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Abstract. This article reviews several recently developed La- production, microfluidics or geophysical flows. Mixing is a
grangian tools and shows how their combined use succeedey contributor to significant features of the current climate
in obtaining a detailed description of purely advective trans-when it takes place in the atmosphere or the oceans. In the
port events in general aperiodic flows. In particular, becausesouthern stratosphere, for instance, mixing across the Antarc-
of the climate impact of ocean transport processes, we illustic polar vortex controls the springtime ozone depletidalg
trate a 2-D application on altimeter data sets over the area o€amara et a).201Q Joseph and Legra2002. On natural
the Kuroshio Current, although the proposed techniques areatastrophes the pollutants mixing in the ocean is also un-
general and applicable to arbitrary time dependent aperiodicerstood in terms of Lagrangian particle pathezic et al,
flows. The first challenge for describing transport in aperi- 2010. A better understanding of the mathematical tools de-
odical time dependent flows is obtaining a representation ofcribing transport in these contexts is important for improved
the phase portrait where the most relevant dynamical featuresontrol and prediction.
may be identified. This representation is accomplished by us- Dynamical systems theory is the natural mathematical
ing global Lagrangian descriptors that when applied for in-framework for describing particle trajectories and transport
stance to the altimeter data sets retrieve over the ocean suin fluids where diffusion is not important. A challenge in
face a phase portrait where the geometry of interconnectethe application of these tools to realistic geophysical flows
dynamical systems is visible. The phase portrait picture isis that such flows are typically defined as finite-time data
essential because it evinces which transport routes are actirgets and are not periodic. An approach to these flows from
on the whole flow. Once these routes are roughly recogniseda geometric perspective includes the study of invariant man-
it is possible to complete a detailed description by the directifolds, which act as barriers to particle transport and inhibit
computation of the finite time stable and unstable manifoldsmixing. In this context manifolds are approximated by com-
of special hyperbolic trajectories that act as organising cenputing ridges of fields, such as finite size Lyapunov expo-
tres of the flow. nents (FSLE) Aurell et al, 1997 and finite time Lyapunov
exponents (FTLE)Nese 1989 Shadden et gl2005. The
latter authors show that under certain conditions there is
small flux across FTLE ridges. Despite the accomplishment
1 Introduction of these techniques there exist frequent cases in which FTLE
provide artifacts (se8ranicki and Wiggins2010 because
The study of transport phenomena in aperiodic flows is anthese assumptions are not satisfied. Works sudbrasicki
important topic that arises in numerous applications. La-and Wigging2010; Mosovsky and Meis§€011) have noted
grangian particle paths of non-periodic time dependent dy-ambiguity for the interpretation of these ridges and ambigu-

namical systems are the main ingredient of mixing processesty over flow duration for FTLE calculations, in particular in
which take place in manifold applications, such as food
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transient flows. Another perspective within the geometricalprominent jet and several eddies. Studies across these kinds
approach different from Lyapunov exponents is that providedof structures have been formerly discussed, either in ad hoc
by distinguished hyperbolic trajectories (DHTH¢ et al, kinematic models§amelsonl1992 Dutkiewicz, 1993 Mey-
2002 Ju et al, 2003 Madrid and Manchp2009 and their  ers 1994 Duan and Wiggins1996 Cencini et al. 1999,
stable and unstable manifolds. In this approach stable andr more recently in realistic flowsRpgerson et gl.1999
unstable manifolds are directly computed as material surMiller et al., 2002 Kuznetsov et a.2002 Mancho et al.
faces (seeMancho et al. 2004 2003 thus the flux across 2008 Branicki et al, 2011). Our purpose now is to show how
them is rigorously zero. Distinguished trajectories are a genthe combined use of several recently developed Lagrangian
eralization of the concept of fixed point for dynamical sys- tools, valid for general time-dependent flows, easily achieve
tems with a general time dependence. In this article we proinsightful transport mechanisms in this context.
pose the use of DHT and their stable and unstable manifolds The first step in our procedure seeks for geometrical struc-
combined with recently developddagrangian descriptors tures on the phase portrait (in advection it coincides with the
(Madrid and Manchp2009 Mendoza and Manch®01Q physical space) where a sketch of the most relevant dynami-
Mancho et al. 2012, which differ in some respects from cal features may be identified at a glance. This is achieved by
other traditional techniques. Our purpose is not confined taneans of a Lagrangian descriptor. Lagrangian descriptors are
gathering/summarizing these techniques in one article, but tdbased on a recently defined functidvigndoza and Mancho
providing a bigger picture that shows how the information 2010, which when evaluated over the vector field succeed in
they supply is complementary, and that their combinationcovering the ocean surface with time-dependent geometrical
constitutes a powerful package able to detect the essentiatructures that separate particle trajectories with different dy-
transport routes acting on an arbitrary flow. For illustrative namical fates. The organising centres of the flow are detected
purposes we choose a 2-D application on oceanic data. lat a glance over the resulting map, and the foliations induced
particular we consider altimeter data sets over the area of thby the stable and unstable manifolds of the present hyper-
Kuroshio Current. Our choice is motivated by the fact that bolic trajectories also are visible. Other possibilities for the
these data sets are realistic and obey no regular pattern, aefinition of M discussed on Mancho et al. (2012) are also
might be objected to flows produced by exact analytical for-examined here. The phase portrait picture indicates transport
mulae. The analysed flow is irregular and there is no a prioriroutes active on the extended flow, and transport mechanisms
idea or control on the transport mechanisms that take placsuch as the turnstile mechanism, where fluid interchange is
on it. We show that our tools are able to unveil the hidden dy-mediated by lobes, are sketched at this stage. Lobes may
namical picture of this arbitrary flow by tracing medium and present a very tangled structure, especially in realistic flows
long term particle transport routes. The performance of thesuch as the one under study, which makes it very difficult to
machinery on this data opens a gateway to its applications omompute them accurately from the representation provided
any kind of realistic flow. by the Lagrangian descriptor. For this reason in order to pro-
The Lagrangian analysis of altimeter data sets has beeneed with a fine description of these pathways, we then char-
previously addressed by means of different approaches andcterize the organizing hyperbolic orbits and their stable and
for different purposes. For instandeshahn et al.(2007) unstable manifolds by other techniques discussed in the lit-
have used finite-size Lyapunov exponents (FSLE) on theerature Mancho et al.2003 2004 2006h Mendoza et a.
geostrophic velocity field to compute unstable manifolds 2010. These methods are aimed at a direct computation of
which are found to modulate phytoplankton fronts in lobu- finite-time invariant manifolds. In the 2-D dimensional case
lar forms.d’Ovidio et al.(2009 have performed FSLE diag- under study, manifolds are thus represented by lines form-
nosis on altimeter data in the Algerian Basin, showing thating intricate lobes. From these clearly represented structures
Lyapunov exponents are able to predict the (sub-)mesoscaleomplex particles paths may be traced out.
filamentary processes not captured by an Eulerian analy- The structure of the article is as follows. Section 2 provides
sis. By computing probability distribution functions (PDFs) a description of the dynamical system under study which is
of the FTLEs over currents derived from satellite altimetry, defined from altimeter datasets. These have been chosen to
Waugh and Abrahani2008 have evaluated global stirring illustrate the use of these recent Lagrangian techniques in
variations.Beron-Vera et al(2010 have compared the la- realistic flows. Section 3 discusses the role of Lagrangian
grangian analysis provided by Finite-Time Lyapunov Expo- descriptors as a first approach to this data. Section 4 pro-
nents (FTLE) on velocity fields obtained from two different ceeds with the next step where we explain how special tra-
multi satellite altimetry measurements, concluding that bothjectories that act as organizing centres of the flow are char-
measurements support mixing with similar characteristics. Inacterised. We also explain how the direct computation of fi-
this context, our work aims to extract transport routes in thesenite time manifolds is attained from them and discuss about
realistic flows where there is no a priori idea on the transportframe invariance. Section 5 explains how manifolds trace
mechanisms that take place on such flows. We have chosetomplex and accurate transport routes, and abstract ideas
the Kuroshio Current region for analysis in data measuredrom dynamical systems theory are shown to be present in
during year 2003. We characterize transport events across realistic datasets. Finally Sect. 6 presents the conclusions.
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2 The dynamical system Here @ =7.2921x 10 °rads! is the rotation rate of the
_ _ Earth and is the latitude. On the other hand, the Ekman
We are interested in the study of transport on purely advectomponent of the ocean surface currest = (uek, vek) IS

tive systems where particle evolution is given by estimated using a 2-parameter model:
d _ paif
d—:zv(x,t),xeR",teR. (1) Uek=DbE"T

. - ) ) _ whereb and 6 are estimated by latitudinal bands from a

In geophysical applications typically this expression takesg st square fit between ECMWF 6-hourly windstress analy-

