
Feature Weighting Techniques for CBR in Software Effort
Estimation Studies: A Review and Empirical Evaluation

Boyce Sigweni Martin Shepperd
Department of Computer Science

Brunel University
London, UB8 3PH,United Kingdom

{boyce.sigweni,martin.shepperd}@brunel.ac.uk

ABSTRACT
Context : Software effort estimation is one of the most
important activities in the software development process.
Unfortunately, estimates are often substantially wrong.
Numerous estimation methods have been proposed
including Case-based Reasoning (CBR). In order to
improve CBR estimation accuracy, many researchers have
proposed feature weighting techniques (FWT).
Objective: Our purpose is to systematically review the
empirical evidence to determine whether FWT leads to
improved predictions. In addition we evaluate these
techniques from the perspectives of (i) approach (ii)
strengths and weaknesses (iii) performance and (iv)
experimental evaluation approach including the data sets
used.
Method : We conducted a systematic literature review of
published, refereed primary studies on FWT (2000-2014).
Results: We identified 19 relevant primary studies. These
reported a range of different techniques. 17 out of 19 make
benchmark comparisons with standard CBR and 16 out of
17 studies report improved accuracy. Using a one-sample
sign test this positive impact is significant (p = 0.0003).
Conclusion: The actionable conclusion from this study is
that our review of all relevant empirical evidence supports
the use of FWTs and we recommend that researchers and
practitioners give serious consideration to their adoption.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Cost
estimation; I.2.6 [Learning]: Analogies

General Terms
Systematic literature review, Meta-analysis

Keywords
Software effort estimation, Case-based reasoning, Feature
weighting, Feature subset selection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
PROMISE ‘14, September 17 2014, Torino, Italy
Copyright 2014 ACM 978-1-4503-2898-2/14/09 ...$15.00.
http://dx.doi.org/10.1145/2639490.2639508

1. INTRODUCTION
Given the importance of timely and accurate software cost
prediction it is unsurprising that there is a large body of
published research work, the majority of which has focused
on effort prediction since effort is normally the dominant
and hardest to predict component of overall cost. For an
overview of the extent of this research see the mapping
study by Jørgensen and Shepperd [20] and more recently
the review of machine learning based studies by Wen et al.
[45].

Although many approaches have been proposed, a widely
used technique is based upon case-based reasoning (CBR)
[29] and is usually referred to as estimation by analogy
(EBA) [40, 35]. CBR essentially proceeds by using
knowledge of past episodes of interest called cases that are
encoded as vectors of features that describe the case state
and the case solution. New, or target cases, are solved by
utilising solutions from past cases that exhibit similarity,
i.e., are proximal in the feature space.

For effort prediction a case is usually a project, the case
state will be features such as size, development
environment, client experience, etc., and the solution is the
actual amount of effort utilised. Thus the case-base is
conceptually an n× p matrix where there are n cases and p
features. Often the features that are included in the
case-base are more due to happenstance and availability
rather than because it is known that there are well defined
relationships with the case solution. Moreover, there may
exist multicollinearities amongst these features.
Consequently, as is common with the majority of machine
learning techniques, it is widely acknowledged that not all
features are of equal importance [42, 14]. Thus CBR
systems will benefit from optimisation of the feature sets.

Feature set optimisation can be accomplished by means
of feature weighting which has the effect of stretching or
compressing the feature space thus impacting the proximity
of cases (projects) and thus modifying the set of neighbour
projects that are used to donate solutions. Such problems
are NP-hard and for non trivial numbers of cases and feature
sets present significant computational challenges. A slightly
less daunting approach, although still NP-hard, is feature
subset selection where features are assigned weights of {0, 1}.
Until recently this has been the dominant approach within
software effort prediction.

So although there is widespread consensus that some form
of feature weighting technique is beneficial there has been
no systematic review of all relevant primary studies, Nor has
there been an analysis of the extent of FWTs, how they have

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/29139336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

been experimentally evaluated and the interaction between
performance and data set.

Our systematic literature review (SLR) aims to identify
and empirically evaluate existing feature weighting
techniques used in analogy-based software effort estimation
studies published between January 2000 and April 2014.
The SLR characteristics are summarised in Table 1 and
described in more detail in subsequent sections. Our
results show that feature subset selection (FSS) is an
important aspect of CBR, however feature weighting is still
under explored as evidenced by the small number of
articles, proposing many techniques. There are many
published feature weighting techniques which vary and are
complex. No up-to-date, comprehensive picture of the
current state of FWTs in CBR exists, the closest being the
review by Wettschereck et al. [47] which we utilise to
provide a framework for comparison.

The remainder of the paper is organised as follows. The
next section summarises the main underlying ideas of
feature weighting for case-based reasoning software project
prediction. This is followed by a description of our
systematic literature review (SLR) procedure and the
protocol which is summarised by Table 1. We also set out
the four research questions we intend the SLR to address.
Section 4 presents our results organised by research
question and the paper concludes with a discussion of the
implications of this meta-analysis for researchers and
practitioners.

2. BRIEF BACKGROUND TO THE
REVIEW TOPIC

The feature weighting techniques explored in this
systematic literature review are embedded in CBR
algorithms employing different variants of the similarity
distance function shown in Equation 1.

Similarity(T, S) =

p∑
k=1

f(Tk, Sk)× wk (1)

where T is the target case, S is the source case, f is the
similarity function, p is the number of features and wk is
the kth feature weight where 1 6 k 6 p. Typically, but not
necessarily, f is some variant of Euclidean distance.

