assumption is 
that the response is periodic. The stiffness matrix is 
based on the exact solution of the beam column 
equation; thus, accurate results are obtained for 
complex buckling behavior that would require a 
very large system of equations using conventional 
techniques. The present method requires the eigen­
values of only a 6 x 6 determinant. The results are 
used to study the buckling of isogrid cylinders, 
three-element truss columns, and polygonal rings. 
Details of the analysis including expressions for all 
terms in the governing stability determinant are 
given. 

Anderson, M. S., 1982, "Vibration of Prestressed Pe­
riodic Lattice Structures," AIAA Journal, Vol. 20, pp. 
551-555. 

Equations are developed for vibration of genera I I at­
tice structures that have repetitive geometry. The 
method of solution is an extension of a previous 
article for buckling of similar structures. The theory 
is based on representing each member of the struc­
ture with the exact dynamic stiffness matrix and tak-



ing advantage of the repetitive geometry to obtain 
an eigenvalue problem involving the degrees of free­
dom at a single node in the lattice. Results are given 
for shell-like and beam-like lattice structures and for 
rings stiffened with tension cables and a central 
mast. The variation offrequency with external load­
ing and the effect of local member vibration on over­
all modes is shown. 

Bardell, N. S., and Mead, D. J., 1989, "Free Vibration 
of an Orthogonally Stiffened Cylindrical Shell I: Dis­
crete Line Simple Supports," Journal of Sound and 
Vibration, Vol. 134, pp. 29-54. 

The hierarchical finite element method is used to 
establish the stiffness and mass matrices of a cylin­
drically curved rectangular panel. Some natural fre­
quencies and modes of two such panels, each with 
different boundary conditions, are then determined. 
Excellent agreement is found between this work and 
that of other investigators. These stiffness and mass 
matrices are then combined with the periodic struc­
ture theory to analyze an orthogonally stiffened cy­
lindrical shell. This analysis is formulated for a 
"plane wave" type of motion characterized by dif­
ferent propagation constants in the axial and cir­
cumferential directions. The governing equations of 
free vibrations are then solved as a matrix eigen­
value problem for the frequencies at which particu­
lar waves will propagate. Results are presented in 
the form of phase-constant surface stacks, and 
clearly show the qualitative effects of varying the 
major shell parameters bla, Ria, and Rlh. 

Bardell, N. S., and Mead, D. J., 1989, "Free Vibration 
of an Orthogonally Stiffened Cylindrical Shell II: Dis­
crete Line Simple Supports," Journal of Sound and 
Vibration, Vol. 134, pp. 55-72. 

A thin, cylindrical shell is considered, stiffened axi­
ally by equipitched, identical stringers and stiffened 
circumferentially by equipitched, identical frames. 
Generality of stringer and frame section is allowed. 
The structure is analyzed as a two-dimensional peri­
odic structure by using wave propagation tech­
niques in conjunction with the hierarchical finite ele­
ment method. Results are presented in the form of 
phase-constant surfaces plotted against frequency. 
It is shown that free wave motion can propagate in 
the infinite structure from zero frequency. A small 
frequency band has been identified in which pre­
dominantly flexural waves cannot propagate. Ex­
periments performed on a one-quarter scale fuselage 
model confirm the main findings of the theoretical 
analysis. 

Bendiksen, O. 0., 1987, "Mode Localization Phenom­
ena in Large Space Structures," AIAA Journal, Vol. 
25, pp. 1241-1248. 
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An analytical and numerical study is presented that 
investigates the possibility of localization or con­
finement of vibratory modes in large space struc­
tures. These structures belong to a class of periodic 
structures that have recently been shown to be sen­
sitive to periodicity-breaking disorder or imperfec­
tions. When localization occurs, the modal ampli­
tude of a global mode becomes confined to a local 
region of the structure, with serious implications for 
the control problem. The results of this study show 
that mode localization is most likely to occur in 
structures consisting of a large number of weakly 
coupled substructures. Certain large space struc­
tures with high modal densities fall in this category, 
and it is therefore important to include the effect of 
structural imperfections and disorders when design­
ing control systems for shape or directional control 
of such structures. 

Bennighof, J. K., and Meirovitch, L., 1989, "Active 
Suppression of Traveling Waves in Structures," Jour­
nalofGuidance, Control, and Dynamics, Vol. 12, pp. 
555-567. 

The article is concerned with the control oftraveling 
waves in structures. Two approaches are used: in­
dependent modal-space control (IMSC) and direct 
feed back control. Direct feed back control is shown 
to be more suitable for problems in which a large 
number of higher modes require control. IMSC is 
shown to be more suitable when the number of 
modes in need of control is not large or when inher­
ent damping provides passive control, suppressing 
the higher modes. One fact worthy of notice is that 
although IMSC represents a global approach com­
pared to direct feed back control, the actuator 
forces still tend to concentrate near localized distur­
bances such as traveling waves. 

Bouzit, D., and Pierre, C., 1993, "Experimental In­
vestigation of Vibration Localization in Disordered 
Multispan Beams," Collection of Technical Papers­
AIAAIASME Structures, Structural Dynamics and 
Materials conference, Vol. 3, pp. 1565-1577. 

The results of an experimental investigation of the 
effects of span length disorder on the dynamics of a 
monocoupled, multispan beam are reported. Two 
experimental specimens are considered: a nominally 
periodic 12-span beam with equal spacing between 
simple supports, and the corresponding disordered 
beam that features slightly randomly spaced sup­
ports. Experimental results demonstrate that the 
transmission of vibration that takes place within the 
frequency passbands of the periodic beam is greatly 
hindered when span length randomness is intro­
duced. The spatial localization of both the mode 
shapes and the steady-state harmonic response to an 
end excitation is observed in the disordered 12-span 
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beam, especially for frequencies that lie within the 
second passband. Good quantitative agreement is 
obtained between experimental results and theoreti­
cal findings for both ordered and disordered configu­
rations. Furthermore, an experimental estimation of 
the localization factor yields satisfactory agreement 
with the theoretical result for an infinite mUltispan 
beam. This work reports one of the first systematic 
experiments carried out to demonstrate the occur­
rence of vibration localization in nearly periodic 
structures. 

Cai, G. Q., and Lin, Y. K., 1991, "Localization of 
Wave Propagation in Disordered Periodic Struc­
tures," AIAA Journal, Vol. 29, pp. 450-456. 

