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Madrid, Spain
2ETSI Navales, U. Polit́ecnica de Madrid, Av. Arco de la Victoria 4, 28040 Madrid, Spain

Correspondence to:A. M. Mancho (a.m.mancho@icmat.es)

Received: 3 February 2012 – Revised: 12 July 2012 – Accepted: 16 July 2012 – Published: 21 August 2012

Abstract. This article reviews several recently developed La-
grangian tools and shows how their combined use succeeds
in obtaining a detailed description of purely advective trans-
port events in general aperiodic flows. In particular, because
of the climate impact of ocean transport processes, we illus-
trate a 2-D application on altimeter data sets over the area of
the Kuroshio Current, although the proposed techniques are
general and applicable to arbitrary time dependent aperiodic
flows. The first challenge for describing transport in aperi-
odical time dependent flows is obtaining a representation of
the phase portrait where the most relevant dynamical features
may be identified. This representation is accomplished by us-
ing global Lagrangian descriptors that when applied for in-
stance to the altimeter data sets retrieve over the ocean sur-
face a phase portrait where the geometry of interconnected
dynamical systems is visible. The phase portrait picture is
essential because it evinces which transport routes are acting
on the whole flow. Once these routes are roughly recognised,
it is possible to complete a detailed description by the direct
computation of the finite time stable and unstable manifolds
of special hyperbolic trajectories that act as organising cen-
tres of the flow.

1 Introduction

The study of transport phenomena in aperiodic flows is an
important topic that arises in numerous applications. La-
grangian particle paths of non-periodic time dependent dy-
namical systems are the main ingredient of mixing processes,
which take place in manifold applications, such as food

production, microfluidics or geophysical flows. Mixing is a
key contributor to significant features of the current climate
when it takes place in the atmosphere or the oceans. In the
southern stratosphere, for instance, mixing across the Antarc-
tic polar vortex controls the springtime ozone depletion (de la
Cámara et al., 2010; Joseph and Legras, 2002). On natural
catastrophes the pollutants mixing in the ocean is also un-
derstood in terms of Lagrangian particle paths (Mezić et al.,
2010). A better understanding of the mathematical tools de-
scribing transport in these contexts is important for improved
control and prediction.

Dynamical systems theory is the natural mathematical
framework for describing particle trajectories and transport
in fluids where diffusion is not important. A challenge in
the application of these tools to realistic geophysical flows
is that such flows are typically defined as finite-time data
sets and are not periodic. An approach to these flows from
a geometric perspective includes the study of invariant man-
ifolds, which act as barriers to particle transport and inhibit
mixing. In this context manifolds are approximated by com-
puting ridges of fields, such as finite size Lyapunov expo-
nents (FSLE) (Aurell et al., 1997) and finite time Lyapunov
exponents (FTLE) (Nese, 1989; Shadden et al., 2005). The
latter authors show that under certain conditions there is
small flux across FTLE ridges. Despite the accomplishment
of these techniques there exist frequent cases in which FTLE
provide artifacts (seeBranicki and Wiggins, 2010) because
these assumptions are not satisfied. Works such asBranicki
and Wiggins(2010); Mosovsky and Meiss(2011) have noted
ambiguity for the interpretation of these ridges and ambigu-
ity over flow duration for FTLE calculations, in particular in
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transient flows. Another perspective within the geometrical
approach different from Lyapunov exponents is that provided
by distinguished hyperbolic trajectories (DHT) (Ide et al.,
2002; Ju et al., 2003; Madrid and Mancho, 2009) and their
stable and unstable manifolds. In this approach stable and
unstable manifolds are directly computed as material sur-
faces (seeMancho et al., 2004, 2003) thus the flux across
them is rigorously zero. Distinguished trajectories are a gen-
eralization of the concept of fixed point for dynamical sys-
tems with a general time dependence. In this article we pro-
pose the use of DHT and their stable and unstable manifolds
combined with recently developedLagrangian descriptors
(Madrid and Mancho, 2009; Mendoza and Mancho, 2010;
Mancho et al., 2012), which differ in some respects from
other traditional techniques. Our purpose is not confined to
gathering/summarizing these techniques in one article, but to
providing a bigger picture that shows how the information
they supply is complementary, and that their combination
constitutes a powerful package able to detect the essential
transport routes acting on an arbitrary flow. For illustrative
purposes we choose a 2-D application on oceanic data. In
particular we consider altimeter data sets over the area of the
Kuroshio Current. Our choice is motivated by the fact that
these data sets are realistic and obey no regular pattern, as
might be objected to flows produced by exact analytical for-
mulae. The analysed flow is irregular and there is no a priori
idea or control on the transport mechanisms that take place
on it. We show that our tools are able to unveil the hidden dy-
namical picture of this arbitrary flow by tracing medium and
long term particle transport routes. The performance of the
machinery on this data opens a gateway to its applications on
any kind of realistic flow.

The Lagrangian analysis of altimeter data sets has been
previously addressed by means of different approaches and
for different purposes. For instanceLehahn et al.(2007)
have used finite-size Lyapunov exponents (FSLE) on the
geostrophic velocity field to compute unstable manifolds
which are found to modulate phytoplankton fronts in lobu-
lar forms.d’Ovidio et al.(2009) have performed FSLE diag-
nosis on altimeter data in the Algerian Basin, showing that
Lyapunov exponents are able to predict the (sub-)mesoscale
filamentary processes not captured by an Eulerian analy-
sis. By computing probability distribution functions (PDFs)
of the FTLEs over currents derived from satellite altimetry,
Waugh and Abraham(2008) have evaluated global stirring
variations.Beron-Vera et al.(2010) have compared the la-
grangian analysis provided by Finite-Time Lyapunov Expo-
nents (FTLE) on velocity fields obtained from two different
multi satellite altimetry measurements, concluding that both
measurements support mixing with similar characteristics. In
this context, our work aims to extract transport routes in these
realistic flows where there is no a priori idea on the transport
mechanisms that take place on such flows. We have chosen
the Kuroshio Current region for analysis in data measured
during year 2003. We characterize transport events across a

prominent jet and several eddies. Studies across these kinds
of structures have been formerly discussed, either in ad hoc
kinematic models (Samelson, 1992; Dutkiewicz, 1993; Mey-
ers, 1994; Duan and Wiggins, 1996; Cencini et al., 1999),
or more recently in realistic flows (Rogerson et al., 1999;
Miller et al., 2002; Kuznetsov et al., 2002; Mancho et al.,
2008; Branicki et al., 2011). Our purpose now is to show how
the combined use of several recently developed Lagrangian
tools, valid for general time-dependent flows, easily achieve
insightful transport mechanisms in this context.

The first step in our procedure seeks for geometrical struc-
tures on the phase portrait (in advection it coincides with the
physical space) where a sketch of the most relevant dynami-
cal features may be identified at a glance. This is achieved by
means of a Lagrangian descriptor. Lagrangian descriptors are
based on a recently defined function (Mendoza and Mancho,
2010), which when evaluated over the vector field succeed in
covering the ocean surface with time-dependent geometrical
structures that separate particle trajectories with different dy-
namical fates. The organising centres of the flow are detected
at a glance over the resulting map, and the foliations induced
by the stable and unstable manifolds of the present hyper-
bolic trajectories also are visible. Other possibilities for the
definition of M discussed on Mancho et al. (2012) are also
examined here. The phase portrait picture indicates transport
routes active on the extended flow, and transport mechanisms
such as the turnstile mechanism, where fluid interchange is
mediated by lobes, are sketched at this stage. Lobes may
present a very tangled structure, especially in realistic flows
such as the one under study, which makes it very difficult to
compute them accurately from the representation provided
by the Lagrangian descriptor. For this reason in order to pro-
ceed with a fine description of these pathways, we then char-
acterize the organizing hyperbolic orbits and their stable and
unstable manifolds by other techniques discussed in the lit-
erature (Mancho et al., 2003, 2004, 2006b; Mendoza et al.,
2010). These methods are aimed at a direct computation of
finite-time invariant manifolds. In the 2-D dimensional case
under study, manifolds are thus represented by lines form-
ing intricate lobes. From these clearly represented structures
complex particles paths may be traced out.

The structure of the article is as follows. Section 2 provides
a description of the dynamical system under study which is
defined from altimeter datasets. These have been chosen to
illustrate the use of these recent Lagrangian techniques in
realistic flows. Section 3 discusses the role of Lagrangian
descriptors as a first approach to this data. Section 4 pro-
ceeds with the next step where we explain how special tra-
jectories that act as organizing centres of the flow are char-
acterised. We also explain how the direct computation of fi-
nite time manifolds is attained from them and discuss about
frame invariance. Section 5 explains how manifolds trace
complex and accurate transport routes, and abstract ideas
from dynamical systems theory are shown to be present in
realistic datasets. Finally Sect. 6 presents the conclusions.
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2 The dynamical system

We are interested in the study of transport on purely advec-
tive systems where particle evolution is given by

dx

dt
= v(x, t), x ∈ Rn, t ∈ R. (1)

In geophysical applications typically this expression takes
n = 1,2,3. We assume thatv(x, t) is Cr (r ≥ 1) in x and
continuous int . This will allow for unique solutions to exist,
and also permit linearization, although linearization will not
be used in our construction. In our study, the velocity fieldv

given in Eq. (1) is defined from observational data. We have
considered a realistic 2-D flow obtained from altimeter data
sets, with irregular time dependence far from periodicity. The
fluid motion involves temporal transitions in which Eulerian
structures may be annihilated, created or move rapidly. The
flow is provided in a finite space-time grid, and our study will
extract information assuming that data is well defined with
the supplied resolution. This means that below the scale of
the grid the fluid behaves smoothly and it is well approached
by a standard interpolation technique. There is no other a pri-
ori condition or hypothesis on it. Our purpose is to illustrate
how recent Lagrangian techniques may be combined to ap-
proach a complete transport description on highly aperiodic
dynamical systems.