As previously indicated FSS is a special case where only
two possible weights for wk, {0, 1} provide for inclusion or
exclusion. The more general case is wk, [0, 1]. While the
basic CBR algorithms assign a constant scalar to wk, these
feature weighting techniques allow different weights to be
assigned to features. These techniques have been frequently
studied and used in CBR, but it is yet to be established
how they all relate or how effective such weighting schemes
actually are.

There are two general approaches to finding feature
weights for a particular case base, namely filters and
wrappers. Filters use statistical or other general
information that can be extracted from the data set alone
to attempt to determine the important features which is
then reflected in the feature weights. An example would be
to use principal components analysis. The alternative, but
far more computationally demanding, method is to
repeatedly apply the CBR system to different sets of
feature weights with a view to searching for a more

effective set. Generally wrappers are found to perform
better than filters (see Kohavi and John [28]).

The earliest work on feature weighting in the domain of
software effort estimation, that we are aware of, was by
Mair et al. [33] in which an exhaustive search combined
with a wrapper was applied to the Desharnais data set.
Clearly the disadvantage of an exhaustive search is the
computational cost, particularly with regard to p, the
number of features such that the cost approximates to 2p

but is linear with regard to the number of cases n. The
approach was extended Kirsopp et al. [23] based upon the
use of metaheuristic search to find good feature subsets.
The authors reported substantial improvement on
predictive performance over standard EBA.

Subsequently the basic ideas have been extended by a
number of different research groups including extension of
metaheuristic search to explore population based
techniques such as genetic algorithms [18, 32] and more
statistically based procedures such as Mantel’s matrix
correlation [21]. Other research groups have worked on
hybrid techniques, for example Wu et al. [48].

Whilst many of these studies have individually claimed
good results, it is unclear what is the big picture nor the
overall level of support for feature weighting techniques
either in general or in particular. Nevertheless the informal
picture would seem to be quite encouraging. This then is
the motivation for our systematic literature review.

3. METHOD
The notion of evidence based software engineering was first
advocated by Kitchenham et al. [25]. Our approach is
strongly influenced by the methodological work of
Kitchenham and Charters [24] who have adapted many of
the general principles of conducting systematic literature
reviews to the specific setting of software engineering.
However, we deviated in the following respects principally
due to the fact that our review was very focused and the
number of papers involved was very small:

• We didn’t solicit external review of our protocol.

• The study quality was only addressed in terms of peer
review of the candidate studies, so we had no formal
quality instrument.

• We didn’t contact the authors of the papers we located
in this review. The rationale was that both authors
were involved in updating the Jørgensen and Shepperd
cost estimation mapping study [20] and during that
process we had emailed the same authors for papers
that we may have missed or were accepted therefore
in-press. The updated mapping study is a superset
and therefore subsumes all papers in the FWT SLR
described by this paper.

3.1 Research questions
The principal aim of this SLR is to answer the question of
whether feature weighting techniques improve the
predictive performance of CBR prediction systems for
software effort? In doing so we need to review the range of
FWTs that have been proposed, consider how they have
been empirically evaluated and using which data sets. This
will enable us to provide guidance for researchers and

Table 1: Systematic Literature Review Summary

Characteristic Value
Review type Systematic literature review
Research ques-
tion(s)

Do FWTs improve predictive perfor-
mance (RQ3)? Related questions are
the range FWTs (RQ1), their strengths
and weaknesses (RQ2) and the various
approaches to the primary study exper-
imental design (RQ4).

Purpose Guide researchers and practitioners us-
ing estimation by analogy techniques.

Audience Researchers
Search method Automated and hand search, citation

analysis, previously known articles plus
approached authors.

Databases used BESTweb, IEEE Xplore, ScienceDi-
rect, Google scholar, ACM digital li-
brary, Springer

Population Empirical studies relating to FWT in
software effort estimation

Setting Commercial software projects
Study types Experiments, case studies, observa-

tional studies, simulation.
Inclusion crite-
ria

(i) Refereed paper (journal or confer-
ence) (ii) Empirical study (iii) Copy of
the article available

Language English language only
Search date April 2014
Article dates 2000-2014 plus in press articles

practitioners and identify areas for further research in
order to improve the performances of current CBR models.
To achieve this objective four research questions are
formulated and presented below.

RQ1 : What is the range and diversity of feature
weighting techniques used for software development
effort estimation? In answering this question we
characterise them using the dimensions from a
previous review by Wetterschereck [47]
Rationale: Practitioners can take the identified
feature weighting techniques as candidate solutions in
their practice. For feature weighting techniques that
have not yet been employed in CBR, researchers can
explore the possibility of using them as potential
feasible solutions.

RQ2 : What are the strengths and weaknesses of
existing feature weighting techniques?
Rationale: This will be helpful for practitioners to
better understand the practical issues around
deployment.

RQ3 : What is the estimation accuracy of each FWT
and how do they compare?
Rationale: to enable us to compare techniques and
determine which support the most accurate cost
predictions.

RQ4 : How has the experimental evaluation been
conducted e.g., which performance metrics are used?

Rationale: This helps determine the importance we
attach to the evidence e.g., some performance metrics
such as Mean Magnitude of Relative Error (MMRE)
have been shown to be biased by studies such as [26,
12].

3.2 Search strategy
Previous systematic reviews e.g. [20] have reported that
automated article searches via on-line databases may lead
to low recall rates, may not be thorough and also with the
likelihood of much additional work arising from low
precision rates. However, since our search is relatively
focused there is little danger of that manifesting in
significant proportion. The following sections discuss how
we: defined our search terms, selected appropriate
literature sources and the search process used.