A structure designed to be spatially periodic in its 
configuration cannot be exactly periodic due to ma­
terial, geometric, and manufacturing variabilities. 
Such variabilities are random, and their presence 
(often referred to as disorder) can reduce the ability 
of the structure to transmit waves from one location 
to another. The phenomenon is known as vibration 
confinement or localization. A new perturbation 
scheme is developed on the basis of probability the­
ory to calculate the average exponential decay rate 
of wave transmission with respect to the distance of 
transmission, called the localization factor. Account 
is also taken of structural damping. The new scheme 
permits successive improvement of accuracy, mak­
ing it applicable to either weak, strong, or moderate 
localization. Moreover, the analysis is based on a 
generic periodic structure; thus, it is not restricted 
to a specific set of governing equations. These are 
achieved by taking into account reflections from 
nearby disordered cell units successively and substi­
tuting the ensemble average for the sequential aver­
age of certain statistical properties of the cell units 
on the basis of spatial ergodicity. Application of the 
method is illustrated by an example, and the results 
are compared with Monte Carlo simulations. 

Cai, G. Q., and Lin, Y. K., 1991, "Wave Propagation 
and Scattering in Structural Networks, " Journal of 
Engineering Mechanics, Vol. 117, pp. 1555-1574. 

A theoretical procedure is described for the dy­
namic response analysis of engineering structures 
composed of interconnected slender members. 
Each structural member is treated as a multichannel 
waveguide, and the entire structure is treated as a 
network of such waveguides. Three types ofanalyti­
cal building blocks are then discussed: an individual 
waveguide, a junction where several waveguides in­
tersect, and a boundary where either zero displace­
ments or zero forces or their combination must be 
imposed. It is shown that the properties of each type 
of building block may be characterized by a wave­
scattering matrix that relates the incoming waves to 

the structural element in question and the outgoing 
waves from the structural element. The use of wave­
scattering matrices guarantees that numerical com­
putation is always stable, because the computation 
follows the direction of wave propagation, and the 
wave amplitude can only decrease with the propaga­
tion distance. The proposed analytical procedure is 
efficient in computation and it yields accurate 
results, especially if motions at specific locations on 
a structure are required. 

Cha, P. D., and Pierre, c., 1991, "Vibration Localiza­
tion by Disorder in Assemblies of Monocoupled, 
Multimode Component Systems," Journal of Applied 
Mechanics, Vol. 58, pp. 1072-1081. 

Disorder in nominally periodic engineering struc­
tures results in the localization of the mode shapes 
to small geometric regions and in the attenuation of 
waves, even in the passbands of the corresponding 
perfectly periodic system. This article investigates, 
via probabilistic methods, the transmission of 
steady-state harmonic vibration from a local source 
of excitation in nearly periodic assemblies of mono­
coupled, multicomponent mode substructures. A 
transfer matrix formulation is used to derive analyti­
cal expressions for the localization factor (the rate 
of exponential decay of the vibration amplitude) in 
the limiting cases of strong and weak model cou­
pling. The degree of localization is shown to in­
crease with the ratio of disorder strength to modal 
coupling. The increase is nearly parabolic for small 
values of this ratio, and logarithmic for large values. 
Furthermore, the localization factor increases rap­
idly with the passband number. Typically, the tran­
sition from weak to strong localization occurs from 
one pass band to the next, and severe vibration con­
finement is unavoidable at high frequencies, even 
for small disorders. 

Denke, P. R., Eide, G. R., and Pickard, J., 1975, 
"Matrix Difference Equation Analysis of Vibrating 
Periodic Structures," AIAAJournal, Vol. 13, pp. 160-
166. 

The matrix difference equation (MDE) method for 
sound transmission and forced vibration analysis of 
damped periodic structures is presented. A periodic 
structure is defined as a string of identical substruc­
tures, such as a segment of aircraft fuselage that has 
identical bays between circumferential frames. The 
finite element method is applied to the substructure 
to provide a mechanical impedance matrix. A ma­
trix difference equation is derived from the impe­
dance matrix, based upon conditions of equilibrium 
and compatibility at substructure boundaries. The 
difference equation is reduced in order by eliminat­
ing force variables and introducing substructure dis­
placement modes. A solution is found by calculating 



eigenvalues and eigenvectors of a related character­
istic equation. The result is a closed form expression 
in the longitudinal coordinate. The method is gen­
eral and applicable to complex structures, because 
of the finite element basis. Results of an application 
to aircraft engine duct vibration are included. 

Engels, R. C., 1980, "Response of Infinite Periodic 
Structures," Journal of Sound and Vibration, Vol. 69, 
pp. 181-197. 

The response of infinite and semiinfinite periodic 
structures to harmonic loads is investigated. The 
method developed requires the eigenvalues of the 
transfer matrix of a typical substructure. Conse­
quently, the algorithm is capable of analyzing an 
infinite periodic structure with the same computa­
tional effort necessary to analyze a single substruc­
ture. Furthermore, the solution is given in terms of 
known boundary conditions and no eigenvectors of 
the transfer matrix are required. Several examples 
are included. Additional simplifications can be ob­
tained when the substructure is symmetric. 

Engels, R. c., and Meirovitch, L., 1978, "Response of 
Periodic Structures by Modal Analysis, " Journal of 
Sound and Vibration, Vol. 56, pp. 481-493. 

A periodic structure is a structure consisting of iden­
tical substructures, coupled together in identical 
ways to form the complete system. The undamped 
response of such a system is derived by using a 
modal analysis technique. The procedure allows for 
arbitrary loads and takes full advantage of the peri­
odic properties of the structure. The algorithm is 
based on a technique previously developed by the 
authors. 

Engels, R. C., and Meirovitch, L., 1978, "Simulation 
of Continuous Systems by Periodic Structures," Jour­
nal of Applied Mechanics, Vol. 45, pp. 385-392. 

Many continuous systems can be approximated by 
periodic structures (structures consisting of identi­
cal substructures, connected to each other in identi­
cal manner). An efficient algorithm developed by 
these authors for the response of periodic structures 
is adapted to the treatment of continuous systems. 
The method is capable of deriving the response of 
damped or undamped systems subject to harmonic 
distributed loads. The length of the substructure can 
be made arbitrarily small without increasing the 
computational effort. Furthermore, the number of 
degrees of freedom of the substructure can be rea­
sonably large. 

