1,401 research outputs found

    Scalability of Quasi-hysteretic FSM-based Digitally Controlled Single-inductor Dual-string Buck LED Driver To Multiple Strings

    Get PDF
    There has been growing interest in Single-Inductor Multiple-Output (SIMO) DC-DC converters due to its reduced cost and smaller form factor in comparison with using multiple single-output converters. An application for such a SIMO-based switching converter is to drive multiple LED strings in a multi-channel LED display. This paper proposes a quasi-hysteretic FSM-based digitally controlled Single-Inductor Dual-Output (SIDO) buck switching LED Driver operating in Discontinuous Conduction Mode (DCM) and extends it to drive multiple outputs. Based on the time-multiplexing control scheme in DCM, a theoretical upper limit of the total number of outputs in a SIMO buck switching LED driver for various backlight LED current values can be derived analytically. The advantages of the proposed SIMO LED driver include reducing the controller design complexity by eliminating loop compensation, driving more LED strings without limited by the maximum LED current rating, performing digital dimming with no additional switches required, and optimization of local bus voltage to compensate for variability of LED forward voltage (VF) in each individual LED string with smaller power loss. Loosely-binned LEDs with larger VF variation can therefore be used for reduced LED costs.postprin

    Using an LED as a sensor and visible light communication device in a smart illumination system

    Get PDF
    The need for more efficient illumination systems has led to the proliferation of Solid-State Lighting (SSL) systems, which offer optimized power consumption. SSL systems are comprised of LED devices which are intrinsically fast devices and permit very fast light modulation. This, along with the congestion of the radio frequency spectrum has paved the path for the emergence of Visible Light Communication (VLC) systems. VLC uses free space to convey information by using light modulation. Notwithstanding, as VLC systems proliferate and cost competitiveness ensues, there are two important aspects to be considered. State-of-the-art VLC implementations use power demanding PAs, and thus it is important to investigate if regular, existent Switched-Mode Power Supply (SMPS) circuits can be adapted for VLC use. A 28 W buck regulator was implemented using a off-the-shelf LED Driver integrated circuit, using both series and parallel dimming techniques. Results show that optical clock frequencies up to 500 kHz are achievable without any major modification besides adequate component sizing. The use of an LED as a sensor was investigated, in a short-range, low-data-rate perspective. Results show successful communication in an LED-to-LED configuration, with enhanced range when using LED strings as sensors. Besides, LEDs present spectral selective sensitivity, which makes them good contenders for a multi-colour LED-to-LED system, such as in the use of RGB displays and lamps. Ultimately, the present work shows evidence that LEDs can be used as a dual-purpose device, enabling not only illumination, but also bi-directional data communication