3.2.1 Search terms
We employed the following steps to build the search terms
based on [1]:

1. Derive major terms from the research questions.

2. Identify synonyms and alternative spellings for major
terms.

3. Using the Boolean OR and AND to incorporate and
link alternative spellings and synonyms.

The resulting search strings are described as follows:
Software AND (effort/OR cost/) AND (“prediction” OR
“estimation” OR “forecasting”) AND (Analogy-based OR
“Analogy based” OR “case based reasoning” OR “CBR”)
AND (“feature subset selection” OR “feature selection” OR
“feature weighting” OR “feature weights” OR “weight” OR
“feature significance”).

3.2.2 Literature sources
Our search included important software engineering
journals as per [20] and conferences which publish
literature on software development effort estimation. The
search also involved following up the references of included
papers ‘backward snowballing’. We also looked at the
papers that cited our included papers known as ‘forward
snowballing’, which was accomplished by means of Google
Scholar.

We did not place any restriction in terms of the start
date of inclusion period. Any published paper that met our
inclusion criteria was selected because our intention was to
have a broad coverage since to our knowledge this was the
first SLR on the topic. The feasibility of CBR in software
effort estimation was carried out in the early 1990’s by
Mukhopadhyay et al. [37] therefore we expected to find
papers published starting from the mid 1990’s or early
2000’s to current date 2014.

Our initial search was performed on the online
bibliographic library BESTweb1 maintained by Simula
Research Laboratory. BESTweb supplies journal and
conference papers on software cost and effort estimation
that have been classified according to research topic,
estimation approach, research approach, study context and
data set. The rest of the search involved searching five
electronic databases (IEEE Xplore, ScienceDirect, Google

1(http://www.simula.no/BESTweb)

Scholar, ACM Digital Library and Springer). Some other
important resources such as CiteSeer or DBLP were not
considered, because they are almost covered by the selected
five electronic databases.

The search terms discussed and constructed in section
3.2.1 were used to search for papers in the selected
databases. The search covered title, abstract, and
keywords.

3.2.3 Search process
A comprehensive search process of ‘all’ relevant sources is
required for any SLR. Therefore to achieve this objective
we divided the search into the following three search phases
described in Figure 1.

Search Phase 1 : Using the in-built filter we
searched the online bibliographic library BESTweb
database and located potential relevant papers.

Search Phase 2 : Using search terms we searched the
five electronic databases individually and then merged
the located relevant papers with those from BESTweb
forming a set of potential candidate papers

Search Phase 3 : Searched the references of the
included papers plus papers that cited the included
papers in order to locate further papers.

Zotero2, MicrosoftR© Excel and Dropbox3 were used to
manage and store search results. The search process and
the number of papers identified at each phase are shown in
detail in Figure 1.

BESTweb

IEEE

Xplore

Science

Direct

Google

Scholar

ACM Digital

Library
Springer

#39

#26 #30 #43 #16 #29

#183

59 candidate papers

Remove Duplicates

17 relevant papers

Apply inclusion criteria

Relevant paper References

2 candidate papers Apply inclusion

criteria

19 Selected papers

Citing papers

S
e

a
r
c
h

P
h

a
s
e

 1

S
e

a
r
c
h

P
h

a
s
e

 2

S
e

le
c
ti

o
n

P
h

a
s
e

 2

S
e

le
c
ti

o
n

P
h

a
s
e

 1

S
e

a
r
c
h

P
h

a
s
e

 3

Figure 1: Search and selection process

3.3 Study selection and data extraction
From Search Phases 1 and 2 a total of 183 potential
candidate papers for inclusion in the SLR were identified
(see Figure 1). Since these papers were from independent
sources they were checked to eliminate duplicates. A total
of 59 unique papers were obtained after removing
duplicates.

2https://www.zotero.org/
3http://www.dropbox.com/

The next step involved reading the titles, abstracts, key
words or full text of these 59 papers to select relevant
papers based on the inclusion criteria defined in Table 1.
From this 17 relevant studies were selected. Then the
references of every included study were searched to identify
other relevant studies that we might have been missed and
we also examined citing papers. This effort led to the
identification of two further studies, resulting in a total of
19 papers. The quality of the selected studies was linked to
our inclusion criteria, where only papers from
demonstrably rigorously refereed sources were included.

We created a master search form (see Table 2) to
manage and keep record of all the candidate papers. The
first four items were essentially for bibliometric and
housekeeping purposes. The remaining categories of
information are cross-referenced to our four research
questions. The search form was also used for data
extraction. We exploited the selected papers for data that
contributed to addressing the research questions concerned
in this review. The initial search and categorising was
carried out by the first author and the second author’s role
was to check reliability via independent checking of the
included papers. Any differences in inclusion or
categorisation were resolved through discussion.

Table 2: The search form for data extraction

Search form fields RQ(s) addressed

Article identifier
Year of publication
Source
Article title
Weighting Technique RQ1
Technique framework RQ1
Limitations and strengths RQ2
Performance metrics RQ4
Statistical testing? RQ4
Datasets used RQ4
Data quality/issues RQ4
Performance RQ3

3.4 Data synthesis
The goal of data synthesis is to identify different FWTs
from the selected studies in order to address the research
questions. The extracted data obtained consisted of both
quantitative data (e.g., values of prediction accuracy or
results) and qualitative data (e.g., strengths and
weaknesses of FWTs). We used different strategies to
synthesise the extracted data relating to different sets of
research questions. The strategies are explained in detail
as follows.

For the data relating to RQ1, the results were tabulated
to represent the distribution of FWTs. The FWTs were
categorised based on the dimensions from a review by
Wetterschereck et al. [47]. Their dimensions (see Table 3)
are as follows:
• Bias: refers to whether the weight learning utilises

feedback from the performance algorithm [19].
• Weight space: is used to distinguish feature weighting

from conventional feature subset selection algorithms.

