202 research outputs found

    Biolocomotion Detection in Videos

    Get PDF
    Animals locomote for various reasons: to search for food, to find suitable habitat, to pursue prey, to escape from predators, or to seek a mate. The grand scale of biodiversity contributes to the great locomotory design and mode diversity. In this dissertation, the locomotion of general biological species is referred to as biolocomotion. The goal of this dissertation is to develop a computational approach to detect biolocomotion in any unprocessed video. The ways biological entities locomote through an environment are extremely diverse. Various creatures make use of legs, wings, fins, and other means to move through the world. Significantly, the motion exhibited by the body parts to navigate through an environment can be modelled by a combination of an overall positional advance with an overlaid asymmetric oscillatory pattern, a distinctive signature that tends to be absent in non-biological objects in locomotion. In this dissertation, this key trait of positional advance with asymmetric oscillation along with differences in an object's common motion (extrinsic motion) and localized motion of its parts (intrinsic motion) is exploited to detect biolocomotion. In particular, a computational algorithm is developed to measure the presence of these traits in tracked objects to determine if they correspond to a biological entity in locomotion. An alternative algorithm, based on generic handcrafted features combined with learning is assembled out of components from allied areas of investigation, also is presented as a basis of comparison to the main proposed algorithm. A novel biolocomotion dataset encompassing a wide range of moving biological and non-biological objects in natural settings is provided. Additionally, biolocomotion annotations to an extant camouflage animals dataset also is provided. Quantitative results indicate that the proposed algorithm considerably outperforms the alternative approach, supporting the hypothesis that biolocomotion can be detected reliably based on its distinct signature of positional advance with asymmetric oscillation and extrinsic/intrinsic motion dissimilarity

    Collision Avoidance for UAVs Using Optic Flow Measurement with Line of Sight Rate Equalization and Looming

    Get PDF
    A series of simplified scenarios is investigated whereby an optical flow balancing guidance law is used to avoid obstacles by steering an air vehicle between fixed objects/obstacles. These obstacles are registered as specific points that can be representative of features in a scene. The obstacles appear in the field of view of a single forward looking camera. First a 2-D analysis is presented where the rate of the line of sight from the vehicle to each of the obstacles to be avoided is measured. The analysis proceeds by initially using no field of view (FOV) limitations, then applying FOV restrictions, and adding features or obstacles in the scene. These analyses show that using a guidance law that equalizes the line of sight rates with no FOV limitations, actually results in the vehicle being steered into one of the objects for all initial conditions. The research next develops an obstacle avoidance strategy based on equilibrating the optic flow generated by the obstacles and presents an analysis that leads to a different conclusion in which balancing the optic flows does avoid the obstacles. The paper then describes a set of guidance methods that with real FOV limitations create a favorable result. Finally, the looming of an object in the camera\u27s FOV can be measured and used for synthesizing a collision avoidance guidance law. For the simple 2-D case, looming is quantified as an increase in LOS between two features on a wall in front of the air vehicle. The 2-D guidance law for equalizing the optic flow and looming detection is then extended into the 3-D case. Then a set of 3-D scenarios are further explored using a decoupled two channel approach. In addition, a comparison of two image segmentation techniques that are used to find optic flow vectors is presented

    Mapping nonlinear receptive field structure in primate retina at single cone resolution

    Get PDF
    The function of a neural circuit is shaped by the computations performed by its interneurons, which in many cases are not easily accessible to experimental investigation. Here, we elucidate the transformation of visual signals flowing from the input to the output of the primate retina, using a combination of large-scale multi-electrode recordings from an identified ganglion cell type, visual stimulation targeted at individual cone photoreceptors, and a hierarchical computational model. The results reveal nonlinear subunits in the circuity of OFF midget ganglion cells, which subserve high-resolution vision. The model explains light responses to a variety of stimuli more accurately than a linear model, including stimuli targeted to cones within and across subunits. The recovered model components are consistent with known anatomical organization of midget bipolar interneurons. These results reveal the spatial structure of linear and nonlinear encoding, at the resolution of single cells and at the scale of complete circuits