The velocity data set used in this work has been previ-
ously described inTuriel et al.(2009); Mendoza et al.(2010),
where many details are given. It has been processed at CLS
Int Corp (www.cls.fr) in the framework of the SURCOUF
project (Larnicol et al., 2006). The data span the whole Earth,
in the period from 20 November 2002 to 31 July 2003. Sam-
ples are taken daily in a grid with 1080× 915 points which
respectively correspond to longitude and latitude. The lon-
gitude is sampled uniformly from 0◦ to 359.667◦, however
the Mercator projection is used between latitudes−82◦ to
81.9746◦ so this means that along this coordinate data are not
uniformly spaced. The precision is 1/3 degrees at the Equa-
tor. Daily maps of surface currents combine altimetric sea
surface heights and windstress data in a two-step procedure:
on the one hand, multi-mission (ERS-ENVISAT, TOPEX-
JASON) altimetric maps of sea level anomaly (SLA) are
added to the RIO05 global mean dynamic topography (Rio
and Hernandez, 2004; Rio et al., 2005) to obtain global maps
of sea surface heights from which surface geostrophic veloc-
ities (ug, vg) are obtained by simple derivation.

ug = −
g

f

∂h

∂y
(2)

vg =
g

f

∂h

∂x
(3)

whereg is the gravitational constant andf is the Coriolis
parameter defined as follows:

f = 2�sin(λ).

Here � = 7.2921× 10−5 rad s−1 is the rotation rate of the
Earth andλ is the latitude. On the other hand, the Ekman
component of the ocean surface currentuek = (uek, vek) is
estimated using a 2-parameter model:

uek = beiθτ

where b and θ are estimated by latitudinal bands from a
least square fit between ECMWF 6-hourly windstress analy-
sis andτ is an estimate of the Ekman current obtained remov-
ing the altimetric geostrophic current from the total current
measured by drifting buoy velocities available from 1993 to
2005. The method is further described inRio and Hernandez
(2003). Both the geostrophic and the Ekman component of
the ocean surface current are added to obtain estimates of the
total ocean surface current. Despite the addition of the Ek-
man component, the resultant velocity is almost divergence
free, thus motions are mainly two dimensional.

We focus over a region through which the Kuroshio Cur-
rent passes, in April, May and June 2003. A typical velocity
field is shown in Fig.1. Our transport description is mainly
focused on the region highlighted with a rectangle. The equa-
tions of motion that describe the horizontal evolution of par-
ticle trajectories on a sphere are

dφ

dt
=

u(φ,λ, t)

Rcos(λ)
, (4)

dλ

dt
=

v(φ,λ, t)

R
. (5)

Here the variables (φ,λ) are longitude and latitude;u and
v respectively represent the eastward and northward compo-
nents of the velocity field. The particle trajectories must be
integrated in Eqs. (4)–(5) and since information is provided
solely in a discrete space-time grid, the first issue to deal with
is that of interpolation. We have daily maps of the velocity
field and this is a coarse time grid to provide a time step
in the integration of particle trajectories, however this fre-
quency sampling is adequate in the sense that changes of the
vector field below that resolution are smooth enough to be
approached by an interpolator. Days are a typical time scale
for the system (4)–(5) and this is the unit of time in which
results are reported. A recent paper byMancho et al.(2006a)
compares different interpolation techniques in tracking parti-
cle trajectories. Bicubic spatial interpolation in space (Press
et al., 1992) and third order Lagrange polynomials in time
are shown to provide a computationally efficient and accu-
rate method. We use this technique in our calculations as it
has been successfully implemented in realistic flows over a
sphere as discussed inMancho et al.(2008). Following this
work we notice that bicubic spatial interpolation requires a
uniformly spaced grid, while our data grid is not uniformly
spaced in the latitude coordinate. We transform our coordi-
nate system to a new one (φ,µ), in which the latitudeλ is
related to the new coordinateµ by

µ = ln|secλ + tanλ|. (6)
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Fig. 1. Velocity field of the Kuroshio current on 4 April 2003. The square highlights our main focus area. Maximum values of the velocity
field are about 3.65 m s−1. (Figure taken fromMendoza et al., 2010).

Our velocity field is now on a uniform grid in the (µ,φ) co-
ordinates. The equations of motion in the new variables are

dφ

dt
=

u(φ,µ, t)

R cos(λ(µ))
(7)

dµ

dt
=

v(φ,µ, t)

R cos(λ(µ))
. (8)

In the numerical simulations the vector field in Eqs. (4)–
(5) is represented in a selection of data spanning a do-
main in longitude and latitude(φmin,φmax) × (λmin,λmax) =

(109.66◦,259.66◦) × (14.74◦,59.56◦) which is much larger
than those displayed in figures. This ensures that particle in-
tegrations do not cross the edges and thus boundary effects
are not present. Variables(φ,µ) are further transformed by
scaling the domain to(0,3) × (0,1), which is more conve-
nient for the manifolds computations reported in Sect. 4.2.
The new variables are

x1 = 3
(φ − φmin)

(φmax− φmin)
(9)

x2 =
(µ − µmin)

(µmax− µmin)
. (10)

The scaling provides the dynamical system in which integra-
tions are performed:

dx1

dt
= v1(x1,x2, t) (11)

dx2

dt
= v2(x1,x2, t). (12)

Once trajectories are integrated for presentation purposes,
one can convert coordinates back to the original ones. In the
reversionx2 → µ → λ we use the expressionλ(µ) obtained

by inverting Eq. (6), i.e.

λ =
π

2
− 2arctan(e−µ) . (13)

3 A time-depedent phase portrait

Solutions of dynamical systems are qualitatively described
according to Poincaré’s idea of seeking geometrical struc-
tures on the phase portrait. These can be used to organise par-
ticles schematically by regions corresponding to qualitatively
different types of trajectories. In time independent systems –
those in which Eq. (1) does not depend explicitly on time
– fixed points are essential for describing the solutions ge-
ometrically. Fixed points may be classified as hyperbolic or
non-hyperbolic depending on their stability properties. Sta-
ble and unstable manifolds of hyperbolic fixed points act as
separatrices that divide the phase portrait in regions in which
particles have different dynamical fates. To achieve this geo-
metrical representation in time dependent aperiodic dynami-
cal systems is a challenge, because the concepts used in au-
tonomous dynamical systems do no apply directly to these
systems. In these cases, structures containing Lagrangian in-
formation on the time-evolution of fluid particles have typ-
ically been obtained by means of Lyapunov exponents. The
concept of Lyapunov exponent is infinite time and it is used
in finite-time data sets for its finite-time versions, such as
finite-size Lyapunov exponents (FSLE) (Aurell et al., 1997)
and finite-time Lyapunov exponents (FTLE) (Haller, 2001;
Nese, 1989).

Different Lagrangian tools that also succeed in finding
time dependent partitions for finite time aperiodic geophysi-
cal flows are proposed in this section. These implements are
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Fig. 2. (a) A representation of the functionM over a small oceanic area on 2 May 2003 forτ = 15 days;(b) In black the functionM
vs. latitude at a fixed longitude highlighted in(a) with the thick black line. Abrupt changes inM pointing manifolds positions corresponds
with discontinuities on the derivative. In blue 0.1 times the derivative ofM with respect the latitude.

(a) (b) (c)

Fig. 3. (a)Contour plot of the functionM over a small oceanic area on 2 May 2003 forτ = 15 days. The black straight line corresponds to
the selection for outputs in Fig. 2(a); (b) the same with a piece of stable manifold (black line) and a piece of unstable manifold (green line)
overlapping;(c) the functionM for F(x(t)) = ||a(x(t), t)|| andτ = 15 days in the same area.

called Lagrangian descriptors. Lagrangian descriptors pro-
vide a global dynamical picture of arbitrary time dependent
flows by detecting simultaneously the organizing centers of
the flow, hyperbolic trajectories and their stable and unsta-
ble manifolds and elliptic regions. This technique has been
successfully applied byde la Ćamara et al.(2012) to strato-
spheric re-analysis data produced by the interim European
Centre for Medium-Range Weather Forecasts (ECMWF),
and has allowed the detection of dynamical features not per-
ceived by other methods. Originally Lagrangian descriptors
were introduced byMendoza and Mancho(2010), in the con-
text of altimeter velocity data, who proposed a function to
this end. This function is referred to asM and was advanced
in Madrid and Mancho(2009) as a building block of the def-
inition of Distinguished trajectories. These trajectories, their
organizing role and their computation fromM are discussed

further in the next section. We now focus on the capacity
of M as a Lagrangian descriptor. The functionM measures
the Euclidean arc-length of the curve outlined by a trajec-
tory passing throughx∗ at time t∗ on the phase space. The
trajectory is integrated fromt∗ − τ to t∗ + τ . This is mathe-
matically expressed as follows: For all initial conditionsx∗

in a setB ∈ Rn, at a given timet∗, the Lagrangian descriptor
is a functionM(x∗, t∗)v,τ : (B, t) → R given by

M(x∗, t∗)v,τ =

t∗+τ∫
t∗−τ

√√√√ n∑
i=1

(
dxi(t)

dt

)2

dt. (14)