• The Representation: distinguishes algorithms that
transform the given representation (to yield better
results) from those that use the ‘given’
representation.
• Generality : is used to distinguish algorithms that

assume weights differ among ‘local’ regions of the
instance space form those that do not.
• Knowledge: highlights algorithms that use domain

specific knowledge to determine feature weights.
In RQ2, the limitations of existing techniques were iden-

tified from analysis of the text.

Table 3: Dimensions For Distinguishing Feature
Weighting Methods from [47]

Dimension Possible Values

Bias {Performance, Preset}
Weight Space {Continuous, Binary}
Representation {Given, Transformed}
Generality {Global, Local}
Knowledge {Poor, Intensive}

For RQ3 differing response variables and the absence of
detailed results (e.g., for prediction performance indicators
typically only measures of centre are given rather than
variance) make it difficult to conduct a formal
meta-analysis. For our purposes we use a simple vote
counting procedure although we recognise this can be
problematic as it may bias the results to no effect [16]. For
this reason we restrict our analysis to the question of is
there an effect as opposed to how large is the effect and
make no judgement concerning statistical significance when
vote counting.

For RQ4 we consider the accuracy indicators utilised such
as MMRE and R-squared. the data sets used for validation
and the experimental design in terms of benchmarks and so
forth. As it turns out all the primary studies were based
on experiments although in theory other forms of empirical
study were not excluded from our review.

4. RESULTS
In this section we present and discuss the findings from our
systematic review. We start by giving an overview of the
selected studies. Then, we present a detailed description of
the findings of this review for each research question. We
also interpret the review results, not only within the
context of the research questions, but also in a broader
context related to the effort estimation.

We have identified 19 papers describing original primary
studies to be included in this SLR. These papers were
published during the time period 2000 - 2014. A total of 14
(74%) papers were published in journals and 5 (26%)
papers appeared in conference proceedings, however we did
not locate any papers from book chapters. The respective
numbers, date published and relative sources of the
selected studies are shown in Table 4. There is some
evidence of the topic gaining momentum since six studies
were published in the first half of this time period (2000-6)
whereas a further 13 were published in the second half
(2007-13), essentially doubling the rate of output.

In terms of the actual composition of the selected
studies, we observe that all the studies are experimental in
nature. No case studies or other forms of empirical
research were located. All studies, but for one, used a
minimum of one project data set from industry to validate
the feature weighting techniques. Finally we reiterate that
since the quality of the selected studies was linked to our
inclusion criteria, where only papers from demonstrably
refereed sources are included, we believe these represent
good experimental and research practice.

RQ1: Range and diversity of FWTs
From the 19 selected studies, 12 distinct techniques for
feature weighting were identified that have been applied to
estimate software development effort to models using CBR.
Other techniques are either variations on combinations on
these 12 techniques. They are listed in table 5: It is clear

Table 5: Range and diversity of FWTs

Technique Studies #

Genetic Algorithms (GA) [S06], [S12],[S17] 3

Exhaustive Search [S01], [S04],[S05] 3

Weighted Means [S03], [S04] 2

Particle Swarm Optimisation [S19],[S18] 2

Mantel’s Correlation [S07],[S10] 2

Principal Component Analysis [S11],[S13] 2

Kernel Methods [S15] 1

Heuristic Search (non-population) [S02] 1

Fuzzy Logic [S09] 1

Rough Sets Analysis (RSA) [S08] 1

Grey Relational Analysis (GRA) [S16] 1

Mutual Information [S14] 1

that there is considerable diversity in approach with the
majority of studies proposing and evaluating new
techniques although the majority of techniques (13 out 19)
adopt a general approach to feature weighting as opposed
to a binary (included/excluded) view. Search heuristics are
non-population searches such as hill climbing, therefore
different from GA. We also note that some of the FWTs
are combinations, obtained by combining two or more
FWTs or by combining FWTs with non-FWTs. Overall we
might characterise the area as one that is still in an early
stage of development. Since we have a maximum of three
observations (genetic algorithms) for any one FWT, our
meta-analysis asks a more general question (RQ3). Namely
do the techniques collectively offer improvement over not
using a feature weighting regime?

RQ2: Strengths and limitations of FWTs
Our findings and discussions on strengths and limitations
of FWTs are based on the framework dimensions [47]. The
first three dimensions present inconclusive results while the
last two dimensions present limitations. In general the
greatest strength of FWTs is that they do not assume that
features contribute equally to the output, therefore they
assign different weights to the features. This potentially
results in improved accuracy since theoretically the worst

Table 4: Selected studies

ID Year Study Author(s) Source Weighting Technique Weight space Ref

[S01] 2000 Mair et al. Journal Exhaustive Search Binary [33]

[S02] 2002 Kirsopp and Shepperd Conference Search Heuristics Binary [23]

[S03] 2003 Mendes et al. Journal Inverse Rank Weighted Mean Continuous [34]

[S04] 2004 Auer and Biffl Conference Exhaustive Dimension Weighting Continuous [5]

[S05] 2006 Auer et al. Journal Exhaustive Search Continuous [6]

[S06] 2006 Huang and Chiu Journal Genetic Algorithm Continuous [18]

[S07] 2007 Keung and Kitchenham Conference Mantel’s Correlation Continuous [21]

[S08] 2008 Li and Ruhe Journal Rough Set Analysis Continuous [30]

[S09] 2008 Azzeh et al. Conference Fuzzy Logic Binary [7]

[S10] 2008 Keung et al. Journal Mantel’s Correlation Binary [22]

[S11] 2009 Wen et al. Conference Principal Components Analysis (PCA) Continuous [46]