Ghatak, A. K., and Kothari, L. S., 1972, An Introduc­
tion to Lattice Dynamics, Addison-Wesley Publishing 
Company, Boston. 
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This monograph discusses topics in lattice dynamics 
and its study by neutron scattering experiments. 
The topics covered include wave propagation in a 
one-dimensional lattice, quantization of lattice vi­
brations in one-dimension, elastic constants and 
waves, the dispersion relation and quantization of 
lattice vibrations in three-dimensions, and the the­
ory of specific heats of solids. The phenomenologi­
cal theory of lattice dynamics is also developed and 
the Debye approximation is justified. Neutron scat­
tering experiments are described to explain how 
they are used to determine the frequency distribu­
tion function and dispersion relation for lattice 
modes. 

Hagood, N. W., Chung W. H., and von Flotow, A., 
1990, "Modeling of Piezoelectric Actuator Dynamics 
for Active Structural Control," Journal of Intelligent 
Material Systems and Structures, Vol. 1, pp. 327-354. 

The article models the effects of dynamic coupling 
between a structure and an electrical network 
through piezoelectric effect. The coupled equations 
of motion of an arbitrary elastic structure with 
peizoelectric elements and passive electronics are 
derived. State-space models are developed for the 
three important cases: direct voltage driven elec­
trodes, direct charge driven electrodes, and an indi­
rect drive case where the piezoelectric electrodes 
are connected to an arbitrary electrical circuit with 
embedded voltage and current sources. The equa­
tions are applied to the case of a cantilevered beam 
with surface mounted piezoceramics and indirect 
voltage and current drive. The theoretical deriva­
tions are validated experimentally on an actively 
controlled cantilevered beam test article with indi­
rect voltage drive. 

Hodges, C., 1982, "Confinement of Vibration by 
Structural Irregularity," Journal of Sound and Vibra­
tion, Vol. 82, pp. 411-424. 

The propagation of vibrations in structures with 
some degree of extended disorder (i.e., departure 
from regularity or strict periodicity extended 
throughout the structure) is discussed. An account 
is given of the phenomenon of normal mode locali­
zation, caused under certain circumstances by the 
disorder. This phenomenon means that vibrational 
energy injected into the structure by an external 
source cannot propagate to arbitrarily large dis­
tances, but is instead substantially confined to a re­
gion close to the source. Specifically, it is shown 
that the steady response of the structure decays ex­
ponentially away from the source. This phenome­
non, predicted by Anderson in 1958 with applica­
tions in solid-state physics in mind, has been of 
great importance in understanding electrical con­
duction processes in disordered solids and can be 
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very important in acoustical problems as well. In 
particular, it means that the literature on periodic 
structures can be misleading in a qualitative, and not 
just a quantitative, manner. The phenomenon is il­
lustrated in terms of two simple mechanical models, 
a system of coupled pendula and a vibrating string 
or bending beam with mass and spring constraints. 

Huang, W. hu, 1982, "Vibration of Some Structures 
with Periodic Random Parameters," AIAA Journal, 
Vol. 20, pp. 1001-1008. 

In a periodic structural system such as blades in a 
closed packet of turbomachinery, the natural fre­
quencies of the individual blade can be randomly 
different from one another. This article describes a 
solution approach for such a periodic structure in 
which the distributions of blade frequencies are ran­
dom processes with small standard deviations. A 
spectral method is suggested to solve for differential 
equations with random coefficients. The expres­
sions for vibration modes are given, the standard 
deviations of natural frequencies are estimated, and 
the results of forced vibration are presented. Some 
special features of vibration characteristics of this 
system are shown as well. 

Keane, A. J., and Price, W. G., 1989, "On the Vibra­
tions of Mono-Coupled Periodic and Near-Periodic 
Structures," Journal of Sound and Vibration, Vol. 
128, pp. 423-450. 

The fundamental equations governing the linear, os­
cillatory dynamics of structures consisting of re­
peated similar substructures are examined. The sys­
tems considered are monocoupled and undamped, 
and they are examined by using wave, modal, recep­
tance, and finite element (FE) analyses. These anal­
yses are aimed at providing an improved insight into 
the vibratory behavior of engineering structures that 
exhibit periodicity. In particular they are directed 
toward the plated structures with evenly spaced 
welded stiffeners that are commonly employed in 
modern engineering designs (e.g., ships, aircraft, 
etc.). Results originally derived from studies of the 
microscopic behavior of the constituent atoms of 
crystalline solids are used in this work, and some of 
the differences of emphasis highlighted. The effects 
of deviations from perfect periodicity are consid­
ered, particularly with reference to the dramatic 
changes in mode shapes that sometimes occur. 
Nonetheless, it is demonstrated that in the present 
context, all the methods of analysis used are capable 
of giving similar results (within anticipated accura­
cies), indicating the importance of correctly model­
ing a structure, as compared with the exact details 
of how the model is then analyzed. 

Levine-West, M. B., and Salama, M. A., 1992, 
"Model Localization Experiments on a Ribbed An­
tenna," AIAAIASMEIASCEIAHSIASC Structures, 
Structural Dynamics and Materials Conference Tech­
nical Papers, Vol. 4, pp. 2038-2047. 

The model localization (ML) phenomenon is investi­
gated experimentally and analytically to determine 
the influence of its parameters. For this purpose, a 
full-scale 12-rib loosely coupled antenna test bed 
with small imperfections is dynamically tested for 
various levels ofinterrib coupling stiffness and exci­
tation force. The experimental results are described 
herein. Using a simplified numerical model of the 
structure, a sensitivity analysis of the modal behav­
ior is also performed. The numerical and experimen­
tal results are shown to agree remarkably well, 
thereby providing conclusive validation of the ML 
phenomenon on a testbed having the dynamic char­
acteristics of space structures. 

Lin, Y. K., and McDaniel, T. J., 1969, "Dynamics of 
Beam-Type Periodic Structures," ASME-Paper 69-
Vibr-17. 

Analytical technique is developed for determination 
of frequency response matrix of one-dimensional 
periodic structure; detailed analysis is carried out 
for periodic Bernoulli-Euler beams on many elastic 
supports, a simplified version of the skin-stringer 
panel system commonly used in flight vehicle de­
signs. It is shown that considerable simplification 
can be achieved by introducing one of several possi­
ble interior singular conditions. Numerical exam­
ples are given for an undamped system and for the 
same system with damper units attached at periodic 
locations. 

McDaniel, T. J., and Carroll, M. J., 1982, "Dynamics 
of Bi-Periodic Structures," Journal of Sound and Vi­
bration, Vol. 81, pp. 311-335. 