Here(x1(t),x2(t), ...,xn(t)) are the components inRn of a
trajectoryx(t). The functionM depends onτ and also on
the vector fieldv. It is defined for dynamical systems in ar-
bitrary dimensionn, but for the chosen system (11)–(12),
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n = 2. The question is why shouldM succeed in realizing
Poincaŕe’s idea, revealing the geometry of objects such as
the stable and unstable manifolds of hyperbolic trajectories?
Mendoza and Mancho(2010) report this observed fact, and
although it is not formally proven, an heuristic argument on
this evidence is given.M measures the arc-length of trajec-
tories on a time interval(t∗ − τ, t∗ + τ). For a givenτ there
may be trajectories that start and evolve close to each other
and this of course may change withτ . Trajectories which
stay close are expected to have similar arc-lengths. However,
for this τ , at the boundaries of regions comprising trajecto-
ries with qualitatively different evolutions, arc-lengths will
change abruptly, and these regions are exactly what the sta-
ble and unstable manifolds separate. We evaluateM as de-
fined in Eq. (14) over the oceanic velocity field and a first
output is provided in Fig.2. The coordinates at which sharp
changes onM occur are related to points of discontinuity
on the derivative along a direction which is non tangent to
the manifold. These are disclosed in Fig.2b. A contour plot
of the same area, portrayed in Fig.3a, links the positions
for these abrupt variations to lines resembling singular fea-
tures. Figure3b visually demonstrates that the coordinates at
which singular lines of the functionM are placed coincide
with the positions of the stable and unstable manifolds. The
Lagrangian information provided byM, that is the position
of the invariant manifolds, is not contained on the specific
values taken byM but on the positions at which these values
change abruptly. However in the interest of completeness,
figures show a color bar indicating the range ofM. Units
correspond to those in the rescaled system (11)–(12).

Equation (14) finds arc-lengths integrating the modulus of
the velocity (||v||) along a trajectory. It is easily observed
that the heuristic argument should in fact work for the accu-
mulation of other positive intrinsic geometrical or physical
properties along trajectories on a time interval(t∗−τ, t∗+τ).
For instance, properties could have been considered, such as
integrations of the modulus of acceleration (||a||), or of the
modulus of the time derivative of acceleration (||da/dt ||),
or of positive scalars obtained from combinations ofv, a or
da/dt as far as these combinations are bounded. In this way
trajectories evolving close to each other during this time in-
terval would accumulate a similar value forM, and the accu-
mulated value of the property would be expected to change
sharply at the boundaries of regions comprising trajectories
with qualitatively different evolutions. These abrupt changes
would highlight the stable and unstable manifolds. A general
method for building up families of Lagrangian descriptors
for general time dependent flows replaces Eq. (14) by

M(x∗, t∗)v,τ =

t∗+τ∫
t∗−τ

F(x(t))dt (15)

whereF(x(t)) denotes a bounded positive intrinsic physi-
cal or geometrical property of the trajectoryx(t). In practice

Fig. 4. A representation of the functionM over a small oceanic
area on 2 May 2003 forτ = 2 days. (Color version of a figure from
Mendoza and Mancho, 2010)

not all choices ofF(x(t)) are equivalent. Typically for an-
alyzing velocities fields given as data sets, choices involv-
ing ||da/dt || may be less appropriate than those involvingv

or a because they require interpolators with a higher order
of regularity than the latter magnitudes. Similarly a choice
involving a requires an interpolator with a higher regular-
ity than those involving onlyv. In this section we report re-
sults forF = ||v|| andF = ||a||. Both choices are adequate
for the type of interpolation used in the velocity field. Many
other options onF are thoroughly discussed and compared
in (Mancho et al., 2012). For comparison purposes, Fig.3c
shows the output obtained whenM is evaluated as in Eq. (15)
with the choiceF(x(t)) = ||a(x(t), t)||. As anticipated, sin-
gular lines in the contour plot coincide with the position of
invariant manifolds. Full details of the numerical evaluation
of M are given in the Appendix A.

The heuristic argument pointed out above, supports the
ability of Lagrangian descriptors for highlighting manifolds,
but it is not a rigorous argument. The power of Lagrangian
descriptors however is sustained by a strong numerical ev-
idence consistently shown in all the examined examples,
which thus inspires the development of further theoretical re-
sults.

The functionM depends onτ in such a way that at low
τ , its structure is far from depicting manifolds. For instance,
for τ = 2, Fig. 4 shows a contour plot ofM for F(x(t)) =

||v(x(t), t)||, at the same coordinates as in Fig.3, but the
observed structure is smooth and Eulerian-like. The struc-
ture ofM at low τ is closely related to the spatial structure
of the velocity field, thus for highly turbulent flows with a
more complex spatial structure,M is expected to display a
richer pattern. Figure5 shows contour plots ofM on 17 April
over an area with an eddy-like vector field. For increasingτ ,
M displays more and more complex patterns and outlines a
growing manifold structure.

Nonlin. Processes Geophys., 19, 449–472, 2012 www.nonlin-processes-geophys.net/19/449/2012/
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(a) (b)

(c) (d)

Fig. 5. Lagrangian structure of the inner core of the western eddy on 17 April for increasingτ values.(a) F(x(t)) = ||v(x(t), t)|| and
τ = 15 days;(b) F(x(t)) = ||v(x(t), t)|| and τ = 30 days;(c) F(x(t)) = ||v(x(t), t)|| and τ = 72 days;(d) F(x(t)) = ||a(x(t), t)|| and
τ = 30 days.

In Fig. 5a and b, at lowτ values the structure ofM at
the inner part of the eddy has a minimum which is locally
smooth. This implies that in the range(t − τ, t + τ), trajecto-
ries in this vicinity outline similar paths: there are no sharp
changes, and thus they behave as a coherent structure. The
boundaries of this smooth region separate the mixing region
(outside the core) from the non mixing region (inside). A
comparison between Fig.5b and d confirms that both de-
scriptors report similar outputs. In two-dimensional, incom-
pressible, time-periodic velocity fields, this kind of structure
is typical because the KAM tori enclose the core – a region of
bounded fluid particle motions that do not mix with the sur-
rounding region (Wiggins, 1992). However, there is no KAM
theorem for velocity fields with a general time-dependence
(Samelson and Wiggins, 2006) such as the one in our analy-
sis. In this context, a question that remains open is to address
the dispersion or confinement of particles in the core for ape-
riodic flows. In Fig.5c, for largeτ = 72 days, the structure of
M in the interior of the eddy becomes less and less smooth,

meaning that in the range(t − τ, t + τ) trajectories placed at
the interior core have either concentrated there from the past
or will disperse in the future. In fact, the interior of the core
is completely foliated by singular features associated either
to stable or unstable manifolds of nearby hyperbolic trajec-
tories. The non-smoothness ofM at t = April 17 proposes
2τ = 144 days as an upper limit for the time of residence
of particles in the inner core; particles perceive nearby hy-
perbolic regions after this period. The accuracy of the singu-
lar lines ofM representing invariant manifolds is again con-
firmed in Fig.6, where computations of stable and unstable
manifolds overlap those features. The foliated structure of
M is much richer than that provided by the displayed man-
ifolds computed directly. This is so because the direct com-
putation of manifolds requires the location of a priori spe-
cial hyperbolic trajectories (also called DHTs as explained
in next section) from which the manifold calculation starts.
The selection of DHTs may leave out many other DHTs in
the neighbourhood whileM exhibits all stable and unstable
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Fig. 6. Stable and unstable manifolds overlapped on the function
M at day 17 April forτ = 72 days. There is a coincidence between
singular features ofM and manifolds.

manifolds from all possible DHTs in the vicinity of the eddy,
without the need for identifying them a priori.M provides the
complete visible foliation in the interval(t−τ, t+τ) induced
by the stable and unstable manifolds of all nearby hyperbolic
trajectories.

The evaluation ofM in large oceanic areas for long enough
τ , as shown in Fig.7, reveals recognisable phase portraits.
The colour gradation ofM emphasises lasting and stronger
features versus the ones that are weaker and more transient.
LargestM values are in red while the lowest are in blue. For
instance in Fig.7a, the colours indicate that the strongest fea-
tures are a central reddish stream and the one red and two
yellow eddies. These are the most persistent patterns and
because they remain for long periods of time it is possible
to describe transport routes across them. Other recognisable
bluish features such as the cat’s eyes at the upper left cor-
respond to slow fluid motion. These features have a rapidly
changing topology, and their lack of permanence makes it
more difficult to describe transport across them, since tran-
sient structures are not well understood from the dynamical
point of view in the context of data sets (seeMancho et al.,
2008), although some progress has been done in analytical
examples (seeBranicki et al., 2011; Mosovsky and Meiss,
2011). The functionM provides a global descriptor where
different geometries of exchange are visualised in a straight-
forward manner. Figure7b shows the output ofM at the same
area, at largerτ values. A more complex structure near the set
of chaotic saddles is observed. The increasing of complexity
of M versusτ is expected from the nature ofM, since it is
reflecting the history of initial conditions on open sets, and
in highly chaotic systems this history is expected to be more
tangled for longer time intervals.