[S12] 2009 Li et al. Journal Genetic Algorithm Continuous [32]

[S13] 2009 Tosun et al. Journal PCA with Correlation Weighting Continuous [44]

[S14] 2009 Li et al. Journal Mutual Information Binary [31]

[S15] 2011 Kocaguneli et al. Journal Kernel Methods Continuous [27]

[S16] 2011 Song and Shepperd Journal Grey Relational Analysis Binary [43]

[S17] 2013 Bardsiri et al. Journal Genetic Algorithm Continuous [9]

[S18] 2013 Bardsiri et al. Journal Particle Swarm Optimisation Continuous [8]

[S19] 2013 Wu et al. Journal Combinations Continuous [48]

case is where all features do indeed merit equal weights
which is a situation that should be discoverable by the
FWT. The discussions on the first three dimensions are as
follows:
• Bias: Most algorithms in the selected studies use

performance bias methods therefore their search for
feature weights is guided by the efficiency of the
performance settings.
• Weight space: Thirteen of the 19 studies use

continuous weight space and reported improved
accuracy when compared with studies which used
binary weight space. Therefore the use of continuous
weight space by FWTs is a strength.
• Representation: All the algorithms in the selected

studies transform the set of features used to represent
the instances. Transforming the given representation
before assigning weights assist to overcome
insensitivity to correlated or interacting features.
This may lead to improved accuracy [36].

While significant efforts have been invested in developing
and improving FWTs, some limitations still exist which
require research attention. These limitations are about the
algorithms used, which in summary, can be described as
follows:
• Generality : Despite the findings of the survey by

Atkenson et al. [4] showing that assuming weights
differ among ‘local’ regions of the instance space may
improve results. All FWTs in selected studies use
algorithms do not assume weights differ among ‘local’
regions of the instance space i.e. they use a single set
of weights, and employ it globally (i.e., over the
entire instance space). Studies such as [2, 3, 13, 15]
also reached the same conclusion as Atkenson et al.
[4], therefore based on these findings it could be

suggested that FWTs may benefit from assuming
weights differ among ‘local’ regions of the instance
space.
• Knowledge: Several researchers such as [3, 41, 11, 38]

and [10] demonstrated the use of domain knowledge
to assign weights and that it may lead to improved
accuracy. Unfortunately all feature weighting
techniques in selected studies do not use domain
specific knowledge to assign weights feature and this
could be a limiting factor.

In summary, for researchers to efficiently estimate effort in
software development using FWTs in CBR, there is need to
urgently address these limitations.

RQ3: Estimation accuracy of FWTs
Having considered the range, diversity, strengths and
limitations of the feature weighting techniques we now turn
to the central and most actionable aspect of our systematic
review. Do FWTs perform better than conventional EBA
where all features have equal weights? In order to make
this comparison we need studies that use conventional
EBA as a benchmark. Fortunately 17 out of 19 studies do
this (i.e. not S01 and S10) consequently we use these 17
primary studies for our meta-analysis (see Table 6).

Although the 17 studies all use a comparable benchmark
each study has differences in their experimental design,
choice of accuracy statistic and the level of reporting. As a
result we adopt a simple vote-counting procedure. Only
counting results that are statistically significant is known
to be problematic and indeed the probability of making the
correct decision tends to zero as the number of primary
study results becomes large (see Hedges and Olkin [16,
pp48-52] for a detailed discussion). Mindful of the
potential problems of this procedure we follow the

procedure recommended by the Cochrane Collaboration
[17] ignore statistical significance and simply classify
studies as supporting the intervention (using FWT),
neutral (i.e., no difference) and negative (favouring
constant feature weights).

Based on Table 6 we observe that 16 out of 17 studies
report a positive effect. As a formality one could use a
one-sample sign test which rejects the null hypothesis of no
effect (p = 0.0003). Thus despite our reservations about
our meta-analysis procedure of vote counting there is
clearly a strong result and we can be reasonably confident
that FWTs have the effect of reducing prediction error for
software effort when using CBR techniques.

The above analysis does not differentiate between
differing classes of FWT. Examining our selected studies
more closely we see that the two most popular accuracy
metrics are MMRE (Mean Magnitude of Relative Error)
and Pred(25) (Percentage of predictions that are within
25% of the actual value). We also note that the Desharnais
data set is the most widely utilised. Therefore to make
comparisons between the differing FWTs we use the subset
of eight primary studies that utilise the same accuracy
metrics on the same data set (see Table 7). For some basic
reference we also give the original results reported in
Shepperd and Schofield [40] although we would caution
against over-interpretation of the results. First differing
procedures are used and the procedures for the exploration
of the number of neighbours to use (k) also vary. Finally,
as has been extensively discussed elsewhere, we lack
confidence in MMRE and Pred(25) as unbiased measures
of prediction performance [26]. In addition, using multiple
measures can yield contradictory results, so for example,
the GAs in study S12 are ranked 3rd for MMRE and worst
(9th) for Pred(25). This may be explained by the choice of
objective function for the GA.

Table 7: Performance of non-binary weight-space
FTWs on Desharnais data set

Study Technique Criteria

MMRE(%) Pred(25)% k

[40] Benchmark - no FWT 64 36 1-3

[S04] Exhaustive Dimension Weighting 30 50 1-5

[S07] Mantel’s Correlation 34.5 49.5 1-5

[S12] Genetic Algorithm 43 32 1-5

[S13] Principal Components Analysis 46 51 1-5

[S17] Genetic Algorithm 46 48 1-5

[S05] Exhaustive Search 48.7 52.6 1-5

[S08] Rough Set Analysis 59 42 1-4

[S11] PCA with Correlation Weighting 64 36 1-5

Notwithstanding the above reservations it would seem
that the FWTs generally outperform the benchmark and
unsurprisingly those based on exhaustive search tend to do
best. The latter observation suggests that it will be fruitful
to focus on metaheuristic search as a way of finding good
approximations of the optima whenever computational
considerations militate against exhaustive search.

