8,359 research outputs found

    Modeling, Evaluation, and Scale on Artificial Pedestrians: A Literature Review

    Get PDF
    Modeling pedestrian dynamics and their implementation in a computer are challenging and important issues in the knowledge areas of transportation and computer simulation. The aim of this article is to provide a bibliographic outlook so that the reader may have quick access to the most relevant works related to this problem. We have used three main axes to organize the article's contents: pedestrian models, validation techniques, and multiscale approaches. The backbone of this work is the classification of existing pedestrian models; we have organized the works in the literature under five categories, according to the techniques used for implementing the operational level in each pedestrian model. Then the main existing validation methods, oriented to evaluate the behavioral quality of the simulation systems, are reviewed. Furthermore, we review the key issues that arise when facing multiscale pedestrian modeling, where we first focus on the behavioral scale (combinations of micro and macro pedestrian models) and second on the scale size (from individuals to crowds). The article begins by introducing the main characteristics of walking dynamics and its analysis tools and concludes with a discussion about the contributions that different knowledge fields can make in the near future to this exciting area

    Advances in Object and Activity Detection in Remote Sensing Imagery

    Get PDF
    The recent revolution in deep learning has enabled considerable development in the fields of object and activity detection. Visual object detection tries to find objects of target classes with precise localisation in an image and assign each object instance a corresponding class label. At the same time, activity recognition aims to determine the actions or activities of an agent or group of agents based on sensor or video observation data. It is a very important and challenging problem to detect, identify, track, and understand the behaviour of objects through images and videos taken by various cameras. Together, objects and their activity recognition in imaging data captured by remote sensing platforms is a highly dynamic and challenging research topic. During the last decade, there has been significant growth in the number of publications in the field of object and activity recognition. In particular, many researchers have proposed application domains to identify objects and their specific behaviours from air and spaceborne imagery. This Special Issue includes papers that explore novel and challenging topics for object and activity detection in remote sensing images and videos acquired by diverse platforms

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Detection and Simulation of Dangerous Human Crowd Behavior

    Get PDF
    Tragically, gatherings of large human crowds quite often end in crowd disasters such as the recent catastrophe at the Loveparade 2010. In the past, research on pedestrian and crowd dynamics focused on simulation of pedestrian motion. As of yet, however, there does not exist any automatic system which can detect hazardous situations in crowds, thus helping to prevent these tragic incidents. In the thesis at hand, we analyze pedestrian behavior in large crowds and observe characteristic motion patterns. Based on our findings, we present a computer vision system that detects unusual events and critical situations from video streams and thus alarms security personnel in order to take necessary actions. We evaluate the system’s performance on synthetic, experimental as well as on real-world data. In particular, we show its effectiveness on the surveillance videos recorded at the Loveparade crowd stampede. Since our method is based on optical flow computations, it meets two crucial prerequisites in video surveillance: Firstly, it works in real-time and, secondly, the privacy of the people being monitored is preserved. In addition to that, we integrate the observed motion patterns into models for simulating pedestrian motion and show that the proposed simulation model produces realistic trajectories. We employ this model to simulate large human crowds and use techniques from computer graphics to render synthetic videos for further evaluation of our automatic video surveillance system

    A Unified Simulation Framework for Visual and Behavioral Fidelity in Crowd Analysis

    Full text link
    Simulation is a powerful tool to easily generate annotated data, and a highly desirable feature, especially in those domains where learning models need large training datasets. Machine learning and deep learning solutions, have proven to be extremely data-hungry and sometimes, the available real-world data are not sufficient to effectively model the given task. Despite the initial skepticism of a portion of the scientific community, the potential of simulation has been largely confirmed in many application areas, and the recent developments in terms of rendering and virtualization engines, have shown a good ability also in representing complex scenes. This includes environmental factors, such as weather conditions and surface reflectance, as well as human-related events, like human actions and behaviors. We present a human crowd simulator, called UniCrowd, and its associated validation pipeline. We show how the simulator can generate annotated data, suitable for computer vision tasks, in particular for detection and segmentation, as well as the related applications, as crowd counting, human pose estimation, trajectory analysis and prediction, and anomaly detection

    Quickest Paths in Simulations of Pedestrians

    Full text link
    This contribution proposes a method to make agents in a microscopic simulation of pedestrian traffic walk approximately along a path of estimated minimal remaining travel time to their destination. Usually models of pedestrian dynamics are (implicitly) built on the assumption that pedestrians walk along the shortest path. Model elements formulated to make pedestrians locally avoid collisions and intrusion into personal space do not produce motion on quickest paths. Therefore a special model element is needed, if one wants to model and simulate pedestrians for whom travel time matters most (e.g. travelers in a station hall who are late for a train). Here such a model element is proposed, discussed and used within the Social Force Model.Comment: revised version submitte

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented
    corecore