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Abstract

A Principled Methodology: A Dozen Principles of Software Effort Estimation

by

Ekrem Kocaguneli
Doctor of Philosophy in Computer Science

West Virginia University

Tim Menzies, Ph.D., Chair

Software effort estimation (SEE) is the activity of estimating the total effort required to com-
plete a software project. Correctly estimating the effort required for a software project is of vital
importance for the competitiveness of the organizations. Both under- and over-estimation leads
to undesirable consequences for the organizations. Under-estimation may result in overruns in
budget and schedule, which in return may cause the cancellation of projects; thereby, wasting the
entire effort spent until that point. Over-estimation may cause promising projects not to be funded;
hence, harming the organizational competitiveness.

Due to the significant role of SEE for software organizations, there is a considerable research
effort invested in SEE. Thanks to the accumulation of decades of prior research, today we are able
to identify the core issues and search for the right principles to tackle pressing questions. For
example, regardless of decades of work, we still lack concrete answers to important questions such
as: “What is the best SEE method?” The introduced estimation methods make use of local data,
however not all the companies have their own data, so: “How can we handle the lack of local
data?” Common SEE methods take size attributes for granted, yet size attributes are costly and
the practitioners place very little trust in them. Hence, we ask: “How can we avoid the use of
size attributes?” Collection of data, particularly dependent variable information (i.e. effort values)
is costly: “How can find an essential subset of the SEE data sets?” Finally, studies make use of
sampling methods to justify a new method’s performance on SEE data sets. Yet, trade-off among
different variants is ignored: “How should we choose sampling methods for SEE experiments?”

This thesis is a rigorous investigation towards identification and tackling of the pressing issues
in SEE. Our findings rely on extensive experimentation performed with a large corpus of estimation
techniques on a large set of public and proprietary data sets. We summarize our findings and
industrial experience in the form of 12 principles:

1) Know your domain 7) Weighting Analogies is Over-elaboration
2) Let the Experts Talk 8) Use Easy-path Design
3) Suspect your data 9) Use Relevancy Filtering
4) Data Collection is Cyclic 10) Use Outlier Pruning
5) Use a Ranking Stability Indicator 11) Combine Outlier and Synonym Pruning
6) Assemble Superior Methods 12) Be Aware of Sampling Method Trade-off
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Chapter 1

Introduction

Software effort estimation is an important field of empirical software engineering and
it can be defined as the activity of correctly estimating the effort required to complete a
software project. In the Introduction, we will introduce the problem of software effort
estimation and explain why it is critical for the success of contemporary software
development. We will continue with defining how the accumulation of more than 3
decades of software effort estimation research points out the open questions of the
field. Our research aims at investigating the open issues of software effort estimation.
The following paragraphs of the Introduction will briefly introduce our research as
well as the principles that emerged as a result of this research. Furthermore, after
each principle and the research that led to this principle, we will briefly mention the
related contributions of that research.

Correctly estimating the effort required to develop software is of vital importance. Over or

under-estimation of software development effort can lead to undesirable results:

• Under-estimation results in schedule and budget overruns, which may cause project cancel-

lation.

• Over-estimation hinders the acceptance of promising ideas, thus threatening organizational

competitiveness.

Since effort estimation plays such an important role for software companies, a considerable

effort has been invested in the issue. According to Jorgensen and Shepperd the largest research

topic in software effort estimation (hereafter, SEE) is the introduction of new methods and their

comparison and evaluation to existing ones [3]. In their comprehensive review of the SEE liter-

ature, Jorgensen and Shepperd report that more than 60% of the peer reviewed SEE studies deal

with this topic [3].
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Regardless of the huge amounts of research effort invested in introduction of new methods, we

still search for answers to a set of questions. For example, “What is the best SEE method?” The

introduced estimation methods make use of local data, however not all the companies have their

own data, so: “How can we handle the lack of local data?” SEE methods take size attributes for

granted, yet size attributes are costly and the practitioners place very little trust in them. Hence,

we ask: “How can we avoid the use of size attributes?” Collection of data, particularly dependent

variable information (i.e. effort values) is costly: “How can find an essential subset of the SEE

data sets?” Finally, studies make use of sampling methods to justify new methods performance on

SEE data sets. However, we do not evaluate the trade-off between different sampling methods, so

we ask: “How should we choose sampling methods for SEE experiments?”

Shepperd et al. mentions the problem of not having concrete answers to the afore-mentioned

issues and identifies 3 major areas of focus [4] and points to likely culprits of that problem:

• Model accuracy

• The dataset

• Sampling methods

To that list, we make the addition of “data collection”, i.e. how should one collect and look at the

data?

Our work for the past 3 years has been a rigorous research towards the key issues and related

questions of SEE. This document is the outcome of such an investigation.

We summarize our ideas and findings in the form of 12 principles. The principles regarding

data collection in an industrial setting (Principles 1 to 4) are our ideas and experiences that we

would like to share in a less technical manner compared to the other principles. Principles 5 to

12 (inclusive) are the summary of our rigorous experimental research, which led to the principle

recommended at the end of each chapter.

We have no claim that the principles presented in this document are absolute, yet they provide

clearer answers for a large corpus of SEE data sets and evaluation criteria. To the best of our

knowledge, the experiments reported in each chapter make use of most of the available public

data sets for SEE research and all the widely used error measures. Therefore, the principles,
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recommendations and contributions reported as a result of the rigorous experimentation reported

in this document concern a large portion of SEE research domain. The following is a list of the

identified principles as a result of the research presented in this thesis and the related contributions.

