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Motor patterns displayed during active electrosensory acquisition of information seem to
be an essential part of a sensory strategy by which weakly electric fish actively generate
and shape sensory flow. These active sensing strategies are expected to adaptively
optimize ongoing behavior with respect to either motor efficiency or sensory information
gained. The tight link between the motor domain and sensory perception in active
electrolocation make weakly electric fish like Gnathonemus petersii an ideal system for
studying sensory-motor interactions in the form of active sensing strategies. Analyzing
the movements and electric signals of solitary fish during unrestrained exploration of
objects in the dark, we here present the first formal quantification of motor patterns
used by fish during electrolocation. Based on a cluster analysis of the kinematic values
we categorized the basic units of motion. These were then analyzed for their associative
grouping to identify and extract short coherent chains of behavior. This enabled the
description of sensory behavior on different levels of complexity: from single movements,
over short behaviors to more complex behavioral sequences during which the kinematics
alter between different behaviors. We present detailed data for three classified patterns
and provide evidence that these can be considered as motor components of active
sensing strategies. In accordance with the idea of active sensing strategies, we found
categorical motor patterns to be modified by the sensory context. In addition these
motor patterns were linked with changes in the temporal sampling in form of differing
electric organ discharge frequencies and differing spatial distributions. The ability to detect
such strategies quantitatively will allow future research to investigate the impact of such
behaviors on sensing.

Keywords: electric fish, electrolocation, motor patterns, sensorimotor interaction, behavior, quantitative

behavioral analysis, sensory flow

INTRODUCTION
The term active sensing refers to the use of energy for sensing with
the energy being emitted from the animal itself. Echolocation in
bats and marine mammals, active electrolocation in fish, whisk-
ing in rodents and haptic touch are among the classic examples of
active sensing (Nelson and MacIver, 2006; Grant et al., 2014). In a
more general framework sensing is increasingly being considered
as inevitably active, with motor activity and sensing being inter-
twined. Thus, active sensing relies on the coordination of motor
control and sensory processing, e.g., by structuring motor activ-
ity in more or less stereotyped sensing movements, termed active
sensing strategies (Schroeder et al., 2010; Hofmann et al., 2013b).

Here we focus on motor strategies in a model organism
for active sensing, the weakly electric fish Gnathonemus peter-
sii (Mormyridae). This fish generates a three dimensional dipole
field around its body by emitting short currents pulses (elec-
tric organ discharges = EOD) from its electric organ (Lissmann,
1951, 1957; Machin and Lissmann, 1958; Harder et al., 1964).
While the waveform and amplitude of these EODs are fixed, their
inter-pulse-interval can be varied voluntarily by the animal. The
modulation of the EOD frequency (fEOD) can be experimentally

exploited to investigate perceptual properties in the electrosen-
sory system (Toerring and Moller, 1984; Post and von der Emde,
1999; Schwarz and von der Emde, 2001; Caputi et al., 2003). Each
EOD, building a three dimensional electric dipole field, results in
a distribution of currents across the skin of the animal, where
electroreceptors for sensing are situated (Castelló et al., 2000;
Bacelo et al., 2008). The electric field is distorted by objects close
to the animal that differ in electrical properties from the sur-
rounding water. As a result the pattern of current distribution at
the skin is changed, which is termed electric image (EI) (Rother,
2003; Rother et al., 2003). This modulation, is the crucial sensory
input in electrolocation and the animals rely on the processing of
EIs for electro location and navigation (Graff et al., 2004; Von der
Emde et al., 2010; Von der Emde and Engelmann, 2011).

Several features make weakly electric fish especially fascinat-
ing when one tries to understand how sensing and moving can
be joined in an effort to explore the world. In contrast to other
sensory systems where this interaction has been explored in
depth, such as vision in insects (Hyslop et al., 2010; Fotowat and
Gabbiani, 2011; Longden and Krapp, 2011; Egelhaaf et al., 2012),
active electroreception has been shown to be omnidirectional
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(Snyder et al., 2007). While the photoreceptors of insect eyes are
densely clustered, electroreceptors are distributed across a vast
portion of the animal’s body and receive stimuli from all direc-
tions. This lack of directionality in the electroreceptors makes
an electroreceptor sensitive to modulations of the local field
amplitude originating from any direction. In addition to these
aspects of omnidirecitionality, peripheral specializations of the
electroreceptor distribution equivalent to multiple electrosensory
fovea have been found in this sensory system (Castelló et al.,
2000; Bacelo et al., 2008; Hollmann et al., 2008; Pusch et al.,
2008). Omnidirectional sensing and differentiation of the sensory
mosaic may have led to the emergence of motor strategies that
aid in the extraction of sensory features over the entire ensem-
ble of sensors on the one hand- or sub- populations of sensors
on the other (von der Emde and Schwarz, 2002). Active sens-
ing strategies have indeed been shown to be potentially beneficial
in specific tasks (Solberg, 2009; MacIver et al., 2010; Silverman
et al., 2013). A second aspect that makes weakly electric fish an
interesting model organism to study sensorimotor interaction is
that the space over which they can sense is well matched by the
space through which they can move (Snyder et al., 2007). Again
this shows the tight coupling between the sensory and motor
domains. Finally the pulsatile nature of the Mormyrid electrolo-
cation system offers the experimental opportunity to precisely
determine the point in time when sensory input is acquired. This
not only offers a measure of an animals’ attention (Hall et al.,
1995; Post and von der Emde, 1999; Caputi et al., 2003), but also
greatly reduces the uncertainty in analyzing the sensory flow gen-
erated during electrolocation. By integrating the temporal EOD
pattern with the body kinematics, the resulting electrosensory
flow can be modeled for natural behaviors at high precision: each
EOD generates a “sensory snapshot” that can be expected to be
of behavioral relevance. In our experimental paradigm fish were
socially isolated. Therefore, communication most likely plays a
subordinate role and we expect the majority of EODs being emit-
ted in the context of electrolocation. Hence, the same is true for
the sensory input based on each of these snapshots.