In order to gain insight into the dynamics of bipe­
riodic aerospace structures, a variety of one- and 
two-dimensional biperiodic structures are consid­
ered. It is shown that bands in which natural fre­
quencies lie for periodic structures are further sub­
divided as a consequence of the biperiodicity. 
Analytical solutions for the modes and frequencies 
of finite-length, one-dimensional, biperiodic struc­
tures are obtained for general boundary conditions. 
A transmission method is developed to simplify the 
application of boundary conditions. Some modes 
are found to occur at frequencies outside the fre­
quency bands predicted for biperiodic structures. 
Two-dimensional biperiodic crossed beam grillage 
and truss structures are considered in this study. 



Mead, D. J., 1973, "A General Theory of Harmonic 
Wave Propagation in Linear Periodic Systems with 
Multiple Coupling," Journal of Sound and Vibration, 
Vol. 27, pp. 235-260. 

A general theory is presented of harmonic wave 
propagation in one-dimensional periodic systems 
with multiple coupling between adjacent periodic el­
ements. The motion of each element is expressed in 
terms of a finite number of displacement coordi­
nates. The nature and number of different wave 
propagation constants at any frequency are dis­
cussed, and the energy flow associated with waves 
having real, complex, or imaginary propagation con­
stants is investigated. Kinetic and potential energy 
functions are derived for the propagating waves and 
a generalized Rayleigh's quotient and Rayleigh's 
principle for the complex wave motion have been 
found. 

Mead, D. J., 1975, "Wave Propagation and Natural 
Modes in Periodic Systems: I-Mono-Coupled Sys­
tems," Journal of Sound and Vibration, Vol. 40, pp. 
1-18. 

Two topics are treated: the relationship between the 
bounding frequencies of the propagation zones of 
monocoupled systems and the natural frequencies 
of the individual elements making up such systems 
is studied. Properties of free harmonic wave propa­
gation in undamped multicoupled systems are iden­
tified for predicting resonant frequencies and re­
sponse levels in these systems. The concept of 
characteristic receptance of a free wave in the peri­
odic system is developed in the treatment of the first 
topic. Two examples of real aerospace structures 
provide a frame of reference for the discussion of 
the second topic: a periodic skin-stringer structure 
and a periodic rib-skin structure. 

Mead, D. J., 1975, "Wave Propagation and Natural 
Modes in Periodic Systems: II-Multi-Coupled Sys­
tems, with and without Damping," Journal of Sound 
and Vibration, Vol. 40, pp. 19-39. 

Free waves can propagate through periodic systems 
only in particular frequency zones. Equations for 
the bounding frequencies of these zones are ob­
tained in terms of the receptance matrices of the 
elements of multicoupled systems. The relationship 
between these frequencies and the natural frequen­
cies of a single element ofthe system is considered, 
particular attention being given to elements that are 
symmetrical. The nature of the characteristic wave 
motions is studied, and a characteristic receptance 
matrix for a characteristic wave is defined. This is 
used to introduce the study of reflection of a charac­
teristic wave from a boundary. The equations gov­
erning the reflection process are set up, and used to 
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formulate the equations for the natural frequencies 
and modes of a finite periodic system with arbitrary 
boundaries. The modes are represented by superpo­
sitions of opposite-going pairs of characteristic 
waves, in terms of which a simple physical descrip­
tion of the natural wave motion is presented. 

Mead, D. J., 1985, "Wave Propagation in Timoshenko 
Beams," Stronjnicky Casopis, Vol. 36, pp. 556-585. 

The work presented in this article is relevant to the 
problem of high-frequency, short wavelength vibra­
tion transmission in beams. IT the wavelength is 
much less than the length ofthe beam, certain vibra­
tion problems can be solved assuming that the beam 
is of infinite length. The frequency-averaged re­
sponse to a point harmonic force (or moment), aver­
aged over several resonating modes, is equal to the 
response of the infinite beam to a point harmonic 
load (or moment). It is therefore of value to study 
these latter problems in detail. It is also helpful to 
understand the nature and mechanism of wave en­
ergy transmission in beams. This, in tum, can be 
used to analyze and understand the reflection and 
transmission process when an incident wave in a 
beam impinges on a discontinuity or on a constraint. 
From this. one can deduce how to prevent wave 
energy in one region of a beam from being transmit­
ted to more remote regions. All ofthis has been well 
established for Euler-Bernoulli beams. It now re­
mains to use the Timoshenko beam theory to study 
these phenomena over a wider frequency range than 
was formally valid. These problems will be consid­
ered in this article. 

Mead, D. J., 1986, "A New Method of Analyzing 
Wave Propagating in Periodic Structures-Applica­
tions to Periodic Timoshenko Beams and Stiffened 
Plates," Journal of Sound and Vibration, Vol. 104, 
pp.9-27. 

A response function is found for an infinite, uni­
form, one-dimensional structure that is subjected to 
an array of harmonic forces or moments, spaced 
equidistantly, and that have a constant phase or ra­
tio between any adjacent pair. Receptance functions 
are derived for these "phased arrays." They are 
used to set up a general determinantal equation for 
the propagation constants of the infinite structure 
when it is made periodic by the addition of an infi­
nite set of regular constraints. They are also used to 
set up equations for the response of the structure to 
a convected harmonic pressure field. The method 
enables the equations for the propagating constants 
and for the response to convected loading to be set 
up with much greater facility than by earlier meth­
ods. It only requires a knowledge of the response 
function of the infinite uninterrupted structure under 
a single-point harmonic force or moment. The gen-
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eral equation for the propagation constants is used 
to study a simple supported periodic Timoshenko 
beam, and a parallel plate with periodic beam-type 
stiffeners. Some calculated propagation constants 
are presented and discussed. The periodic plate 
results are relevant to integrally stiffened skins of 
the type used in airplanes. 

Mead, D. J., and Bansal, A. S., 1978, "Mono-Coupled 
Periodic Systems with a Single Disorder-Free Wave 
Propagation," Journal of Sound and Vibration, Vol. 
61, pp. 481-496. 

A general method has been presented for analyzing 
free harmonic wave propagation through a mono­
coupled periodic system with a single disorder. Ex­
pressions have been derived for the magnitudes of 
the waves transmitted and reflected by the disorder. 
These general expressions have then been used to 
study flexural wave motion through a periodic beam 
system into which three different types of disorders 
have been introduced: a beam element of nonperi­
odic length; a rotary mass at a support; a rotary 
spring at a support. The disorder always results in 
reduced transmission of the flexural wave when the 
frequency is in a frequency propagation zone of the 
periodic system but the first two disorders may lead 
to increased transmission in a frequency attenua­
tion zone. Conditions have been identified under 
which the combined disorder plus periodic system 
can behave like a resonating spring-mass system, 
or as a spring-mass damper system. The adverse 
effects of resonating disorders are pointed out. Qual­
itative and quantitative analysis based upon com­
puter studies have indicated how disorders can 
be used most effectively for vibration isolation in 
existing periodic systems or when designing new 
systems. 