The first 4 principles concern the data collection activities. Unfortunately, it is rarely the case

that the data that an SEE practitioner wants to use is readily available [5]. In the case where the

SEE practitioner requires to mine his/her own data from the repositories of an organization, the

mining of the data becomes an interplay of domain knowledge, interaction with experts as well as

the update of the past collection and analysis with the emergence of new information. The related

principles of the first 4 chapters share our ideas and experiences regarding the data collection ac-

tivities. The principles that summarize our discussion in each related chapter are:

Principle #1: Know your domain

Principle #2: Let the experts talk

Principle #3: Suspect your data

Principle #4: Data Collection is Cyclic

In the related chapters, each of these principles will be further discussed. In summary, the contri-

butions of the data collection related discussions can be summarized as follows:

Contributions:

• Sharing of hands-on experience with industrial data collection

• Identification of possible pitfalls and likely solutions

It is difficult to find an SEE method that performs well across different data sets and different

error measures, i.e. methods are bound to change their ranking under changing conditions [4]. We

evaluate a high number of methods (90 methods as introduced in §2.4) induced on a high number

of data sets (20 public data sets of Figure 2.1) and evaluated w.r.t. 7 error measures (as described

in §2.3). This large scale evaluation confirmed the prior cautions that changing conditions (i.e.

change of data set and/or change of error measure) results in rank changes of methods. However,
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we were also able to observe that a small subset of the methods were more successful and more

stable compared to all the rest. The following principle summarizes this research:

Principle #5: Use a Ranking Stability Indicator

The contributions of the research behind this principle:

• A method to identify successful SEE methods using their rank changes.

• An evaluation method of the diversity of the SEE data sets.

• To show that use of a ranking stability indicator can help to identify successful
methods both for aggregate and specific cases.

As a result of the prior principle, we have a list of the small subset of methods that are more sta-

ble and more successful than the rest. Such a knowledge shall be used to advance the performance

of solo-methods (a solo-method is a combination of a pre-processor and a learner). Reading from

the literature of machine learning (ML), we see that knowledge of successful methods can be used

to form ensembles, which are expected to improve the performance of the individual members of

the ensemble [6–8]. Unlike prior SEE studies on ensemble methods that ignore to find the superior

solo-methods [9–11], our research (which targets superior solo-methods) reports statistically sig-

nificant performance improvements through the use of ensembles. Therefore, we recommend the

following principle:

Principle #6: Assemble Superior Methods

The contributions of the research on ensemble methods are:

• A novel scheme for ensembling the best solo-methods.

• Stable multi-methods that outperform all solo-methods.

Another promising direction of research in terms of successful SEE research is the investiga-

tion of analogy-based estimation (ABE). ABE research is heavily invested in by prominent research

groups of SEE [4, 12–15]. There are multiple beneficial factors of ABE methods that account for

this interest, such as [15]: 1) No model-calibration to local data is required, i.e. ABE can work
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with limited local data; 2) ABE can handle outliers, which are common in SEE datasets; 3) ABE

can choose similar projects with 1 or more attributes, so it can work even if all the attributes of

a new project are not yet defined; 4) It is not based on a parametric model, so it is useful if the

domain is difficult to model; and, 5) ABE process is similar to human reasoning, hence it is easy

to explain to a customers. The problem with the ABE methods is that the space of design options

related to different ABE methods is enormous. For example, in [16], we show that ABE0-like

methods can exceed 17,000 different design options. Hence, it is important to discover this this

space. A recent interest in ABE methods is to elaborate on the analogies (i.e. the training instances

that are used for estimation) [1, 17]. An extensive experimentation with kernel-weighting of the

analogies showed that such an elaboration has virtually no benefit. Hence, we state the following

principle:

Principle #7: Weighting Analogies is Over-elaboration

The contributions of the research that led to the 7th principle are:

• Investigation of an unexplored and promising ABE option of kernel-weighting.
• An extensive experimentation of 2090 ABE scenarios, which reduces the ABE

variants space to be explored.

Unlike over-elaborating on the details of ABE methods, we observed in multiple scenarios that

the design principles associated with ABE methods prove very beneficial [16, 18]. Such a design

principle, which also names the next principle is the so-called “easy-path design”. Easy-path de-

sign asks the user to identify the fundamental assumptions of a particular ABE variant and then get

rid of the training instances that violate these assumptions. Once the assumption-violating training

instances are removed, the ABE variant’s prediction accuracy has been observed to increase sig-

nificantly. The 8th principle recommends the easy-path design as a principle:

Principle #8: Use Easy-path Design

The contributions of the research that used easy-path design principle to design an
ABE variant called dynamic-ABE (D-ABE) are:
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• An ABE design principle that can be applied to different ABE methods.

• Discovering the performance space between static-k based ABE methods and
TMPA.

Besides the performance of estimation methods, another fundamental issue that is to be dealt

with in SEE is the availability of the local data (local data can be defined as the data of an orga-

nization) [2, 19]. Most of the fundamental SEE models are built on the available local data, e.g.

COCOMO [20]. However, the availability of local data is not always the case. In such cases, the

local data of other organizations or different time intervals (so called cross data) can be of help.

There is a significant amount of research effort invested in enabling the transfer of cross data to

local domains [2, 19, 21–23]. There is not an agreed-upon solution to the transfer of cross data,

neither is there an agreement on the success of the cross data use. However, recently it was seen

that relevancy filtering applied on the cross data improves the performance of using cross data to

the extent of using local data [22]. Our extensive experiments on public as well as proprietary data

sets using a relevancy-filtering method called TEAK showed that we can enable the transfer of

cross data without comprising from the performance. Hence, for cross data usage, we recommend:

Principle #9: Use Relevancy Filtering

The contributions of the research behind this principle are:

• Utilization of a novel method for time interval transfer.

