53,684 research outputs found

    Single qubit decoherence under a separable coupling to a random matrix environment

    Full text link
    This paper describes the dynamics of a quantum two-level system (qubit) under the influence of an environment modeled by an ensemble of random matrices. In distinction to earlier work, we consider here separable couplings and focus on a regime where the decoherence time is of the same order of magnitude than the environmental Heisenberg time. We derive an analytical expression in the linear response approximation, and study its accuracy by comparison with numerical simulations. We discuss a series of unusual properties, such as purity oscillations, strong signatures of spectral correlations (in the environment Hamiltonian), memory effects and symmetry breaking equilibrium states.Comment: 13 pages, 7 figure

    Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems

    Get PDF
    In this paper we develop new techniques for revealing geometrical structures in phase space that are valid for aperiodically time dependent dynamical systems, which we refer to as Lagrangian descriptors. These quantities are based on the integration, for a finite time, along trajectories of an intrinsic bounded, positive geometrical and/or physical property of the trajectory itself. We discuss a general methodology for constructing Lagrangian descriptors, and we discuss a "heuristic argument" that explains why this method is successful for revealing geometrical structures in the phase space of a dynamical system. We support this argument by explicit calculations on a benchmark problem having a hyperbolic fixed point with stable and unstable manifolds that are known analytically. Several other benchmark examples are considered that allow us the assess the performance of Lagrangian descriptors in revealing invariant tori and regions of shear. Throughout the paper "side-by-side" comparisons of the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field ("time averages") are carried out and discussed. In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods. We also perform computations for an explicitly three dimensional, aperiodically time-dependent vector field and an aperiodically time dependent vector field defined as a data set. Comparisons with FTLEs and time averages for these examples are also carried out, with similar conclusions as for the benchmark examples.Comment: 52 pages, 25 figure

    The Lagrangian description of aperiodic flows: a case study of the Kuroshio Current

    Get PDF
    This article reviews several recently developed Lagrangian tools and shows how their combined use succeeds in obtaining a detailed description of purely advective transport events in general aperiodic flows. In particular, because of the climate impact of ocean transport processes, we illustrate a 2D application on altimeter data sets over the area of the Kuroshio Current, although the proposed techniques are general and applicable to arbitrary time dependent aperiodic flows. The first challenge for describing transport in aperiodical time dependent flows is obtaining a representation of the phase portrait where the most relevant dynamical features may be identified. This representation is accomplished by using global Lagrangian descriptors that when applied for instance to the altimeter data sets retrieve over the ocean surface a phase portrait where the geometry of interconnected dynamical systems is visible. The phase portrait picture is essential because it evinces which transport routes are acting on the whole flow. Once these routes are roughly recognised it is possible to complete a detailed description by the direct computation of the finite time stable and unstable manifolds of special hyperbolic trajectories that act as organising centres of the flow.Comment: 40 pages, 24 figure

    Some Open Problems in Random Matrix Theory and the Theory of Integrable Systems. II

    Full text link
    We describe a list of open problems in random matrix theory and the theory of integrable systems that was presented at the conference Asymptotics in Integrable Systems, Random Matrices and Random Processes and Universality, Centre de Recherches Mathematiques, Montreal, June 7-11, 2015. We also describe progress that has been made on problems in an earlier list presented by the author on the occasion of his 60th birthday in 2005 (see [Deift P., Contemp. Math., Vol. 458, Amer. Math. Soc., Providence, RI, 2008, 419-430, arXiv:0712.0849]).Comment: for Part I see arXiv:0712.084

    Extraction of bodily features for gait recognition and gait attractiveness evaluation

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-012-1319-2. Copyright @ 2012 Springer.Although there has been much previous research on which bodily features are most important in gait analysis, the questions of which features should be extracted from gait, and why these features in particular should be extracted, have not been convincingly answered. The primary goal of the study reported here was to take an analytical approach to answering these questions, in the context of identifying the features that are most important for gait recognition and gait attractiveness evaluation. Using precise 3D gait motion data obtained from motion capture, we analyzed the relative motions from different body segments to a root marker (located on the lower back) of 30 males by the fixed root method, and compared them with the original motions without fixing root. Some particular features were obtained by principal component analysis (PCA). The left lower arm, lower legs and hips were identified as important features for gait recognition. For gait attractiveness evaluation, the lower legs were recognized as important features.Dorothy Hodgkin Postgraduate Award and HEFCE

    Comparison Between Self-Force and Post-Newtonian Dynamics: Beyond Circular Orbits

    Get PDF
    The gravitational self-force (GSF) and post-Newtonian (PN) schemes are complementary approximation methods for modelling the dynamics of compact binary systems. Comparison of their results in an overlapping domain of validity provides a crucial test for both methods, and can be used to enhance their accuracy, e.g. via the determination of previously unknown PN parameters. Here, for the first time, we extend such comparisons to noncircular orbits---specifically, to a system of two nonspinning objects in a bound (eccentric) orbit. To enable the comparison we use a certain orbital-averaged quantity U\langle U \rangle that generalizes Detweiler's redshift invariant. The functional relationship U(Ωr,Ωϕ)\langle U \rangle(\Omega_r,\Omega_\phi), where Ωr\Omega_r and Ωϕ\Omega_\phi are the frequencies of the radial and azimuthal motions, is an invariant characteristic of the conservative dynamics. We compute U(Ωr,Ωϕ)\langle U \rangle(\Omega_r,\Omega_\phi) numerically through linear order in the mass ratio qq, using a GSF code which is based on a frequency-domain treatment of the linearized Einstein equations in the Lorenz gauge. We also derive U(Ωr,Ωϕ)\langle U \rangle(\Omega_r,\Omega_\phi) analytically through 3PN order, for an arbitrary qq, using the known near-zone 3PN metric and the generalized quasi-Keplerian representation of the motion. We demonstrate that the O(q)\mathcal{O}(q) piece of the analytical PN prediction is perfectly consistent with the numerical GSF results, and we use the latter to estimate yet unknown pieces of the 4PN expression at O(q)\mathcal{O}(q).Comment: 44 pages, 2 figures, 4 table
    corecore