RQ4: Approaches to experimental evaluation
Table 8 shows evaluation methods used by studies in this
review. Jackknifing, sometimes known as Leave-One-Out

Cross-Validation, and n-fold Cross-Validation (n > 1) are
the two most used validation methods in the selected
studies. The numbers of the studies that have used these
validation methods are as follows: 10 (53%) for
Jackknifing, 6 (32%) for n-fold Cross-Validation, and 3
(15%) for other validation methods. MMRE (Mean
Magnitude of Relative Error) and Pred(25) (Percentage of
predictions that are within 25% of the actual value). We
also note that the Desharnais data set is the most widely
utilised. MdMRE (Median Magnitude of Relative Error) is
also a relatively popular performance metric. The
numbers(%) of the studies that used these metrics are as
follows: 17 (89%) for MMRE, 17 (89%) for Pred(25), and 7
(37%) for MdMRE.

Unfortunately many researchers still regard the choice of
what is the experimental response variable either as a matter
of personal preference or adopt a basket approach. As has
been shown with respect to RQ3 differing choices can lead
to rank or preference reversals and consequently we need to
appeal to theory. Absolute residuals have the property of
being unbiased and measures relative to a näıve or guessing
strategy are most informative (e.g., Relative Accuracy [39]).

It is also interesting to note from Table 8 that statistical
testing, that is the use of inferential statistical procedures
to determine the significance of the result is by no means
universal with less than half (7 out of 19) of the studies
following this procedure. Whilst we would argue in favour
of some formal statistical evaluation we encourage the
adoption of more modern approaches based upon effect
sizes [39], though no study in our review used such an
approach.

Table 9: Popular datasets used for FWTs construc-
tion and validation

Data set Type Studies(%) Features Size

(p) (n)

Desharnais W 15 (79%) 10 81

Kemerer W 6 (32%) 7 15

Albrecht W 6 (32%) 7 24

ISBSG C 4 (21%) many >1000

COCOMO C 4 (21%) 17 63

Finnish C 2 (11%) 8 38

Maxwell C 2 (11%) 27 62

Miyazaki W 2 (11%) 8 48

NASA W 2 (11%) 17 93

The abbreviations used are: C = cross-company, W =
within-company

Table 9 shows the diversity of data sets that have been
employed by at least two primary studies. Interestingly the
Desharnais, Kemerer, Albrecht and COCOMO data set
dominate although these are amongst the oldest in some
cases in excess of 35 years. Given the rapid pace of change
in software technology we as a community do need to
consider how appropriate this is. The data set size in terms
of the number of features also strongly impacts the
computational demands on the various FWTs with
exhaustive search being infeasible for situations where p is
much greater than ten.

Table 6: Performance of FWTs against EBA benchmark

Study Feature Weighting Technique Statistical Benchmarking Improvement

Testing wrt EBA

[S01] Exhaustive Search No No n.a.

[S02] Search Heuristics Yes Yes Yes

[S03] Inverse Rank Weighted Mean Yes Yes Yes

[S04] Exhaustive Dimension Weighting No Yes Yes

[S05] Exhaustive Search No Yes Yes

[S06] Genetic Algorithm No Yes Yes

[S07] Mantel’s Correlation Yes Yes Yes

[S08] Rough Set Analysis No Yes Yes

[S09] Fuzzy Logic No Yes Yes

[S10] Mantel’s Correlation Yes No n.a.

[S11] Principal Components Analysis (PCA) Yes Yes Yes

[S12] Genetic Algorithm No Yes Yes

[S13] PCA with Correlation Weighting No Yes Yes

[S14] Mutual Information No Yes Yes

[S15] Kernel Methods Yes Yes No

[S16] Grey Relational Analysis No Yes Yes

[S17] Genetic Algorithm No Yes Yes

[S18] Particle Swarm Optimisation No Yes Yes

[S19] Combinations Yes Yes Yes

5. DISCUSSION AND CONCLUSIONS
In this systematic review we located 19 primary studies
published since 2000 that have explored the application of
feature weighting techniques to enhance the predictive
performance of case-based reasoning for software project
effort.

Our main findings are:
• A wide range of techniques are being proposed and

there have been relatively few replications.
• There is a lack of case studies, action research or

other detailed studies from industry which may imply
that the application of FWTs in CBR practice is still
immature.
• There is a great diversity in both the conduct and

reporting of experimental validations. This hinders
our ability to make sense of and compare results
through formal meta-analysis. Specifically we were
obliged to resort to vote counting and a one-sample
sign test.
• The strongest and actionable result is that despite

some methodological reservations concerning our
meta-analysis it is clear that FWTs are collectively
valuable. This is in line with findings from many
other areas and problem domains of machine learning
[14].
• The approaches are exclusively algorithmic so expert

judgement is not used for feature weighting in CBR
either as a standalone technique or to augment other
techniques.
• There is a tendency to keep advocating new techniques

and it may now be useful to consider replication and
more benchmarking of existing techniques. This will

be facilitated if researchers give more consideration to
the details of reporting and possibly as a community
we consider specific reporting protocols.
• As a research community we should determine whether

it remains fruitful to continue to use the older data sets
and whether or not they are now obsolete.