What a fish perceives depends on the nearby environment as
well as the animal’s position, posture and EOD history. Moreover,
the movement of the animal between successive EODs can
account for the generation of cues in the resulting spatiotem-
poral change of the electrosensory input over time, i.e., electric
flow (Sim and Kim, 2011; Fotowat et al., 2012; Hofmann et al.,
2013a). By relating behavioral kinematics with the ensuing elec-
trosensory flow, we aim to identify active sensing strategies that
facilitate the processing of sensory information in this omnidi-
rectional near-range sensory system. To achieve this, the highly
complex motor patterns need to be quantified to allow a reduc-
tion of data complexity and a formalized pattern analysis. We
here describe prototypical movement components by performing
a cluster analysis (Braun et al., 2010; Geurten et al., 2010) based
on kinematic data (thrust, slip and yaw velocities) of individual
G. petersii exploring resistive objects under unrestrained con-
ditions. Following this segmentation, we detected and analyzed
reoccurring stable combinations of kinematic classes to describe
behavioral sequences. We will use the term motor patterns when
we describe the results of these analyses in the following while

we use the term electromotor patterns when we report data
on EODs.

Active sensing behaviors in electrolocation have been
described in pioneering studies (Toerring and Belbenoit, 1979;
Toerring and Moller, 1984; Von der Emde, 1992). However,
these were based on semi-quantitative human observer-based
classifications, which required a priori assumptions about the
relevance and structure of behavioral patterns. We here show
that similar results can be obtained using a quantitative approach
based on objective and therefor reproducible criteria. In future,
the quantitative detection of specific behaviors, which is com-
parable to a quantitative form of an ethogram (Cavraro et al.,
2013), should be combined with the modeling of the sensory
input, which will allow to quantify the sensory input during
active electrolocation in depth and to extract principles of active
sculpting of sensory flow in omnidirectional sensory systems.
Moreover this characterization of the natural sensory input
dynamics will offer the chance to study the sensory processing
on the neuronal level using dynamically changing inputs of
behavioral relevance both in neurophysiological and in modeling
approaches. Combining this kinematic data with modeling the
electrosensory input will enable us to characterize the role of
“active sensing strategies” in shaping the electrosensory flow.

MATERIALS AND METHODS
In order to analyze sensory relevant behavior we recorded
Gnathonemus petersii (N = 11, length 11 ± 1 cm) during unre-
strained object exploration. The videos were stored on a com-
puter and analyzed offline. All data recordings and offline analysis
procedures were carried out using custom written MATLAB rou-
tines (v. R2011b). If not noted otherwise, data are reported as
medians with the sample size denoted by n and the number of
individual fish by N.

VIDEO RECORDINGS
Fish were recorded in a Perspex® arena (80 × 80 × 15 cm). The
arena was set up in a visually and acoustically isolated, separate
room and filled with 6 ± 0.5 cm of water (water conductivity:
100 µs ± 10; temperature: 23 ± 2◦C). Two plastic tubes (r =
3 cm; l = 12 cm) were placed alongside two opposing walls of
the tank and served as shelters. Eight silver wire electrodes, con-
nected to a differential amplifier (custom build), were placed in
the corners and in the middle of each wall, approximately 1 cm
above the tank’s floor to record the animals EOD signals (see
Figure S1 for a sketch of the setup). A camera (AVT Marlin F-
033B, Stemmer Imaging, 656 × 494 pixels, 12 bit, maximal frame
rate 78 Hz) was set up approx. 80 cm above the tank to record
images of the central area of the tank (64 × 48 cm). Frame grab-
bing was synchronized to the animals EODs and video recording
were started automatically if an animal moved into the central
arena. All videos were obtained after sundown with the only
light source being a grid of IR-LEDs (880 nm) below the arena.
Gnathonemus was shown to be incapable of navigating visually
under these lighting conditions (Ciali et al., 1997; Landsberger
et al., 2008).

Before and after experiments fish were housed in a large tank
that was divided to house individual fish. The partitions allowed
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the animals to experience conspecifics electrically (water conduc-
tivity: 100 µs ± 10, temperature 23 ± 2◦C, 12/12 light/dark).
After being transferred to the experimental tank, fish were allowed
to adapt for 48 h. Following this acclimation phase video record-
ings were performed over the following five nights. Three differ-
ently sized metal cubes of 1, 8 or 27 cm3 (edge length 1, 2, and
3 cm) were used with the mid-sized cube presented in two ori-
entations (0 and 45◦). The four object conditions and one night
without an object being present were recorded in a random order.
The objects (if present) were placed into the middle of the tank
directly after sunset and were removed in the morning after each
recording.

OFFLINE ANALYSIS
For offline analysis we used the first 50 videos of each night in
which a fish entered the center of the tank in order to prevent
strong effects of spatial memory and habituation. We tracked the
animals’ position, its orientation (position of head vs. tail), and
posture based on contrast methods according to the following
steps of a custom written automatized tracking procedure: At first
all frames in which the fish was not or not completely in camera
view were removed. After that, we subtracted the background of
the image and used a threshold operation to transfer it to a black
and white image. To detect the fish position a centroid was cal-
culated for the extracted shape of the fish. To obtain the body’s
curvature we fitted a 3rd order polynomial to the midline of the
extracted shape of the animal. The fit was constrained by the pre-
viously determined length of each individual animal. The head
and tail were discriminated by comparing the mean intensity of
a constant area centered on both ends of the animals’ black and
white silhouette. Since the head, compared to the tip of the tail,
in general was more bulky, the area with the higher level of black
was determined to be the head.

Next we determined the available 2-D body kinematics (thrust,
slip and yaw velocities). The body orientation was obtained
frame-wise by using the anterior 25% of the body as a frame of
reference. Thrust and slip components were determined as the
difference of head position between successive frames along the
axes of this frame of reference (see Figure 1A). The yaw com-
ponent of the movement was determined as the difference in
angle between the orientations in two consecutive video frames.
The velocities were calculated based on the distances traveled
between two successive video frames. As the individual frames
of the videos were triggered by the emission of the fish’s EODs,
the time base for this calculation was variable. On average EODs
were emitted at 25 Hz. At the average swim speed of about 10 cm
s−1 we thus were able to resolve at approximately 0.4 cm s−1

resolution. In the context of our aim to characterize general
kinematic patterns, this resolution was considered to be suf-
ficient. If one were interested in a more detailed description
of the kinematics, higher sampling rates would be more suit-
able. As we here as mainly interested in the direct coupling of
electromotor and motor patterns, we decided to sample the kine-
matics in the natural time-frame, i.e., at the fishes own sampling
interval.