• Evaluation of the proposed transfer learning method on recent proprietary as well
as public data sets; hence, providing evidence for practitioners as well as bench-
mark availability for further research.

• To evaluate the previous cross-company research in SE from a transfer learning
perspective.

Another issue that is relevant with the data collection and model building in SEE is the sizing

attributes of SEE data sets. Widely used SEE models like COCOMO and function points (FP)

are all built on the premise of the availability of size attributes such as lines of code or logical

transactions, respectively. However, -as we will discuss further in Chapter 10- the fact that size
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attributes are at the heart of SEE methods create a considerable opposition among the practitioners

and disrupts the adoption of SEE methods. Hence, it is critically important for SEE to promote

methods that can work without size attributes. A popularity-based ABE method called pop1NN

identifies the popular instances (training instances that are closest neighbors to other instances) and

prunes the rest. Such an SEE method can compensate the lack of size attributes in SEE data sets.

Therefore, we recommend the following:

Principle #10: Use Outlier Pruning

The contributions of this research are as follows:

• Promotion of SEE methods that can compensate the lack of the software size
features.

• A method called pop1NN that shows that size features are not a “must”.

Using pop1NN in order to compensate for the size attributes in SEE and using easy-path design

principle have common attributes. Both of these research share the common property that they get

rid of the noise within the training data and they hint that there is an easier structure to SEE data.

Therefore, we question the essential content of the SEE data sets, in other words what is the least

amount of training data in terms of instances and features that can provide the same performance

as a method using the entire training data? That question bears a fundamental importance for SEE,

because the majority of the SEE research is invested in discovery of new methods [3] and often

times the justification of the complexity of the proposed methods is overlooked. By improving the

pop1NN to identify popular instances as well as popular features (so called synonyms), we propose

an algorithm called QUICK. QUICK prunes away unpopular instances and popular features to re-

duce SEE data sets to an essential content. Our experimental results show that QUICK can attain

performance values as good as standard ABE methods and classification-and-regression-trees, by

using only a fragment of the data set. Therefore, we recommend the following principle to find

the essential content of SEE data sets and suggest that complex methods that provide marginal

performance improvements should be justified.
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Principle #11: Combine Outlier and Synonym Pruning

The contributions of the research searching for the essential content of SEE data sets
are:

• An unsupervised method to find the essential content of SEE data sets and reduce
the data needs.

• Promoting research to elaborate on the data, not on the algorithm.

All the SEE methods promoting a new method use a sampling method (SM) in order to sep-

arate the data set into training and test sets. However, different sampling methods pose different

bias-variance values, different run times and different degrees of ease-of-replication. The trade

off between these factors is overlooked and this issue poses a threat to the comparison of differ-

ent studies as well as replication of the work. The issue of the effects of different SMs has only

been discussed by Kitchenham et al. previously [21], yet there is no study evaluating different

SMs through extensive experimentation. Our recommendation for the SEE community is to use a

specific SM, leave-one-out cross validation. The more general recommendation as a result of our

research is:

Principle #12: Be Aware of Sampling Method Trade-off

The contributions of the experimental investigation of the trade-off between different
SMs are:

• The first systematic investigation of B&V trade-off in SEE domain

• An extensive experimentation with 20 public datasets and 90 algorithms

• Showing that B&V trade-off and run times of SMs are not the main concerns for
SEE

• Recommendation based on experimental concerns:

– For reproducibility, we prefer LOO since this avoids non-deterministic se-
lection of train and test sets.
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1.1 Statement of This Thesis

Accumulation of the 30+ years of software effort estimation work enables us to identify the core

issues as well as the overlooked ones, e.g. what is the best effort estimation method, how should we

advance analogy-based estimation methods, how can we handle local data requirements, how can

we choose the appropriate sampling method for software effort estimation? This thesis identifies

and answers such core issues.
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1.2 Structure of This Thesis

This thesis is structured as follows: Various chapters share common material such as the prop-

erties of the data sets and error measures used in this research, pre-processors and learners used in

experimentation as well as background notes on SEE. Such common material is discussed in Chap-

ter 2. Common validity issues are discussed in Chapter 3. This is followed by the recommended

principles, where each chapter presents the research as well as the principle that is recommended

at the end of this chapter. The industrial data collection related notes, which merely share our

experiences from projects with industry are presented in Chapter 4. Starting from Chapter 5 we

present our research leading to the principle that is recommended at the end of each chapter. Each

of these chapters (Chapter 5 to Chapter 12) start with a paragraph explaining the research that will

be presented throughout the chapter. The chapters finish with a conclusion, which names the prin-

ciple and lists the contributions of the research presented in that chapter. Finally, we present the

future directions to our research as well as the conclusions of our research Chapter 13.

1.3 Publications from This Thesis

The following is a list of publications written as a result of the research summarized in this

thesis.

JOURNAL PAPERS

IEEE Transactions on Software Engineering:

• E. Kocaguneli, T. Menzies, J. Keung, “On the Value of Ensemble Effort Estimation”, IEEE

Transactions on Software Engineering, 2011.

• E. Kocaguneli, T. Menzies, A. Bener, J. Keung, “Exploiting the Essential Assumptions of

Analogy-based Effort Estimation”, IEEE Transactions on Software Engineering, 2011.

Empirical Software Engineering Journal:

• E. Kocaguneli, T. Menzies, J. Keung, “Kernel Methods for Software Effort Estimation”,

Empirical Software Engineering Journal, 2011.
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Automated Software Engineering Journal:

• J. Keung, E. Kocaguneli, T. Menzies, “A Ranking Stability Indicator for Selecting the Best

Effort Estimator in Software Cost Estimation”, Journal of Automated Software Engineering,

2012.