= i r i . . . .
n=1,2,3. We assume thai(x,7) is C" (r= 1) inx and g5 andy is an estimate of the Ekman current obtained remov-
continuous irr. This will allow for unique solutions to exist, jnq the altimetric geostrophic current from the total current
and also permit linearization, although linearization will not .o« red by drifting buoy velocities available from 1993 to
be used in our construction. In our study, the velocity field 2005. The method is further describecRio and Hernandez
given in Eq. () is defined from observational data. We have 5003, Both the geostrophic and the Ekman component of
considered a realistic 2-D flow obtained from altimeter datag,g ocean surface current are added to obtain estimates of the
sets, with irregular time dependence far from periodicity. Theyya| gcean surface current. Despite the addition of the Ek-

fluid motion involves temporal transitions in which Eulerian o1 component, the resultant velocity is almost divergence
structures may be annihilated, created or move rapidly. Th§.ae thus motions are mainly two dimensional

flow is provided in a finite space-time grid, and our study will  \va focus over a region through which the Kuroshio Cur-

extract information assuming that data is well defined with o passes, in April, May and June 2003. A typical velocity
the supplied resolution. This means that below the scale ofiq|q is shown in Fig. Our transport description is mainly

the grid the fluid behaves smoothly and it is well approacheqfocused on the region highlighted with a rectangle. The equa-

by a standard interpolation technique. There is no other a Prigiong of motion that describe the horizontal evolution of par-
ori condition or hypothesis on it. Our purpose is to illustrate ;e trajectories on a sphere are

how recent Lagrangian techniques may be combined to ap-

proach a complete transport description on highly aperiodicd¢ _ u(gp, »,1) 4
dynamical systems. dr RcosL) ’

The velocity data set used in this work has been previ-dx  v(¢, A, 1) 5
ously described iffuriel et al.(2009; Mendoza et al(2010), 9 - R ®)

where many details are given. It has been processed at CLS
Int Corp fvww.cls.fr) in the framework of the SURCOUF
project Carnicol et al, 2006. The data span the whole Earth,
in the period from 20 November 2002 to 31 July 2003. Sam
ples are taken daily in a grid with 1080915 points which
respectively correspond to longitude and latitude. The lon-
gitude is sampled uniformly from°0to 359667, however
the Mercator projection is used between latitude&?° to

Here the variables/(, 1) are longitude and latitude; and

v respectively represent the eastward and northward compo-
nents of the velocity field. The particle trajectories must be
“integrated in Eqgs.4)—(5) and since information is provided
solely in a discrete space-time grid, the first issue to deal with
is that of interpolation. We have daily maps of the velocity
field and this is a coarse time grid to provide a time step
ig the integration of particle trajectories, however this fre-

. C uency sampling is adequate in the sense that changes of the
uniformly spaced. The precision ig3 degrees at the Equa- vectoryfield Eelo%v that ?esolution are smooth enoug:?h to be

tor. Daily maps of sur_face currents <_:omb|ne altimetric Seaa_pproached by an interpolator. Days are a typical time scale
surface heights and windstress data in a two-step procedur%r the system4)—(5) and this is the unit of time in which

on the one hand, multi-mission (ERS-ENVISAT, TOPEX-
. ! ' results are reported. A recent papemdgncho et al(20063
JASON) altimetric maps of sea level anomaly (SLA) are compares different interpolation techniques in tracking parti-

adge: to thz R2I885 Ig_lob?l rlnggg d}{/narb?tlc_ toeogr?ﬂm)( cle trajectories. Bicubic spatial interpolation in spaPee§s
a? erna;n eh . it ']? N a’h' ha ofo an g(: a r:'_‘apsl et al, 1992 and third order Lagrange polynomials in time
or sea surface heights from which surtace geostrophic velocs o gpown to provide a computationally efficient and accu-

ities (ug, vg) are obtained by simple derivation. rate method. We use this technique in our calculations as it

g oh has been successfully implemented in realistic flows over a
Ug = _75 () sphere as discussed litancho et al(2008. Following this

2 oh work we notice that bicubic spatial interpolation requires a

vg = e 3) uniformly spaced grid, while our data grid is not uniformly

S ox spaced in the latitude coordinate. We transform our coordi-
whereg is the gravitational constant anglis the Coriolis  nate system to a new ong,(x), in which the latitudex is
parameter defined as follows: related to the new coordinateby
f =2Qsin(}). u=In|sec. +tam|. (6)
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Fig. 1. Velocity field of the Kuroshio current on 4 April 2003. The square highlights our main focus area. Maximum values of the velocity
field are about 3.65 nT&. (Figure taken fronMendoza et a).2010).

Our velocity field is now on a uniform grid in thec(¢) co- by inverting Eq. 6), i.e.
ordinates. The equations of motion in the new variables are

T
A= — —2arctarie ") . (13)
dp _ u(¢,p.0) @) 2
dr ~ RcosA(w))
du v, p,1) () 3 Atime-depedent phase portrait

dr ~— Rcosi(p))’
) Solutions of dynamical systems are qualitatively described

In the numerical simulations the vector field in Eq8){  according to Poincéfs idea of seeking geometrical struc-

(5) is represented in a selection of data spanning a dotyres on the phase portrait. These can be used to organise par-
main in longitude and latitud@min, $max) X (Amin. Amax) = ticles schematically by regions corresponding to qualitatively
(10966°, 25966°) x (14.74°,59.56°) which is much larger  gjfferent types of trajectories. In time independent systems —
than those displayed in figures. This ensures that particle inthose in which Eq. %) does not depend explicitly on time
tegrations do not cross the edges and thus boundary effects fixed points are essential for describing the solutions ge-
are not present. Variableg, 1) are further transformed by  ometrically. Fixed points may be classified as hyperbolic or
scaling the domain t0, 3) x (0, 1), which is more conve-  non-hyperbolic depending on their stability properties. Sta-
nient for the manifolds computations reported in Sect. 4.2.ple and unstable manifolds of hyperbolic fixed points act as

The new variables are separatrices that divide the phase portrait in regions in which

(& — Pmin) particles have different dynamical fates. To achieve this geo-

X1= m (©) metrical representation in time dependent aperiodic dynami-
(1 — fmin) cal systems is a c_hallenge, because the concepts used in au-

=— (20) tonomous dynamical systems do no apply directly to these

(Hmax— fmin) systems. In these cases, structures containing Lagrangian in-
The scaling provides the dynamical system in which integra-formation on the time-evolution of fluid particles have typ-

tions are performed: ically been obtained by means of Lyapunov exponents. The
dxy concept of Lyapunov exponent is infinite time and it is used
— = v1(x1,x2,1) (12) in finite-time data sets for its finite-time versions, such as
ddxt finite-size Lyapunov exponents (FSLEUrell et al, 1997

ax2 _ va(x1, X2, 1). (12) and finite-time Lyapunov exponents (FTLE)dller, 200%;

dr Nese 1989.

Once trajectories are integrated for presentation purposes, Different Lagrangian tools that also succeed in finding
one can convert coordinates back to the original ones. In théime dependent partitions for finite time aperiodic geophysi-
reversionx; — u — A we use the expressior(it) obtained  cal flows are proposed in this section. These implements are
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Fig. 2. (a) A representation of the functiom over a small oceanic area on 2 May 2003 for 15 days;(b) In black the functionm
vs. latitude at a fixed longitude highlighted (@) with the thick black line. Abrupt changes M pointing manifolds positions corresponds
with discontinuities on the derivative. In blue 0.1 times the derivativ®/ofith respect the latitude.
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Fig. 3. (a)Contour plot of the functio over a small oceanic area on 2 May 2003 foe 15 days. The black straight line corresponds to
the selection for outputs in Fig.(2); (b) the same with a piece of stable manifold (black line) and a piece of unstable manifold (green line)
overlappingjc) the functionM for F(x(¢)) = |la(x(¢),t)|| andt = 15 days in the same area.

called Lagrangian descriptors. Lagrangian descriptors profurther in the next section. We now focus on the capacity
vide a global dynamical picture of arbitrary time dependentof M as a Lagrangian descriptor. The functidthmeasures
flows by detecting simultaneously the organizing centers ofthe Euclidean arc-length of the curve outlined by a trajec-
the flow, hyperbolic trajectories and their stable and unstatory passing through* at times* on the phase space. The
ble manifolds and elliptic regions. This technique has beertrajectory is integrated from* — t to t* + . This is mathe-
successfully applied bgie la Gamara et al(2012 to strato-  matically expressed as follows: For all initial conditian’
spheric re-analysis data produced by the interim Europeaim a set3 € R”, at a given time*, the Lagrangian descriptor
Centre for Medium-Range Weather Forecasts (ECMWF),is a functionM (x*, t*), . : (B,t) — R given by
and has allowed the detection of dynamical features not per-
ceived by other methods. Originally Lagrangian descriptors T
were introduced bilendoza and Manch@010, inthe con- ~ M (x*,t*)y.; = /
text of altimeter velocity data, who proposed a function to
this end. This function is referred to a6 and was advanced
in Madrid and Manch@2009 as a building block of the def- Here (x1(¢), x2(¢), ..., x,(¢)) are the components iR" of a
inition of Distinguished trajectoriesThese trajectories, their trajectoryx(¢). The functionM depends orr and also on
organizing role and their computation frabf are discussed the vector fieldv. It is defined for dynamical systems in ar-
bitrary dimensionz, but for the chosen system X)—(12),