Based on the body kinematics we performed a three dimen-
sional cluster analysis, previously established and used for the

investigation of the flight structure in different insect species
(Braun et al., 2010, 2012; Geurten et al., 2010). In the following
we describe briefly how we treated our data under consideration
of the ideas described in the preliminary studies. To normalize
for the different dimensionality of rotational and translational
kinematics, the data was z-scored. Here, thrust and slip were
subjected to the z-scoring together. Next, a hierarchical cluster-
ing (squared Euclidian distance |wards criterion) was performed
in order to determine the possible number of clusters. For the
determined range we used the MATLAB implementation of the
k-means cluster algorithm with a squared Euclidian distance and
preclustering instead of random start conditions (Arthur and
Vassilvitskii, 2007) to cluster the data. The results of cluster runs
for k = 2 to k = 50 were post-hoc evaluated for their stability and
quality (Figure S2) as published by Braun et al. (2010) render-
ing a number of 10 centroids. From there on the values of the
centroids were used to express the kinematic properties of the dif-
ferent clusters, which are termed “prototypical movements” in the
following “PMs” (see Figure 2A) and resemble the basic move-
ments that were executed between frames. By this categorization
the complexity of the dataset was reduced to building blocks of
the animal’s kinematics.

In the context of understanding behavior, the prototypes
themselves differentiate the activity of an animal on a compar-
atively short timescale. Thus, in order to be able to detect and
discriminate different types of behavior we extended the analysis
beyond kinematic frames and investigated relationships of con-
secutive PMs. Here we started with the simplest possibility, which
is to analyze the occurrence, length and duration of homogenous
chains of single PMs (e.g., chain of frames in which an animal
remained in a specific PM for some defined time). As a second
approach we calculated the transition probabilities between PMs
by comparing the frequency of occurrence of a transition from
one PM to another with the overall frequency of occurrence of the
target PM. For these calculations the complexity of the data was
reduced to transitions only. The resulting probabilities were used
in a hidden Markov Model to calculate the most frequently occur-
ring sequences of PM transitions, termed “super-prototypical
movements” (SPMs). This is based on the probability matrix
obtained from the Markov Model. This matrix describes the tran-
sition probability from any PM to any other given PM. From this
we calculated the overall probability for every chain consisting
of five PM transitions—a so called super-prototypical-movement
(SPM). By ordering all SPMs of a given chain length by their over-
all probability we then determined the 100 most probable SPMs.
After this we further reduced the complexity of these transition
sequences by removing the directional information contained in
the slip and yaw velocity. To do so, we merged pairs of PMs of oth-
erwise mirror-image like kinematics. Furthermore we combined
sequences that were constructed from the same PMs (in number)
but differed slightly in their fine structure (e.g., A-A-A-B-A-A and
A-A-B-A-A-A) into single SPM. These steps led to a reduced set
of 17 frequently reoccurring SPMs (Figure S3). These were ana-
lyzed with respect to their occurrence in object and non-object
data. Finally, for those SPMs of interest, we used spatial condi-
tionals (e.g., nearness to an object), to extract specific subsets of
sequences having a specific spatial relation (see also results).
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FIGURE 1 | Data extraction from behavioral recordings and spatial

aspects of EOD behavior. (A) Principle of the extraction of the kinematic
data between two successive video frames. The fish’s head position (black
dots) was extracted for each frame. Based on the body orientation,
determined from a fit through the animal’s midline, the current heading
(orientation) was determined. From this frame of reference (yellow area) the
amplitude of the thrust and slip (red and green arrows) was determined as
the vectorial components between the current and the successive frame
(frame n and frame n + 1). The yaw component (blue arrows) was calculated

as the difference in angle between the headings of successive frames. (B,C)

Spatial occurrence (B) and mean fEOD (C) for data obtained in absence of an
object (n = 46230 frames, 11 fish). The data is plotted as two-dimensional
histograms using a bin width of 1 cm2. The spatial occurrence is shown as
the cumulative count of frames in each bin. The fEOD is calculated as the
mean frequency of all frames in a bin. Frequency data was z-transformed in
order to allow the comparison across different nights. (D,E) Same as (B,C) for
data with a metal cube of 3 cm side-length presented in the center of the
arena (n = 69759, 11 fish).

The fEOD was z-scored across recording nights in order to
account for changes in basal emission frequency of individual fish
between days.

RESULTS
We here report data from the first 50 videos of eleven fish (N =
11) recorded in 55 experimental nights with a metal object being
present in the experimental arena in 44 nights. After excluding
frames in which fish were not completely in view (see Materials
and Methods) the data set explored consists of more than 2500
video sequences (n = 277585 frames, ≈ 205 min). Data did not
differ between the different object sizes and object orientations.
Therefore, if not mentioned otherwise, our presentations include
data from all of those. We will first detail the results of a kine-
matic prototyping, and then show that these prototypes can be
used with varying levels of complexity to determine and extract
consistent behavioral sequences from the data. The results will be
presented at different levels of complexity. On the single-frame
level we quantified the kinematic components of body move-
ments which were classified into different categories of “prototyp-
ical movements” (see Methods). This classification is independent
of the temporal sequence of the data. When using these proto-
types to extract longer kinematic chains of consecutive frames, the
temporal sequence was considered. Such sequences are referred
to as a “behavior” throughout the manuscript. Using a structured
behavioral sequence, we show that electrosensory object scanning
behavior is mainly characterized by a succession of several of these
behaviors.

In absence of an object, EODs were most frequently emitted in
positions close to the shelters with a nearly uniform distribution
in the remaining parts of the arena (Figure 1B and gray his-
togram in Figure 2D). In presence of the metal cubes this changed

dramatically to an object centered distribution (Figure 1D and
gray histogram in Figure 2B). The mean fEOD, indicative of the
fishes arousal or attentional state (Toerring and Moller, 1984;
Caputi et al., 2003; Carlson and Hopkins, 2004), showed an
almost equal level throughout the arena with fEOD increases
nearby the shelters (Figures 1C,E). In presence of an object the
mean EOD frequencies were increased close to the object in the
center of the arena (Figure 1E). Although this shift of the fEOD
was restricted to the region surrounding an object, it lead to a
slight shift of the global median EOD-frequencies (median fEOD
with object: 26.3 Hz, n = 231355; median fEOD without object:
26.1 Hz, n = 46230; p = 0.01, Mann-Whitney U-test).