As with any systematic review there are limitations:
• We may not have located all relevant primary studies,

although we believe the blend of hand search and au-
tomation should be effective.
• The relatively small number of papers included in the

review limits our ability to conduct the
meta-analysis, in particular to make comparisons
between specific FWTs.
• We have had to rely on the researchers’ choices of

accuracy indicator e.g., MMRE, Pred(25) despite our
reservations about bias and exactly what is being
captured. In addition, studies have tended to report
measures of central tendency rather than variance or
spread so we cannot estimate effect sizes or
confidence limits for particular results.

Despite these potential limitations, we consider the most
striking and actionable finding of our review to be that
feature weighting techniques are consistently beneficial.
We believe this is useful information for both practitioners
and researchers.

6. REFERENCES
[1] P. Achimugu, A. Selamat, R. Ibrahim, and M. N.

Mahrin. A systematic literature review of software

Table 8: Evaluation methods used by FWTs

Study Performance Cross-validation Statistical Benchmarking

metrics Testing

[S01] MMRE Jackknifing No No

[S02] Mean Absolute Residuals Jackknifing Yes Yes

[S03] MMRE, MdMRE, Pred(n) Jackknifing Yes Yes

[S04] MMRE, Pred(n) Jackknifing No Yes

[S05] MMRE, Pred(n), and Var Jackknifing No Yes

[S06] MMRE, Pred(n), MdMRE n-fold No Yes

[S07] MMRE, Pred(n) Jackknifing Yes Yes

[S08] MMRE, Pred(n) Jackknifing No Yes

[S09] MMRE, MdMRE, Pred(n) n-fold No Yes

[S10] MMRE, Pred(n) Jackknifing Yes No

[S11] MMRE, Pred(n) Jackknifing Yes Yes

[S12] MMRE, Pred(n), MdMRE Other No Yes

[S13] MMRE, Pred(n) Other No Yes

[S14] MMRE, MdMRE, Pred(n) n-fold No Yes

[S15] MdMRE, MAR, Pred(n) Other Yes Yes

[S16] MMRE, Pred(n) Jackknifing No Yes

[S17] MMRE, Pred(n) n-fold No Yes

[S18] MMRE, Pred(n) n-fold No Yes

[S19] MMRE, MdMRE, Pred(n) n-fold Yes Yes

requirements prioritization research. Information and
Software Technology, 56(6):568–585, 2014.

[2] D. W. Aha and R. L. Goldstone. Concept learning and
flexible weighting. In Proceedings of the fourteenth
annual conference of the Cognitive Science Society,
pages 534–539. Citeseer, 1992.

[3] K. D. Ashley and E. L. Rissland. Waiting on
weighting: A symbolic least commitment approach. In
Proceedings of the Seventh National Conference on
Artificial Intelligence, pages 239–244, 1988.

[4] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally
weighted learning for control. In Artificial Intelligence
Review, pages 75–113. Springer, 1997.

[5] M. Auer and S. Biffl. Increasing the accuracy and
reliability of analogy-based cost estimation with
extensive project feature dimension weighting. In
Empirical Software Engineering, 2004. ISESE’04.
Proceedings. 2004 International Symposium on, pages
147–155. IEEE, 2004.

[6] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid,
and S. Biffl. Optimal project feature weights in
analogy-based cost estimation: Improvement and
limitations. Software Engineering, IEEE Transactions
on, 32(2):83–92, 2006.

[7] M. Azzeh, D. Neagu, and P. Cowling. Improving
analogy software effort estimation using fuzzy feature
subset selection algorithm. In Proceedings of the 4th
international workshop on Predictor models in
software engineering, pages 71–78. ACM, 2008.

[8] V. K. Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim,
and E. Khatibi. A pso-based model to increase the
accuracy of software development effort estimation.

Software Quality Journal, 21(3):501–526, 2013.

[9] V. K. Bardsiri, A. Khatibi, and E. Khatibi. An
optimization-based method to increase the accuracy of
software development effort estimation. Journal of
Basic and Applied Scientific Research, 2013.

[10] R. Bareiss. The experimental evaluation of a
case-based learning apprentice. In Proc. of the 2 nd
Workshop on Case-Based Reasoning, pages 162–167,
1989.

[11] T. Cain, M. J. Pazzani, and G. Silverstein. Using
domain knowledge to influence similarity judgements.
In Proceedings of the Case-Based Reasoning
Workshop, pages 191–198, 1991.

[12] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit.
A simulation study of the model evaluation criterion
MMRE. Software Engineering, IEEE Transactions on,
29(11):985–995, 2003.

[13] J. H. Friedman. Flexible metric nearest neighbor
classification. Unpublished manuscript available by
anonymous FTP from playfair. stanford. edu (see
pub/friedman/README), 1994.

[14] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. Journal of Machine Learning
Research, 3:1157–1182, 2003.

[15] T. Hastie and R. Tibshirani. Discriminant adaptive
nearest neighbor classification. Pattern Analysis and
Machine Intelligence, IEEE Transactions on,
18(6):607–616, 1996.

[16] L. Hedges and I. Olkin. Statistical methods for
meta-analysis. Academic Press, London, 1985.

[17] J. Higgins and S. Green. Cochrane Handbook for
Systematic Reviews of Interventions: Version 5.1.0

[updated March 2011]. The Cochrane Collaboration,
2011.

[18] S.-J. Huang and N.-H. Chiu. Optimization of analogy
weights by genetic algorithm for software effort
estimation. Information and software technology,
48(11):1034–1045, 2006.

[19] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant
features and the subset selection problem. In
Proceedings 11th International Conference on Machine
Learning, volume 94, pages 121–129, 1994.