n . 2
> (%) dr. (14)
i=1

t*—t1
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n = 2. The question is why shoultf succeed in realizing
Poincaé’s idea, revealing the geometry of objects such as
the stable and unstable manifolds of hyperbolic trajectories?
Mendoza and Manch(2010 report this observed fact, and
although it is not formally proven, an heuristic argument on . 008
this evidence is givenM measures the arc-length of trajec-
tories on a time intervalt* — 7, t* + ). For a givenr there
may be trajectories that start and evolve close to each other
and this of course may change with Trajectories which
stay close are expected to have similar arc-lengths. However,
for this 7, at the boundaries of regions comprising trajecto-
ries with qualitatively different evolutions, arc-lengths will
change abruptly, and these regions are exactly what the sta- 165E  156E 157E 158E 159E 160
ble and unstable manifolds separate. We evaldatas de- longitude
fined in Eq. (4) over the oceanic velocity field and a first rig 4. A representation of the functiot over a small oceanic
output is provided in Fig2. The coordinates at which sharp area on 2 May 2003 for = 2 days. (Color version of a figure from
changes onM occur are related to points of discontinuity Mendoza and Manch@010
on the derivative along a direction which is non tangent to
the manifold. These are disclosed in Fafy. A contour plot
of the same area, portrayed in Figp, links the positions
for these abrupt variations to lines resembling singular feanot all choices ofF (x(r)) are equivalent. Typically for an-
tures. Figure8b visually demonstrates that the coordinates atalyzing velocities fields given as data sets, choices involv-
which singular lines of the functioM are placed coincide ing ||da/dt|| may be less appropriate than those involving
with the positions of the stable and unstable manifolds. Theor a because they require interpolators with a higher order
Lagrangian information provided by, that is the position  of regularity than the latter magnitudes. Similarly a choice
of the invariant manifolds, is not contained on the specificinvolving a requires an interpolator with a higher regular-
values taken bW but on the positions at which these values ity than those involving only. In this section we report re-
change abruptly. However in the interest of completenesssults forF = ||v|| and F = ||a]||. Both choices are adequate
figures show a color bar indicating the rangeMf Units for the type of interpolation used in the velocity field. Many
correspond to those in the rescaled systein(12). other options onF are thoroughly discussed and compared
Equation (4) finds arc-lengths integrating the modulus of in (Mancho et al.2012. For comparison purposes, Figc
the velocity (|v]|) along a trajectory. It is easily observed shows the output obtained whéhis evaluated as in EqLE)
that the heuristic argument should in fact work for the accu-with the choiceF (x(¢)) = |la(x(¢), t)]|. As anticipated, sin-
mulation of other positive intrinsic geometrical or physical gular lines in the contour plot coincide with the position of

0.07

0.06

0.04

latitude

0.03

0.02

0.01

properties along trajectories on a time interdlt, t*+1). invariant manifolds. Full details of the numerical evaluation
For instance, properties could have been considered, such a§ M are given in the Appendix A.

integrations of the modulus of acceleratidfu(|), or of the The heuristic argument pointed out above, supports the
modulus of the time derivative of acceleratioidg/dt||), ability of Lagrangian descriptors for highlighting manifolds,

or of positive scalars obtained from combinationspf or but it is not a rigorous argument. The power of Lagrangian
da/dr as far as these combinations are bounded. In this waylescriptors however is sustained by a strong numerical ev-
trajectories evolving close to each other during this time in-idence consistently shown in all the examined examples,
terval would accumulate a similar value ftf, and the accu-  which thus inspires the development of further theoretical re-
mulated value of the property would be expected to changesults.

sharply at the boundaries of regions comprising trajectories The functionM depends orr in such a way that at low
with qualitatively different evolutions. These abrupt changesr, its structure is far from depicting manifolds. For instance,
would highlight the stable and unstable manifolds. A generalfor T = 2, Fig. 4 shows a contour plot o#f for F(x(z)) =
method for building up families of Lagrangian descriptors ||v(x(¢),t)||, at the same coordinates as in F&j.but the

for general time dependent flows replaces Bd) py observed structure is smooth and Eulerian-like. The struc-
ture of M at low 7 is closely related to the spatial structure
e of the velocity field, thus for highly turbulent flows with a
M&* 1%y = / F(x(@))de (15) more complex spatial structurd{ is expected to display a

richer pattern. Figurd shows contour plots of/ on 17 April

over an area with an eddy-like vector field. For increasing
where F(x(¢)) denotes a bounded positive intrinsic physi- M displays more and more complex patterns and outlines a
cal or geometrical property of the trajectoryr). In practice  growing manifold structure.

t*—1
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Fig. 5. Lagrangian structure of the inner core of the western eddy on 17 April for increasiagues.(a) F(x(¢)) = ||v(x(¢),1)|| and
v =15 days;(b) F(x()) = ||v(x(¢),1)|| andt = 30 days;(c) F(x(t)) = ||lv(x(¢),1)|| andt =72 days;(d) F(x(¢)) = ||la(x(?),t)|| and
v = 30 days.

In Fig. 5a and b, at lowr values the structure off at meaning that in the range — 7, ¢t + 1) trajectories placed at
the inner part of the eddy has a minimum which is locally the interior core have either concentrated there from the past
smooth. This implies that in the range— 7, ¢ + 1), trajecto-  or will disperse in the future. In fact, the interior of the core
ries in this vicinity outline similar paths: there are no sharpis completely foliated by singular features associated either
changes, and thus they behave as a coherent structure. The stable or unstable manifolds of nearby hyperbolic trajec-
boundaries of this smooth region separate the mixing regioriories. The non-smoothness &f at r = April 17 proposes
(outside the core) from the non mixing region (inside). A 2t = 144 days as an upper limit for the time of residence
comparison between Figb and d confirms that both de- of particles in the inner core; particles perceive nearby hy-
scriptors report similar outputs. In two-dimensional, incom- perbolic regions after this period. The accuracy of the singu-
pressible, time-periodic velocity fields, this kind of structure lar lines of M representing invariant manifolds is again con-
is typical because the KAM tori enclose the core — a region offirmed in Fig.6, where computations of stable and unstable
bounded fluid particle motions that do not mix with the sur- manifolds overlap those features. The foliated structure of
rounding region\Viggins, 1992. However, there isno KAM M is much richer than that provided by the displayed man-
theorem for velocity fields with a general time-dependenceifolds computed directly. This is so because the direct com-
(Samelson and Wigging006 such as the one in our analy- putation of manifolds requires the location of a priori spe-
sis. In this context, a question that remains open is to addressial hyperbolic trajectories (also called DHTs as explained
the dispersion or confinement of particles in the core for apein next section) from which the manifold calculation starts.
riodic flows. In Fig.5c, for larger = 72 days, the structure of The selection of DHTs may leave out many other DHTs in
M in the interior of the eddy becomes less and less smooththe neighbourhood whil@f exhibits all stable and unstable
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- Equation (5) proposes the integration along trajectories
of a bounded positive intrinsic geometrical or physical prop-
erty. Imposing the integration of a positive quantity is consis-
tent with the perspective that Lagrangian descriptors reveal
the dynamical structure by accumulating quantities along
trajectories. When trajectories separate following different
112 paths, the accumulated quantity differs, and sharp changes
on the descriptor values should occur at the boundaries
of regions separating these qualitatively distinct behaviors,
thereby highlighting the position of invariant manifolds. The
accumulative perspective taken by EbB), although similar
in its mathematical expression, is different from the finite-
time average velocities used Malhotra et al.(1998; Poje
\ et al.(1999. In particular, these works consider the forward
186.0E 156.4E 156.8E 157.2E 157.6E time integral of the velocity components divided by the time
lon interval:

38.0N

37.6N

37.2N
-

la

36.8N

36.4N

Fig. 6. Stable and unstable manifolds overlapped on the function  ,«, ;
M at day 17 April forr = 72 days. There is a coincidence between 1 q 16
singular features o#/ and manifolds. = vx (x, )dr. (16)

1%

manifolds from all possible DHTSs in the vicinity of the eddy, This averaging is reported to reveal a patchiness structure
without the need for identifying them a priof providesthe ~ Which is also connected to invariant manifolds Faje et al.
complete visible foliation in the interval — 7, 1 +7) induced (1999, the authors note that for increasing averaging time a
by the stable and unstable manifolds of all nearby hyperboliczero average velocity is obtained, and as a consequence in
trajectories. this limit, the spatial structure in the patchiness plots is lost.
The evaluation oM in large oceanic areas for long enough As regards the integration time limits and their impact on
7, as shown in FigZ, reveals recognisable phase portraits. the retrieved Lagrangian structure, the resultPoye et al.
The colour gradation oM emphasises lasting and stronger (1999 are the opposite of those obtained from the proposed
features versus the ones that are weaker and more transiet@grangian descriptors. We have reported the existence of a
LargestM values are in red while the lowest are in blue. For minimum timer to converge to the Lagrangian structures,
instance in Fig7a, the colours indicate that the strongest fea-Which is not reported byvalhotra et al.(1998; Poje et al.
tures are a central reddish stream and the one red and twd 999, and we have shown evidence that beyond thahe
yellow eddies. These are the most persistent patterns an@nger is the better and more detailed are the Lagrangian
because they remain for long periods of time it is possiblestructures. The main reason for differences in the outputs be-
to describe transport routes across them. Other recognisabfeen both methods is that the diagnosisoye et al(1999
bluish features such as the cat's eyes at the upper left codoes not force the integral of a positive quantity, thereby al-
respond to slow fluid motion. These features have a rapidlylowing oscillations of the integrated quantity along trajecto-
changing topology, and their lack of permanence makes ities, which produces non desired cancellations. Further com-
more difficult to describe transport across them, since tranparisons between these approaches are discussed in Man-
sient structures are not well understood from the dynamicafho et al. (2012). Recently alternative methods, which simi-
point of view in the context of data sets (S&@ancho et al.  larly to Lagrangian descriptors are based on measures along
2008, although some progress has been done in analyticalajectories, have been describedRypina et al.(2011).
examples (se®ranicki et al, 2011, Mosovsky and Meiss, These methods have been successfully applied to describe
2011). The functionM provides a global descriptor where Lagrangian coherent structures in geophysical flows.
different geometries of exchange are visualised in a straight- A question always under scrutiny is the robustness of the
forward manner. Figuréb shows the output a¥f at the same Lagrangian structures under errors. In the literature some
area, at larger values. A more complex structure near the setresults are found on this matter. For instaneernandez-
of chaotic saddles is observed. The increasing of complexityCarrasco et ai2011) have studied the robustness of the La-
of M versusr is expected from the nature &1, since itis  grangian structures under deviations induced in the vector
reflecting the history of initial conditions on open sets, andfield by noise and dynamics of unsolved scales. They have
in highly chaotic systems this history is expected to be moreconfirmed the permanence of the FSLE features under these
tangled for longer time intervals. perturbations. It is not our purpose to perform an analogue
study on the functiord. However, Fig8 presents some re-
sults in this regard. This figure estimates the reliability of
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Fig. 7. Evaluation of the functiod/ over the Kuroshio current between longitudes 1B8168& E and latitudes 30N-415° N on 2 May,
2003;(a) T = 15 daysj(b) © = 30 days. (Figure taken frodendoza and Manch@010).
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Fig. 8. Contour plot of the function\/ over the inner part of an eddy on 2 May 2003 foe= 30 days(a) results with bicubic spatial
interpolation;(b) results with bilinear spatial interpolation.