PROTOTYPICAL MOVEMENTS
To quantitatively describe different behaviors on a frame-by-
frame level we clustered the kinematic data (Braun et al., 2010;
Geurten et al., 2010). Based on quality and stability consider-
ations, we obtained ten clusters with their corresponding cen-
troids being referred to as “prototypical movements” (“PMs”;
Figure 2A). These PMs aggregate single-frame kinematic data
into clusters and serve to determine reappearing kinematic com-
ponents. We found two PMs to be dominated by translational
velocities (PM 03 and PM 04) and two in which rotational com-
ponents dominated (PM 09 and PM 10). PMs 05–08 constituted
transitions between these extremes. PMs 03–10 occurred in pairs
with comparable thrust velocities, but opposing directions in the
slip- and yaw-velocity. This was different for PM 01 and PM 02
which were dominated by the thrust-velocity with only a small
contribution of slip- and yaw-velocity. PM 01 was the only proto-
typical movement with a negative average thrust-velocity, whereas
the thrust-velocity of PM 02 was comparable to PMs 05–08,
characteristic for movements with intermediate velocities. In the
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FIGURE 2 | Kinematic composition of prototypical movements (PMs),

spatial distribution and relation to fEOD. (A) Normalized thrust, slip and
yaw velocity amplitudes for centroid values of the 10 clusters and the data
fraction of each PM relative to the size of the entire dataset (n = 277585).
PMs 3–10 occurred in mirror-imaged pairs with respect to their slip and yaw
velocity directions. PM 1 and PM 2 were mainly thrust dominated; note that
thrust was negative for PM 01. Mirror-imaged PMs occurred equally likely
(see percentage of each PM). PMs 3–10 describe a gradual transition from
PMs with maximal translational amplitude (PM 03/04) toward those of
maximal rotational amplitude and reduced thrust (PM 09/10). (B) Relative
spatial distribution of the PMs plotted against the Euclidian distance to the
object for nights in which an object was placed in the tank (n = 231355
frames). PM 01 and PM 07/08 were the most common PMs close to the
object, while the other PMs declined in their relative frequency. The absolute

volume of data per bin is indicated by the gray histogram in the background.
(C) Mean fEOD (z-scored) associated with the mirror-imaged PM pairs and
PMs 01 and 02 as a function of the Euclidian distance to the object. The data
fraction used at each distance can be seen in the gray histogram in (B). (D,E)

Same as (B,C) but for nights without an object present (n = 46230). Note
that the spatial distributions of PMs and the absolute data per bin were
inverted compared to the data obtained in presence of an object. The EOD
frequencies associated with PMs were fairly comparable for both conditions
(compare E,D). Note that on average the PMs had significantly (see text)
different EOD frequencies. In general PMs with higher kinematic amplitudes
(PM 03/04 and PM 09/10) occurred with higher EOD frequencies. The slower
translational PMs 01 and PM 02 had significantly lower EOD frequencies.
While most PMs had a stable fEOD with object distance, fEOD increased
with nearness to the object for PM 01 and less so for PMs 07 and 08.

following the symmetric pairs of PMs are pooled if not noted
otherwise. PMs describing extreme movements, e.g., PMs 09/10
with extreme yaw or PM 03/04 with extreme thrust occurred
with lowest probability. In contrast to this, PMs with moderate or
intermediate movements had a comparatively high data fraction.
Mirror-symmetric PMs in all cases had comparable data fraction.

It is important to note that the illustration of the PMs in
Figure 2 are based on the centroid values of the clustered data
and that within each cluster considerable spread around these
centroids occurred (see also Figure S3). Nonetheless, PMs were
clearly different in their spatial distribution (Figures 2B,D): For
nights in which an object was presented in the tank PMs with low
thrust velocities (PM 01 and PM 07/08) occurred more frequent
close to the object to the shelters while the other PMs occurred
less frequently (Figure 2B). In absence of an object PM 01 was
most frequently observed close to the shelters while the PMs dom-
inated by positive thrust increased toward the center of the arena
(Figure 2D). This demonstrates that the animals’ swim pattern
was altered close to an object (<5 cm) showing reduced swim
speed and increased stationary or backwards kinetics the close

the fish was to the object. These differences were associated with
differences in electromotor parameters, i.e., the EOD frequencies
between data from different PMs differed significantly (p < 0.05,
Kruskal-Wallis test, H-corrected = 7363.2, F = 972.9). While
EOD frequencies differed between the groups (median values:
PM 03/04 35.4 Hz, PM 09/10 32.4 Hz vs. PM 01 23.2 Hz and PM
02 22.8 Hz, Dunn post hoc analysis, p < 0.05) it was indistin-
guishable within the pairs of mirror-imaged PMs. PMs containing
higher velocities in their kinematic components on average were
associated with higher EOD frequencies. For PMs 03/04, PM
05/06, and PM 09/10 the EOD frequencies were relatively stable
with respect to distance to the object (Figures 2C,D), while PMs
01, 02, and 07/08 showed an slight increase of fEOD at small dis-
tances (Figure 2C). The finding that PMs differed between PMs
was also found for nights without the object being present. The
spatial distributions were comparable to those observed in pres-
ence of an object, although clear differences close to the shelter
were found (compare Figures 2C,E). These differences are not
further explored here, but are likely due to different behavioral
states. In absence of an object fish mainly stayed close to the
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shelter and were less active, and EODs of lower and less variable
frequencies are characteristic for resting Mormyrids (Moller et al.,
1979).

The single-frame based prototypical movements described
thus far make up the building-blocks of behavior. This can be
seen in Figure 3, where we show a single trajectory extracted from
one of our videos recorded with a 1 cm3 metal cube in the center
of the arena. In this video sequence of less than 10 s the ani-
mal showed various types of behavior that extend beyond simple
PMs in both complexity and duration. Characteristic behavioral
patterns like object approach, short stationary object-probing
phases followed by backwards swimming alongside the object
and a radial passage of the object can all be found in this exem-
plary sequence (Figure 3A). Over the 192 video frames of the
example sequence shown, a variety of different PMs occurred
(Figure 3C). Hence the extraction of behavioral sequences with
sensory relevance cannot be achieved based on the analysis
of single frame based characteristics of the PMs alone. Thus,
to be able to detect and describe behaviors beyond the sin-
gle frame level, we analyzed homogeneous series of PMs. As
detailed in Offline analysis these chains proofed to be character-
istic for motor patterns related to the inspection of objects as
for example “stationary behavior” and “backwards swimming”
behaviors (Figure 4). Homogeneous chains were also character-
istic of more general locomotor kinematics (Figures S4, S5).
To analyze more complex patterns (Behavior with heteroge-
neous kinematics), we calculated the transition probabilities
between PMs and used a hidden Markov model to detect fre-
quently occurring behaviors constructed from heterogeneous
PM chains, so termed “super-prototypical movements” (SPMs,
Figure S3). Finally we subjected such SPMs to spatial condi-
tionals in order to select a subset of specific behaviors. This
enabled us to select SPMs we consider to be linked to the
active sensory exploration of the objects, in our case sequences
where animals approached objects from far in a stereotyped
approach.