Equation (15) proposes the integration along trajectories
of a bounded positive intrinsic geometrical or physical prop-
erty. Imposing the integration of a positive quantity is consis-
tent with the perspective that Lagrangian descriptors reveal
the dynamical structure by accumulating quantities along
trajectories. When trajectories separate following different
paths, the accumulated quantity differs, and sharp changes
on the descriptor values should occur at the boundaries
of regions separating these qualitatively distinct behaviors,
thereby highlighting the position of invariant manifolds. The
accumulative perspective taken by Eq. (15), although similar
in its mathematical expression, is different from the finite-
time average velocities used inMalhotra et al.(1998); Poje
et al.(1999). In particular, these works consider the forward
time integral of the velocity components divided by the time
interval:

1

τ

t∗+τ∫
t∗

vx(x, t)dt. (16)

This averaging is reported to reveal a patchiness structure
which is also connected to invariant manifolds. InPoje et al.
(1999), the authors note that for increasing averaging time a
zero average velocity is obtained, and as a consequence in
this limit, the spatial structure in the patchiness plots is lost.
As regards the integration time limits and their impact on
the retrieved Lagrangian structure, the results byPoje et al.
(1999) are the opposite of those obtained from the proposed
Lagrangian descriptors. We have reported the existence of a
minimum timeτ to converge to the Lagrangian structures,
which is not reported byMalhotra et al.(1998); Poje et al.
(1999), and we have shown evidence that beyond thatτ , the
longerτ is the better and more detailed are the Lagrangian
structures. The main reason for differences in the outputs be-
tween both methods is that the diagnosis byPoje et al.(1999)
does not force the integral of a positive quantity, thereby al-
lowing oscillations of the integrated quantity along trajecto-
ries, which produces non desired cancellations. Further com-
parisons between these approaches are discussed in Man-
cho et al. (2012). Recently alternative methods, which simi-
larly to Lagrangian descriptors are based on measures along
trajectories, have been described inRypina et al.(2011).
These methods have been successfully applied to describe
Lagrangian coherent structures in geophysical flows.

A question always under scrutiny is the robustness of the
Lagrangian structures under errors. In the literature some
results are found on this matter. For instance,Herńandez-
Carrasco et al.(2011) have studied the robustness of the La-
grangian structures under deviations induced in the vector
field by noise and dynamics of unsolved scales. They have
confirmed the permanence of the FSLE features under these
perturbations. It is not our purpose to perform an analogue
study on the functionM. However, Fig.8 presents some re-
sults in this regard. This figure estimates the reliability of
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(a) b)

Fig. 7. Evaluation of the functionM over the Kuroshio current between longitudes 148◦ E–168◦ E and latitudes 30◦ N–41.5◦ N on 2 May,
2003;(a) τ = 15 days;(b) τ = 30 days. (Figure taken fromMendoza and Mancho, 2010).

a) b)

Fig. 8. Contour plot of the functionM over the inner part of an eddy on 2 May 2003 forτ = 30 days(a) results with bicubic spatial
interpolation;(b) results with bilinear spatial interpolation.

M by computing it with different interpolation schemes: bi-
linear and bi-cubic spatial interpolation. The displayed re-
sults are structures obtained at largeτ in the inner part of
an eddy. The bi-linear spatial interpolation preserves the fea-
tures obtained by the spatial bi-cubic interpolation, although
it also adds some lines visible at the centre. Nevertheless, the
global appearance of the output is preserved.

The global dynamical picture provided by the functionM

enables us to foresee active transport routes over the ocean
surface. However, for describing detailed transport mecha-
nisms associated to the recognisable phase portraits, the in-
tricate curves making up manifolds must be accurately com-
puted over the ocean surface. Extracting these curves from
the above embroiled pictures is a difficult and imprecise task,
doomed to failure, and for this reason we proceed in a differ-
ent way, which is explained in the following section.

4 Distinguished trajectories and finite time invariant
manifolds

The role ofM in transport description is based on its abil-
ity to cover the ocean surface with a geometrical structure
that resembles a patchwork of interconnected dynamical sys-
tems, which indicates transport routes to be described in fur-
ther detail. This important capacity cannot be achieved by the
tools described in this section, which only provide details af-
ter the details themselves have been roughly identified a pri-
ori. Without this previous knowledge, the use of these tools
is less effective because they are too focused and blind for
distinguishing their own starting point. On the other hand the
detailed transport routes reported by the tools described in
this section cannot be obtained just by the use of Lagrangian
descriptors. The scenario displayed byM in Fig. 7a shows a
strong jet, visible in the intense reddish band, and two eddies
– interacting with the jet – which are visualised by two cir-
cles: one reddish situated towards the west side and the other
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yellowish to the east. For a detailed study of transport in this
area we compute distinguished trajectories and manifolds.

4.1 Distinguished trajectories

The stable and unstable manifolds of special hyperbolic tra-
jectories, such as fixed points in autonomous dynamical sys-
tems or periodic trajectories in periodically time dependent
systems, are the ones of interest in our study. These trajecto-
ries, which act as organizing centres of the flow, do not have
a natural extension for time-dependent aperiodic dynamical
systems, in which a generalization of these concepts is re-
quired. The definition of distinguished hyperbolic trajecto-
ries (DHTs) has succeeded to this end. Several definitions
have been proposed, for instance seeIde et al.(2002); Ju
et al. (2003); Madrid and Mancho(2009). In this article we
follow the approach to these trajectories reported byMadrid
and Mancho(2009), which is based on the Lagrangian de-
scriptor given by the functionM in Eq. (14).

The concept of DT generalizes the idea of fixed point for
time-dependent dynamical systems. For instance for the 1D
time-dependent linear system:

dx

dt
= −x + t (17)

the particular solutionxp(t) = t − 1 is a generalized fixed
point. It is considered so, because of Eq. (17) by means of
the Galilean transformation:

x′
= x + vt (18)

is converted into the autonomous system:

dx′

dt
= −x′

− 1 (19)

which has a fixed point atx′
p = −1. The Galilean transfor-

mation (18) applied to this fixed point transforms it back into
the particular solutionxp(t) = t − 1. The intuitive geomet-
rical idea behind our definition for identifyingxp as distin-
guished is to search for a trajectory that “moves less” than
others in a vicinity. But what does this mean? For a given
initial condition x∗ on an open setB at a given timet∗,
“move less” is satisfied by a trajectory that minimizesM in
Eq. (14). This function measures the arc-length of the curve
outlined on the phase space by the trajectory passing through
(x∗, t∗) from t∗ − τ to t∗ + τ . In Fig. 9a, M is represented
for the system (17) at t = 0 for τ = 3,4. It is observed that
M reaches a minimum at different positionsx∗ for different
τ . However, although this fact may involve ambiguity in lo-
cating the position for a DT, at largeτ , the position of the
minimum converges towards what is called thelimit coordi-
nate. Figure9b confirms this point. There the positionx*m

at whichM reaches its minimum is plotted versus tau. For
increasingτ , xm∗ approaches the valuex = −1. This is ex-
actly the passing point of the particular solutionxp at t = 0.
In practice as noted byMadrid and Mancho(2009), the con-
vergence to the limit coordinates cannot be examined in the

limit τ → ∞ either because it is impracticable in a numerical
implementation, or because in the large limit errors accumu-
late, or simply because the dynamical system is defined by
a finite time data set. For these reasons the convergence to
the limit coordinates is tested up to a finiteτ . Formally, this
is expressed as follows: Let us consider a practicable time
interval [Ti,Tf ], let xm∗

tl
(τ ) be the coordinates at which the

functionM reaches the minimum value at timetl in an open
setB. Then to find thelimit coordinatex l at timetl we verify
that there exists aτ l such that:tl − τ l >> Ti , tl + τ l << Tf

and∀τ > τ l the following is satisfied:||xm∗
tl

(τ )−x l(tl)|| ≤ δ

(whereτ keepst l
− τ > Ti andtl + τ < Tf andδ is a small

positive constant). Here|| · || represents the distance defined
by

||a − b|| =

√√√√ n∑
i=1

(ai − bi)2 with a,b ∈ Rn.

By repeating the procedure at different timest , it is pos-
sible to obtain apath of limit coordinateswhich is denoted
asx l(t). Thedistinguished trajectoryγ (t) is thus defined in
a time interval[t0, tN ] as that trajectory that is close enough
(at a distanceε) to a path of limit coordinates. According to
Madrid and Mancho(2009) this is expressed formally as fol-
lows: A trajectoryγ (t) is said to be distinguished with accu-
racyε (0 ≤ ε ) in a time interval[t0, tN ] if there exists a con-
tinuous path oflimit coordinates(t l,x l) wheret l

∈ [t0, tN ],
such that,

||γ (t l) − x l(t l)|| ≤ ε, ∀t l
∈ [t0, tN ]. (20)

In this definitionε is a small positive constant within the
numerical accuracy we can reach. Further examples of tra-
jectories characterized as distinguished are discussed in the
work byMadrid and Mancho(2009) in two and three dimen-
sions.

Next we illustrate how to identify DT in our 2-D data set.
Figure10a shows a contour plot ofM on t∗ =2 May 2003
for τ = 2 days in the neighbourhood of the western eddy.
Two circles surround the two minima of this open set. These
minima correspond to initial conditions whose trajectories
outline curves shorter on the phase space than those in their
vicinity. Figure10b shows the same contour plot ofM, but at
τ = 15 days. A comparison with Fig.10a reveals several dif-
ferences. The neighbourhood of the minimum in the lower
circle of Fig. 10b presents a crossed-line structure that has
been linked to manifolds. In the interior of this structure there
exists a minimum whose position does not coincide with that
obtained atτ = 2 days. Figure11 shows the evolution of the
longitude and latitude position of the minimum withτ con-
verging to a limit coordinate. In Fig.10b, the minimum in
the lower circle has reached the position of thelimit coor-
dinate within the accuracyε available with our numerical
schemes. It is possible to track, in a set of discrete timest l ,
the path(t l,x l) described by this limit coordinate in a time
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Fig. 9. (a) The functionM at t = 0 for τ = 3 (dashed line)τ = 4 (solid line); b) evolution of the coordinatex*m at whichM reaches a
minimum versusτ at t = 0. (Figure taken fromMadrid and Mancho, 2009).