M by computing it with different interpolation schemes: bi- 4 Distinguished trajectories and finite time invariant

linear and bi-cubic spatial interpolation. The displayed re-  manifolds

sults are structures obtained at largén the inner part of

an eddy. The bi-linear spatial interpolation preserves the fea-

tures obtained by the spatial bi-cubic interpolation, althoughThe role of M in transport description is based on its abil-

it also adds some lines visible at the centre. Nevertheless, thiéy to cover the ocean surface with a geometrical structure

global appearance of the output is preserved. that resembles a patchwork of interconnected dynamical sys-

The global dynamical picture provided by the functigh  tems, which indicates transport routes to be described in fur-

enables us to foresee active transport routes over the ocedher detail. This important capacity cannot be achieved by the

surface. However, for describing detailed transport mechatools described in this section, which only provide details af-

nisms associated to the recognisable phase portraits, the iiter the details themselves have been roughly identified a pri-

tricate curves making up manifolds must be accurately com-ori. Without this previous knowledge, the use of these tools

puted over the ocean surface. Extracting these curves frors less effective because they are too focused and blind for

the above embroiled pictures is a difficult and imprecise task distinguishing their own starting point. On the other hand the

doomed to failure, and for this reason we proceed in a differ-detailed transport routes reported by the tools described in

ent way, which is explained in the following section. this section cannot be obtained just by the use of Lagrangian
descriptors. The scenario displayedMyin Fig. 7a shows a
strong jet, visible in the intense reddish band, and two eddies
— interacting with the jet — which are visualised by two cir-
cles: one reddish situated towards the west side and the other
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yellowish to the east. For a detailed study of transport in thislimit T — oo either because it is impracticable in a numerical

area we compute distinguished trajectories and manifolds. implementation, or because in the large limit errors accumu-
late, or simply because the dynamical system is defined by

4.1 Distinguished trajectories a finite time data set. For these reasons the convergence to

) i ) the limit coordinates is tested up to a finiteFormally, this
The stable and unstable manifolds of special hyperbolic tra-

. ) h as fixed points | q ical is expressed as follows: Let us consider a practicable time
jectories, such as fixed points in autonomous dynamica SYSinterval [T}, T;1, letx™ (7) be the coordinates at which the

tems or periodic trajectories in periodically time dependemfunctionM reaches the minimum value at timen an open
systems, are the ones of interest in our study. These traject%—etB_ Then to find theimit coordinatex! at timer, we verify
ries, which act as organizing centres of the flow, do not havethat there exists a' such thaty, — 7' >> T, j + 7' << Ty
a natural extension for time-dependent aperiodic dynamica(l:md\7,r > 7! the following is satisfiedix™ () — x'(1)]] < 8
systems, in which a generalization of these concepts is re(wherer keepst! — 7 > T; andf + 7 < ;, ands is a sr;all
quired. The definition of distinguished hyperbolic trajecto- " o~ constant) Herﬁi e lresents tfhe distance defined
ries (DHTs) has succeeded to this end. Several definition% ' P
have been proposed, for instance $ge et al.(2002; Ju
et al. (2003; Madrid and Manchd@2009. In this article we
follow the approach to these trajectories reportedviadrid lla —b|| =
and Mancho(2009, which is based on the Lagrangian de-
scriptor given by the functioM in Eq. (14).

The concept of DT generalizes the idea of fixed point for By repeating the procedure at different timest is pos-
time-dependent dynamical systems. For instance for the 1Rible to obtain gath of limit coordinatesvhich is denoted

n
Z(a,- — b2 with a,b e R".
i=1

time-dependent linear system: asx!(r). Thedistinguished trajectory (¢) is thus defined in
dx a time interval[tg, tx] as that trajectory that is close enough
- +1 17) (at a distance) to a path of limit coordinates. According to

Madrid and Manch@2009 this is expressed formally as fol-
lows: A trajectoryy (¢) is said to be distinguished with accu-
racye (0 < ¢)in atime intervalz, t5] if there exists a con-
tinuous path ofimit coordinates(s', x') wherer' € [1g, 1y1,

the particular solutionp(r) =t — 1 is a generalized fixed
point. It is considered so, because of Efjr)(by means of
the Galilean transformation:

x' =x+vt (18)  such that,
is converted into the autonomous system: ly ) —x'@H) <e, Vi €10, tn]. (20)
!/
d_x ——— (19) In this definitione is a small positive constant within the
dr numerical accuracy we can reach. Further examples of tra-

which has a fixed point azté, = —1. The Galilean transfor- jectories characterized as distinguished are discussed in the
mation (L8) applied to this fixed point transforms it back into work by Madrid and Manch@2009 in two and three dimen-
the particular solutionp(¢) =t — 1. The intuitive geomet-  sions.

rical idea behind our definition for identifying, as distin- Next we illustrate how to identify DT in our 2-D data set.
guished is to search for a trajectory that “moves less” thanFigure 10a shows a contour plot a¥f on ¢* =2 May 2003
others in a vicinity. But what does this mean? For a givenfor =2 days in the neighbourhood of the western eddy.
initial condition x* on an open sef3 at a given timer*, Two circles surround the two minima of this open set. These
“move less” is satisfied by a trajectory that minimizésin minima correspond to initial conditions whose trajectories
Eq. (14). This function measures the arc-length of the curveoutline curves shorter on the phase space than those in their
outlined on the phase space by the trajectory passing througticinity. Figure10b shows the same contour plotaf, but at
(x*,t*) from t* —t to t* + 7. In Fig. 9a, M is represented t = 15 days. A comparison with Fig.0a reveals several dif-
for the system17) atr =0 for r = 3, 4. It is observed that ferences. The neighbourhood of the minimum in the lower
M reaches a minimum at different positian’ for different  circle of Fig. 10b presents a crossed-line structure that has
7. However, although this fact may involve ambiguity in lo- been linked to manifolds. In the interior of this structure there
cating the position for a DT, at large the position of the  exists a minimum whose position does not coincide with that
minimum converges towards what is called timait coordi- obtained at = 2 days. Figurel1 shows the evolution of the
nate Figure9b confirms this point. There the positian™ longitude and latitude position of the minimum withcon-

at which M reaches its minimum is plotted versus tau. For verging to a limit coordinate. In FiglOb, the minimum in
increasingr, x™ approaches the value= —1. This is ex-  the lower circle has reached the position of timeit coor-
actly the passing point of the particular solutignat+ = 0. dinate within the accuracy available with our numerical

In practice as noted byladrid and Manch@2009, the con-  schemes. It is possible to track, in a set of discrete tihes
vergence to the limit coordinates cannot be examined in thehe path(:', x') described by this limit coordinate in a time
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Fig. 9. (a) The functionM att = 0 for r = 3 (dashed line¥ = 4 (solid line); b) evolution of the coordinate™ at which M reaches a
minimum versug att = 0. (Figure taken fronMadrid and Manchp2009.
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Fig. 10. Contour plots of the functiods on 2 May 2003 in the nearby of two positions which are candidates to b&€d)T.= 2 days;
(b) T = 15 days.