Mead, D. J., and Bardell, N. S., 1986, "Free Vibration 
of a Thin Cylindrical Shell with Discrete Axial Stiffen­
ers," Journal of Sound and Vibration, Vol. 111. pp .. 
229-250. 

Wave propagation around a cylindrical shell that is 
reinforced at regular intervals by flexible stiffeners 
parallel to the shell generator is considered. The 
shell itself is restricted to a section between two 
circumferential frames onto which the shell is sim­
ply supported. The structure effectively constitutes 
a one-dimensional periodic system and is analyzed 
as such. Four degrees of freedom are allowed be­
tween each periodic element and equations are set 
up for the four pairs of propagation constants that 
characterize the possible wave motions. Symmetric 
or asymmetric stiffener sections may be accommo­
dated in the analysis together with structural damp­
ing. Computed propagation constants are presented 
for two different stiffener cross-sections, each 

pitched at two different intervals around the shell. 
Natural frequencies are calculated for one of these. 

Mean, D. J., and Bardell, N. S., 1987, "Free Vibration 
of a Thin Cylindrical Shell with Periodic Circumferen­
tial Stiffeners," Journal of Sound and Vibration, Vol. 
115, pp. 499-520. 

The theory is developed for obtaining the propaga­
tion constants of a thin uniform cylindrical shell, 
periodically stiffened by uniform circular frames of 
general cross-section. The free wave motion is ana­
lyzed and the stop and passbands of free wave mo­
tion in the structure are located. Hysteretic damping 
is included. The natural frequencies of two stiffened 
finite cylindrical shells are deduced. The relative ef­
fects of the frame cross-section and pitch on the free 
vibration characteristics of the whole structure are 
discussed. 

Mead, D. J., and Lee, S. M., 1984, "Receptance 
Methods and the Dynamics of Disordered One-Dimen­
sional Lattices," Journal of Sound and Vibration, 
Vol. 92, pp. 427-445. 

The method of receptance analysis is used to set up 
a frequency equation for the free vibration modes of 
a one-dimensional periodic lattice (mass-spring sys­
tem) containing a disorder that is itself a one-dimen­
sional periodic lattice. The concepts of the propaga­
tion con·stant and wave-receptance function are 
used to determine the receptances of the component 
systems, and these are used to set up a simple fre­
quency equation. An accurate root-searching com­
puter program has been used to find the natural fre­
quencies and corresponding modes of particle 
displacement. Some computed results are shown to 
demonstrate the capability of the method and pro­
gram. Special attention is given to modes that occur 
in the frequency "forbidden" zone, and receptance 
methods are used to derive formulas for the frequen­
cies of systems with a single-mass disorder. The 
wider usefulness of the method is briefly discussed. 

Mead, D. J., and Yaman, Y., 1990. "The Harmonic 
Response of Uniform Beams on Multiple Linear Sup­
ports: A Flexural Wave Analysis," Journal of Sound 
and Vibration, Vol. 141, pp. 465-484. 

A wave approach is developed for the exact analysis 
of the harmonic response of uniform finite beams on 
multiple supports. The beam may be excited by sin­
gle- or multiple-point harmonic forces or moments; 
its supports may have general linear characteristics 
that may include displacement-rotation coupling. 
Use is made of the harmonic response function for 
an infinite beam subjected to a single-point har­
monic force or moment. The unknowns of the finite 
beam problem are the support reaction forces/mo-



ments and the magnitudes of four waves reflected 
from the ends of the beam. Equations are presented 
for the response of a single-bay beam with various 
support conditions and subjected to single-point 
harmonic excitation. The same equations, but with 
the simple addition of further straightforward terms 
on the right-hand side, are used for multipoint exci­
tation. The effects of damping are easily incorpo­
rated. Equations for multisupported beams are also 
presented together with illustrative computed fre­
quency-response curves. Natural frequencies have 
been calculated by finding resonance frequencies of 
lightly damped beams. These compare impeccably 
with the results of other investigators. 

Mead, D. J., and Yaman, Y., 1991, "The Response of 
Infinite Periodic Beams of Point Harmonic Forces: A 
Flexural Wave Analysis," Journal of Sound and Vi­
bration, Vol. 144, pp. 507-30. 

An exact analysis is presented of the vibration re­
sponse of an infinite beam on periodic supports, sub­
jected to a transverse harmonic point force. The 
supports must all be the same and can be simply 
supported or be generally linear with elastic, iner­
tial, and dissipative properties. The total response is 
found as the sum of the flexural wave fields gener­
ated by the applied force and the infinite number of 
support reaction forces and moments. The concept 
of phased arrays of forces and moments is used to 
sum the support-generated wave fields. This utilizes 
the propagation constants of free-wave motion in 
the periodic beam. Equations for either four, six, or 
eight of the unknown complex reaction (depending 
on the nature of the supports) are set up and solved 
numerically. This finite number is sufficient to per­
mit the calculation of the beam displacement at any 
point and of all the other reactions. Some computed 
values of the beam direct receptance are presented 
to demonstrate its variation with forcing frequency, 
the effect of the location of the excitation force, and 
the effect of changing the elastic properties of the 
supports. 

Mead, D. J., Zhu, D. C., and Bardell, N. S., 1988, 
"Free Vibration of an Orthogonally Stiffened Flat 
Plate," Journal of Sound and Vibration. Vol. 27, pp. 
19-48. 

A flat plate, reinforced by a regular orthogonal array 
of uniform beams, is analyzed by using techniques 
developed for studying wave propagation in two­
dimensional periodic structures. A "plane-wave" 
type of motion is considered that may be character­
ized by different propagation phase constants in the 
x- and y-directions. The hierarchical finite element 
method is used to set up the governing equations of 
free wave motion, and these are then solved as an 
eigenvalue problem for the frequencies at which 
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particular waves will propagate. Plots of phase con­
stant surfaces vs. frequency are presented for a 
number of different plate-beam configurations. Ex­
cellent agreement is found between some of these 
and the results of earlier investigators. When the 
plate is supported by flexible beams in both direc­
tions, wave propagation is found to commence at 
zero frequency. At higher frequencies alternating 
(and overlapping) attenuation and propagation 
bands occur. The nature and explanations of these 
are discussed. Wave speed surfaces vs. frequency 
are also presented and these give insight into the 
critical coincidence frequencies of the plate under 
acoustic excitation. 