(a) (b)

Fig. 10. Contour plots of the functionM on 2 May 2003 in the nearby of two positions which are candidates to be DT.(a) τ = 2 days;
(b) τ = 15 days.

interval. The path is displayed in Fig.12. In the vicinity of
the path displayed in Fig.12 at a distance,ε is found to be
DHTW , a trajectory that remains distinguished from 5 March
to 11 May 2003. Figure12also represents the coordinates of
a second trajectory labelled as DHT+

W , in an almost comple-
mentary period of time, between 10 May and 1 June 2003.
Trajectories DHTW and DHT+

W were first characterised in
this data set byMendoza et al.(2010). By construction, a
distinguished trajectory defined in this way is a property held
by some trajectories in finite time intervals. Alternative def-
initions such as those provided inIde et al.(2002); Ju et al.
(2003) do not address this possibility.

The ideas described above are itemised in the algorithm
that computes DT, and is fully described inMadrid and Man-
cho(2009). We give a brief account of it next. It starts by es-
timating an approximate positionx*m for the minimum ofM
at low τ in a specific area at a given timet∗. Its coordinates
are refined up to a precisionδ by considering a grid such

as that depicted in Fig.13, which has its centre positioned
at x*m . M is evaluated in the nodes of the grid and if the
lowestM-value is not taken at the centre, but in a peripheral
node the grid displaces its centre at this position of the min-
imum, which provides a better approach forx*m . M is then
reevaluated in the nodes of the new positioned grid, and if the
minimum is found to be at the central node, the search stops.
This method is used to follow the position of the minimum at
iteratively increasingτ : τk = τk−1+1τ , where1τ is a small
quantity. The procedure stops when the position of the min-
imum x*m does not change for furtherτ increments. At the
next timet∗ + 1t , x*m is time evolved with the equations of
motion, and the iterative search described above starts from
this point.

The minimum situated in the interior of the upper circles
in Fig.10presents a structure that evolves withτ quite differ-
ently to what is found in the lower circles. It remains rather
flat and circular and does not evolve towards the crossed line
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Fig. 11. Evolution of the longitude and latitude position of the hy-
perbolic minimum of the functionM on 2 May 2003 versusτ (in
days).

structure typical of DT with hyperbolic stability (DHT). As
discussed inMadrid and Mancho(2009) these patterns are
typical of a DT with elliptic stability (DET). Figure14shows
the evolution of the coordinates of this minimum versusτ . In
this case, a DET is not properly identified, because contrary
to what is found for hyperbolic cases, a limit coordinate is
not reached. DETs are not easily found in highly aperiodic
flows. A previous attempt has been discussed inMadrid and
Mancho(2009) for a different data set, and a failure to satisfy
the definition is reported. Successful examples of DET are
however reported for time periodic dynamical systems (see
Madrid and Mancho, 2009for full details). Although this el-
liptic minimum is not related to a special trajectory, it still
locates a coherent structure related to an oceanic eddy. As
reported in the previous section, particle confinement on this
area persists in a time interval[t∗ −τ, t∗ +τ ] provided thatτ
is below the limit at which the foliation induced by the stable
and unstable manifolds of nearby hyperbolic trajectories pen-
etrates the inner core. Precisely the fact that these eddy-like
structures eventually perceive nearby hyperbolic trajectories,
would justify the absence of DETs in their interior.

In the scenario shown in Fig.7a at the east bound, the jet
interacts with the yellowish eddy to form a crossed line struc-
ture which is identified as an eastern DHT. The path of limit
coordinates near this DHTE is represented in Fig.15. It stays
as distinguished between 25 March and 24 June 2003 (see
alsoMendoza et al., 2010).

4.2 Finite time invariant manifolds

Invariant manifolds are mathematical objects classically de-
fined for infinite time intervals. The unstable (stable) man-
ifold of a hyperbolic fixed point or periodic trajectory is

formed by the set of trajectories that in minus (plus) infin-
ity time approach these special trajectories. In geophysical
contexts this definition is not realizable, because on the one
hand only finite time aperiodic data sets are possible and on
the other hand the reference trajectories, the DHTs, typically
hold the distinguished property in finite time intervals. How-
ever, a detailed description of Lagrangian transport requires
a direct computation of the stable and unstable manifolds of
the selected DHTs.Branicki and Wiggins(2009) have re-
cently proposed a novel algorithm to compute invariant man-
ifolds in 3-D non-autonomous dynamical systems. Neverthe-
less, our next presentation is focused on the illustration of
this procedure in 2-D flows as corresponds to the selected
data set.Mancho et al.(2004, 2008); Mendoza et al.(2010);
Branicki et al. (2011) have computed stable and unstable
manifolds of DHTs for 2-D highly aperiodic data sets by us-
ing the method proposed inMancho et al.(2003). Based on
ideas and techniques of contour advection (Dritschel, 1989;
Dritschel and Ambaum, 1997), the algorithm computes man-
ifolds as curves advected by the velocity field, which at the
beginning of the procedure are small segments aligned with
the stable and unstable subspaces of the DHT. The use of
these small segments in the starting step is the way to build
a finite-time version of the asymptotic propertyof manifolds.
Hence, in our computations the finite-time unstable manifold
at a timet∗ is made of trajectories that at timet0, t0 < t∗ were
on a small segment aligned with the unstable subspace of the
DHT. Similarly, the finite-time stable manifold at a timet∗ is
made of trajectories that at a timetN , tN > t∗ are in a small
segment aligned with the stable subspace of the DHT. Lo-
calising thus a DHT and its stable and unstable subspaces at
the starting time constitutes the first step for obtaining man-
ifolds. The way in which the stable and unstable subspaces
are identified is closely related to the way in which DHTs
are computed. For instance, algorithms for DHTs described
in Ide et al.(2002); Ju et al.(2003) provide them directly as
an output, and this is the start-up for the manifolds computed
in Mancho et al.(2004, 2008); Branicki et al.(2011). The
algorithm for DHTs reported inMadrid and Mancho(2009),
which is the one followed in this work, does not provide these
subspaces, but we note that stable and unstable subspaces are
supplied by the crossed lines recognised in the contour plots
of the functionM near the DHT. These lines, as reported
in Mendoza and Mancho(2010); Mendoza et al.(2010), are
advected by the flow and constitute a close-up of the mani-
fold near the DHT. Segments within the stable and unstable
subspaces of the DHT are respectively evolved backward and
forward in time to obtain the fully nonlinear stable and unsta-
ble manifolds (Mendoza et al., 2010). We focus on describing
the details for obtaining the unstable manifold, noting that
the stable manifold is obtained in a completely analogous
way by inverting the time direction. The unstable manifold
is represented at timet0 by a set of points on the unstable
subspace. The manifold is computed in a discrete set of time
incrementstk for k = 0...N , in which it is represented by a
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Fig. 13. The grid used to find the minimum position with precision
δ. The white central dot indicates the position where the minimum
is due.

well chosen set of points. We explain how to determine these
points at every timetk. The procedure starts by considering
the points on the initial segment which are evolved in time
from t0 to t1. As they evolve they may grow apart, giving
rise to unacceptably large gaps between adjacent points on
the manifold. The criterion for unacceptable gaps is given
by a quantityσj , which is defined at each pointxj as the
product of the distancedj between adjacent nodesxj and
xj+1 times the densityρj , i.e, σj = djρj . If σj > 1, the gap
between nodes is unacceptable. The density of points along
the computed manifold is measured byρj , for which sev-
eral expressions are proposed (Dritschel, 1989; Dritschel and
Ambaum, 1997). We consider it defined as in Eq. (40) in Ap-
pendix B. When a gap between nodes at timet1 is too large,
according to the criterion just defined, it is filled by inserting
a point att0 between the same nodes using an appropriate
interpolation technique. At this stage the interpolation could
be simple because the curve att0 is a straight line. However,
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Fig. 14. Evolution of the longitude and latitude position of the ellip-
tic minimum of the functionM on 2 May 2003 versusτ (in days).

most refined interpolation techniques are required when this
procedure is applied to evolve the manifold fromtk to tk+1
for k > 0, since manifold becomes more and more intricate.
The most successful interpolation scheme of those used in
Mancho et al.(2003, 2006b) is due toDritschel(1989). This
method represents the curve between pointsxj andxj+1 as
the polynomial given by Eq. (46) in the Appendix B. The cri-
terion is verified for each pair of adjacent points making up
the manifold att1 and the procedure is iterated until there are
no gaps exceeding the tolerance. Once the gap size accept-
ability condition is satisfied att1 we use the point redistribu-
tion algorithm described in (Dritschel, 1989) in an attempt
to remove points from less computationally demanding parts
of the manifold (seeMancho et al., 2004). This algorithm

www.nonlin-processes-geophys.net/19/449/2012/ Nonlin. Processes Geophys., 19, 449–472, 2012



462 C. Mendoza and A. M. Mancho: The Lagrangian description of aperiodic flows

161.5

162

162.5

163

163.5

164

164.5 30−3
19−4

9−5
29−5

18−6

34.8

35

35.2

35.4

35.6

35.8

36

36.2

date (day−month)longitude

la
tit

ud
e

Fig. 15. Path of limit coordinates for DHTE .

Fig. 16. Stable (blue) and unstable (red) manifolds of DHTW on
the 4th of May 2003. (Figure taken fromMendoza et al., 2010).

works as we describe in Appendix B. The complete proce-
dure to evolve the unstable manifold fromt0 to t1 is repeated
for successive timestk−1, tk until the end timetN is reached.
Stable manifolds are obtained in a similar way, but the com-
putation is started at timetN .