interval. The path is displayed in Fig2. In the vicinity of  as that depicted in Fidl3, which has its centre positioned
the path displayed in Figl2 at a distance is found to be  atx™. M is evaluated in the nodes of the grid and if the
DHTyy, a trajectory that remains distinguished from 5 March lowestM-value is not taken at the centre, but in a peripheral
to 11 May 2003. Figurd2 also represents the coordinates of node the grid displaces its centre at this position of the min-
a second trajectory labelled as DﬁJTin an almost comple-  imum, which provides a better approach f0F". M is then
mentary period of time, between 10 May and 1 June 2003reevaluated in the nodes of the new positioned grid, and if the
Trajectories DHT, and DHT,, were first characterised in minimum is found to be at the central node, the search stops.
this data set byMendoza et al(2010. By construction, a This method is used to follow the position of the minimum at
distinguished trajectory defined in this way is a property helditeratively increasing: =, = tx—1+ At, whereAr is a small
by some trajectories in finite time intervals. Alternative def- quantity. The procedure stops when the position of the min-
initions such as those provided lide et al.(2002; Ju etal.  imumx™ does not change for furtherincrements. At the
(2003 do not address this possibility. next timer* 4+ Ar, x™™ is time evolved with the equations of
The ideas described above are itemised in the algorithnmotion, and the iterative search described above starts from
that computes DT, and is fully described\fadrid and Man-  this point.
cho(2009. We give a brief account of it next. It starts by es-  The minimum situated in the interior of the upper circles
timating an approximate positioi™ for the minimum ofp in Fig. 10 presents a structure that evolves withuite differ-
at low 7 in a specific area at a given tim&. Its coordinates  ently to what is found in the lower circles. It remains rather
are refined up to a precisichby considering a grid such flat and circular and does not evolve towards the crossed line
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157.07 : : : : formed by the set of trajectories that in minus (plus) infin-
g ity time approach these special trajectories. In geophysical
157.065¢ contexts this definition is not realizable, because on the one
S 57.06l hand only finite time aperiodic d_ata s_ets are possible a_nd on
the other hand the reference trajectories, the DHTS, typically
157.055 hold the distinguished property in finite time intervals. How-
‘ ‘ ‘ ‘ ever, a detailed description of Lagrangian transport requires
0 2 4 6 8 10 a direct computation of the stable and unstable manifolds of
35.63 T the selected DHTSBranicki and Wiggins(2009 have re-
cently proposed a novel algorithm to compute invariant man-
35.621 ] ifolds in 3-D non-autonomous dynamical systems. Neverthe-
<2 35610 | less, our next presentation is focused on the illustration of
) W this procedure in 2-D flows as corresponds to the selected
35.61 ] data setMancho et al(2004 2008; Mendoza et al(2010;
‘ ‘ ‘ ‘ Branicki et al. (2011 have computed stable and unstable
0 2 4 6 8 10 manifolds of DHTs for 2-D highly aperiodic data sets by us-
T ing the method proposed Mancho et al(2003. Based on

Fig. 11. Evolution of the longitude and latitude position of the hy- Ide.as and techniques of contour adVQCtIDInItSChel 1989

perbolic minimum of the functiod/ on 2 May 2003 versus (in _D”tSCheI and Ambaup997), the algorlthm fzomputgs man-

days). ifolds as curves advected by the velocity field, which at the
beginning of the procedure are small segments aligned with
the stable and unstable subspaces of the DHT. The use of

structure typical of DT with hyperbolic stability (DHT). As these small segments in the starting step is the way to build
discussed irMadrid and Manchq2009 these patterns are @ finite-time version of the asymptotic propesfymanifolds.
typical of a DT with elliptic stability (DET). Figurd4shows  Hence, in our computations the finite-time unstable manifold
the evolution of the coordinates of this minimum versugn ~ atatimer™ is made of trajectories that at timg 1o < 1* were
this case, a DET is not properly identified, because contranPn @ small segment aligned with the unstable subspace of the
to what is found for hyperbolic cases, a limit coordinate is DHT. Similarly, the finite-time stable manifold at a timeis
not reached. DETs are not easily found in highly aperiodicmade of trajectories that at a timg, 7y > ¢* are in a small
flows. A previous attempt has been discusseManrid and ~ Segment aligned with the stable subspace of the DHT. Lo-
Mancho(2009 for a different data set, and a failure to satisfy calising thus a DHT and its stable and unstable subspaces at
the definition is reported. Successful examples of DET arethe starting time constitutes the first step for obtaining man-
however reported for time periodic dynamical systems (sedfolds. The way in which the stable and unstable subspaces
Madrid and Manchp2009for full details). Although this el- ~ are identified is closely related to the way in which DHTs
liptic minimum is not related to a special trajectory, it still are computed. For instance, algorithms for DHTs described
locates a coherent structure related to an oceanic eddy. A Ide et al.(2003; Ju et al.(2003 provide them directly as
reported in the previous section, particle confinement on thigth output, and this is the start-up for the manifolds computed
area persists in a time intervat — ¢, r* + 7] provided thatr ~ in Mancho et al(2004 2008; Branicki et al.(2011). The
is below the limit at which the foliation induced by the stable algorithm for DHTs reported iMadrid and Manch@2009,
and unstable manifolds of nearby hyperbolic trajectories penwhich is the one followed in this work, does not provide these
etrates the inner core. Precisely the fact that these eddy-likéubspaces, but we note that stable and unstable subspaces are
structures eventually perceive nearby hyperbolic trajectoriessupplied by the crossed lines recognised in the contour plots
would justify the absence of DETs in their interior. of the functionM near the DHT. These lines, as reported
In the scenario shown in Figa at the east bound, the jet in Mendoza and Manch(2010; Mendoza et al(2010), are
interacts with the yellowish eddy to form a crossed line struc-advected by the flow and constitute a close-up of the mani-
ture which is identified as an eastern DHT. The path of limit fold near the DHT. Segments within the stable and unstable
coordinates near this DHTis represented in Fig5. It stays ~ Subspaces of the DHT are respectively evolved backward and
as distinguished between 25 March and 24 June 2003 (sef@rward in time to obtain the fully nonlinear stable and unsta-

alsoMendoza et a).2010. ble manifolds Mendoza et a)2010. We focus on describing
the details for obtaining the unstable manifold, noting that
4.2 Finite time invariant manifolds the stable manifold is obtained in a completely analogous

way by inverting the time direction. The unstable manifold
Invariant manifolds are mathematical objects classically dedis represented at timg by a set of points on the unstable
fined for infinite time intervals. The unstable (stable) man- subspace. The manifold is computed in a discrete set of time
ifold of a hyperbolic fixed point or periodic trajectory is increments; for k = 0...N, in which it is represented by a
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well chosen set of points. We explain how to determine theserig. 14. Evolution of the longitude and latitude position of the ellip-
points at every time,. The procedure starts by considering tic minimum of the functionV on 2 May 2003 versus (in days).

the points on the initial segment which are evolved in time

from 1o to #1. As they evolve they may grow apart, giving

rise to unacceptably large gaps between adjacent points omost refined interpolation techniques are required when this
the manifold. The criterion for unacceptable gaps is givenprocedure is applied to evolve the manifold frepto #1

by a quantitys;, which is defined at each point; as the  for k > 0, since manifold becomes more and more intricate.
product of the distancé; between adjacent nodas and  The most successful interpolation scheme of those used in
x j4+1 times the density;, i.e, 0; =d;p;. If 0; > 1,the gap  Mancho et al(2003 20068 is due toDritschel(1989. This
between nodes is unacceptable. The density of points alonmethod represents the curve between pointandx ;1 as

the computed manifold is measured py, for which sev-  the polynomial given by Eq4@) in the Appendix B. The cri-
eral expressions are proposé&ti{sche| 1989 Dritscheland  terion is verified for each pair of adjacent points making up
Ambaum 1997). We consider it defined as in EalQ) in Ap- the manifold at; and the procedure is iterated until there are
pendix B. When a gap between nodes at tifnis too large,  no gaps exceeding the tolerance. Once the gap size accept-
according to the criterion just defined, it is filled by inserting ability condition is satisfied at we use the point redistribu-

a point atrg between the same nodes using an appropriatdion algorithm described inkitsche| 1989 in an attempt
interpolation technique. At this stage the interpolation couldto remove points from less computationally demanding parts
be simple because the curvegis a straight line. However, of the manifold (seeMancho et al. 2004). This algorithm
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Fig. 15. Path of limit coordinates for DHZ.

2003-05-04 12:00:00.000000 UTC such as FTLE or FSLE compute manifolds at a given time

' ‘ ‘ ‘ as ridges of a scalar field, thereby providing pieces of curves
that are approximately material curves. However, in these ap-
proaches links between pieces of curves are difficult to estab-
lish as they fade away and this is a disadvantage compared
with the direct computation of manifolds, which provides
long complex linked curves due to the asymptotic condition
imposed in their computation.