BEHAVIOR WITH HOMOGENEOUS KINEMATICS
For the analysis of homogeneous chains of a single PM we here
focus on PM 01. The thrust in this PM spans from negative
to slightly positive values (Figure 4A). In order to differentiate
between negative thrust values from close to zero velocity val-
ues and to account for the apparent bimodal distribution, we
separated chains of PM 01 by their mean thrust velocity using
a threshold −2 cm s−1. PM 01 chains composed of at least
ten consecutive PM 01 frames with the average thrust-velocity
below the threshold were termed “backwards swimming.” In con-
trast those chains composed of at least ten consecutive PM 01
frames with a mean thrust velocity higher than the threshold
were termed “stationary behavior.” Remarkably, although these
behaviors were defined by their kinematic parameters only, they
showed a markedly different spatial distribution. While “station-
ary behavior” most likely occurred next to the object, “backwards
swimming” had a broader distribution that spread over the
whole tank with a slight plateau of increased occurrence for dis-
tances <10 cm (Figure 4B upper vs. lower panel) which indicated
the validity of the additional separation.

For “stationary probing” as defined above we found 672 chains
(mean length 16.7 ± 9.7 frames, mean duration 0.83 ± 0.86 s).
We obtained the average kinematic and electromotor parame-
ters associated with these chains by calculating an average that
was triggered on the start of the PM-chain (Figure 4C). From
this average it was noticeable that the stationary phase was pre-
ceded by a gradually decrease in thrust velocity prior to time zero.
After that, the thrust velocity remained close to zero for about
500 ms. During this period the standard deviation of the aver-
aged thrust-, slip- and yaw-velocities were markedly reduced. The
possible following transition to other kinematics was indicated
with the gradual increase in the standard deviation and the rise of
the average thrust velocity toward positive values. The “stationary
behavior” was tightly linked with a slight increase of the average
fEOD.

For chains with mean thrust velocity values below the thresh-
old we found 710 kinematic chains of “backwards swimming”
(mean length 22.5 ± 18.7 frames, average duration 1.15 ± 0.94 s).
The triggered averages for “backwards swimming” (Figure 4D)
differed from those of the “stationary behavior.” Here the thrust
decreased more steeply prior the start of the sequence and
remained in the negative range for an average period of more
than 750 ms. Similar to “stationary behavior,” the average thrust
velocity then returned to positive values. Contrary to “station-
ary behavior,” a slight decrease of the z-scored fEOD was found
during the period of reversed thrust velocity. The clearly distinct
EOD characteristics and the spatially differing occurrence of the
kinematically characterized chains, both illustrate the validity of
the post-clustering separation, as this enabled us to extract two
functionally different types of behavior.

BEHAVIOR WITH HETEROGENEOUS KINEMATICS
To construct robust and frequently occurring chains of non-
homogeneous PMs, we used the transition probabilities between
PMs in a “Hidden Markov Model” (Eddy, 1996; Krogh, 1998;
Wallisch et al., 2009). We reduced the complexity of the 100 most
frequent chains of 5 PM-transitions by excluding the directional
information of the slip and yaw vectors and unifying chains of
qualitative identical fine structure (see Materials and Methods).
This procedure resulted in a set of 17 “super-prototypical move-
ments” (SPMs, Figure S3). To determine if any of these SPMs was
specifically related to the presence of an object, and thus might
relate to sensory relevant kinematics, we calculated the relative
frequency of occurrence for these 17 SPMs conditioned by the
presence or absence of an object. The difference between both
conditions is plotted in Figure 5A. SPM 08 exclusively showed
a higher rate in the data obtained with an object, and thus was
explored in more detail.

SPM 08 was characterized by repetitive transitions between
PM 02 and PM 07/08 (Figure 5B), that formed a general mode
of forward swimming. This behavior occurred with a broad spa-
tial distribution across the tank showing highest probability at
positions with a relative distance of about 5–8 cm to the cube
(Figure 5D; coherent trajectories plotted in uniform shade). To
select the subset of trajectories in which the cube was directly
approached, we applied two spatial conditionals: the last frame
of a SPM 08 chain needed to end within a distance of 4 cm
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FIGURE 3 | Exemplary trajectory of an animal including quantitatively

characterized behaviors, fEOD and the temporal structure of

single-frames based PMs. (A) Head position (dots) and orientation (lines) of
an animal during a segment (192 frames, 9.16 s) of a video where a metal
cube of 1 cm side length (gray rectangle) was present in the arena. The
temporal structure of the behavioral sequence is represented by the gray
level of the symbols (see color bar above B). The animal entered the view of
the camera from south, approached the cube, stayed close to the cube and
departed with a north-westerly heading. This was followed by a return to the
object through backwards swimming, a bent around the object and then

finally the animal left the arena in a northward direction. The color coded
segments of this trajectory show examples of the kinematic chains
characterized quantitatively in the following (“object approach” in blue,
“stationary behavior” in green, “backwards swimming” in red, “object
departure” in yellow). (B) fEOD of the trajectory shown in (A). Note that
during the object approach the EOD train accelerated markedly, while it was
variable during the “stationary behavior” and was low and regularized during
“backwards swimming.” (C) Sequence of prototypical movements occurring
throughout the trajectory shown in (A). For details regarding the classification
of the quantified behavioral sequences, please see main text.

(head-cube distance) and the distance to the cube needed to be
smaller in this last frame than in the first frame of the sequence.
This yielded 235 sequences (1937 SPM 08 chains without spatial
filter) that we refer to as “object approach” chains (Figure 5E).
Applying the same filter to the data without an object being, i.e.,
analyzing it as if an object would have been present, yielded zero
chains. This indicates that by applying spatial filtering we were
able to extract behavioral chains of clear object relation exclu-
sively. The selected trajectories on average lasted 1.1 ± 0.51 s
(mean ± SD), which was similar to the duration of SPM 08
chains without the spatial filtering applied (Figure 5C, gray vs.
black bars). Compared to the other SPMs (Figure S3B), these were
relatively long lasting sequences.