[20] M. Jørgensen and M. Shepperd. A systematic review
of software development cost estimation studies. IEEE
Transactions on Software Engineering, 33(1):33–53,
2007.

[21] J. W. Keung and B. Kitchenham. Optimising project
feature weights for analogy-based software cost
estimation using the mantel correlation. In Software
Engineering Conference, 2007. APSEC 2007. 14th
Asia-Pacific, pages 222–229. IEEE, 2007.

[22] J. W. Keung, B. A. Kitchenham, and D. R. Jeffery.
Analogy-x: providing statistical inference to
analogy-based software cost estimation. Software
Engineering, IEEE Transactions on, 34(4):471–484,
2008.

[23] C. Kirsopp, M. Shepperd, and J. Hart. Search
heuristics, case-based reasoning and software project
effort prediction. In GECCO 2002: Genetic and
Evolutionary Computation Conf. AAAI, 2002.

[24] B. Kitchenham and S. Charters. Guidelines for
performing systematic literature reviews in software
engineering, version 2.3. Report EBSE Technical
Report EBSE-2007-01., Keele University, UK, 2007.

[25] B. Kitchenham, T. Dyb̊a, and M. Jørgensen.
Evidence-based software engineering. In 27th IEEE
Intl. Softw. Eng. Conf. (ICSE 2004). IEEE Computer
Society, 2004.

[26] B. Kitchenham, S. MacDonell, L. Pickard, and
M. Shepperd. What accuracy statistics really measure.
IEE Proceedings - Software Engineering, 148(3):81–85,
2001.

[27] E. Kocaguneli, T. Menzies, and J. W. Keung. Kernel
methods for software effort estimation. Empirical
Software Engineering, 18(1):1–24, 2013.

[28] R. Kohavi and G. John. Wrappers for feature selection
for machine learning. Artificial Intelligence,
97:273–324, 1997.

[29] J. Kolodner. Case-Based Reasoning.
Morgan-Kaufmann, 1993.

[30] J. Li and G. Ruhe. Analysis of attribute weighting
heuristics for analogy-based software effort estimation
method aqua+. Empirical Software Engineering,
13(1):63–96, 2008.

[31] Y. Li, M. Xie, and T. Goh. A study of mutual
information based feature selection for case based
reasoning in software cost estimation. Expert Systems
with Applications, 36(3):5921–5931, 2009.

[32] Y.-F. Li, M. Xie, and T. N. Goh. A study of project
selection and feature weighting for analogy based
software cost estimation. Journal of Systems and
Software, 82(2):241–252, 2009.

[33] C. Mair, G. Kadoda, M. Lefley, K. Phalp, C. Schofield,

M. Shepperd, and S. Webster. An investigation of
machine learning based prediction systems. Journal of
Systems and Software, 53(1):23–29, 2000.

[34] E. Mendes, I. Watson, C. Triggs, N. Mosley, and
S. Counsell. A comparative study of cost estimation
models for web hypermedia applications. Empirical
Software Engineering, 8(2):163–196, 2003.

[35] N. Mittas, M. Athanasiades, and L. Angelis.
Improving analogy-based software cost estimation by
a resampling method. Information & Software
Technology, 50(3):221–230, 2008.

[36] T. Mohri and H. Tanaka. An optimal weighting
criterion of case indexing for both numeric and
symbolic attributes. In AAAI-94 Workshop Program:
Case-Based Reasoning, Working Notes, pages
123–127, 1994.

[37] T. Mukhopadhyay, S. S. Vicinanza, and M. J.
Prietula. Examining the feasibility of a case-based
reasoning model for software effort estimation. MIS
Quarterly, pages 155–171, 1992.

[38] B. W. Porter, R. Bareiss, and R. C. Holte. Concept
learning and heuristic classification in weak-theory
domains. Artificial Intelligence, 45(1):229–263, 1990.

[39] M. Shepperd and S. MacDonell. Evaluating prediction
systems in software project estimation. Information
and Software Technology, 54(8):820–827, 2012.

[40] M. Shepperd and C. Schofield. Estimating software
project effort using analogies. IEEE Transactions on
Software Engineering, 23:736–743, 1997.

[41] D. Skalak. Representing cases as knowledge sources
that apply local similarity metrics. In Proc. of the 14th
Annual Conference of the Cognitive Science Society,
pages 325–330, 1992.

[42] D. Skalak. Prototype and feature selection by
sampling and random mutation hill climbing
algorithms. In 11th Intl. Machine Learning Conf.
(ICML-94), pages 293–301. Morgan Kauffmann, 1994.

[43] Q. Song and M. Shepperd. Predicting software project
effort: A grey relational analysis based method. Expert
Systems with Applications, 38(6):7302–7316, 2011.

[44] A. Tosun, B. Turhan, and A. B. Bener. Feature
weighting heuristics for analogy-based effort
estimation models. Expert Systems with Applications,
36(7):10325–10333, 2009.

[45] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang.
Systematic literature review of machine learning based
software development effort estimation models.
Information and Software Technology, 54:41–59, 2012.

[46] J. Wen, S. Li, and L. Tang. Improve analogy-based
software effort estimation using principal components
analysis and correlation weighting. In Software
Engineering Conference, 2009. APSEC’09.
Asia-Pacific, pages 179–186. IEEE, 2009.

[47] D. Wettschereck, D. W. Aha, and T. Mohri. A review
and empirical evaluation of feature weighting methods
for a class of lazy learning algorithms. Artificial
Intelligence Review, 11(1-5):273–314, 1997.

[48] D. Wu, J. Li, and Y. Liang. Linear combination of
multiple case-based reasoning with optimized weight
for software effort estimation. The Journal of
Supercomputing, 64(3):898–918, 2013.