    Novel Offline Switched Mode Power Supplies for Solid State Lighting Applications

    Get PDF
    In recent years, high brightness light emitting diodes (HBLEDs) have increasingly attracted the interest of both industrial manufacturers and academic research community. Among the several aspects that make LED technology so attractive, the most appreciated characteristics are related to their robustness, high efficiency, small size, easy dimming capability, long lifetime, very short switch-on/switch-off times and mercury free manufacturing. Even if all such qualities would seem to give to solid state lighting a clear advantage over all the other kinds of competing technologies, the issues deriving from the need of LED technology improvement, on one hand, and of the development of suitable electronic ballasts to properly drive such solid state light sources, on the other, have so far hindered the expected practical applications. The latter problem, in particular, is nowadays considered the main bottleneck in view of a widespread diffusion of solid state technology in the general lighting market, as a suitable replacement of the still dominant solutions, namely halogen and fluorescent lamps. In fact, if it is true that some aspects of the devices’ technology (e.g. temperature dependent performance, light quality, efficiency droop, high price per lumen, etc…) still need further improvements, it is now generally recognized that one of the key requirements, for a large scale spread of solid state lighting, is the optimization of the driver. In particular, the most important specifications for a LED lamp ballast are: high reliability and efficiency, high power factor, output current regulation, dimming capability, low cost and volume minimization (especially in domestic general lighting applications). From this standpoint, the main goal is, therefore, to find out simple switched mode power converter topologies, characterized by reduced component count and low current/voltage stresses, that avoid the use of short lifetime devices like electrolytic capacitors. Moreover, if compactness is a major issue, also soft switching capability becomes mandatory, in order to enable volume minimization of the reactive components by increasing the switching frequency in the range of the hundreds of kHz without significantly affecting converter’s efficiency. It is worth mentioning that, in order to optimize HBLED operation, also other matters, like the lamp thermal management concern, should be properly addressed in order to minimize the stress suffered by the light emitting devices and, consequently, the deterioration of the light quality and of the expected lamp lifetime. However, being this work focused on the issues related to the research of innovative driving solutions, the aforementioned thermal management problems, as also all the topics related to the improvement of solid state devices’ technology, will be left aside. The main goal of the work presented in this thesis is, indeed, to find out, analyze and optimize new suitable topologies, capable of matching the previously described specifications and also of successfully facing the many challenges dictated by the future of general lighting. First of all, a general overview of solid state lighting features, of the state of the art of lighting market and of the main LED driving issues will be provided. After this first introduction, the offline driving concern will be extensively discussed and different ways of approaching the problem, depending on the specific application considered, will be described. The first kind of approach investigated is based on the use of a simple structure relying on a single power conversion stage, capable of concurrently ensuring: compliance with the standards limiting the input current harmonics, regulation of the load current and also galvanic isolation. The constraints deriving from the need to fulfil the EN 61000-3-2 harmonics standard requirements, when using such kind of solution for low power (<15W) LED driving purposes, will be extensively discussed. A low cost, low component count, high switching frequency converter, based on the asymmetrical half bridge flyback topology, has been studied, developed and optimized. The simplicity and high compactness, characterizing this solution, make it a very good option for CFL and bulb replacement applications, in which volume minimization is mandatory in order to reach the goal of placing the whole driving circuitry in the standard E27 sockets. The analysis performed will be presented, together with the design procedure, the simulation outcomes and the different control and optimization techniques that were studied, implemented and tested on the converter's laboratory prototype. Another interesting approach, that will be considered, is based on the use of integrated topologies in which two different power conversion stages are merged by sharing the same power switch and control circuitry. In the resulting converter, power factor correction and LED current regulation are thus performed by two combined semi-stages in which both the input power and the output current have to be managed by the same shared switch. Compared with a conventional two-stages configuration, lower circuit complexity and cost, reduced component count and higher compactness can be achieved through integration, at cost of increased stress levels on the power switch and of losing a degree of freedom in converter design. Galvanic isolation can be provided or not depending on the topologies selected for integration. If non-isolated topologies are considered for both semi-stages, the user safety has to be guaranteed by assuring mechanical isolation throughout the LED lamp case. The issue, deriving from the need of smoothing the pulsating power absorbed from the line while avoiding the use of short lifetime electrolytic capacitors, will be addressed. A set of integrated topologies, used as HBLED lamp power supplies, will be investigated and a generalized analysis will be presented. Their input line voltage ripple attenuation capability will be examined and a general design procedure will be described. Moreover, a novel integrated solution, based on the use of a double buck converter, for an about 15W rated down-lighting application will be presented. The analysis performed, together with converter design and power factor correction concerns will be carefully discussed and the main outcomes of the tests performed at simulation level will be provided. The last kind of approach to be discussed is based on a multi-stage structure that results to be a suitable option for medium power applications, like street lighting, in which compactness is not a major concern. By adopting such kind of solution it is, indeed, possible to optimize converter’s behavior both on line and on load side, thereby guaranteeing both an effective power factor correction at the input and proper current regulation and dimming capability at the output. Galvanic isolation can be provided either by the input or the output stage, resulting in a standard two stage configuration, or by an additional intermediate isolated DC-DC stage (operating in open loop with a constant input/output voltage conversion ratio) that namely turns the AC/DC converter topology into a three stage configuration. The efficiency issue, deriving from the need of multiple energy processing along the path between the utility grid and the LED load, can be effectively addressed thanks to the high flexibility guaranteed by this structure that, relaxing the design constraint, allows to easily optimize each stage. A 150W nominal power rated ballast for street solid state lighting applications, based on the latter (three stage) topology, has been investigated. The analysis performed, the design procedure and the simulations outcomes will be carefully described, as well as the experimental results of the tests made on the implemented laboratory prototype

