8,395 research outputs found

    Control algorithms for e-car

    Get PDF
    Cílem práce byl návrh a implementace řídicích algoritmů pro optimalizaci spotřeby energie elektrického vozidla. Hlavním úkolem byla optimalizace rozložení energie mezi hlavním zdrojem energie (bateriemi) a super-kapacitory v průběhu jízdního cyklu. Jízdní výkonový profil je odhadován a předpovězen na základě 3D geografických souřadnic a matematického modelu vozidla. V první části jsou uvedeny komponenty vozidla a jejich modely. Poté jsou představeny algoritmy na základě klouzavého průměru a dynamického programování. Byly provedeny simulace a analýzy pro demostraci přínosů algoritmů. V poslední části je popsána Java implementace algoritmů a také aplikace pro operační systém Android.The aim of this work is to design and implement energy consumption optimization control algorithms for electric vehicle. The main objective is to optimize the power-split-ratio between the main power source (batteries) and the super-capacitors during the driving cycle. The driving power profile is estimated and predicted using 3D geographic data and vehicle model. In the first part, vehicle components modelling is introduced. Then, moving average based algorithm and dynamic programming algorithm are presented. Simulations and analysis are provided to show algorithms' benefits. In the last part, Java implementation and also Android operating system application are described.

    Least costly energy management for series hybrid electric vehicles

    Full text link
    Energy management of plug-in Hybrid Electric Vehicles (HEVs) has different challenges from non-plug-in HEVs, due to bigger batteries and grid recharging. Instead of tackling it to pursue energetic efficiency, an approach minimizing the driving cost incurred by the user - the combined costs of fuel, grid energy and battery degradation - is here proposed. A real-time approximation of the resulting optimal policy is then provided, as well as some analytic insight into its dependence on the system parameters. The advantages of the proposed formulation and the effectiveness of the real-time strategy are shown by means of a thorough simulation campaign

    Aeronautical Engineering: A special bibliography with indexes, supplement 54

    Get PDF
    This bibliography lists 316 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1975

    Supervisory Control Optimization for a Series Hybrid Electric Vehicle with Consideration of Battery Thermal Management and Aging

    Get PDF
    This dissertation integrates battery thermal management and aging into the supervisory control optimization for a heavy-duty series hybrid electric vehicle (HEV). The framework for multi-objective optimization relies on novel implementation of the Dynamic Programing algorithm, and predictive models of critical phenomena. Electrochemistry based battery aging model is integrated into the framework to assesses the battery aging rate by considering instantaneous lithium ion (Li+) surface concentration rather than average concentration. This creates a large state-action space. Therefore, the computational effort required to solve a Deterministic or Stochastic Dynamic Programming becomes prohibitively intense, and a neuro-dynamic programming approach is proposed to remove the ‘curse of dimensionality’ in classical dynamic programming. First, unified simulation framework is developed for in-depth studies of series HEV system. The integration of a refrigerant system model enables prediction of energy use for cooling the battery pack. Side reaction, electrolyte decomposition, is considered as the main aging mechanism of LiFePO4/Graphite battery, and an electrochemical model is integrated to predict side reaction rate and the resulting fading of capacity and power. An approximate analytical solution is used to solve the partial difference equations (PDEs) for Li+ diffusion. Comparing with finite difference method, it largely reduces the number of states with only a slight penalty on prediction accuracy. This improves computational efficiency, and enables inclusion of the electrochemistry based aging model in the power management optimization framework. Next, a stochastic dynamic programming (SDP) approach is applied to the optimization of supervisory control. Auxiliary cooling power is included in addition to vehicle propulsion. Two objectives, fuel economy and battery life, are optimized by weighted sum method. To reduce the computation load, a simplified battery aging model coupled with equivalent circuit model is used in SDP optimization; Li+ diffusion dynamics are disregarded, and surface concentration is represented by the average concentration. This reduces the system state number to four with two control inputs. A real-time implementable strategy is generated and embedded into the supervisory controller. The result shows that SDP strategy can improve fuel economy and battery life simultaneously, comparing with Thermostatic SOC strategy. Further, the tradeoff between fuel consumption and active Li+ loss is studied under different battery temperature. Finally, the accuracy of battery aging model for optimization is improved by adding Li+ diffusion dynamics. This increases the number of states and brings challenges to classical dynamic programming algorithms. Hence, a neuro-dynamic programming (NDP) approach is proposed for the problem with large state-action space. It combines the idea of functional approximation and temporal difference learning with dynamic programming; in that case the computation load increases linearly with the number of parameters in the approximate function, rather than exponentially with state space. The result shows that ability of NDP to solve the complex control optimization problem reliably and efficiently. The battery-aging conscientious strategy generated by NDP optimization framework further improves battery life by 3.8% without penalty on fuel economy, compared to SDP strategy. Improvements of battery life compared to the heuristic strategy are much larger, on the order of 65%. This leads to progressively larger fuel economy gains over time