For the approaching behavior we again calculated the aver-
age kinematic and electromotor characteristics. To do so, we used
the animals’ relative distance to the cube as a frame of refer-
ence (Figure 5F). Slip- and yaw-velocities did change markedly,
while the thrust velocity decreased from about 10 cm onwards.
At a closer range (<5 cm), this was associated with a slight
increase of the fEOD. This inverse relation between object-
nearness and thrust velocity as well as the link between nearness
and fEOD were also evident for trajectories extracted with invert-
ing the spatial filters best described as “departure from object”
(n = 389; Figure S6). To determine the behavior following an
“object approach” chain, we calculated the transition probabil-
ities based on the ten frames following an “object approach”
chain (Figure S7). The transition probability to PM 01 was sig-
nificantly increased, indicating that object exploration behaviors
of low thrust, including “stationary behavior” or “backwards

swimming,” are likely to occur after the approach sequences.
Moreover the transition probabilities to PM 02 and PM 07/08
were significantly increased, which indicates that the SPM was
probably followed by kinematics similar to those that contributed
to SPM 08 itself (see also Figure 3C).

SEQUENCES OF BEHAVIOR
When comparing the three quantitatively characterized behaviors
(“stationary behavior,” “backwards swimming” and the “object
approach”) it is interesting to note that they occurred with dif-
fering spatial relation to the object. “Object approach” and “sta-
tionary behavior” both were object centered behaviors, whereas
chains of “backwards swimming” showed a less strong increase
of frequency of occurrence toward the object (Figure 6A). Note,
however, that for the “object approach” behavior the spatial rela-
tion to the object was part of the applied filter, and thus it was
not unexpected to find it being object-centered. The relation
of the peak distances between “object approach” and “station-
ary behavior” indicated that they frequently occur in temporal
succession, thereby forming a joint sequence of object approach-
ing and inspection behavior (see Figure S3, and for an exam-
ple of such a transition, see Figures 3A,C). This illustrates the
potential of quantitatively extracting even more complex behav-
ioral sequences on a higher level. All three behaviors showed
an increase in the z-scored fEOD with nearness to the object
(Figure 6B). Here the relative amount of data at each distance is
coded in the intensity of the color (gray to full color), showing
that the increase in the frequency in a range below 5 cm is fairly
robust.
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FIGURE 4 | Spatial and kinematic characterization of “stationary

behavior” and “backwards swimming” patterns. (A) Histogram of the
thrust velocity of all frames classified as PM 01 (n = 50931, bandwidth =
0.2 cm s−1). We chose a threshold of −2 cm s−1 to further subdivide chains
of PM 01 into “stationary behavior” and “backwards swimming” chains.
Homogenous chains with a minimum of 10 consecutive frames were
analyzed exclusively. (B) Normalized spatial distribution of the “stationary
behavior” (top, n = 6111 frames) and “backwards swimming” (bottom,
n = 5252) chains. Note that stationary chains occurred more frequently at the
object, while backwards swimming chains were distributed without clear
peaks. (Bin size = 1 cm2). (C,D) Averages of kinematic velocities and fEOD
triggered by the onset of the target PM chain for “stationary behavior” (C,
672 chains, n = 6111) and “backwards swimming” (D, 710 chains, n = 5252).
From top to bottom the panels show the mean thrust velocity, the mean slip

velocity, the mean yaw velocity and the z-scored mean fEOD. The dark
shaded area surrounding the mean indicates the ±95% confidence interval
of the mean, while the lighter shaded area indicates one standard deviation.
For the “stationary behavior” (C) the thrust velocity decreased within the
time prior to the start of the sequence (gray vertical line at t = 0), and then
the average was close to zero, rising again after roughly half a second. Slip
and yaw velocities remained fairly constant with a reduction in standard
deviation within the kinematic chains, while the fEOD showed a slight
increase with a peak at the beginning of the target chain. For the “backwards
swimming” behavior (D), the thrust velocity decreased comparatively later
and more rapidly prior to the onset of the sequence. The thrust velocity
remained below zero for about ¾th of a second. The slip and yaw profiles
were comparable to those during stationary probing, whereas the fEOD
differed with transiently decreasing just after the trigger point.

In summary we here have shown that different types of
behavior can be objectively determined on differing time and
complexity-scales (single frames to full behavioral sequences).
Kinematic building blocks thus may be combined to analyze
the superstructure of complex behavioral sequences. To illus-
trate this, using the quantitatively described behaviors intro-
duced above, we show the temporal order of all the behaviors
in an exemplary longer behavior of roughly 10 s duration in
Figure 3 (“object approach”: blue; “stationary behavior”: green;
“backwards swimming”: red; “object departure”: yellow). Note
that these behaviors together form a longer behavioral sequence
with only few kinematic transitions in between. For the major
aim of capturing kinematic patterns of electrolocation behav-
iors in order to quantitatively analyze their sensory flow, such
transitions can be neglected. Even for these short individual
behaviors the fEOD showed the features described for the trig-
gered averages of the kinematic chains above, i.e., during the
“object approach” the frequency increased, during the “sta-
tionary behavior” probing was characterized by slight unsteady
elevations of fEOD above the average, while during “back-
wards swimming” the fEOD was relatively low and constant
(Figure 3B).

The shown example sequence indicates that the choice of the
parameters to define chains of behavior requires some degree of
deterministic user-interaction (here kinematic thresholding and
spatial filtering of SPM08). To which degree the chosen param-
eters prove suitable will depend how variable or stringent an
investigated behavior reoccurs within ones dataset. In addition,
larger datasets and the creation of more super-prototypical chains
should make the creation of seamless quantitative behavioral
classification possible—however, this was not attempted in the
present study.

Despite these limitations, the quantitative approach used here
offers a lot of potential both to better quantify the kinematics in a
specific context and, in addition, to now use these quantified kine-
matic sequences to explore and model the interaction between
the movements and the electrosensory flow induced both by these
movements and environmental factors.

DISCUSSION
Following a general definition of active sensing, which defines it
as an expenditure of energy for the purpose of sensing (Nelson
and MacIver, 2006), movements are crucial components of active
sensing strategies. The hypothesis motivating our study is that
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FIGURE 5 | Spatial and kinematic characterization of the “object

approach” pattern. (A) Difference in relative probability of occurrence of the 17
SPMs for data without (left) and with object (right) presented in the tank. Most
SPMs occurred equally likely for both conditions, while some had a higher
probability of occurrence in absence of an object. Only SPM 08 was found more
frequently when an object was present and hence was further explored. (B)

Schematic showing the different possible structures of SPM 08. Constant PM
segments were reduced to a single frame represented by the circles in order to
illustrate the inter-PM transitions. (C) Distribution of the duration of all SPM 08
chains. The data was split into SPMs in which the object was approached (black
histogram, n = 4599 frames) and all remaining sequences of the SPM (gray
histogram, n = 34436 frames). The distributions were indistinguishable and
showed similar medians (thick red line, percentiles = thinner red lines). (D,E)