    The application of resonant-mode techniques to off-line converters for the commercial market

    Get PDF
    This thesis presents the work performed by the author on the application of resonantmode techniques to commercially-orientated off-line converters. An extensive review of resonant-mode topologies leads to the development of a method of categorisation of these topologies which allows a greater comprehension of their properties. The categories of converter thus obtained are the conventional resonant converter, the quasi-resonant converter, and the gap-resonant converter. The gap-resonant converter is selected for further investigation. An analysis reveals the limited load and input voltage capabilities of this converter, and hence leads to the introduction of a pre-regulating converter to improve reliability and commercial viability. High-frequency techniques are explored and reported, and new techniques are developed in several areas in order to extend the concept of the gap-resonant converter to a realworld practical design. Subjects explored include the high speed driving of power MOSFETs, MOSFET and diode switching losses, high frequency magnetic materials and core losses, and skin and proximity effects. The techniques developed are used in the design of a 30OW, off-line converter with an input voltage range of 165V to 380V after rectification, and a ten-to-one output load range

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    Modeling, Analysis and Design of Synchronous Buck Converter Using State Space Averaging Technique for PV Energy System

    Get PDF
    If we start forecasting in the view of electrical energy generation, in the upcoming decade all the fossil fuels are going to be extinct or the worst they are going to be unaffordable to a person living in typical circumstances, so renewable power energy generation systems are going to make a big deal out of that. It is extremely important to generate and convert the renewable energy with maximum efficiency. In this project, first we study the characteristics of low power PV array under different values of irradiance and temperature. And then we present the exquisite design of Synchronous Buck Converter with the application of State Space Modeling to implement precise control design for the converter by the help of MATLAB/Simulink. The Synchronous Buck Converter thus designed is used for portable appliances such as mobiles, laptops, iPod’s etc. But in this project our main intention is to interface the PV array with the Synchronous Buck Converter we designed, and we will depict that our converter is more efficient than the conventional buck converter in terms of maintaining constant output voltage, overall converter efficiency etc. And then we show that the output voltage is maintaining constant irrespective of fluctuations in load and source. And finally we see the performance of Synchronous Buck Converter, which is interfaced with PV array having the practical variations in temperature and irradiance will also maintain a constant output voltage throughout the response. All simulations are carried under MATLAB/Simulink environment. And at last experimental work is carried out for both conventional buck converter and also for synchronous buck converter, in which we observe the desired outputs obtained in simulations

    Local control of multiple module converters with ratings-based load sharing

    Get PDF
    Multiple module dc-dc converters show promise in meeting the increasing demands on ef- ficiency and performance of energy conversion systems. In order to increase reliability, maintainability, and expandability, a modular approach in converter design is often desired. This thesis proposes local control of multiple module converters as an alternative to using a central controller or master controller. A power ratings-based load sharing scheme that allows for uniform and non-uniform sharing is introduced. Focus is given to an input series, output parallel (ISOP) configuration and modules with a push-pull topology. Sensorless current mode (SCM) control is digitally implemented on separate controllers for each of the modules. The benefits of interleaving the switching signals of the distributed modules is presented. Simulation and experimental results demonstrate stable, ratings-based sharing in an ISOP converter with a high conversion ratio for both uniform and non-uniform load sharing cases

    Single-phase grid connected inverter with DC link voltage modulation

    Get PDF
    corecore