As noted in the previous subsection, DlTs character-
ized as distinguished in a finite-time interval: from 5 March
to 11 May 2003. A question then to be addressed is what
happens to the unstable manifold in Fig.beyond 11 May,
once DHTy losses its distinguishing property? It is observed
that the manifold computation beyond this time may con-
tinue, because even if the reference trajectory on it is lost,
157E 158E 159E the computation still provides a material surface advected by
lon the flow, and second this advected object is still asymptotic
to DHTw in the finite-time sense introduced above. A sim-
ilar argument can be made for the stable manifold in times
prior to 5 March. DHTs and their stable and unstable sub-
spaces are the starting step of the algorithm for direct com-
putation of manifolds. However, as reportedMiancho et al.
(2004 20068, they are not required by the algorithm be-

38N 1

37N}

lat

36N

35NF

155E 156E
Fig. 16. Stable (blue) and unstable (red) manifolds of QDN
the 4th of May 2003. (Figure taken froMendoza et a).2010.

works as we describe in Appendix B. The complete proce-
dure to evolve the unstable manifold fragto 1 is repeated . . o
yond this point. Nevertheless, it is useful to have the full

for successive timeg , 7 until the end timey is reached. ¢ the DHT for transport description purposes, because
Stable manifolds are obtained in a similar way, but the com-. . . . .
it marks a reference point which separates the manifold into

putation s started at time . . : two branches. Section 5 illustrates the application of this di-
Examples of manifolds computed with this method are vision

shown in Figs.6 and 16 for the western DHJ;. Mani-

folds computed in this way become very long and intricate

curves and from them transport is described in great detail a§-3 Frame invariance

discussed in the next section. Almost every distinguishable

line in Fig. 16 contains numerous foldings of each manifold, In this section we discuss the issue of “frame invariance”. To
thus confirming how intricate they may be. Other approachedegin with, it is important to understand what is meant by
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this phrase in the context of our work. There are two main The DHT in the rotating fram@pyt is obtained by trans-
issues. One is how the Lagrangian tools, such as those baséorming the DHT in the non-rotating frame with the coordi-
on M, perform in different coordinate systems. The other is nate transformation:
how stability and geometrical features of the flow transform
under coordinate transformations. It is expected that undetipHT () = R(1) " xpHr(1). (26)
coordinate transformations, the results obtained from\the
function will transform according to the manner in which the
type of invariant objects that th& function is expected to
recover transform. However, we note that in general thes
invariant objects are not preserved under arbitrary coordinat
transformations, as we will illustrate in this section. Three
examples will provide evidence of these issues below.

The functionM is used for two different purposes. One is
discovering and visualising the global dynamics of a time-
Sviﬂi? gﬁ?:gf (l;?,(;%zl% roeca(l:llusrv:elsf mzn;?(l)?;i?;{)eossg;o; 3;[ coordinatesthat are at the basis of the definition diftin-

namical system are transformed to a rotating frame or to atghglshed trijﬁctorﬁlvenr:n Madh”d antc:] '\:I?r? CT?.OFP' Inf DT
frame moving with a constant velocity (i.e. a Galilean trans- IS paperine authors have shown that the detinition o

formation of the coordinates) the manifolds will transform discussed in S?Ct- 4.1lis ro bust with respect to _rotat|_0ns n
to manifolds in the new coordinate system under the saméxhe sense that m_the rotat_mg fra_me the expresaigar is
transformation of coordinates. Of course the valuesfoht equally.characterlzed as distinguished. .

specific points of space will certainly change with the ref- The I|n.ear example in S(?Ct' 4.1 also |I!us_trat§s that ""?‘”S'
erence frame, but the edges at whighchanges abruptly — Iatlions with 'constant velocity preserve distinguished trajec-
which are the features containing the Lagrangian information *"'€S (DT) in the sense that in the new frame of referen_ce
— are transformed with the change of coordinates in the sam e wansformed DT also preserves the property of being

manner in which the manifolds themselves are transformed. istinguished. However not all caordinate iransformations

This is expected to be the case since the heuristic argumer;iJ(reserve distinguished trajectories. In particular, coordinate
introduced to justify whyM detects manifolds is indepen- transformations involving trajectories of the velocity field do

dent of a particular coordinate frame — manifolds play thenot necessarily preserve fixed points or their stable and un-

role of dividing the phase space into regions correspondingStal‘_blte manlfol_(iljs, ‘;r:d éve ||Ius_tra|te tht's n.ext.
to particles with qualitatively different dynamical fates and etus consider the dynamical system:

Stable and unstable manifolds pfyt are computed for

o =2 andt = 1 thereby obtaining the output displayed in
é:ig. 17a. These manifolds have been obtained with the al-

orithm reported in Sect. 4.2 which follows the approach by

ancho et al(2003 2004). The figure confirms that man-
ifolds are objects rotating with the coordinates. Figlire
confirms that the Lagrangian descriptors discussed in Sect. 3
provide the same manifolds in the rotated frame.

A second use of the functioM is the computatiohimit

this is the case for any reference frame. dx
We verify this argument for the periodically forced Duff- gy — x—1
ing equation under the rotation; dy
: - =-V (27)
R() = (COS@I —SIhwt) (21) dr
sinwr coswt J* for which (x = 1, y = 0) is a hyperbolic fixed point. Let us
In the rotating frame this equation takes the form: consider the trajectory” ():
niy SinZwt cosvt+w\ (N 15¢ +1
(;7'2> _<00320t—w —sin2wt )<ﬂ2> xp(t)=< 056 ) (28)
. . 3. [ Sinwt . . . ) )
+ (e sint — [coswint — SiNwin2]”) <c08a)t> . (22) A coordinate transformation based on this trajectory is the
. . . following:
The Duffing equation in the non-rotating system:
X1 =2 (23) *'=x-x"(), (29)
. 3 .
X2 = X1 — X7 +€SINn(r) (24)  which transforms the syster?) into:
possesses a distinguished hyperbolic trajectory (DHT). Thisd N
DHT can be computed as a perturbation expansiereibpout @ XV,
the hyperbolic fixed point in the = 0 case: ddtzv
y N
2 — N, 30
o y (30)

XpHT(t) = (25) - . . ,
. 3 i3 g 2 This is again an autonomous dynamical system with a hyper-
B E(smz> 3 (25' 1+ 3sinzco t) L+ o5, bolic fixed point at(x" =0, y" =0). The time dependent

2\cosr/ 40 %cos3t + 3sirftcos coordinate transformatior29) obviously does not transform
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Fig. 17. (a)lnvariant manifolds for the rotating Duffing equation for= 2 andt = 1; (b) contour plot of descriptoM for F = ||v|| with
7 = 10 at the same and: values.

this fixed point into the old onéx =1,y = 0). Moreover,  based on any trajectory 084) x” (t) = ct +d:
this transformation does not preserve the stable and unsta—N
ble manifolds themselves. The unstable manifold of the fixedt" =x — (¢t +d), (35)

point (x, y) = (1, 0) in the original system is given by
the system becomes:

w(3)
dr
for arbitrary reakr £ 0. On the other hand, the unstable man- = . » i
ifold of the hyperbolic fixed pointx, y) = (0, 0) in the trans- Wh_lch is also autonomous and all |n|tlgl conditions are f|X(_ad
formed system is given by points. We note that the reason for which the transformation
(35) does not preserve fixed points is that it is based on a
N B trajectory of the original system, despite the fact that it is a
*u :< ) (32) Galilean transformation.
Finally, we remark that it has been often stated that
for arbitrary realg # 0. The transformation2g) does not | agrangian “structures” and the methods used to describe
map a point in the unstable subspageto a point in the  them should be frame-independent (see for instdfaaz-

-0 (36)

unstable subspacs) since in general: mand and Haller2012. However, from these examples
8 w1 156 41 we see that fixed points and invariant manifolds of hyper-

( ) # ( ) — ( ’ ) (33) bolic fixed points may not be preserved by transformations
0 0 0.5e7 based on particle trajectories. This indicates that more reflec-

We note that time-dependent transformations based on trgiOn is required on what is meant in this context by frame-
jectories may have even more dramatic effects on invarianindependence and what truly must be demanded of geomet-
objects, such as tori. For examplexif (r) corresponds to a rical structures and these tools for useful Lagrangian descrip-
trajectory in a torus in the original system it will transform to tONs.

a fixed point under this transformation.

Fmally, we consider anoth_er exqmple of a tr_ar_lsformatlon5 Transport routes across the ocean surface

of coordinates based on trajectories of the original system.

Consider the one-dimensional autonomous system: In this section we show how to obtain transport information
dx from the output of the tools described in previous sections.
P (34) We start by describing transport across eddies displayed in

Fig. 7. Particles in their interior, despite belonging to flows
wherec is a nonzero constant constant. This system has ndn a quite chaotic regime, as is the case of the ocean sur-
fixed points. However, if we consider the transformati2®) (  face, typically do not experience the butterfly effect which
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is characterised by a high sensitivity to initial conditions. The boundary intersection points are markedasanda,.

On the contrary, particles contained therein remain gath{ntersection points are invariant, which means that if the sta-
ered together for long periods of time, during which they ble and unstable manifolds intersect in a point at a given time,
form spatially coherent structuresMathematically, eddies then they intersect for all time, and the intersection point is
are related to non-hyperbolic flow regions, where particleshence a trajectory. For a better understanding of the time evo-
evolve mostly “circling”. The exponentially increasing sep- lution of lobes, the positions of trajectories anda,, are de-
aration between particles is characteristic of hyperbolic re-picted at different times. FigutEd shows longer pieces of the
gions, which are also responsible for unpredictability. Es-unstable and stable manifolds at the same days as those se-
sentially, transport across the ocean surface is governed bigcted in Fig.18. Manifolds intersect forming regions called
the interplay between these dispersive and non dispersiviobes. Only the fluid that is inside the lobes can participate in
objects. The Lagrangian description of eddies identifies thehe turnstile mechanism. Two snapshots showing the evolu-
existence of an outer collar, where the interchange with thdion of lobes from 19 March to 3 April are displayed. There
media is understood in terms of lobe dynamics (3egeph  one may observe how the lobe which is inside the eddy on
and Legras2002 Branicki et al, 2011) and an inner core, 19 March goes outside on 3 April. Similarly, the lobe which
which is robust and rather impermeable to stirring, as alreadys outside on 19 March is inside on 3 April. Trajectorigs
described in Sect. 3. In this section we focus on describingand a;, are depicted, showing that they evolve, circulating
transport across the outer part of the eddy which is locatedtlockwise around the DHyJ. The green colour applies to the