    Control technology for future aircraft propulsion systems

    Get PDF
    The need for a more sophisticated engine control system is discussed. The improvements in better thrust-to-weight ratios demand the manipulation of more control inputs. New technological solutions to the engine control problem are practiced. The digital electronic engine control (DEEC) system is a step in the evolution to digital electronic engine control. Technology issues are addressed to ensure a growth in confidence in sophisticated electronic controls for aircraft turbine engines. The need of a control system architecture which permits propulsion controls to be functionally integrated with other aircraft systems is established. Areas of technology studied include: (1) control design methodology; (2) improved modeling and simulation methods; and (3) implementation technologies. Objectives, results and future thrusts are summarized

    Feasibility of Electrified Propulsion for Ultra-Efficient Commercial Aircraft Final Report

    Get PDF
    MIT, Aurora Flight Sciences, and USC have collaborated to assess the feasibility of electric, hybridelectric, and turbo-electric propulsion for ultra-efficient commercial transportation. The work has drawn on the team expertise in disciplines related to aircraft design, propulsion-airframe integration, electric machines and systems, engineering system design, and optimization. A parametric trade space analysis has been carried out to assess vehicle performance across a range of transport missions and propulsion architectures to establish how electrified propulsion systems scale. An optimization approach to vehicle conceptual design modeling was taken to enable rapid multidisciplinary design space exploration and sensitivity analysis. The results of the analysis indicate vehicle aero-propulsive integration benefits enabled by electrification are required to offset the increased weight and loss associated with the electric system and achieve enhanced performance; the report describes the conceptual configurations than can offer such enhancements. The main contribution of the present work is the definition of electric vehicle design attributes for potential efficiency improvements at different scales. Based on these results, key areas for future research are identified, and extensions to the trade space analysis suitable for higher fidelity electrified commercial aircraft design and analysis have been developed

    Fuzzy Logic Controller for Parallel Plug-in Hybrid Vehicle

    Get PDF
    Hybrid electric vehicles combine two methods for propelling a vehicle. In a parallel hybrid vehicle, the two propulsion methods work in parallel to meet the total power demand. Among different combination of power sources, internal combustion engine and electric motor drive system are the most popular because of their availability and controllability. Plug-in hybrid vehicle is the latest version in hybrid vehicle family. In plug-in hybrid vehicle, battery is directly recharged from the electrical power grid and it can be used for a long distance with higher efficiency. Most of the hybrid vehicles on the road are parallel in nature and battery is recharged directly by the engine. If it is possible to convert existing hybrid vehicle into plug-in hybrid vehicle, it will lead to significant improvements in fuel economy and emissions.In this thesis, two fuzzy logic controllers have been developed for the energy management system of the hybrid vehicle. For the first controller, it is assumed that the vehicle will work like a plug-in hybrid vehicle. For the second controller it is assumed that the battery will always recharged by the engine. It is found that with the help of developed fuzzy logic controller, the plug-in hybrid vehicle can run up to 200 miles with high efficiency. Both controllers are developed and their performance is tested on the highly reliable vehicle modeling and simulation software AUTONOMIE. The main objective of developing the controllers is increasing the fuel economy of the vehicle. The results from the both developed controllers are compared with the default controller in AUTONOMIE in order to show performance improvements

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Fast Optimal Energy Management with Engine On/Off Decisions for Plug-in Hybrid Electric Vehicles

    Full text link
    In this paper we demonstrate a novel alternating direction method of multipliers (ADMM) algorithm for the solution of the hybrid vehicle energy management problem considering both power split and engine on/off decisions. The solution of a convex relaxation of the problem is used to initialize the optimization, which is necessarily nonconvex, and whilst only local convergence can be guaranteed, it is demonstrated that the algorithm will terminate with the optimal power split for the given engine switching sequence. The algorithm is compared in simulation against a charge-depleting/charge-sustaining (CDCS) strategy and dynamic programming (DP) using real world driver behaviour data, and it is demonstrated that the algorithm achieves 90\% of the fuel savings obtained using DP with a 3000-fold reduction in computational time

    Optimal Battery Weight Fraction for Serial Hybrid Propulsion System in Aircraft Design

    Get PDF
    This thesis focuses on electric propulsion technology associated with serial hybrid power plants most commonly associated with urban air mobility vehicles. While closed form analytical solutions for parallel hybrid aviation cases have been determined, optimized serial hybrid power plants have not seen the same degree of fidelity. Presented here are the analytical relationships between several preliminary aircraft design objectives and the battery weight fraction. These design objectives include aircraft weight, range, operation cost, and carbon emissions. The relationships are based on a serial hybrid electric propulsion architecture from an energy standpoint, and can be applied to hybrid aircraft of different weights, aerodynamic designs, and propulsive efficiencies. Three hybrid electric propulsion design related variables are also defined in the process to help clarify novel specifications unique to hybrid propulsion systems. For all design objectives, the optimal battery weight fraction is found to be either zero or one in unconstrained cases. When a minimum range requirement is applied, non-integer weight fraction solutions can be found for minimizing cost and emissions
    corecore