126 research outputs found

    Feature weighting techniques for CBR in software effort estimation studies: A review and empirical evaluation

    Get PDF
    Context : Software effort estimation is one of the most important activities in the software development process. Unfortunately, estimates are often substantially wrong. Numerous estimation methods have been proposed including Case-based Reasoning (CBR). In order to improve CBR estimation accuracy, many researchers have proposed feature weighting techniques (FWT). Objective: Our purpose is to systematically review the empirical evidence to determine whether FWT leads to improved predictions. In addition we evaluate these techniques from the perspectives of (i) approach (ii) strengths and weaknesses (iii) performance and (iv) experimental evaluation approach including the data sets used. Method: We conducted a systematic literature review of published, refereed primary studies on FWT (2000-2014). Results: We identified 19 relevant primary studies. These reported a range of different techniques. 17 out of 19 make benchmark comparisons with standard CBR and 16 out of 17 studies report improved accuracy. Using a one-sample sign test this positive impact is significant (p = 0:0003). Conclusion: The actionable conclusion from this study is that our review of all relevant empirical evidence supports the use of FWTs and we recommend that researchers and practitioners give serious consideration to their adoption

    An Empirical Evaluation of Effort Prediction Models Based on Functional Size Measures

    Get PDF
    Software development effort estimation is among the most interesting issues for project managers, since reliable estimates are at the base of good planning and project control. Several different techniques have been proposed for effort estimation, and practitioners need evidence, based on which they can choose accurate estimation methods. The work reported here aims at evaluating the accuracy of software development effort estimates that can be obtained via popular techniques, such as those using regression models and those based on analogy. The functional size and the development effort of twenty software development projects were measured, and the resulting dataset was used to derive effort estimation models and evaluate their accuracy. Our data analysis shows that estimation based on the closest analogues provides better results for most models, but very bad estimates in a few cases. To mitigate this behavior, the correction of regression toward the mean proved effective. According to the results of our analysis, it is advisable that regression to the mean correction is used when the estimates are based on closest analogues. Once corrected, the accuracy of analogy-based estimation is not substantially different from the accuracy of regression based models

    Dataset Quality Assessment: An extension for analogy based effort estimation

    Get PDF
    Abstract Estimation by Analogy (EBA

    Potential and limitations of the ISBSG dataset in enhancing software engineering research: A mapping review

    Full text link
    Context The International Software Benchmarking Standards Group (ISBSG) maintains a software development repository with over 6000 software projects. This dataset makes it possible to estimate a project s size, effort, duration, and cost. Objective The aim of this study was to determine how and to what extent, ISBSG has been used by researchers from 2000, when the first papers were published, until June of 2012. Method A systematic mapping review was used as the research method, which was applied to over 129 papers obtained after the filtering process. Results The papers were published in 19 journals and 40 conferences. Thirty-five percent of the papers published between years 2000 and 2011 have received at least one citation in journals and only five papers have received six or more citations. Effort variable is the focus of 70.5% of the papers, 22.5% center their research in a variable different from effort and 7% do not consider any target variable. Additionally, in as many as 70.5% of papers, effort estimation is the research topic, followed by dataset properties (36.4%). The more frequent methods are Regression (61.2%), Machine Learning (35.7%), and Estimation by Analogy (22.5%). ISBSG is used as the only support in 55% of the papers while the remaining papers use complementary datasets. The ISBSG release 10 is used most frequently with 32 references. Finally, some benefits and drawbacks of the usage of ISBSG have been highlighted. Conclusion This work presents a snapshot of the existing usage of ISBSG in software development research. ISBSG offers a wealth of information regarding practices from a wide range of organizations, applications, and development types, which constitutes its main potential. However, a data preparation process is required before any analysis. Lastly, the potential of ISBSG to develop new research is also outlined.Fernández Diego, M.; González-Ladrón-De-Guevara, F. (2014). Potential and limitations of the ISBSG dataset in enhancing software engineering research: A mapping review. Information and Software Technology. 56(6):527-544. doi:10.1016/j.infsof.2014.01.003S52754456

    Improving Software Cost Estimation With Function Points Analysis Using Fuzzy Logic Method

    Get PDF
    Function Points Analysis (FPA) is amongst the most generally used method to assess software cost estimation frameworks. This process speaks to the measurement of an undertaking, application, and function by its relative functional complexity. In general, it has numerous effective applications used in both industry and scholarly research. This is noticed that customized estimate technologies which can confront genuine challenges utilizing on programming building information is normally constrained, loosely gathered and deficient. To enquire these queries composite programming models, blend of information, fuzzy logic and master judgment is proposed. This is trusted that outcomes announced here will animate, renew investigation of fuzzy logic to genuine programming designing issues. In this research paper, we use Function Points and apply some new models to pick up a superior estimation of programming properties. The utilization of ideas and characteristics from the fuzzy set hypothesis to stretch out function points analysis to fuzzy function points analysis. Fuzzy hypothesis tries to construct formal quantitative arrangement equipped for imitating imprecision of the human information. With the function points created by Fuzzy FPA, an estimate value for example, expenses/cost and software development can be more correctly determined