Meirovitch, L., and Engels, R. C., 1977, "Response of 
Periodic Structures by the Z-Transform Method," 
AIAA Journal, Vol. 15, pp. 167-174. 

Periodic structures are defined as structures consist­
ing of identical substructures connected to each 
other in an identical manner. The response of peri­
odic structures to harmonic excitation can be de­
scribed by a matrix difference equation. The solu­
tion of the matrix difference equation can be 
obtained by the Z-transform method and it yields the 
response to both end conditions and external excita­
tions. The method developed necessitates the eigen­
values of the transfer matrix for a typical substruc­
ture, so that the procedure is capable of analyzing a 
periodic structure with the same computational ef­
fort necessary to analyze a single substructure. An 
added advantage is derived from the fact that the 
method does not require the eigenvectors of the 
transfer matrix. 

Meirovitch, L., and Engels, R. C., 1978, "Response of 
Almost Periodic Structures," Journal de Mecanique 
Appliquee, Vol. 2, pp. 197-210. 

Periodic structures are defined as structures consist­
ing of identical substructures connected to each 
other in an identical manner. If the system parame­
ters differ slightly from one substructure to another, 
then the structure becomes almost periodic. An effi­
cient method using a perturbation technique to de­
rive the response of an almost-periodic structure is 
presented. The procedure reduces the solution to a 
sequential application of the basic algorithm for pe­
riodic structures developed by these authors. The 
method retains all the advantages of the method for 
periodic structures and reduces to it when the sys­
tem parameters become identical for each substruc­
ture. 

Mester, S. S., 1992, "Wave Propagation in Periodic 
Structures with Imperfections," Master's Thesis, 
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Graduate School-New Brunswick Rutgers, The State 
University of New Jersey. 

Extensive work has been done on the vibration 
characteristics of perfectly periodic structures. The 
purpose of this investigation is to begin to determine 
the effects of disorder in one-dimensional and two­
dimensional periodic structures. From the state of 
the art review given, disorder has been found to lead 
to localization on one-dimensional periodic struc­
tures in previous analyses. It is important to under­
stand localization because it causes energy to be 
concentrated near the disorder. Various biperiodic 
structures are first analyzed in this work. The dis­
persion relations are found to have two branches, 
one for each variation in the biperiodic element. 
Random variable dispersion relations along with the 
probability distribution function of the dispersion re­
lations have been found. Applications of interest in­
clude structural dynamics and control of structures. 
These applications are discussed here. 

Miller, D. W., and von Flotow, A., 1989, "A Travel­
ling Wave Approach to Power Flow in Structural Net­
works," Journal of Sound and Vibration, Vol. 128, 
pp. 145-162. 

A structural network is an assemblage of slender 
one-dimensional members. Each member is demar­
cated, by definition, by two junctions. A junction 
may involve only one member (a termination) or 
maybe an interconnection of many members. In this 
article the dynamics of such networks are investi­
gated computationally and theoretically. The focus 
of the analysis is on elastic disturbance propagation 
and power flow in the network. Spatially local 
models are assembled into a global, frequency do­
main description. This global description of the re­
sponse is then investigated for local and global 
power flow. The procedure serves to identify distur­
bance transmission paths and to choose and evalu­
ate control procedures, both active and passive. The 
techniques are demonstrated by application to sev­
eral examples. 

Miller, D. W., Hall, S. R., and von Flotow, A., 1989, 
"Optimal Control of Power Flow at Structural Junc­
tions," Conference Proceedings of the 1989 American 
Control Conference, Vol. 1, pp. 212-220. 

Several techniques are described for deriving opti­
mal feedback compensators for structural wave­
guides at junctions. A frequency-dependent cost 
functional, composed of power flow and control ef­
fort, is minimized. Control of power flow, by modi­
fying junction reflection and transmission proper­
ties, enables selective absorption of incoming 
vibrational power. Noncausal, causal fixed form, 
and Weiner-Hopf feedback solutions are derived. 

These solutions, including a positive real approxi­
mation to the Weiner-Hopf solution, are illustrated 
through an extensive example for the free end of a 
dispersive Bernoulli-Euler beam. 

Nagem, R., and Williams, J., 1989, "Dynamic Analy­
sis of Large Space Structures Using Transfer Matrices 
and Joint Coupling Matrices," Mechanics of Struc­
tures and Machines, Vol. 17, pp. 349-371. 

Linear dynamic analysis of lattice structures using 
transfer matrices and joint coupling matrices is pre­
sented. A lattice structure is defined as a network of 
one-dimensional members that are connected by 
joints. Two examples are considered to illustrate 
how transfer matrices and joint coupling matrices 
may be used to compute natural frequencies of vi­
bration. These two examples indicate that the trans­
fer matrix and joint coupling matrix analysis is nu­
merically accurate over a wide range of frequencies 
and becomes increasingly efficient, compared to the 
finite element method, as the frequency increases. 
Some suggestions for further improvements in com­
putational efficiency and some comments about ap­
plicability to numerical analysis of wave propaga­
tion problems are given. 

Noor, A. K., Anderson, M. S., and Greene, W. H., 
1978, "Continuum Models for Beam-Like and Plate­
Like Lattice Structures," AlAA Journal, Vol. 16, pp. 
1219-1228. 

A simple, rational approach is presented for devel­
oping continuum models for large repetitive beam­
like and plate-like lattices with arbitrary configura­
tions subjected to static, thermal, and dynamic 
loadings. The continuum models for these struc­
tures are shear flexible beams and plates. They ac­
count for local effects in the repeating element of the 
actual structure and are characterized by their ther­
moelastic strain and kinetic energies from which the 
equations of motion and constitutive relations can 
be derived. The procedure for developing the ex­
pressions for thermoelastic strain and kinetic ener­
gies of the continuum involves introducing basic 
assumptions regarding the variation of the tem­
perature, displacement, and strain components in 
one or two directions (for plate-like and beam-like 
lattices) and obtaining effective thermoelastic and 
dynamic coefficients of the continuum in terms of 
material properties and geometry of the originallat­
tice structure. The high accuracy of the continuum 
models developed is demonstrated by means of nu­
merical examples. 