Currently Under Review:

• E. Kocaguneli, T. Menzies, J. Keung, “Active Learning for Effort Estimation”, third round

review at IEEE Transactions on Software Engineering.

• E. Kocaguneli, T. Menzies, E. Mendes, “Transfer Learning in Effort Estimation”, submitted

to IEEE Transactions on Software Engineering.

• E. Kocaguneli, T. Menzies, “Software Effort Models Should be Assessed Via Leave-One-Out

Validation”, under second round review at Journal of Systems and Software.

• E. Kocaguneli, T. Menzies, E. Mendes, “Towards Theoretical Maximum Prediction Accu-

racy Using D-ABE”, submitted to IEEE Transactions on Software Engineering.

CONFERENCE PAPERS

• E. Kocaguneli, T. Menzies, J. Hihn, Byeong Ho Kang, “Size Doesn‘t Matter? On the Value

of Software Size Features for Effort Estimation”, Predictive Models in Software Engineering

(PROMISE) 2012.

• E. Kocaguneli, T. Menzies, “How to Find Relevant Data for Effort Estimation”, Interna-

tional Symposium on Empirical Software Engineering and Measurement (ESEM) 2011

• E. Kocaguneli, G. Gay, Y. Yang, T. Menzies, “When to Use Data from Other Projects for

Effort Estimation”, International Conference on Automated Software Engineering (ASE)

2010, Short-paper.
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Chapter 2

Background

Throughout the thesis, there are common materials that are shared by different chap-
ters. For example, the background information regarding SEE is common to almost
all of the experiments; hence, it will be presented here. Another common material is
the performance measures used to evaluate different SEE methods. Also, some data
sets are common to different chapters. Instead of repeating such information, we opted
for creating a background part, under which different chapters present related mate-
rial. In this chapter we also present background information regarding a large set of
learners and pre-processors that are commonly used in SEE research. Due to various
advantages of ABE methods on SEE data sets, our discussion of ABE methods are
more in-depth, compared to other methods.

2.1 Software Effort Estimation (SEE)

Software effort estimation (SEE) can be defined as the process/activity of estimating the total

effort necessary to complete a software project [24]. According to the extensive systematic review

conducted by Jorgensen and Shepperd, developing new models is the biggest research topic in SEE

since 1980s [3]. Therefore, there are many SEE models that have been proposed over the years

and a taxonomy is necessary to classify such a large corpus. Myrtveit et al. defines taxonomy as

an explanation of a concept by highlighting the similarities and differences between that particular

concept and the related ones [14].

There exists a number of different taxonomies proposed in the literature [14, 25]. Briand et

al. report that there is no agreement on the best taxonomy and define all proposed taxonomies to

be subjective and to have flaws [25]. For example Menzies et al. divide SEE methods into two
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groups: Model-based and expert-based [26]. According to this taxonomy model-based methods

use some algorithm(s) to summarize old data and to make predictions regarding the new data. On

the other hand, expert-based methods make use of human expertise, which is possibly supported

by process guidelines and/or checklists.

Myrtveit et al. use a different taxonomy, where they propose a dataset dependent differentiation

between methods [14]. According to that taxonomy the methods are divided into two:

• Sparse-data methods that require few or no historical data: e.g. expert-estimation [27], auto-

mated case-based reasoning [28].

• Many-data approaches where certain amount of historical data is a must: e.g. functions and

arbitrary function approximations (such as classification and regression trees).

Shepperd et al. propose a 3-class taxonomy [28]: 1) expert-based estimation, 2) algorithmic

models and 3) analogy. According to this taxonomy expert based models target the consensus

of human experts through some process like Delphi [29]. Jorgensen et al. define expert-based

methods as a human-intensive process of negotiating the estimate of a new project and arriving at a

consensus [27]. There are formal methods proposed for expert-based estimation like Delphi [29].

However, Shepperd et al. notes in another study that it is mostly the case that companies follow

an informal process for expert-based estimation [4]. Algorithmic models include the adaptation

of a formula to local circumstances or local data. Prominent examples to these methods are the

COCOMO method [20] and function points [30]. Analogy based methods include finding past

projects that are similar to the current project that is to be estimated and then adapting the effort

values of these past projects.

Regardless of the taxonomy used to group SEE methods under different classes, the ultimate

goal of all the methods are to generate realistic estimates. In [31] Jorgensen defines some guide-

lines for generating realistic software effort estimates. An important finding in Jorgensen’s study

(which parallels the findings behind “Principle #6: Assemble Superior Methods” in Chapter 6) is

that combining estimations coming from different sources (e.g. from experts and instance-based

learners) captures a broader range of information related to the estimation problem.
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2.2 Datasets

Figure 2.1 lists 20 real world software development project datasets, which are publicly avail-

able. As shown in Figure 2.1, public data sets are composed of a variety of data sets coming from

different parts of the world and collected via different methodologies. The public data sets used

for various experiments reported in this document are: The standard COCOMO data sets (co-

como*, nasa*), which are collected with the COCOMO approach [20]. The desharnais data set,

which contains software projects from Canada. It is collected with function points approach. SDR,

which contains data from projects of various software companies in Turkey. SDR is collected by

Softlab, the Bogazici University Software Engineering Research Laboratory [32]. albrecht data

set consists of projects completed in IBM in the 1970’s and details are given in [33]. finnish data

set originally contains 40 projects from different companies and data were collected by a single

person. The two projects with missing values are omitted here, hence we use 38 instances. More

details can be found in [34]. kemerer is a relatively small dataset with 15 instances, whose details

can be found in [35]. maxwell data set comes from finance domain and is composed of Finnish

banking software projects. Details of this dataset are given in [36]. miyazaki data set contains

projects developed in COBOL. For details see [37]. telecom contains projects which are enhance-

ments to a U.K. telecommunication product and details are provided in [38]. china dataset includes

various software projects from multiple companies developed in China.