Examples of manifolds computed with this method are
shown in Figs.6 and 16 for the western DHTW . Mani-
folds computed in this way become very long and intricate
curves and from them transport is described in great detail as
discussed in the next section. Almost every distinguishable
line in Fig.16contains numerous foldings of each manifold,
thus confirming how intricate they may be. Other approaches

such as FTLE or FSLE compute manifolds at a given time
as ridges of a scalar field, thereby providing pieces of curves
that are approximately material curves. However, in these ap-
proaches links between pieces of curves are difficult to estab-
lish as they fade away and this is a disadvantage compared
with the direct computation of manifolds, which provides
long complex linked curves due to the asymptotic condition
imposed in their computation.

As noted in the previous subsection, DHTW is character-
ized as distinguished in a finite-time interval: from 5 March
to 11 May 2003. A question then to be addressed is what
happens to the unstable manifold in Fig.16 beyond 11 May,
once DHTW losses its distinguishing property? It is observed
that the manifold computation beyond this time may con-
tinue, because even if the reference trajectory on it is lost,
the computation still provides a material surface advected by
the flow, and second this advected object is still asymptotic
to DHTW in the finite-time sense introduced above. A sim-
ilar argument can be made for the stable manifold in times
prior to 5 March. DHTs and their stable and unstable sub-
spaces are the starting step of the algorithm for direct com-
putation of manifolds. However, as reported inMancho et al.
(2004, 2006b), they are not required by the algorithm be-
yond this point. Nevertheless, it is useful to have the full
track of the DHT for transport description purposes, because
it marks a reference point which separates the manifold into
two branches. Section 5 illustrates the application of this di-
vision.

4.3 Frame invariance

In this section we discuss the issue of “frame invariance”. To
begin with, it is important to understand what is meant by
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this phrase in the context of our work. There are two main
issues. One is how the Lagrangian tools, such as those based
on M, perform in different coordinate systems. The other is
how stability and geometrical features of the flow transform
under coordinate transformations. It is expected that under
coordinate transformations, the results obtained from theM

function will transform according to the manner in which the
type of invariant objects that theM function is expected to
recover transform. However, we note that in general these
invariant objects are not preserved under arbitrary coordinate
transformations, as we will illustrate in this section. Three
examples will provide evidence of these issues below.

The functionM is used for two different purposes. One is
discovering and visualising the global dynamics of a time-
dependent velocity fieldM realises manifolds at positions at
which abrupt changes inM occur. If the coordinates of a dy-
namical system are transformed to a rotating frame or to a
frame moving with a constant velocity (i.e. a Galilean trans-
formation of the coordinates) the manifolds will transform
to manifolds in the new coordinate system under the same
transformation of coordinates. Of course the values ofM at
specific points of space will certainly change with the ref-
erence frame, but the edges at whichM changes abruptly –
which are the features containing the Lagrangian information
– are transformed with the change of coordinates in the same
manner in which the manifolds themselves are transformed.
This is expected to be the case since the heuristic argument
introduced to justify whyM detects manifolds is indepen-
dent of a particular coordinate frame – manifolds play the
role of dividing the phase space into regions corresponding
to particles with qualitatively different dynamical fates and
this is the case for any reference frame.

We verify this argument for the periodically forced Duff-
ing equation under the rotation:

R(t) =

(
cosωt −sinωt

sinωt cosωt

)
. (21)

In the rotating frame this equation takes the form:(
η̇1
η̇2

)
=

(
sin2ωt cos2ωt + ω

cos2ωt − ω −sin2ωt

)(
η1
η2

)
+ (εsint − [cosωtη1 − sinωtη2]

3)

(
sinωt

cosωt

)
. (22)

The Duffing equation in the non-rotating system:

ẋ1 = x2 (23)

ẋ2 = x1 − x3
1 + ε sin(t) (24)

possesses a distinguished hyperbolic trajectory (DHT). This
DHT can be computed as a perturbation expansion inε about
the hyperbolic fixed point in theε = 0 case:

xDHT(t) = (25)

−
ε

2

(
sint

cost

)
−

ε3

40

(
2sin3 t +

3
2 sint cos2 t

3
2 cos3 t + 3sin2 t cost

)
+O(ε5).

The DHT in the rotating frameηDHT is obtained by trans-
forming the DHT in the non-rotating frame with the coordi-
nate transformation:

ηDHT(t) = R(t)−1xDHT(t). (26)

Stable and unstable manifolds ofηDHT are computed for
ω = 2 and t = 1 thereby obtaining the output displayed in
Fig. 17a. These manifolds have been obtained with the al-
gorithm reported in Sect. 4.2 which follows the approach by
Mancho et al.(2003, 2004). The figure confirms that man-
ifolds are objects rotating with the coordinates. Figure17b
confirms that the Lagrangian descriptors discussed in Sect. 3
provide the same manifolds in the rotated frame.

A second use of the functionM is the computationlimit
coordinatesthat are at the basis of the definition ofdistin-
guished trajectorygiven in Madrid and Mancho(2009). In
this paper the authors have shown that the definition of DT
discussed in Sect. 4.1 is robust with respect to rotations in
the sense that in the rotating frame the expressionηDHT is
equally characterized as distinguished.

The linear example in Sect. 4.1 also illustrates that trans-
lations with constant velocity preserve distinguished trajec-
tories (DT) in the sense that in the new frame of reference
the transformed DT also preserves the property of being
distinguished. However not all coordinate transformations
preserve distinguished trajectories. In particular, coordinate
transformations involving trajectories of the velocity field do
not necessarily preserve fixed points or their stable and un-
stable manifolds, and we illustrate this next.

Let us consider the dynamical system:

dx

dt
= x − 1

dy

dt
= −y (27)

for which (x = 1,y = 0) is a hyperbolic fixed point. Let us
consider the trajectoryxp(t):

xp(t) =

(
1.5et

+ 1

0.5e−t

)
. (28)

A coordinate transformation based on this trajectory is the
following:

xN
= x − xp(t), (29)

which transforms the system (27) into:

dxN

dt
= xN ,

dyN

dt
= −yN . (30)

This is again an autonomous dynamical system with a hyper-
bolic fixed point at(xN

= 0,yN
= 0). The time dependent

coordinate transformation (29) obviously does not transform
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Fig. 17. (a)Invariant manifolds for the rotating Duffing equation forω = 2 andt = 1; (b) contour plot of descriptorM for F = ||v|| with
τ = 10 at the sameω andt values.

this fixed point into the old one(x = 1,y = 0). Moreover,
this transformation does not preserve the stable and unsta-
ble manifolds themselves. The unstable manifold of the fixed
point (x,y) = (1,0) in the original system is given by

xu =

(
α + 1

0

)
(31)

for arbitrary realα 6= 0. On the other hand, the unstable man-
ifold of the hyperbolic fixed point(x,y) = (0,0) in the trans-
formed system is given by

xN
u =

(
β

0

)
(32)

for arbitrary realβ 6= 0. The transformation (29) does not
map a point in the unstable subspacexu to a point in the
unstable subspacexN

u since in general:(
β

0

)
6=

(
α + 1

0

)
−

(
1.5et

+ 1

0.5e−t

)
. (33)

We note that time-dependent transformations based on tra-
jectories may have even more dramatic effects on invariant
objects, such as tori. For example, ifxp(t) corresponds to a
trajectory in a torus in the original system it will transform to
a fixed point under this transformation.

Finally, we consider another example of a transformation
of coordinates based on trajectories of the original system.
Consider the one-dimensional autonomous system:

dx

dt
= c (34)

wherec is a nonzero constant constant. This system has no
fixed points. However, if we consider the transformation (29)

based on any trajectory of (34) xp(t) = ct + d:

xN
= x − (ct + d), (35)

the system becomes:

dxN

dt
= 0 (36)

which is also autonomous and all initial conditions are fixed
points. We note that the reason for which the transformation
(35) does not preserve fixed points is that it is based on a
trajectory of the original system, despite the fact that it is a
Galilean transformation.

Finally, we remark that it has been often stated that
Lagrangian “structures” and the methods used to describe
them should be frame-independent (see for instanceFaraz-
mand and Haller, 2012). However, from these examples
we see that fixed points and invariant manifolds of hyper-
bolic fixed points may not be preserved by transformations
based on particle trajectories. This indicates that more reflec-
tion is required on what is meant in this context by frame-
independence and what truly must be demanded of geomet-
rical structures and these tools for useful Lagrangian descrip-
tions.