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    A Principled Methodology: A Dozen Principles of Software Effort Estimation

    Get PDF
    Software effort estimation (SEE) is the activity of estimating the total effort required to complete a software project. Correctly estimating the effort required for a software project is of vital importance for the competitiveness of the organizations. Both under- and over-estimation leads to undesirable consequences for the organizations. Under-estimation may result in overruns in budget and schedule, which in return may cause the cancellation of projects; thereby, wasting the entire effort spent until that point. Over-estimation may cause promising projects not to be funded; hence, harming the organizational competitiveness.;Due to the significant role of SEE for software organizations, there is a considerable research effort invested in SEE. Thanks to the accumulation of decades of prior research, today we are able to identify the core issues and search for the right principles to tackle pressing questions. For example, regardless of decades of work, we still lack concrete answers to important questions such as: What is the best SEE method? The introduced estimation methods make use of local data, however not all the companies have their own data, so: How can we handle the lack of local data? Common SEE methods take size attributes for granted, yet size attributes are costly and the practitioners place very little trust in them. Hence, we ask: How can we avoid the use of size attributes? Collection of data, particularly dependent variable information (i.e. effort values) is costly: How can find an essential subset of the SEE data sets? Finally, studies make use of sampling methods to justify a new method\u27s performance on SEE data sets. Yet, trade-off among different variants is ignored: How should we choose sampling methods for SEE experiments? ;This thesis is a rigorous investigation towards identification and tackling of the pressing issues in SEE. Our findings rely on extensive experimentation performed with a large corpus of estimation techniques on a large set of public and proprietary data sets. We summarize our findings and industrial experience in the form of 12 principles: 1) Know your domain 2) Let the Experts Talk 3) Suspect your data 4) Data Collection is Cyclic 5) Use a Ranking Stability Indicator 6) Assemble Superior Methods 7) Weighting Analogies is Over-elaboration 8) Use Easy-path Design 9) Use Relevancy Filtering 10) Use Outlier Pruning 11) Combine Outlier and Synonym Pruning 12) Be Aware of Sampling Method Trade-off

    Effectiveness of Feature Selection and Machine Learning Techniques for Software Effort Estimation

    Get PDF
    Estimation of desired effort is one of the most important activities in software project management. This work presents an approach for estimation based upon various feature selection and machine learning techniques for non-quantitative data and is carried out in two phases. The first phase concentrates on selection of optimal feature set of high dimensional data, related to projects undertaken in past. A quantitative analysis using Rough Set Theory and Information Gain is performed for feature selection. The second phase estimates the effort based on the optimal feature set obtained from first phase. The estimation is carried out differently by applying various Artificial Neural Networks and Classification techniques separately. The feature selection process in the first phase considers public domain data (USP05). The effectiveness of the proposed approach is evaluated based on the parameters such as Mean Magnitude of Relative Error (MMRE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Confusion Matrix. Machine learning methods, such as Feed Forward neural network, Radial Basis Function network, Functional Link neural network, Levenberg Marquadt neural network, Naive Bayes Classifier, Classification and Regression Tree and Support Vector classification, in combination of various feature selection techniques are compared with each other in order to find an optimal pair. It is observed that Functional Link neural network achieves better results among other neural networks and Naive Bayes classifier performs better for estimation when compared with other classification techniques

    Risk based analogy for e-business estimation

    Get PDF

    The usage of ISBSG data fields in software effort estimation: A systematic mapping study

    Full text link
    [EN] The International Software Benchmarking Standards Group (ISBSG) maintains a repository of data about completed software projects. A common use of the ISBSG dataset is to investigate models to estimate a software project's size, effort, duration, and cost. The aim of this paper is to determine which and to what extent variables in the ISBSG dataset have been used in software engineering to build effort estimation models. For that purpose a systematic mapping study was applied to 107 research papers, obtained after a filtering process, that were published from 2000 until the end of 2013, and which listed the independent variables used in the effort estimation models. The usage of ISBSG variables for filtering, as dependent variables, and as independent variables is described. The 20 variables (out of 71) mostly used as independent variables for effort estimation are identified and analysed in detail, with reference to the papers and types of estimation methods that used them. We propose guidelines that can help researchers make informed decisions about which ISBSG variables to select for their effort estimation models.González-Ladrón-De-Guevara, F.; Fernández-Diego, M.; Lokan, C. (2016). The usage of ISBSG data fields in software effort estimation: A systematic mapping study. Journal of Systems and Software. 113:188-215. doi:10.1016/j.jss.2015.11.040S18821511
    corecore