Lollipop representation (dot = head position; handle = body orientation) of 50

randomly chosen SPM 08 trajectories (D). (E) Fifty randomly chosen
trajectories classified as SPM 08 following the application of spatial
conditionals. These sequences are referred to as “object approach” behavior. In
(D,E) individual behavioral chains are all plotted in the same consistent shade
and the object center is indicated by the red x. Note that without the spatial
filtering trajectories were randomly distributed, while the spatial conditional led
to the extraction of object-approach sequences (E). (F) Distance dependent
averages (from top to bottom: thrust velocity, slip velocity, yaw velocity, z-score
of fEOD, see also Figure 4, 235 sequences, n = 4599 frames) of the kinematic
and fEOD parameters for the “object approach” chains of SPM 08. Deviating
from the previous figure data here is displayed with respect to the distance
between the animal and the center of the cube. A distance dependent
decrease of the thrust velocity is noticeable starting at a distance of 10 cm. For
close distances the fEOD transiently increased toward the object.

such movements may be used to generate and shape the spa-
tiotemporal sensory flow such that it matches the current task—
either in terms of motor efficiency or regarding information gain.
In that sense active sensing would involve all strategies which
purposefully change the sensors’ state according to the current
sensing strategy (Bajcsy, 1988).

For electrolocation in Gymnotiform weakly electric fish, which
emit a continuous quasi sinusoidal electric signal, MacIver and
co-workers showed that specific movement strategies can increase
the sensory volume available to the animals, thereby enhancing
prey detectability (MacIver et al., 2001, 2010; Snyder et al., 2007).
This is reminiscent of the way in which bats were shown to enlarge
their acoustic sensory volume in echolocation (Yovel et al., 2011)
or task-dependent whisking patterns in rodents (Carvell and
Simons, 1995). For electrocommunication in an Apteronotoid
fish it has been shown that motion patterns lead to spatiotempo-
ral correlations in the sensory input that may be matched with
specific sensory needs during electrocommunication and elec-
trolocation (Fotowat et al., 2012, 2013). Beyond that a variety of

studies interpreted stereotyped motions in weakly electric fish as
an active strategy to create or shape sensory input (Heiligenberg,
1975; Toerring and Moller, 1984; Nelson and MacIver, 1999;
MacIver et al., 2001; Cowan and Fortune, 2007; Stamper et al.,
2012; Yu et al., 2012; Hofmann et al., 2013b). These studies led
to the hypothesis that animals execute specific motor patterns in
order to create and analyze signals of differing spatial and tem-
poral structure. Indeed, the differently tuned topographical maps
of weakly electric Gymnotiform fish (for a recent review, see:
Krahe and Maler, 2014) are differentially used for electrocom-
munication and electrolocation, two behaviors where the relevant
electric signals differ in their spatiotemporal structure (Cowan
and Fortune, 2007).

Although electric images can be ambiguous (Engelmann et al.,
2008), conditioning experiments in Gnathonemus have shown
that these ambiguities can be overcome (Fechler et al., 2012).
This indicates that the animals make use of a spatiotemporal
sequence of electric images, i.e., electric flow. Various cues that
might allow information extraction from electric flow have been
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FIGURE 6 | Comparison between the spatial distributions and the EOD

frequencies for the three behaviors analyzed in detail. (A) Relative
spatial distribution of “object approach” (blue), “stationary behavior”
(green) “backwards swimming” (red) behaviors. Data was binned (bin
width 1 cm) with respect to the Euclidian distance where the behavioral
patterns were found. The frequency of occurrence is expressed relative to
the size of the complete dataset (n = 277585 frames) at each distance.
Stationary and object approach behaviors both peaked close to the object,
while backwards swimming behavior was roughly equally distributed. Note
that the classification of backwards and stationary behavioral patterns was
based on kinematic data exclusively. (B) Averaged z-scored EOD
frequencies occurring during the three behaviors as a function of distance
to the cube. The color intensity indicates the relative amount of data
contributing to the individual means. Note that for all behaviors an increase
in fEOD toward the object is visible.

addressed in recent works (Nelson and MacIver, 1999; Chen et al.,
2005; Babineau et al., 2007; Sim and Kim, 2011, 2012; Fechler
and von der Emde, 2012; Hofmann et al., 2013a). As pointed out
above, specific motor patterns are postulated to be linked with
specific sensory-motor tasks. Using weakly electric Mormyrid fish
has the benefit that their discretized sensing strategy allows to
link the sensory signal with the occurring body motions directly.
Repetitive motor patterns were qualitatively described and linked
to the electrosensory probing of objects (Toerring and Belbenoit,
1979; Toerring and Moller, 1984; Von der Emde, 1992). The data
presented here combines aspects of these classic qualitative studies

from the field of electrolocation with quantitative methods for
behavioral descriptions (Braun et al., 2010; Geurten et al., 2010).
As a first step, we here present detailed descriptions of electrosen-
sory behavior on a quantitative level. The established methods
enable us to describe the behavior on different levels, from the
level of pooled and single frame data without temporal context,
to the level of single frame kinematics that lead to short behaviors
and longer connected behavioral sequences under consideration
of the temporal structure.

During object presentation the animals responded to the novel
object by an altered spatial usage of the arena as well as with dis-
tance dependent changes in their fEOD. This is reflected in the
kinematic quantification of the behavior on the single frame level,
where different prototypes of motion were found to differ with
respect to fEOD and the likelihood of occurrence with respect to
the distance to the object.

In order to characterize longer behavioral sequences we ana-
lyzed repetitively occurring kinematic patterns of homogenous
chains of PMs. Here short and sharp turnings of the animal as
well as gliding patterns (Figures S4, S5) without a distinct spa-
tial relation to the object were found for PM 02. This behavior
is interpreted to constitute part of the general locomotor reper-
toire (Toerring and Belbenoit, 1979). A common active sensing
strategy in vision is the separation of translational and rotational
optic flow through extremely fast and short saccadic motor pat-
terns (Collett and Land, 1975; Srinivasan et al., 1991; Voss and
Zeil, 1998; Egelhaaf et al., 2012). We thus compared homogeneous
PM chains of translational and rotational PMs (Figure S4A).
Chains dominated by translational movements were in general
longer and had a higher duration compared to those that were
dominated by rotational PMs. Although relatively short, these
turning behaviors were much slower and of low amplitude (∼
200–250◦/s). Given that fish in general are capable of very fast
turns (C-start up to 2000◦/s, Eaton et al., 1977), the lack of chains
which such high amplitudes may indicate that a separation of
rotation and translation is not sought after in electrolocation.
Rather the turns might be used by the fish to actively shift the elec-
trosensory focus to different parts of the sensory mosaic, thereby
maximizing the sensory-related input. However, this hypothe-
sis requires a more detailed analysis, including modeling of the
associated electric images.