Noor, A. K., and Mikulas, M. M., 1988, "Continuum 
Modeling of Large Lattice Structures: Status and Pro­
jections," NASA Technical Report 2767. 



The status and some recent developments of contin­
uum modeling for large repetitive lattice structures 
are summarized. Discussion focuses on a number of 
aspects including definition of an effective substi­
tute continuum; characterization of the continuum 
model; and the different approaches for generating 
the properties of the continuum, namely, the consti­
tutive matrix, and matrix of mass densities, and the 
matrix of thermal coefficients. Also a simple ap­
proach is presented for generating the continuum 
properties. The approach can be used to generate 
analytic and/or numerical values of the continuum 
properties. 

Pierre, C., 1988, "Mode Localization and Eigenvalue 
Loci Veering Phenomena in Disordered Structures," 
Journal of Sound and Vibration, Vol. 126, pp. 485-
502. 

An investigation of the effects of disorder on the 
modes of vibration of nearly periodic structures is 
presented. It is shown that, in structures with close 
eigenvalues, small structural irregularities result in 
both strong localization of the mode shapes and 
abrupt veering away, or mutual repulsion, of the loci 
of the eigenvalues when these are plotted against a 
parameter representing the disorder in the system. 
Perturbation methods for the eigenvalue problem 
are applied to predict the occurrence of strong local­
ization and eigenvalue loci veering, which are 
shown to be two manifestations of the same phe­
nomenon. Also, perturbation methods that handle 
the dramatic effects of small disorder are developed 
to analyze eigenvalue loci veering and strong locali­
zation. Two representative disordered nearly peri­
odic structures are studied: a mistuned assembly of 
coupled oscillators and a multispan beam with irreg­
ular spacing of the supports. 

Pierre, C., 1990, "Weak and Strong Vibration Locali­
zation in Disordered Structures: A Statistical Investi­
gation," Journal of Sound and Vibration, Vol. 139, 
pp. lIl-l32. 

A statistical investigation of the effects of disorder 
on the dynamics of one-dimensional nearly periodic 
structures is presented. The problem of vibration 
propagation from a local source of excitation is con­
sidered. Although for the ordered infinite system 
there exists a frequency passband for which the vi­
bration propagates without attenuation, the intro­
duction of disorder results in an exponential decay 
of the amplitude for all excitation frequencies. Ana­
lytical expressions for the localization factors (the 
exponential decay constants) are obtained in the 
two limiting cases of weak and strong internal cou­
pling, and the degree of localization is shown to 
depend upon the disorder to coupling ratio and the 
excitation frequency. 
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Pierre, C., Tang, D. M., and Dowell, E. H., 1987, 
"Localized Vibrations of Disordered Multispan 
Beams-Theory and Experiment," AlAA Journal, 
Vol. 25, pp. 1249-1257. 

The localization of the free modes of vibration of 
disordered multispan beams is investigated, both 
theoretically and experimentally. It is shown that 
small deviations of the span lengths from an ideal 
value may have drastic effects on the dynamics of 
the system, by inhibiting the propagation of vibra­
tions in the structure. Emphasis is placed on the 
development of a perturbation method that allows 
one to obtain the localized modes of vibration of the 
disordered system without a global eigenvalue anal­
ysis of the entire system. Such a perturbation analy­
sis is cost effective and accurate. More importantly, 
it provides physical insight into the localization phe­
nomenon, and allows one to formulate a criterion 
that predicts the occurrence of localized modes. 
Also, an experiment is described that has been car­
ried out to verify the existence of localized modes 
for disordered two-span beams. Theoretical and ex­
perimental results are compared in detail and excel­
lent agreement is found, thus confirming the exis­
tence of localized modes. 

Pines, D. J., and von Flotow, A., 1990, "Active Con­
trol of Bending Wave Propagation at Acoustic Fre­
quencies," Journal of Sound and Vibration, Vol. 142, 
pp. 391-412. 

An analytical and experimental investigation of the 
possibility of actively blocking the propagation of 
bending waves along a uniform beam is described. 
The investigation has the form of a case study: a thin 
brass plate-beam is used, it is excited with a short 
duration impulse, and the resulting disturbance 
spreads dispersively as it travels along the beam. A 
short portion of the beam is used as an active block. 
Strain gauge sensors are used to drive thin piezo­
ceramic bending moment actuators through a dy­
namic compensator. The compensation is designed 
in the frequency domain with reference to the beam 
equation, but independent of boundary conditions. 
The analytical work described includes the nominal 
design and its performance, the performance degra­
dation due to modeling errors, and the performance 
degradation due to approximate implementation of 
the dynamic compensator. The laboratory imple­
mentation, in which analog electronics were used 
for the compensator, essentially verifies some of the 
sensitivity predictions. 

Soong, T. T., and Bogdanoff, J. L., 1963, "On the 
Natural Frequencies of a Disordered Linear Chain of 
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N Degrees of Freedom," International Journal of 
Mech Science, Vol. 5, pp. 237-265. 

Statistical properties of the natural frequencies of a 
linear chain having N degrees of freedom are de­
rived assuming the physical properties of its ele­
ments or parameters are known only in a stochastic 
sense. The method of derivation is based upon a 
transfer matrix scheme together with a perturbation­
type expansion. It is found that the top few natural 
frequencies have values that are very sensitive to 
the parameter variations whereas the lowest few are 
insensitive to these variations. 

Soong, T. T., and Bogdanoff, J. L., 1964, "On the 
Impulsive Admittance and Frequency Response of a 
Disordered Linear Chain of N Degrees of Freedom," 
International Journal of Mech Science, Vol. 6, pp. 
225-237. 

Analytical and numerical results are presented on 
the statistics of the impulsive admittance and fre­
quency response of a linear chain of N degrees of 
freedom when the physical properties of its ele­
ments are only known in a stochastic sense. These 
results illustrate, on a quantitative basis, the signifi­
cance of stochastic parameters on the dynamical be­
havior of engineering systems, and thereby enable 
us to rationally establish acceptable tolerance on 
system components to achieve certain accuracy in 
predicted system performances. 

von Flotow, A., 1986, "Disturbance Propagation in 
Structural Networks," Journal of Sound and Vibra­
tion, Vol. 106, pp. 433-450. 