For the Chapter 9, we required to identify cross and within data source. We define cross-within

sources as the subset(s) of effort data sets that are formed through division of one feature: Instances

having the same value for that feature form a subset. Such features are plausible candidates for

generating a cross source experiment, i.e. the features should be likely to change from one source

to other. Accordingly, we explored public as well as proprietary data sets manually. After man-

ually inspecting 20 public datasets of Figure 2.1, six were found to be suitable for cross-within

experimentation. Those six data sets support the 21 cross-within divisions shown in Figure 2.2.

The selected division criteria include:

• project type: embedded, organic and semidetached (cocomo81),

• center: geographical development center (nasa93),



Ekrem Kocaguneli Chapter 2. Background 15

Dataset Features Size Description Units
cocomo81 17 63 NASA projects months

cocomo81e 17 28 Cocomo81 embedded projects months

cocomo81o 17 24 Cocomo81 organic projects months

cocomo81s 17 11 Cocomo81 semi-detached projects months

nasa93 17 93 NASA projects months

nasa93 center 1 17 12 Nasa93 projects from center 1 months

nasa93 center 2 17 37 Nasa93 projects from center 2 months

nasa93 center 5 17 40 Nasa93 projects from center 5 months

desharnais 12 81 Canadian software projects hours

desharnaisL1 11 46 Projects in Desharnais that are developed with Language1 hours

desharnaisL2 11 25 Projects in Desharnais that are developed with Language2 hours

desharnaisL3 11 10 Projects in Desharnais that are developed with Language3 hours

sdr 22 24 Turkish software projects months

albrecht 7 24 Projects from IBM months

finnish 8 38 Software projects developed in Finland hours

kemerer 7 15 Large business applications months

maxwell 27 62 Projects from commercial banks in Finland hours

miyazaki94 8 48 Japanese software projects developed in COBOL months

telecom 3 18 Maintenance projects for telecom companies months

china 18 499 Projects from Chines software companies hours

Total: 1198

Figure 2.1: The 1198 projects coming from 20 public data sets. Indentation in column one denotes
a dataset that is a subset of another dataset.

• language type: programming language used for development (desharnais),

• application type: on-line service program, production control program etc. (finnish and

maxwell),

• hardware: PC, mainframe, networked etc. (kemerer and maxwell),

• source: whether in-house or outsourced (maxwell).

We will use the following nomenclatures: If a subset name is followed by a set of numbers, they

correspond to values of the feature used to form the subset. If a name has multiple numbers at

the end (e.g. finnishAppType2345) then all instances with these values are combined in a single

subset.

The cross-company experiments on public datasets are also repeated for proprietary data sets

from Tukutuku data base. Tukutuku data base is used for transfer learning between domains [12].

Tukutuku brings together data sets coming from a high number of companies. The version used in



Ekrem Kocaguneli Chapter 2. Background 16

Dataset Criterion Subsets Subsets Size

cocomo81 project type cocomo81e 28

cocomo81o 24

cocomo81s 11

nasa93 development center nasa93 center 1 12

nasa93 center 2 37

nasa93 center 5 39

desharnais language type desharnaisL1 46

desharnaisL2 25

desharnaisL3 10

finnish application type finnishAppType1 17

finnishAppType2345 18

kemerer hardware kemererHardware1 7

kemererHardware23456 8

maxwell application type maxwellAppType1 10

maxwellAppType2 29

maxwellAppType3 18

maxwell hardware maxwellHardware2 37

maxwellHardware3 16

maxwellHardware5 7

maxwell source maxwellSource1 8

maxwellSource2 54

Figure 2.2: 6 datasets are selected from 20 candidates. Then selected datasets are divided into
subsets according to a criterion that can define a cross-within division. The datasets, subset sizes
as well as the selection criteria are provided here.
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this research is composed of a total of 195 projects developed by a total of 51 companies. However,

not all the companies in the data set are useful for cross data analysis. We eliminated all the com-

panies with less than 5 projects, which yielded 125 projects from 8 companies. The abbreviations

used for the 8 companies that were selected and their corresponding number of projects are given

in Figure 2.3.

The Tukutuku data base is an active project, which is maintained by Emilia Mendes. The data

set includes information collected from completed Web projects [39]. These projects come from a

total of 10 different countries around the world [40]. The majority of the projects in Tukutuku data

base are new development (65%), whereas the remaining ones are enhancement projects. Tukutuku

data base is characterized by a total of 19 independent variables and a dependent variable. The

dependent variable is the total effort in person hours used to develop an application.

We were also interested to see how the transfer learning experiments between domains would

work for between time intervals. So as to see the transfer learning performance and selection

tendency between time intervals, we used 2 data sets: Cocomo81 and Nasa93. Each of these data

sets are divided into 2 subsets of different time periods. The subsets of Cocomo81 are: coc-60-75

and coc-76-rest, where coc stands for Cocomo81, 60-75 stands for projects developed from 1960 to

1975 and 76-rest stands for projects developed from 1976 onwards. It is possible to have different

divisions of the data depending on different time frames. Our selection selects these particular

divisions of time periods so that both subsets span a certain amount of time (e.g. more than a

decade) and yet have at least 20 instances. The subsets of nasa93 are: nasa-70-79 and nasa-80-rest.

The naming convention is similar to that of Cocomo81 subsets: nasa stands for Nasa93 dataset, 70-

Company # of Projects

tuku1 14

tuku2 20

tuku3 15

tuku4 6

tuku5 13

tuku6 8

tuku7 31

tuku8 18

Figure 2.3: The abbreviations that will be used for selected companies and the corresponding
number of projects.
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79 stands for projects developed in the time period of 1970 to 1979 and 80-rest stands for projects

developed from 1980 onwards. The details of these projects are provided in Figure 2.4.