    A bio-inspired computational model for motion detection

    Get PDF
    Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)Last years have witnessed a considerable interest in research dedicated to show that solutions to challenges in autonomous robot navigation can be found by taking inspiration from biology. Despite their small size and relatively simple nervous systems, insects have evolved vision systems able to perform the computations required for a safe navigation in dynamic and unstructured environments, by using simple, elegant and computationally efficient strategies. Thus, invertebrate neuroscience provides engineers with many neural circuit diagrams that can potentially be used to solve complicated engineering control problems. One major and yet unsolved problem encountered by visually guided robotic platforms is collision avoidance in complex, dynamic and inconstant light environments. In this dissertation, the main aim is to draw inspiration from recent and future findings on insect’s collision avoidance in dynamic environments and on visual strategies of light adaptation applied by diurnal insects, to develop a computationally efficient model for robotic control, able to work even in adverse light conditions. We first present a comparative analysis of three leading collision avoidance models based on a neural pathway responsible for signing collisions, the Lobula Giant Movement Detector/Desceding Contralateral Movement Detector (LGMD/DCMD), found in the locust visual system. Models are described, simulated and results are compared with biological data from literature. Due to the lack of information related to the way this collision detection neuron deals with dynamic environments, new visual stimuli were developed. Locusts Lo- custa Migratoria were stimulated with computer-generated discs that traveled along a combination of non-colliding and colliding trajectories, placed over a static and two distinct moving backgrounds, while simultaneously recording the DCMD activity extracellularly. Based on these results, an innovative model was developed. This model was tested in specially designed computer simulations, replicating the same visual conditions used for the biological recordings. The proposed model is shown to be sufficient to give rise to experimentally observed neural insect responses. Using a different approach, and based on recent findings, we present a direct approach to estimate potential collisions through a sequential computation of the image’s power spectra. This approach has been implemented in a real robotic platform, showing that distant dependent variations on image statistics are likely to be functional significant. Maintaining the collision detection performance at lower light levels is not a trivial task. Nevertheless, some insect visual systems have developed several strategies to help them to optimize visual performance over a wide range of light intensities. In this dissertation we address the neural adaptation mechanisms responsible to improve light capture on a day active insect, the bumblebee Bombus Terrestris. Behavioral analyses enabled us to investigate and infer about the spatial and temporal neural summation extent applied by those insects to improve image reliability at the different light levels. As future work, the collision avoidance model may be coupled with a bio-inspired light adaptation mechanism and used for robotic autonomous navigation.Os últimos anos têm testemunhado um aumento progressivo da investigação dedicada a demonstrar que possíveis soluções, para problemas existentes na navegação autónoma de robôs, podem ser encontradas buscando inspiração na biologia. Apesar do reduzido tamanho e da simplicidade do seu sistema nervoso, os insectos possuem sistemas de visão capazes de realizar os cálculos necessários para uma navegação segura em ambientes dinâmicos e não estruturados, por meio de estratégias simples, elegantes e computacionalmente eficientes. Assim, a área da neurociência que se debruça sobre o estudo dos invertebrados fornece, à area da engenharia, uma vasta gama de diagramas de circuitos neurais, que podem ser usados como base para a resolução de problemas complexos. Um atual e notável problema, cujas plataformas robóticas baseadas em sistemas de visão estão sujeitas, é o problema de deteção de colisões em ambientes complexos, dinâmicos e de intensidade luminosa variável. Assim, o objetivo principal do trabalho aqui apresentado é o de procurar inspiração em recentes e futuras descobertas relacionadas com os mecanismos que possibilitam a deteção de colisões em ambientes dinâmicos, bem como nas estratégias visuais de adaptação à luz, aplicadas por insectos diurnos. Numa primeira abordagem é feita uma análise comparativa dos três principais modelos, propostos na literatura, de deteção de colisões, que têm por base o funcionamento dos neurónios Lobular Gigante Detector de Movimento/ Detector de Movimento Descendente Contralateral (LGMD / DCMD), que fazem parte do sistema visual do gafanhoto. Os modelos são descritos, simulados e os resultados são comparados com os dados biológicos existentes, descritos na literatura. Devido à falta de informação relacionada com a forma como estes neurónios detectores de colisões lidam com ambientes dinâmicos, foram desenvolvidos novos estímulos visuais. A estimulação de gafanhotos Locusta Migratoria foi realizada usando-se estímulos controlados, gerados por computador, efectuando diferentes combinações de trajectórias de não-colisão e colisão, colocados sobre um fundo estático e dois fundos dinâmicos. extracelulares do neurónio DCMD. Com base nos resultados obtidos foi possível desenvolver um modelo inovador. Este foi testado sob estímulos visuais desenvolvidos computacionalmente, recriando as mesmas condições visuais usadas aquando dos registos neuronais biológicos. O modelo proposto mostrou ser capaz de reproduzir os resultados neuronais dos gafanhotos, experimentalmente obtidos. Usando uma abordagem diferente, e com base em descobertas recentes, apresentamos uma metodologia mais direta, que possibilita estimar possíveis colisões através de cálculos sequenciais dos espetros de potência das imagens captadas. Esta abordagem foi implementada numa plataforma robótica real, mostrando que, variações estatísticas nas imagens captadas, são susceptíveis de serem funcionalmente significativas. Manter o desempenho da deteção de colisões, em níveis de luz reduzida, não é uma tarefa trivial. No entanto, alguns sistemas visuais de insectos desenvolveram estratégias de forma a optimizar o seu desempenho visual numa larga gama de intensidades luminosas. Nesta dissertação, os mecanismos de adaptação neuronais, responsáveis pela melhoraria de captação de luz num inseto diurno, a abelha Bombus Terrestris, serviram como uma base de estudo. Adaptando análises comportamentais, foi-nos permitido investigar e inferir acerca da extensão dos somatórios neuronais, espaciais e temporais, aplicados por estes insetos, por forma a melhorar a qualidade das imagens captadas a diferentes níveis de luz. Como trabalho futuro, o modelo de deteção de colisões deverá ser acoplado com um mecanismo de adaptação à luz, sendo ambos bio-inspirados, e que possam ser utilizados na navegação robótica autónoma