5 Transport routes across the ocean surface

In this section we show how to obtain transport information
from the output of the tools described in previous sections.
We start by describing transport across eddies displayed in
Fig. 7. Particles in their interior, despite belonging to flows
in a quite chaotic regime, as is the case of the ocean sur-
face, typically do not experience the butterfly effect which
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is characterised by a high sensitivity to initial conditions.
On the contrary, particles contained therein remain gath-
ered together for long periods of time, during which they
form spatially coherent structures. Mathematically, eddies
are related to non-hyperbolic flow regions, where particles
evolve mostly “circling”. The exponentially increasing sep-
aration between particles is characteristic of hyperbolic re-
gions, which are also responsible for unpredictability. Es-
sentially, transport across the ocean surface is governed by
the interplay between these dispersive and non dispersive
objects. The Lagrangian description of eddies identifies the
existence of an outer collar, where the interchange with the
media is understood in terms of lobe dynamics (seeJoseph
and Legras, 2002; Branicki et al., 2011) and an inner core,
which is robust and rather impermeable to stirring, as already
described in Sect. 3. In this section we focus on describing
transport across the outer part of the eddy which is located
at the west end in Fig.7. The stable and unstable manifolds
of DHTW , which are involved in the transport across this
vortex, are shown in Fig.16. These manifolds confirm the
exchange of water by the presence of the turnstile mecha-
nism for a period of one month from 19 March to 23 April.
The turnstile mechanism has been extensively used and ex-
plained in the literature (Malhotra and Wiggins, 1998; Rom-
Kedar et al., 1990), and has been found to play a role in
transport in several oceanographic contexts (Mendoza et al.,
2010; Mancho et al., 2008; Coulliette and Wiggins, 2001).
This mechanism is described from pieces of stable and un-
stable manifolds of the identified DHT. A first point to ad-
dress is the selection of those pieces of invariant manifolds
from messy curves such as those in Fig.16. For this purpose
we consider that a manifold has two branches separated by
the DHT which is taken as a reference point on the mani-
fold, and selections of portions of manifolds are made from
this reference point. Given that trajectories may retain the
distinguished property only in finite time intervals, the iden-
tification of the two branches on the manifold is possible only
on time intervals when the trajectory remains distinguished.
Beyond that time the manifold computation may continue,
but the reference point on it is lost. The turnstile mecha-
nism identifies masses of water crossing a time-dependent
Lagrangian barrier separating the inside from the outside.
The Lagrangian barrier around the vortex in Fig.16at a time
tk is defined by selecting a branch of the unstable manifold
which starts at DHTW and surrounds the eddy towards the
left side, and a branch of the stable manifold which starts
at DHTW and surrounds the eddy towards the right side.
We choose the segments considering that they must inter-
sect at precisely one pointatk and that they must form a
relatively smooth boundary (i.e, free of the violent oscilla-
tions displayed by each of the manifolds when approaching
DHTW from the opposite side). Figure18 shows the selec-
tions outlining the barriers for the datest1 =19 March and
t2 = 3 April 2003. The blue line stands for the stable mani-
fold, while the red line corresponds to the unstable manifold.

The boundary intersection points are marked asat1 andat2.
Intersection points are invariant, which means that if the sta-
ble and unstable manifolds intersect in a point at a given time,
then they intersect for all time, and the intersection point is
hence a trajectory. For a better understanding of the time evo-
lution of lobes, the positions of trajectoriesat1 andat2 are de-
picted at different times. Figure19shows longer pieces of the
unstable and stable manifolds at the same days as those se-
lected in Fig.18. Manifolds intersect forming regions called
lobes. Only the fluid that is inside the lobes can participate in
the turnstile mechanism. Two snapshots showing the evolu-
tion of lobes from 19 March to 3 April are displayed. There
one may observe how the lobe which is inside the eddy on
19 March goes outside on 3 April. Similarly, the lobe which
is outside on 19 March is inside on 3 April. Trajectoriesat1

and at2 are depicted, showing that they evolve, circulating
clockwise around the DHTW . The green colour applies to the
lobe that evolves towards the interior of the eddy while the
magenta area evolves from the inside towards the outside.
Between 19 March and 23 April, several lobes are formed,
mixing waters at both sides of the eddy. Figure20contains a
time sequence showing the evolution of several lobes created
by the intersection of the stable and unstable manifolds. The
selected days are:t2 = 3 April, t3 = 10 April, t4 = 17 April
and t5 = 23 April. A sequence of trajectoriesat1,at2,at3, ...

obtained from the intersection points is depicted. These tra-
jectories evolve clockwise surrounding the vortex, and serve
as references for tracking lobe evolution. Beyond 23 April we
cannot locate further intersections between the stable and un-
stable manifolds of DHTW . Hence, no more lobes are found,
and our description of the turnstile mechanism ceases.

The turnstile mechanism across the eddy coexists in time
with other transport routes observed, for instance, across
structures such as the reddish main current in Fig.7. Men-
doza et al.(2010) have addressed transport across this jet in
terms of DHT and invariant manifolds. There it has been
found that the turnstile mechanism is active in transport-
ing masses of water across such a current, and it has been
proven that the exchange survives between 3 April 2003 and
26 May 2003. To provide a complete overview of the whole
transport picture, we next summarise the results reported by
(Mendoza et al., 2010). The turnstile mechanism is described
from pieces of stable and unstable manifolds of the identified
DHTs, at the east and west limits of the main stream. The
mechanism identifies masses of water crossing the time de-
pendent Lagrangian barriers depicted in Fig.21, which sep-
arates north from south. The figure shows a piece of the un-
stable manifold of DHTW and a piece of the stable mani-
fold of DHTE that define those barriers on days 3 April and
17 April. For consistency with the notation used to describe
transport across the eddy we name these dates ast2 = 3 April
andt4 = 17 April. Only portions of one branch are displayed
for each DHT. They intersect at points marked with letters
bt2 andbt4. They are trajectories which maintain their labels
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(a) (b)

Fig. 18.Lagrangian barriers for the western eddy at dates 19 March and 3 April 2003. These have been made from finite length pieces of the
stable and unstable manifolds of DHTW . The boundary intersection points are denoted respectively byat1 andat2.

(a) (b)

Fig. 19. Turnstile lobes across the western eddy at dates 19 March and 3 April 2003. The intersection trajectoriesat1 andat2 are displayed
at both dates showing their clockwise circulation around the eddy. The magenta area evolves from the inside to the outside while the green
area does from the outside to the inside.

in all pictures in order for the lobe evolution to be easily
tracked.

Longer pieces of the same manifolds are represented in
Fig. 22. Figure 22b shows the asymptotic evolution on
17 April of the lobes represented in Fig.22a on 3 April. The
green lobe area contains particles in the north on 3 April that
eventually came to the south on 17 April. Magenta particles
that are analogously first in the south eventually come to the
north on 17 April.

Lobe dynamics across the main stream may be identified
until 26 May 2003. On this date, DHTW has lost its dis-
tinguished property and the reference point on the unstable
manifold has disappeared.Mendoza et al.(2010) have re-
ported that it is possible to identify a new reference point
on the manifold, which is given by DHT+W . The manifold is
not asymptotic to DHT+W . However, DHT+W marks a distin-
guished trajectory on the manifold with certain accuracyε.

The active transport mechanisms just described are simul-
taneous in time and the full description of transport routes
should address how their action over ocean particles is com-
bined. A complete representation of coincident events in
Fig. 23 reveals intersections between the lobe that is outside
the eddy (magenta colour in Fig. 20a) on 3 April, and the
lobe which at the same time is located to the north of the bar-
rier (green colour in Fig. 22a). The intersection area in grey
colour, as shown in Fig.23 for 3 April, provides dual infor-
mation on the particles contained therein. It shows that those
particles were inside the eddy on 19 March (as indicated in
Fig. 19) and were to be at the south of the Lagrangian barrier
across the stream on 17 April (see Fig.22). Further similar
intersections take place between the magenta lobes in the se-
quence displayed in Fig.20, and the sequence of lobes across
the jet that transports water from north to south (seeMen-
doza et al., 2010for a full description). Once particles reach
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Fig. 20. Sequence of lobes mixing waters from inside the eddy to outside and viceversa in selected days of year 2003.(a)3 April; (b) 10 April;
(c) 17 April ; (d) 23 April.
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Fig. 21.Boundaries at days 3 April 2003 and 17 April 2003 constructed from a (finite length) segment of the unstable manifold of DHTW

and a (finite length) segment of the stable manifold of DHTE . The boundary intersection points are denoted respectively bybt2 andbt4.
(Figure taken fromMendoza et al., 2010).

the southern region, further interactions will take place with
dynamic structures covering the ocean surface in that area.

Additional complex routes may be traced for particles
ejected from the western eddy. In fact, we are able to show
that there is a non-zero flux from this eddy towards the eddy

www.nonlin-processes-geophys.net/19/449/2012/ Nonlin. Processes Geophys., 19, 449–472, 2012



468 C. Mendoza and A. M. Mancho: The Lagrangian description of aperiodic flows

(a)
���� ���� ���� ���� ���� ���� ����

���

���

���

���

���

la
t

lon

DHT
DHT

W

E
bt2

April 3, 2003

(b)
���� ���� ���� ���� ���� ���� ����

���

���

���

���

���

la
t

lon

DHT DHT
W E

b

April 17, 2003

t4

Fig. 22.Turnstile lobes across the main stream at days 3 April and 17 April 2003. The magenta area evolves from south to north while the
green area does from north to south. (Figure taken fromMendoza et al., 2010).
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Fig. 23. Intersection of lobes governing transport across the western
eddy and those governing transport across the main stream of the
Kuroshio current.

at the eastern limit. On 16 April, Fig.24a shows pieces of
stable and unstable manifolds of the eddies at the west and
east. The magenta coloured lobe represents the water ejected
from the western eddy. There exists a non-zero intersection
area between this lobe and the lobe regulating the water com-
ing into the eastern eddy. The intersection area is depicted in
dark grey. A remaining piece of the lobe penetrating on the
eastern eddy is left in green. Figure24b confirms the entrain-
ment of this area on the eastern vortex on 28 April.

A complete transport description would require connec-
tion of the information provided by all the dynamic structures
tilling the ocean surface which are displayed by the function
M in Fig. 7. However, in practice, providing thorough in-
sights in terms of manifolds as discussed in this section is
not always possible, because on the one hand it requires that
the features of the observed dynamic patterns resemble those
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Fig. 24.Intersection of lobes governing transport across the western
and eastern eddies.(a) On 16 April the grey area shows a portion
of fluid ejected from the western eddy that will be entrained by the
eastern eddy;(b) on 28 April the grey area has come into the eastern
eddy. Figures show insets with an amplification of the entrainment
process.
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described in the mathematical literature, and on the other
hand, that they must have certain persistence in time. Rapidly
transient regimes, such as those occurring in large areas of
the analysed flow, are difficult to understand because they
are related to changes in the topology of the flow (see Man-
cho et al 2008; Branicki et al. 2011; Mosovsky and Meiss
2011). Related to these changes are mathematical issues such
as non-uniform hyperbolicity, addressed for instance in (Bar-
reira and Pesin, 2007), not yet completely understood for
general non autonomous systems such as those represented
by Eq. (1).