Dataset Features Size Description
coc-60-75 17 20 Nasa projects between 1960 and 1975

coc-76-rest 17 43 Nasa projects from 1976 onwards

nasa-70-79 17 39 Nasa projects between1970 and 1979

nasa-80-rest 17 54 Nasa projects from 1976 onwards

Total: 156

Figure 2.4: Data sets for transfer learning over time period.

2.3 Error Measures

There are multiple performance measures (a.k.a. error measures) used in SEE. In this research,

we use a total of 8 error measures. Performance measures aim to measure the success of a predic-

tion. For example, the absolute residual (AR) is the absolute difference between the predicted and

the actual:

ARi = |xi − x̂i| (2.1)

(where xi, x̂i are the actual and predicted value for test instance i). We use a summary of AR

through taking the mean of AR, which is known as Mean AR (MAR).

The Magnitude of Relative Error measure a.k.a. MRE is a very widely used performance

measure for selecting the best effort predictor from a number of competing software prediction

models [38, 41]. MRE measures the error ratio between the actual effort and the predicted effort

and is expressed by the following equation:

MREi =
| xi − x̂i |

xi
=

ARi

xi
(2.2)

A related measure is MER (Magnitude of Error Relative to the estimate [41]):

MERi =
| xi − x̂i |

x̂i
=

ARi

x̂i
(2.3)

The overall average error of MRE can be derived as the Mean or Median Magnitude of Relative

Error measure (MMRE and MdMRE, respectively):
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MMRE = mean(allMREi) (2.4)

MdMRE = median(allMREi) (2.5)

A common alternative to MMRE is PRED(25), which is defined as the percentage of successful

predictions falling within 25% of the actual values, and can be expressed as follows, where N is

the dataset size:

PRED(25) =
100

N

N�

i=1





1 if MREi ≤ 25

100

0 otherwise
(2.6)

For example, PRED(25)=50% implies that half of the estimates fall within 25% of the actual

values [38].

Other performance measures used in this thesis are Mean Balanced Relative Error (MBRE)

and the Mean Inverted Balanced Relative Error (MIBRE), both suggested by Foss et al. [41]:

MBREi =
|x̂i − xi|

min(x̂i, xi)
(2.7)

MIBREi =
|x̂i − xi|

max(x̂i, xi)
(2.8)

The above mentioned performance measures are selected due to their wide use in the SEE

research. However, none of these error measures are devoid of problems. For instance, MRE-

based error measures have been criticized due to their asymmetry [41]. This criticism applies to

MMRE, MdMRE and Pred(25). Rather than going into the debate of which error measure is better

than the others, we evaluated our results subject to a total of 8 error measures. A recent study by

Shepperd et al. provides an excellent discussion of the error measures [42]. In this study Shepperd

et al. propose a new unbiased error measure called Standardized Accuracy (SA), which is based

on the mean absolute error (MAE). SA’s equation is as follows:

SA = 1− MAEPi

MAEP0

(2.9)

MAEPi is defined to be the MAE of the estimation method Pi. MAEP0 is the mean of a

large number of (in our case 1000) random guessing. In the random guessing procedure a training
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instance is randomly chosen with equal probability from the training set (with replacement) and

its effort value is used as the estimate of the test instance. SA gives us an idea of how good

an estimation method is in comparison to random guessing. Since the term MAEPi is in the

nominator, the higher the SA values, the better an estimation method.

Interpreting these error measures without any statistical test may be misleading. A recent

discussion about this issue can be found in [43]. To evaluate our results subject to a statistical test,

we make use of so called win-tie-loss statistics. Win-tie-loss statistics employ either a Wilcoxon

Signed Rank or a Mann-Whitney Rank Sum non-parametric statistical hypothesis test with 95%

confidence. These tests are more robust than the Student’s t-test as they compares the signs or

sums of ranks, unlike Student’s t-test, which may introduce spurious findings as a result of outliers

in the given datasets. Non-parametric tests are also useful, if it is not clear that the underlying

distributions are Gaussian [44].

We store the performance of every method w.r.t. each error measure used over each dataset.

This enables us to collect win-tie-loss statistics using the algorithm of Figure 2.5. In Figure 2.5, we

first check if two distributions i, j are statistically different according to the appropriate statistical

test (Wilcoxon or Mann-Whitney at 95% confidence); if they are not, then we increment tiei and

tiej . If the distributions are statistically different, we update wini, winj and lossi, lossj after

comparing their error measures.

if NonParametricTest(Ei, Ej , 95) says they are the same then
tiei = tiei + 1;
tiej = tiej + 1;

else
if better(Ei, Ej) then

wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Figure 2.5: Comparing methods (i,j).

The better function in the if statement of Figure 2.5 varies according to the performance

criteria. For some error measures such as MMRE and MdMRE, “better” means lower values, i.e.

lower means and medians respectively. For PRED(25), “better” means higher PRED(25) values.
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2.4 Pre-Processors and Learners

In different chapters, we will be referring to the results of Chapter 5, where 90 solo-methods are

compared. A solo-method is a combination of a pre-processor with a learner. The 90 solo-methods

come from the combination of 10 pre-processors and 9 learners. In this chapter, we define and

explain the different pre-processors and learners.

2.5 Pre-Processors

The 10 pre-processors used for investigation in this thesis are:

• x3 simple preprocessors: none, norm, and log;

• x1 feature synthesis methods called PCA;

• x2 feature selection methods: SFS (sequential forward selection) and SWR;

• x4 discretization methods: divided on 3 and 5-bins based on equal frequency and width.