Some of the probing motor acts described by Toerring and
Belbenoit (1979) were only observed during active electrolo-
cation, including the so called “(lateral) va-et-vient” behavior.
During this PMA the animals execute translational back and forth
movement alongside an object. This behavior might be sought to
generate temporal slopes e.g., to extract the relative distance of
an object (Babineau et al., 2007; Sim and Kim, 2012; Hofmann
et al., 2013a). We extracted sequences of “backwards swimming”
that resemble the main component of such “va-et-vient” PMAs
(Figure 4D): a low but positive thrust velocity followed by a rapid
deceleration in which thrust velocity reverses and stays in the
negative range for about 750 ms before the animals retuned to
low positive thrust values. Similar to the EOD emission pattern
reported for va-et-vient (Toerring and Belbenoit, 1979; Toerring
and Moller, 1984; Von der Emde, 1992), the inter-pulse-interval
distribution during “backwards swimming” was increased and
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for the example sequence some regularization of fEOD is visible
(see red dots in Figure 3B). Variations in the inter-pulse-interval
directly impact the latency-code of the electroreceptor afferents
(Sawtell et al., 2006). A regularized interval distribution might
be beneficial to minimize this effect and thereby maintaining
constant sensitivity.

The “stationary behavior” characterized here quantitatively
resembles the PMA descriptions of “chin probing” and “sta-
tionary probing” (Toerring and Belbenoit, 1979). During this
behavior the fish remained nearly motionless for about 500 ms.
This was accompanied by an increase of the fEOD. Thus, while
the fish altered their position only marginally in this phase (see
also green dots in Figure 3B), the temporal dynamics of the sen-
sory flow are variable. As this stationary behavior was frequently
exerted close to the object even small movements of the body
can lead to considerable alterations of the sensory input, as the
amplitude of the obtained electrical images critically depends
on distance due to the spherical spread of the carrier (Nelson
and MacIver, 2006). Close to the object a considerable amount
of direct haptic contacts between the movable chin appendix of
Gnathonemus and the object can be expected. While our current
study could not resolve these contact points, future studies should
take those into consideration. Probably the near-field active elec-
trosensory system and the haptic capability of the chin appendix
are recruited together and contacts may be directed toward par-
ticularly salient properties of an explored object. Thus they may
aid in further elucidating which electrosensory cues lead to haptic
contacts.

Behavioral sequences of course can be more complex than
the chains of homogeneous prototypes. We chose to charac-
terize heterogonous kinematic patterns based on the transition
probabilities between PMs. For this we reduced the complexity
of the dominating transition patterns and obtained 17 “super-
prototypical movements” (SPMs). Interestingly, besides differ-
ences in SPM length and their relative frequency of occurrence
(Figure S3), the SPMs relative frequency of occurrence for nights
with and without an object present differed (Figure 5A). This
indicates that the kinematics employed by the animals depends
on the environmental context and that SPM 08 is a behavioral
pattern preferentially shown in presence of the object. By apply-
ing an additional spatial conditional to this SPM, we extracted
“object approach” behaviors. Compared to the PMAs (Toerring
and Belbenoit, 1979), this is comparable to aspects of the “tangen-
tial” and “chin probing” PMAs. Rather than being more diverse it
seems that in presence of novel objects in the environment the
animals showed less variable SPMs. One possible explanation of
this effect could be that the objects provide sensory cues that
trigger directed and stereotyped motor patterns.

The sensory input during such an approach is comparable
to a looming stimulus, where the peak amplitude of the sen-
sory input and the width of the electric signature increases in a
power law fashion (Sanguinetti-Scheck et al., 2012; Clarke et al.,
2013). The strongest increase in the electrosensory input can be
expected at low object distances. At these short distances fish
showed an increase in the fEOD. Such an increase may reflect
a compensatory mechanism by which the relative change in the
sensory input of successive electric images is reduced, leading

to a stabilization of the rate of change in the sensory input.
This relation between fEOD and distance was found for trajec-
tories in which the fish departed an object (Figure S6) as well
as for the other object-centered behaviors (Figure 6). “Object
approach” trajectories were found to be frequently followed by
PMs that have been shown to play a dominant role during sensory
relevant behaviors (Figure S7). This and the example sequence
shown in Figure 3.emphasize that stereotyped behaviors can be
sequentially arranged to represent and categorize more complex
“behavioral sequences.” While the underlying kinematics prob-
ably are fairly constant, this shows that fish may actively alter
the composition of such longer sequences to match their cur-
rent motor and sensory requirement. In summary, comparing
the published qualitative PMAs with our quantified behaviors
we show that it now is possible to quantitatively extract complex
behavioral patterns in electrolocation.

A key parameter for electrolocation in pulsatile species is to
understand how the inter-pulse-interval contributes to the sen-
sory flow. Our results show that this relation may differ depending
on the context. Notably this was found to be the case already at
the single-frame level of PMs. The correlation between fEOD and
kinematic velocities implies that some direct motor-sensory inter-
action exists that links the motor system with the electromotor
component of active electrolocation. This is in accordance with a
recently established direct motor-control network through which
the Mauthner cell system can adjust the fEOD (Comas and Borde,
2010). The fEOD was further found to increases during “object
approach” sequences, where the kinematic values decreased with
nearness to the object while the strength of the sensory input
increases dramatically. This is reminiscent of other active sensory
systems like the vibrissal system (Friedman et al., 2006), echolo-
cation in bats (Ulanovsky and Moss, 2008; Yovel et al., 2011) or
active olfaction (Schroeder et al., 2010). One possible interpre-
tation of this increase may be that it could partially compensate
for the step change in the sensory input increasing heavily during
“object approach.” Contrary to the mechanism for motor control
of EOD emission rates considered above, the underlying control
mechanism in this case can be assumed to be based on the sensory
input.

To unravel the consequence of both the motor and sensing
strategies will require analyzing the sensory flow associated with
these strategies in depth. Therefore one of our main aims will be
the modeling of the electrosensory input during the now kine-
matically quantified naturalistic behaviors. Additionally it will
be of interest to specifically follow up on the idea that fish seek
active motor strategies in an optimal fashion. Therefore behav-
ioral experiments using the well-established learning paradigm
(Von der Emde et al., 2010) could be combined with our
kinematic analysis to investigate if and how the kinematics
and active sensing strategies change during electrosensory-based
learning.
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