    Motor patterns during active electrosensory acquisition

    Get PDF
    Hofmann V, Geurten B, Sanguinetti-Scheck JI, Gomez-Senna L, Engelmann J. Motor patterns during active electrosensory acquisition. Frontiers in Behavioral Neuroscience. 2014;8:186.Motor patterns displayed during active electrosensory acquisition of information seem to be an essential part of a sensory strategy by which weakly electric fish actively generate and shape sensory flow. These active sensing strategies are expected to adaptively optimize ongoing behavior with respect to either motor efficiency or sensory information gained. The tight link between the motor domain and sensory perception in active electrolocation make weakly electric fish like Gnathonemus petersii an ideal system for studying sensory-motor interactions in the form of active sensing strategies. Analyzing the movements and electric signals of solitary fish during unrestrained exploration of objects in the dark, we here present the first formal quantification of motor patterns used by fish during electrolocation. Based on a cluster analysis of the kinematic values we categorized the basic units of motion. These were then analyzed for their associative grouping to identify and extract short coherent chains of behavior. This enabled the description of sensory behavior on different levels of complexity: from single movements, over short behaviors to more complex behavioral sequences during which the kinematics alter between different behaviors. We present detailed data for three classified patterns and provide evidence that these can be considered as motor components of active sensing strategies. In accordance with the idea of active sensing strategies, we found categorical motor patterns to be modified by the sensory context. In addition these motor patterns were linked with changes in the temporal sampling in form of differing electric organ discharge frequencies and differing spatial distributions. The ability to detect such strategies quantitatively will allow future research to investigate the impact of such behaviors on sensing

    Contextual information based multimedia indexing

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Proceedings of the 3rd International Mobile Brain/Body Imaging Conference : Berlin, July 12th to July 14th 2018

    Get PDF
    The 3rd International Mobile Brain/Body Imaging (MoBI) conference in Berlin 2018 brought together researchers from various disciplines interested in understanding the human brain in its natural environment and during active behavior. MoBI is a new imaging modality, employing mobile brain imaging methods like the electroencephalogram (EEG) or near infrared spectroscopy (NIRS) synchronized to motion capture and other data streams to investigate brain activity while participants actively move in and interact with their environment. Mobile Brain / Body Imaging allows to investigate brain dynamics accompanying more natural cognitive and affective processes as it allows the human to interact with the environment without restriction regarding physical movement. Overcoming the movement restrictions of established imaging modalities like functional magnetic resonance tomography (MRI), MoBI can provide new insights into the human brain function in mobile participants. This imaging approach will lead to new insights into the brain functions underlying active behavior and the impact of behavior on brain dynamics and vice versa, it can be used for the development of more robust human-machine interfaces as well as state assessment in mobile humans.DFG, GR2627/10-1, 3rd International MoBI Conference 201
    corecore