None is just the simplest option of avoiding a pre-processor, i.e. all data values are unadjusted.

With the norm (max-min) preprocessor, numeric values are normalized to a 0-1 interval using

Equation 2.10. Normalization means that no variable has a greater influence than any other.

normalizedV alue =
(actualV alue−min(allV alues))

(max(allV alues)−min(allV alues))
(2.10)

With the log preprocessor, all numerics are replaced with their logarithm. This logging proce-

dure minimizes the effects of the occasional very large numeric values.

Principal component analysis [45], or PCA, is a feature synthesis preprocessor that converts

a number of possibly correlated variables into a smaller number of uncorrelated variables called

components. The first component accounts for as much of the variability in the data as possible,

and each succeeding component accounts for as much of the remaining variability as possible.

Some of the preprocessors aim at finding a subset of all features according to certain criteria

such as SFS (sequential forward selection) and SWR (stepwise regression). SFS adds features

into an initially empty set until no improvement is possible with the addition of another feature.
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Whenever the selected feature set is enlarged, some oracle is called to assess the value of that set

of features. In this study, we used the MATLAB, objective function (which reports the the mean-

squared-error of a simple linear regression on the training set). One caution to be made here is that

exhaustive search algorithms over all features can be very time consuming (2n combinations in an

n-feature dataset), therefore SFS was designed to work only in forward direction (no backtracking).

SWR adds and removes features from a multilinear model. Addition and removal is controlled

by the p-value in an F-Statistic. At each step, the F-statistics for two models (models with/out

one feature) are calculated. Provided that the feature was not in the model, the null hypothesis is:

“Feature would have a zero coefficient in the model, when it is added”. If the null hypothesis can

be rejected, then the feature is added to the model. As for the other scenario (i.e. feature is already

in the model), the null hypothesis is: “Feature has a zero coefficient”. If we fail to reject the null

hypothesis, then the term is removed.

Discretizers are pre-processors that map every numeric value in a column of data into a small

number of discrete values:

• width3bin: This procedure clumps the data features into 3 bins, depending on equal width

of all bins see Equation 2.11.

binWidth = ceiling

�
max(allV alues)−min(allV alues)

n

�
(2.11)

• width5bin: Same as width3bin but 5 bins instead.

• freq3bin: Generates 3 bins of equal population size;

• freq5bin: Same as freq3bin, but 5 bins instead.

2.6 Predictors (Learners)

Based on the effort estimation literature, we identified 9 commonly used learners:

• x2 instance-based learners: ABE0-1NN, ABE0-5NN;

• x2 iterative dichotomizers: CART(yes),CART(no);
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• x1 neural net: NNet;

• x4 regression methods: LReg, PCR, PLSR, SWR.

Instance-based learning can be used for analogy-based estimation (ABE). ABE0 is our name for

a very basic type of ABE that we derived from various ABE studies [1, 46, 47]. In ABE0-kNN,

features are firstly normalized to 0-1 interval, then the distance between test and train instances is

measured according to Euclidean distance function, k nearest neighbors are chosen from training

set and finally for finding estimated value (a.k.a adaptation procedure) the median of k nearest

neighbors is calculated. We explore two different kNN:

• ABE0-1NN: Only the closest analogy is used. Since the median of a single value is itself,

the estimated value in ABE0-1NN is the actual effort value of the closest analogy.

• ABE0-5NN: The 5 closest analogies are used for adaptation.

Iterative Dichotomizers seek the best attribute value splitter that most simplifies the data that

fall into the different splits. Each such splitter becomes a root of a tree. Sub-trees are gener-

ated by calling iterative dichotomization recursively on each of the splits. The CART iterative

dichotomizer [48] is defined for continuous target concepts and its splitters strive to reduce the

GINI index of the data that falls into each split. In this study, we use two variants:

• CART (yes): This version prunes the generated tree using cross-validation. For each cross-

validation, an internal node is made into a leaf (thus pruning its sub-nodes). The sub-tree

that resulted in the lowest error rate is returned.

• CART (no): Uses the full tree (no pruning).

In Neural Nets, or NNet, an input layer of project details is connected to zero or more “hidden”

layers which then connect to an output node (which yields the effort prediction). The connections

are weighted. If the signal arriving to a node sums to more than some threshold, the node “fires”

and a weight is propagated across the network. Learning in a neural net compares the output value

to the expected value, then applies some correction method to improve the edge weights (e.g. back

propagation). Our NNet uses four layers: Input layer, two hidden layers and an output layer.



Ekrem Kocaguneli Chapter 2. Background 24

This study also uses four regression methods. LReg is a simple linear regression algorithm.

Given the dependent variables, this learner calculates the coefficient estimates of the independent

variables. SWR is the stepwise regression discussed above. Whereas above, SWR was used to

select features for other learners, here we use SWR as a learner (that is, the predicted value is a

regression result using the features selected by the last step of SWR). Partial Least Squares Re-

gression (PLSR) as well as Principal Components Regression (PCR) are algorithms that are used

to model independent variables. While modeling, they both construct new independent variables

as linear combinations of original ones. However, the ways they construct the new independent

variables are different. PCR generates new independent variables to explain the observed variabil-

ity in the actual ones. While generating new variables the dependent variable is not considered at

all. In that respect, PCR is similar to selection of n-many components via PCA (the default value

of components to select is 2, so we used it that way) and applying linear regression. PLSR, on the

other hand, considers the independent variable and picks up the n-many of the new components

(again with a default value of 2) that yield lowest error rate. Due to this particular property of

PLSR, it usually results in a better fitting.