at the west end in Figl. The stable and unstable manifolds lobe that evolves towards the interior of the eddy while the
of DHTw, which are involved in the transport across this magenta area evolves from the inside towards the outside.
vortex, are shown in Figl6. These manifolds confirm the Between 19 March and 23 April, several lobes are formed,
exchange of water by the presence of the turnstile mechamixing waters at both sides of the eddy. Fig@ficontains a
nism for a period of one month from 19 March to 23 April. time sequence showing the evolution of several lobes created
The turnstile mechanism has been extensively used and ey the intersection of the stable and unstable manifolds. The
plained in the literatureMalhotra and Wiggins1998 Rom- selected days ares = 3 April, r3 =10 April, 14 = 17 April
Kedar et al. 1990, and has been found to play a role in ands = 23 April. A sequence of trajectories,, a;,, a,, ...
transport in several oceanographic conteMsifdoza et a).  obtained from the intersection points is depicted. These tra-
2010 Mancho et al.2008 Coulliette and Wiggins2001). jectories evolve clockwise surrounding the vortex, and serve
This mechanism is described from pieces of stable and unas references for tracking lobe evolution. Beyond 23 April we
stable manifolds of the identified DHT. A first point to ad- cannot locate further intersections between the stable and un-
dress is the selection of those pieces of invariant manifoldsstable manifolds of DHJ,. Hence, no more lobes are found,
from messy curves such as those in Hi§. For this purpose  and our description of the turnstile mechanism ceases.

we consider that a manifold has two branches separated by The turnstile mechanism across the eddy coexists in time
the DHT which is taken as a reference point on the mani-with other transport routes observed, for instance, across
fold, and selections of portions of manifolds are made fromstructures such as the reddish main current in Figven-

this reference point. Given that trajectories may retain thedoza et al(2010 have addressed transport across this jet in
distinguished property only in finite time intervals, the iden- terms of DHT and invariant manifolds. There it has been
tification of the two branches on the manifold is possible only found that the turnstile mechanism is active in transport-
on time intervals when the trajectory remains distinguished.ing masses of water across such a current, and it has been
Beyond that time the manifold computation may continue, proven that the exchange survives between 3 April 2003 and
but the reference point on it is lost. The turnstile mecha-26 May 2003. To provide a complete overview of the whole
nism identifies masses of water crossing a time-dependerttansport picture, we next summarise the results reported by
Lagrangian barrier separating the inside from the outside(Mendoza et a).2010. The turnstile mechanism is described
The Lagrangian barrier around the vortex in Fi§at atime  from pieces of stable and unstable manifolds of the identified
t, is defined by selecting a branch of the unstable manifoldDHTSs, at the east and west limits of the main stream. The
which starts at DHJ; and surrounds the eddy towards the mechanism identifies masses of water crossing the time de-
left side, and a branch of the stable manifold which startspendent Lagrangian barriers depicted in Fg, which sep-

at DHTyw and surrounds the eddy towards the right side.arates north from south. The figure shows a piece of the un-
We choose the segments considering that they must interstable manifold of DHJ; and a piece of the stable mani-
sect at precisely one poini, and that they must form a fold of DHTg that define those barriers on days 3 April and
relatively smooth boundary (i.e, free of the violent oscilla- 17 April. For consistency with the notation used to describe
tions displayed by each of the manifolds when approachingransport across the eddy we name these dates=a3 April
DHTy from the opposite side). Figur8 shows the selec- andry =17 April. Only portions of one branch are displayed
tions outlining the barriers for the dates=19 March and  for each DHT. They intersect at points marked with letters
2 = 3 April 2003. The blue line stands for the stable mani- ,, andb,,. They are trajectories which maintain their labels
fold, while the red line corresponds to the unstable manifold.
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Fig. 18.Lagrangian barriers for the western eddy at dates 19 March and 3 April 2003. These have been made from finite length pieces of the
stable and unstable manifolds of DigT The boundary intersection points are denoted respectively, anda, .
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Fig. 19. Turnstile lobes across the western eddy at dates 19 March and 3 April 2003. The intersection trajgctanies,, are displayed

at both dates showing their clockwise circulation around the eddy. The magenta area evolves from the inside to the outside while the green
area does from the outside to the inside.

in all pictures in order for the lobe evolution to be easily = The active transport mechanisms just described are simul-
tracked. taneous in time and the full description of transport routes
Longer pieces of the same manifolds are represented ishould address how their action over ocean particles is com-
Fig. 22. Figure 22b shows the asymptotic evolution on bined. A complete representation of coincident events in
17 April of the lobes represented in F2ga on 3 April. The  Fig. 23 reveals intersections between the lobe that is outside
green lobe area contains particles in the north on 3 April thathe eddy (magenta colour in Fig. 20a) on 3 April, and the
eventually came to the south on 17 April. Magenta particleslobe which at the same time is located to the north of the bar-
that are analogously first in the south eventually come to theier (green colour in Fig. 22a). The intersection area in grey
north on 17 April. colour, as shown in Fig23 for 3 April, provides dual infor-
Lobe dynamics across the main stream may be identifiednation on the particles contained therein. It shows that those
until 26 May 2003. On this date, DHi has lost its dis- particles were inside the eddy on 19 March (as indicated in
tinguished property and the reference point on the unstablé&ig. 19) and were to be at the south of the Lagrangian barrier
manifold has disappearetiendoza et al(2010 have re-  across the stream on 17 April (see F&). Further similar
ported that it is possible to identify a new reference pointintersections take place between the magenta lobes in the se-
on the manifold, which is given by DI—W. The manifold is  quence displayed in Fi@0, and the sequence of lobes across
not asymptotic to DH'J;,. However, DHI{, marks a distin- the jet that transports water from north to south (-
guished trajectory on the manifold with certain accuracy ~ doza et al.2010for a full description). Once particles reach
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Fig. 20. Sequence of lobes mixing waters from inside the eddy to outside and viceversa in selected days of yé&gr2Ap8l; (b) 10 April;
(c) 17 April ; (d) 23 April.
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Fig. 21.Boundaries at days 3 April 2003 and 17 April 2003 constructed from a (finite length) segment of the unstable manifoldyof DHT
and a (finite length) segment of the stable manifold of HThe boundary intersection points are denoted respectively,bgnd b, .
(Figure taken fronMendoza et a).2010.

the southern region, further interactions will take place with  Additional complex routes may be traced for particles
dynamic structures covering the ocean surface in that area. ejected from the western eddy. In fact, we are able to show
that there is a non-zero flux from this eddy towards the eddy
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Fig. 22. Turnstile lobes across the main stream at days 3 April and 17 April 2003. The magenta area evolves from south to north while the
green area does from north to south. (Figure taken ftendoza et a).2010.
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Fig. 23. Intersection of lobes governing transport across the western  a7zf
eddy and those governing transport across the main stream of the

Kuroshio current.
36N

at the eastern limit. On 16 April, Fi4a shows pieces of = ¥/

stable and unstable manifolds of the eddies at the west anc
east. The magenta coloured lobe represents the water ejecte
from the western eddy. There exists a non-zero intersection
area between this lobe and the lobe regulating the water com-  33Nr

34N

ing into the eastern eddy. The intersection area is depicted ir April 28, 2003
dark grey. A remaining piece Qf the Iobe.penetratlng on the 156E 150E 160E pro T6aE 166E
eastern eddy is left in green. Figu2éb confirms the entrain- lon

ment of this area on the eastern vortex on 28 April. . . .
A | d L Id . Fig. 24.Intersection of lobes governing transport across the western
complete transport description would require CONNEC-4nd eastern eddie@) On 16 April the grey area shows a portion

tion of the information provided by all the dynamic structures o i ejected from the western eddy that will be entrained by the
tilling the ocean surface which are displayed by the functioneastern eddy(p) on 28 April the grey area has come into the eastern
M in Fig. 7. However, in practice, providing thorough in- eddy. Figures show insets with an amplification of the entrainment
sights in terms of manifolds as discussed in this section isprocess.

not always possible, because on the one hand it requires that

the features of the observed dynamic patterns resemble those
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described in the mathematical literature, and on the othefrom them by selecting portions along the branches at both
hand, that they must have certain persistence in time. Rapidlgides of the DHT. These selections allow transport routes
transient regimes, such as those occurring in large areas @fcross the ocean surface to be identified; for instance, masses
the analysed flow, are difficult to understand because theyfwater penetrating or leaving an eddy, then of those masses
are related to changes in the topology of the flow (see Manyprotruding the eddy, parcels are identified crossing the main
cho et al 2008; Branicki et al. 2011; Mosovsky and Meiss current or coming into a second eddy. A complete transport
2011). Related to these changes are mathematical issues sugdiscription connecting the information provided by all the
as non-uniform hyperbolicity, addressed for instanc®r{  dynamic structures tilling the ocean surface is foreseen. De-
reira and Pesin2007), not yet completely understood for spite the advances made, however a full transport description
general non autonomous systems such as those representstdl remains a challenge because conceptual difficulties exist

by Eq. @). that are yet to be solved, especially when dealing with highly
transient regimes in which the topology of the flow changes
in time.