A structural network is taken to be an assemblage of 
slender structural members (beams, cables, and 
rods) connected to each other at structural junc­
tions. The junctions may include flexible bodies that 
in this work are restricted to those whose dynamics 
are described by a finite set of ordinary differential 
equations. Elastic disturbances in such a network 
are calculated in terms of propagation concepts. 
Members are described in the frequency domain by 
the propagation coefficients of their intrinsic wave­
modes, junctions by frequency-dependent wave­
mode reflection and transmission coefficients, 
grouped in the junction scattering matrix. Compo­
nent impulse responses are calculated by a combina­
tion of analysis and application of the fast Fourier 
transform algorithm. Network time responses are 
synthesized by convolution of component impulse 
responses. A consistent analytical framework is 
constructed within which descriptions of various 
member types and junctions can be accommodated. 

von Flotow, A., 1986, "Traveling Wave Control for 
Large Spacecraft Structures," Journal of Guidance, 
Control, and Dynamics, Vol. 9, pp. 461-468. 

This article introduces the point of view that elastic 
deformations in large spacecraft structures may be 
aptly viewed in terms of propagating disturbances. 
Because the main topic of this article is the control 
concepts, which result from such a view point, the 
required structural dynamic description in terms of 
traveling disturbances is described only briefly, with 
reference to previously published works. The active 
control of these structures is approached from the 
point of view of actively modifying the natural dis­
turbance propagation paths. Elastic energy is 
shunted into unimportant portions of the structure 
or is absorbed by an active "wave absorber." Sev­
eral computational examples demonstrate the re­
markable theoretical performance achievable by 
propagation-based controllers. 

von Flotow, A., and Schaefer, B., 1986, "Wave-Ab­
sorbing Controllers for a Flexible Beam," Journal of 
Guidance, Control, and Dynamics, Vol. 9, pp. 673-
680. 

This article describes theoretical and experimental 
work performed on the modeling and vibration con­
trol of a hanging flexible beam. The synthesis and 
laboratory implementation of low authority control­
lers based upon feed back of local velocity to actua­
tor force has been the subject of previous studies. 
The study extends this work with the design and 
laboratory implementation of low authority control­
lers based upon concepts of disturbance propaga­
tion and reflection. Control forces are applied to the 
lower end of the hanging beam. Compensators are 
derived that feed back local deflection and slope to 
control force and moment with the goal of minimiz­
ing the reflection of energy at the lower end. Several 
of these compensators are approximated by analog 
electronic filters for laboratory implementation. The 
performance of these wave-absorbing compensators 
is compared with that of velocity feedback. 

Wittrick, W. H., and Williams, F. W., 1971, "A Gen­
eral Algorithm for Computing Natural Frequencies of 
Elastic Structures," Quarterly Journal of Mechanics 
and Applied Mathematics, Vol. 24, pp. 263-284. 

The authors present and prove an algorithm for de­
termining the natural undamped frequencies of vi­
bration of any linearly elastic structure if its dy­
namic stiffness matrix K (omega) corresponding to 
any finite set of displacements D is known. In gen­
eral K (omega) is not a linear function of omega2 , 

and methods that are available for solving linear ei­
genvalue problems are inapplicable. The algorithm 
is valid for systems with either a finite or infinite 



number of degrees of freedom. It enables one to 
calculate how many natural frequencies lie below 
any chosen frequency, without determining them, 
and hence to converge on any required natural fre­
quency to any specified accuracy. 

Zhang, X. M., and Zhang, W. H., 1991, "The Reduc­
tion of Vibrational Energy Flow in a Periodically Sup­
ported Beam," Journal of Sound and Vibration, Vol. 
151, pp. 1-7. 

The reduction of vibrational energy flow in a spa­
tially, periodically supported beam is studied. The 
influence of the excitation location on the trans­
mitted and travelling energy flows is investigated. 
For different propagation bands, the vibrational en­
ergy transmitted into the beam can be reduced to a 
minimum by suitably adjusting the excitation loca­
tion. No matter where the beam is excited, the en­
ergy flows along the beam in the positive and nega­
tive directions are the same in magnitude and equal 
to one-half of the transmitted power. The effect of 
structural damping on the energy flow is also stud­
ied. In this case the periodic beam is excited at the 
midpoint of one bay. The transmitted power is effec­
tively controlled by damping near the bounding fre­
quencies of the odd propagation bands. The energy 
flow is effectively decreased by damping in the 
propagation bands. 

Zhong, W. X., and Williams, F. W., 1991, "On the 
Localization of the Vibration Mode of a Substructural 
Chain-Type Structure," Proceedings of the Institution 
of Mechanical Engineers, Part C: Mechanical Engi­
neering Science, Vol. 205, pp. 281-288. 

The localization phenomenon for high-frequency vi­
bration modes of imperfectly repetitive structures is 
considered by using an analogy between computa­
tional structural mechanics theory and optimal con­
trol theory. In particular, the simplectic matrix 
method of control theory is applied to the dynamic 
external stiffness matrix of a typical repeating sub­
structure. The eigensolution ofthe simplectic matrix 
for the case where the substructures are connected 
by a single line of springs is solved analytically. This 
gives the passband for the frequency of the travel­
ling waves along the substructural chain and the cor­
responding eigenmode. Hence it is shown how the 
influence of local disturbances of the substructural 
chain on the behavior of the whole chain can be 
considered analytically, thus explaining the mecha­
nism of the localization of high-frequency vibration 
modes. Numerical examples are therefore not 
needed, although a few are introduced solely to con­
firm the correctness of conclusions already drawn 
from the analytical method. 
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Ziegler, F., 1977, "Wave Propagation in Periodic and 
Distorted Layered Composite Elastic Materials," In­
ternational Journal of Solids and Structures, Vol. 13, 
pp. 293-305. 

A powerful complex transfer matrix approach to 
wave propagation perpendicular to the layering of a 
composite of periodic and disordered structure is 
worked out showing propagating and stopping 
bands of time-harmonic waves and the singular 
cases of standing waves. A state ratio of left and 
right going plane waves is defined and interpreted 
geometrically in the complex plane in terms of fixed 
points and flow lines. For numerical considerations 
and extension of the approach to higher dimensional 
problems, a continued fraction expansion of the 
state ratio mapping is presented. Impurity modes of 
wave propagation in composites with widely spaced 
impurity cells of different elastic materials are dis­
cussed. Stopping bands in the frequency spectrum 
of global waves in fully disordered composites are 
found to exist in the range of frequencies corre­
sponding to common gaps in the spectrum of con­
stituent regular periodic composites that are con­
structed from the cells of the disordered system. For 
those frequencies, waves propagate only a (short) 
finite distance and are therefore strongly localized 
modes in a composite of fairly large extent. 
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