6 Conclusions

This article reports the combined used of several Lagrangian
tools, some of them recently developed, and shows their suc-
cess in obtaining extensive details about the description of
purely advective transport events in arbitrary time depen-
dent flows. We demonstrate the capabilities of these tools
by analysing 2-D data sets obtained from altimetric satellites
over the Kuroshio Current.

We have first considered the evaluation of global La-
grangian descriptors over a general vector field. In particular
we have chosen two types of descriptors, referred to as func-
tion M. Contour plots of these functions provide a time de-
pendent phase portrait which is visualised by sharp changes
in the colour code ofM. These abrupt variations separate re-
gions of trajectories with qualitatively different behaviours,
and since this is exactly what invariant manifolds separate,
boundaries of homogenous coloured areas position invariant
manifolds. The dynamic picture provided byM reveals at
a glance the organising centres of the flow, hyperbolic and
non-hyperbolic flow regions, invariant manifolds and jets. In
other words it identifies the essential dynamical elements that
must be considered by any kinematic model describing the
exchange of trajectories on a given data set.

Although the dynamical structures are clearly visualised
from M, a detailed description of transport requires the full
identification of the organising trajectories, the distinguished
hyperbolic trajectories, and of their finite time stable and un-
stable manifolds. Our discussions are focused on 2-D flows,
although extension to higher dimensions are possible. Dis-
tinguished hyperbolic trajectories are computed by first ex-
aminingM as defined from Eq. (14), and identifying can-
didate areas which act as the organising centres of the flow.
The search is completed by computing paths of limit coor-
dinates on each recognised area for a full identification of
the DHT positions. At a third stage, finite time stable and
unstable manifolds of these DHTs are directly computed as
advected curves. The algorithm starts with a small segment
aligned either along the stable or the unstable subspace of the
DHT, making this segment evolve either backwards or for-
wards in time, respectively. Manifolds computed in this way
become long intricate curves; transport details are obtained

from them by selecting portions along the branches at both
sides of the DHT. These selections allow transport routes
across the ocean surface to be identified; for instance, masses
of water penetrating or leaving an eddy, then of those masses
protruding the eddy, parcels are identified crossing the main
current or coming into a second eddy. A complete transport
description connecting the information provided by all the
dynamic structures tilling the ocean surface is foreseen. De-
spite the advances made, however a full transport description
still remains a challenge because conceptual difficulties exist
that are yet to be solved, especially when dealing with highly
transient regimes in which the topology of the flow changes
in time.

As a summary, we can say that our Lagrangian techniques
have proven fluid exchange across the main current and be-
tween eddies in the Kuroshio region in a range of dates dur-
ing the year 2003. This methodology constitutes an efficient
tool of analysis for the uncountable data sets which nowadays
are obtained from altimeter satellite or by other means. The
performance of the machinery on the analyzed data opens a
gateway to its applications in any kind of realistic flow for
operational oceanography purposes and could be thought of
as an alternative for the study of transport in oceanic flows
to campaign measures based on quasi Lagrangian drifter re-
leases.

Appendix A

We discuss here details about the numerical evaluation ofM

as defined in Eq. (14). Trajectories(x1(t),x2(t)) of the sys-
tem (11)–(12) are obtained numerically, and thus represented
by a finite number of points,L. A discrete version of Eq. (14)
is

M =

L−1∑
j=1

 pf∫
pi

√(
dx1,j (p)

dp

)2

+

(
dx2,j (p)

dp

)2

dp

 , (37)

where the functionsx1,j (p) and x2,j (p) represent a curve
interpolation parametrised byp, and the integral

pf∫
pi

√(
dx1,j (p)

dp

)2

+

(
dx2,j (p)

dp

)2

dp (38)

is computed numerically. In accordance with the methodol-
ogy described in (Madrid and Mancho, 2009), we use the in-
terpolation method proposed byDritschel(1989) in the con-
text of contour dynamics. The interpolation equation, later
used in this article, is given by expression (46). To compute
the integral (38) we have used the Romberges method (see
Press et al., 1992) of order 2K whereK = 5. In the results re-
ported in this article we have used this technique to evaluate
Eq. (14). Another possibility for evaluating Eq. (38), which
is less accurate but simpler and faster, is to approach it by
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the length of the linear segments linking successive points of
the trajectory. In order to evaluate Eq. (15) whereF(x(t))

depends not only on velocity but also on other vectors such
as acceleration, the time derivative of acceleration or their
combinations, we propose a more versatile method which is
easily adapted for any choice ofF . For instance, in the case
whereF(x(t)) = ||v(x(t), t)||, the integral in Eq. (15) eval-
uates the areaA below the graph||v(x(t), t)|| in the referred
time interval. In order to evaluateA, we consider the integral
as the following one-dimensional dynamical system:

dY

dt
= ||v(x(t), t)||. (39)

For the initial conditionY (t∗) = 0, the areaA is provided
by the value ofY at t∗ + τ minus the value ofY at t∗ − τ ,
i.e. Y (t∗ + τ) − Y (t∗ − τ) = A. The integration of the sys-
tem (39) is performed with a 5th order variable time step
Runge-Kutta method, in particular with the subroutinerkqs
described inPress et al.(1992). The peculiarity of this dif-
ferential equation is that it depends ont both explicitly and
implicitly (through the trajectory), and expressions such as
the right hand side of the system (11)–(12) only provide
the explicit dependencev(x, t). A Runge Kutta step from
t0 to t1 applied to Eq. (39) requires the evaluation of|v|

along trajectories at intermediate stepst0 + 1t . To this end
the argumentx that must be passed to||v|| at time t0 + 1t

must be obtained by evolving the trajectory from (t0,x(t0))
to (t0 + 1t,x(t0 + 1t)) according to the system (11)–(12).
This method is quite adaptable, since from one descriptor to
another it is only the right hand side in Eq. (39) which needs
to be modified. This is the technique used for the case in
whichF(x(t)) = ||a(x(t), t)||, for which we report results.

Appendix B

We provide full details of the equations and algorithms used
to compute the unstable manifolds. At each timetk in a dis-
crete set of time increments[tk,k = 0...N ], the unstable man-
ifold is represented by a discrete set of pointsxj . In partic-
ular, at timet0 it is a small segment aligned along the un-
stable subspace of the hyperbolic trajectory, represented by
five points. They are evolved along trajectories until timet1,
and each point is considered to leave unacceptable gaps with
its neighbours if the measureσj > 1. Hereσj = djρj where
dj = xj+1 − xj andρj is a density defined as follows:

ρj ≡
(κ̄jL)

1
2

µL
+ κ̄j , (40)

or 2/ζ , whichever is smaller. Hereζ serves as a small-scale
cut-off distance for resolving manifold details which we have
fixed to 10−6 andL is a typical length scale fixed to 3. The
parameterµ controls the overall point density along the man-
ifold and needs tuning for individual problems. Small values

of µ correspond to a high point density. In our computations
it is fixed to 0.005. The quantitȳκj in Eq. (40) is defined in
terms ofκ̌,

κ̄j ≡ (κ̌j + κ̌j+1)/2, (41)

which in turn is defined by

κ̌j =
wj−1κ̃j−1 + wj κ̃j

wj−1 + wj

, (42)

which uses the weightingwj = dj/(d
2
j +4ζ 2) and the further

curvatureκ̃j , which itself is defined by

κ̃j =

√
κ2
j + 1/L2, (43)

whereκj , finally, is the local curvature:

κj = 2
aj−1bj − bj−1aj

|d2
j−1tj + d2

j tj−1|
. (44)

Here

tj = (aj ,bj ) = xj+1 − xj , tj ∈ R2. (45)

When a gap between nodes at timet1 is too large, it is filled
by inserting a point between the same nodes att0. The point
is computed by interpolating withp = 0.5 along the curve
that links the pointsxj+1,xj :

x(p) = xj + p tj + ηj (p) nj , (46)

wheretj is given by Eq. (45) and

nj = (−bj ,aj ), nj ∈ R2 (47)

ηj (p) = µjp + βjp
2
+ γjp

3, ηj (p) ∈ R. (48)

The cubic interpolation coefficientsµj , βj andγj are

µj = −
1

3
djκj −

1

6
djκj+1, (49)

βj =
1

2
djκj , (50)

γj =
1

6
dj (κj+1 − κj ). (51)

Once the manifold satisfies gap size acceptability condi-
tion at every node, i.e.djρj = σj < 1, the point redistribu-
tion algorithm is applied. This is useful to eliminate points
in regions of the manifold where they may have accumu-
lated Mancho et al.(2004). This algorithm is described in
(Dritschel, 1989) and it works as we describe next. Letn be
the number of nodes att1:

q =

n∑
j=1

σj (52)
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and definẽn = [q]+2 (i.e. two more than the nearest integer
toq). During redistribution the end points of the manifold are
held fixed. Then−2 “old” nodes between the end points will
be replaced bỹn − 1 entirely new nodes in such a way that
the spacing of new nodes is approximately consistent with
the desired average density, controlled by the parameterµ.
Let σ ′

j = σj ñ/q so that
∑n

j=1σ ′

j = ñ. Then, the positions of
the new nodesi = 2, ..., ñ are found succesively by seeking
for each successivej ap such that,

j−1∑
l=1

σ ′

l + σ ′

jp = i − 1, (53)

and placing each new nodei between the old nodesj and
j + 1 at the positionx(p) given in Eq. (46).
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