6 Conclusions As a summary, we can say that our Lagrangian techniques

have proven fluid exchange across the main current and be-

This article reports the combined used of several Lagrangiatween eddies in the Kuroshio region in a range of dates dur-
tools, some of them recently developed, and shows their suang the year 2003. This methodology constitutes an efficient
cess in obtaining extensive details about the description ofool of analysis for the uncountable data sets which nowadays
purely advective transport events in arbitrary time depen-are obtained from altimeter satellite or by other means. The
dent flows. We demonstrate the capabilities of these toolgperformance of the machinery on the analyzed data opens a
by analysing 2-D data sets obtained from altimetric satellitesgateway to its applications in any kind of realistic flow for
over the Kuroshio Current. operational oceanography purposes and could be thought of

We have first considered the evaluation of global La-as an alternative for the study of transport in oceanic flows
grangian descriptors over a general vector field. In particulato campaign measures based on quasi Lagrangian drifter re-
we have chosen two types of descriptors, referred to as fundeases.
tion M. Contour plots of these functions provide a time de-
pendent phase portrait which is visualised by sharp changes .
in the colour code oM. These abrupt variations separate re- APPENdix A

gions of trajectories with qualitatively different behaviours, We discuss here details about the numerical evaluatiod of

and since this is exactly what invariant man|folq§ sgparqteé[‘s defined in Eq.1@). Trajectories(x1(r). x2(1)) of the sys-
boundaries of homogenous coloured areas position invaria . )
em (L1)—(12) are obtained numerically, and thus represented

manifolds. The dynamic picture provided B¢ reveals at - . . .
a glance the organising centres of the flow, hyperbolic an(fl)sy afinite number of pointd, . A discrete version of £q1¢)

non-hyperbolic flow regions, invariant manifolds and jets. In
other words it identifies the essential dynamical elements that ~ , _; (]f;/<

must be considered by any kinematic model describing they, —
exchange of trajectories on a given data set.

Although the dynamical structures are clearly visualised
from M, a detailed description of transport requires the full \where the functions1 ;(p) andxz ;(p) represent a curve
identification of the organising trajectories, the distinguishedinterpolation parametrised by, and the integral
hyperbolic trajectories, and of their finite time stable and un-
stable manifolds. Our discussions are focused on 2-D flows,”/ dx1 :()\2  (dxz :(p)\2
although extension to higher dimensions are possible. Dis-/\/( 1.7 (P ) +< *2.70P ) dp (38)
tinguished hyperbolic trajectories are computed by first ex- dp dp
amining M as defined from Eq.1¢), and identifying can-
didate areas which act as the organising centres of the flowis computed numerically. In accordance with the methodol-
The search is completed by computing paths of limit coor-ogy described inNladrid and Manchp2009, we use the in-
dinates on each recognised area for a full identification ofterpolation method proposed Byitschel(1989 in the con-
the DHT positions. At a third stage, finite time stable and text of contour dynamics. The interpolation equation, later
unstable manifolds of these DHTSs are directly computed asused in this article, is given by expressiatb). To compute
advected curves. The algorithm starts with a small segmenthe integral 88) we have used the Romberges method (see
aligned either along the stable or the unstable subspace of theress et al1992) of order 2K whereK = 5. In the results re-
DHT, making this segment evolve either backwards or for-ported in this article we have used this technique to evaluate
wards in time, respectively. Manifolds computed in this way Eq. (14). Another possibility for evaluating Eq38), which
become long intricate curves; transport details are obtaineds less accurate but simpler and faster, is to approach it by

dx1;(p)\? N (dXZ, i

2
_— d , 37
L - )p @37)
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the length of the linear segments linking successive points obf u correspond to a high point density. In our computations
the trajectory. In order to evaluate EQ.5f where F(x(¢)) it is fixed to 0.005. The quantity; in Eq. @0) is defined in
depends not only on velocity but also on other vectors suchterms ofx,

as acceleration, the time derivative of acceleration or their

combinations, we propose a more versatile method which i&j = (Kj +£;+1)/2, (41)
easily adapted for any choice &f. For instance, in the case

whereF(x(1)) = ||[v(x (1), 1)|], the integral in Eq.15) eval- ~ Which in turn is defined by

uates the area below the graph|v(x(#),7)|| in the referred

time interval. In order to evaluat&, we consider the integral _ Wj-1kj-1t+ Wik

Kj= 42
as the following one-dimensional dynamical system: ! Wj—1+w; (42)
ay _ (). D]l. (39)  Which uses the weighting; = d;/(d?+4¢?) and the further
dr curvatures ;, which itself is defined by
For the initial conditionY (t*) = 0, the areaA is provided
by the value ofY att* +r minus the value ot atr* —7, &, = /Kj?+ 1/L2, (43)

i.e. Y(t*+1)—Y(@*—1t) = A. The integration of the sys-
tem @9 is performed with a 5th order variable time step wherex;, finally, is the local curvature:

Runge-Kutta method, in particular with the subroutikgs

described inPress et al(1992. The peculiarity of this dif- Kj=2 aj-1bj —bj-1a; . (44)
ferential equation is that it depends oboth explicitly and |d]?71t‘,~ +d]?t,-_1|

implicitly (through the trajectory), and expressions such as

the right hand side of the systeri1j—(12) only provide  Here

the explicit dependence(x,t). A Runge Kutta step from
to to 11 applied to Eq. 89) requires the evaluation db|
along trajectories at intermediate steps- Ar. To this end

the argumenk that must be passed || at timero+ A1y inserting a point between the same nodes.akhe point
must be obtained by evolving the trajectory from. £(70)) 5 computed by interpolating with = 0.5 along the curve
to (to + At, x(fo + Ar)) according to the systeni)—(12). that links the points 1, x ;:

This method is quite adaptable, since from one descriptor to T
another it is only the right hand side in EGY which needs  x(p) =x; +p t; +1n,(p) n;, (46)
to be modified. This is the technique used for the case in

which F(x (1)) = ||la(x(¢),t)||, for which we report results. ~ wheret; is given by Eq. 45) and

ti=(aj,bj))=xj41—xj, tj e R (45)

When a gap between nodes at timés too large, itis filled

nj=(-bj,aj), n; e R? (47)
Appendix B
PP nj(p)=uip+Bip*+vipd.  n;(p)eR. (48)

We provide full details of the equations and algorithms use

; 2 ) dThe cubic interpolation coefficienis;, 8; andy; are
to compute the unstable manifolds. At each time a dis- P 15 B Vi

crete set of time incremenitg , k = 0...N ], the unstable man- 1 1

ifold is represented by a discrete set of points In partic- 1 = ~34iKj — gdikj+1. (49)

ular, at timezg it is a small segment aligned along the un- 1

stable subspace of the hyperbolic trajectory, represented bﬂj = Edj’(j’ (50)

five points. They are evolved along trajectories until time

and each point is considered to leave unacceptable gaps withj = édj (Kj+1—Kj). (51)

its neighbours if the measueg > 1. Hereo; = d;p; where

dj = xj+1—x; andp; is a density defined as follows: Once the manifold satisfies gap size acceptability condi-

tion at every node, i.ed;p; = o; < 1, the point redistribu-

(Isz)% . tion algorithm is applied. This is useful to eliminate points

(40)  in regions of the manifold where they may have accumu-
lated Mancho et al.(2004). This algorithm is described in

or 2/¢, whichever is smaller. Herg serves as a small-scale (Dritschel 1989 and it works as we describe next. Lebe

cut-off distance for resolving manifold details which we have the number of nodes a:

fixed to 10°® and L is a typical length scale fixed to 3. The "

parametep controls the overall point density along the man- qg= ZUJ' (52)

ifold and needs tuning for individual problems. Small values i

L= +K,
Pj L J

—1
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and defingi = [¢] + 2 (i.e. two more than the nearest integer de la Gamara, A., Mechoso, C. R., Ide, K., Walterscheid, R., and
toq). During redistribution the end points of the manifold are  Schubert, G.: Polar night vortex breakdown and large-scale stir-
held fixed. The: —2 “old” nodes between the end points will ~ ring in the southern stratosphere, Clim. Dynam., 35, 965-975,
be replaced byi — 1 entirely new nodes in such a way that 2010

the spacing of new nodes is approximately consistent witHi€ |2 @mara, A., Mancho, A. M., Ide, K., Serrano, E., and Me-

the desired average density, controlled by the parameter choso, C. R.: Routes of transport across the Antarctic polar vor-

PR n ;= " tex in the southern spring, J. Atmos. Sci., 69, 753-767, 2012.
Let o; = oji/q SO thatzj=10j = 1. Then, the positions of d’'Ovidio, F., Isern-Fontanet, J. dpez, C., Gafa-Ladona, E., and

the new nodes = 2, ..., i are found succesively by seeking  Herrandez-Gara, E.: Comparison between Eulerian diagnos-

for each successivga p such that, tics and the finite-size Lyapunov exponent computed from al-

i1 timetry in the Algerian Basin, Deep Sea. Res. Pt. |, 56, 15-31,
, r 2009.

Zal +0jp =i—1 (53) Dritschel, D. and Ambaum, M.:. A contour-advective semi-

=1 Lagrangian numerical algorithm for simulating fine-scale conser-

and placing each new nodebetween the old nodeg and vative dynamical fields, Quart. J. Roy. Meteor. Soc., 123, 1097—

j + 1 atthe position (p) given in Eq. 46). 1130, 1997.
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