2.7 Analogy-Based Effort Estimation (ABE) and ABE0

Analogy-based estimation (ABE) is a specific case of case-based reasoning (CBR) and it ap-

pears to be a low cost alternative to more complex learners [49]. Furthermore, in 2 chapters of this

thesis (Chapter 8 and Chapter 9) ABE methods play a fundamental role, whereas in other chapters

ABE methods are used in comparison to different estimation methods. Therefore, in this chapter

we provide the background information of CBR and specifically ABE, then we continue with the

definition of a baseline ABE method, which is called as “’ABE0’.

CBR is an active research field [4,12,13,50], which can be defined as the activity of estimating

the new cases by using similar past cases [4, 51, 52]. CBR uses a so called knowledge-base (a.k.a.

case-base) of past instances. Knowledge-base is used to “retrieve” one or more similar past cases

(as well as their solutions) to the current problem at hand [53]. In our case the knowledge-base

is the training set. Then CBR “reuses” the retrieved cases to propose a solution for the current

problem [54]. Once the solution is “revised”, the final estimation is performed. A typical CBR
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system would “retain” this new experience of problem solving in its knowledge-base [52]. These

steps constitute a CBR-cycle, which is given in Figure 2.6.

In summary, CBR is a 4-step procedure:

1. RETRIEVE the most similar cases from the case base, i.e. choose the most similar past

projects to the new project, which is to be estimated.

2. REUSE the past case information to propose a solution for the new case, i.e. get the effort

values of past projects to estimate the new project.

3. REVISE the solution of the previous stage, i.e. make further corrections on the proposed

effort estimate.

4. RETAIN the solution for the new case, i.e. store the information of the new project in the

dataset.

2.7.1 Analogy-based Effort Estimation

Analogy based estimation (ABE) or estimation by analogy (EBA) is a form of case based rea-

soning (CBR). In their 2005 study Myrtveit et. al. follow the taxonomy of grouping SEE methods

under two main classes: sparse-data and many-data methods [14]. With respect to this taxonomy

CBR may belong to both classes depending on how past experience is used. For example if CBR

is used to reason from an already selected case, then it is grouped under sparse data methods. On

the other hand, if CBR is used to identify and adapt the past case(s), then it is a many-data method.

ABE is an example of CBR being used as a many-data method.

ABE has been used extensively in SEE [4,12,13,16,50]. It has been shown that ABE methods

are able to attain comparable or even better performance values than more complex algorithms [13,

15, 16]. Aside from the performance point of view, there are many other advantages of ABE over

the other more complicated methods [15]:

• No model-calibration to local data is required, i.e. ABE can work with limited local data.

• ABE can handle outliers, which are common in SEE datasets
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Figure 2.6: The CBR life-cycle. At the arrival of a new problem, similar cases are “retrieved”
from the “case-base”. Retrieved cases are “reused” and “revised” to reach a confirmed solution.
Depending on the correctness of the estimate, solution may be “retained” in the case-base as a
learned-case for future use.

• ABE can choose similar projects with 1 or more attributes, so it can work even if all the

attributes of a new project are not yet defined

• It is not based on a parametric model, so it is useful if the domain is difficult to model

• Finally, ABE process is similar to human reasoning, hence it easy to explain to a customer.

2.7.2 Baseline ABE: ABE0

ABE has a number of design options corresponding to different stages of CBR. Some of the

design options are:

• The case subset selection, i.e. noise removal: e.g. 1) remove nothing [38], 2) use outlier

removal [13], 3) use prototype methods to generate a representative set [55].
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• Feature selection methods: e.g. 1) using genetic algorithms to learn useful features [46], 2)

exhaustive methods like wrapper [56] and 3) various filter methods.

• Feature weighting methods: e.g. some weighting methods use initial discretization meth-

ods such as 1) equal-frequency discretization, 2) equal width discretization, 3) entropy [57],

4) PKID [58] and 5) use features as is, i.e. do nothing at all.

• The similarity function, i.e. different measures used to decide the similarity between

projects, e.g.: 1) weighted and 2) unweighted Euclidean distance, 3) triangular distribution-

based distance function by Frank et al. [59], 4) Minkowski distance [60] and 5) the mean

value ranking [15].

• Adaptation mechanisms, i.e. how to use the effort values of the closest projects, e.g.: 1)

take mean, 2) take median, 3) use a second learner for adaptation [26, 61] and 4) report the

weighted mean [1]

• The methods to select analogies, i.e. how many analogies to use and how to choose them:

1) Using a static number of analogies (e.g. Li et al. [46] recommends using 1 ≤ k ≤ 5

analogies), 2) dynamic number of analogies for a particular test instance [16, 61].

Note that just considering the above options, we have:

3 subset selectors
× 3 feature selectors
× 5 feature weighting schemes
× 5 similarity functions
× 4 adaptation mechanisms
= 900 ABE variants.

Following Kadoda&Shepperd [47], Mendes et al. [1], and Li et al. [46] we can define a baseline

ABE called ABE0, which executes the following steps:

• Input a database of past projects

• For each test instance, retrieve k similar projects (analogies).

– For choosing k analogies use a similarity measure.
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– Before calculating similarity, scale independent features to equalize their influence on

the similarity measure.

– Use a feature weighting scheme to reduce the effect of less informative features.

• Adapt the effort values of the k nearest analogies to come up with the effort estimate.

ABE0 uses the Euclidean distance as a similarity measure, whose formula is given in Equation

2.12, where wi corresponds to feature weights applied on independent features. ABE0 framework

does not favor any features over the others, therefore each feature has equal importance in ABE0,

i.e. wi = 1. For adaptation ABE0 takes the mean of retrieved k projects.

Distance =

����
n�

i=1

wi(xi − yi)2 (2.12)
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Chapter 3

Validity Issues

The results presented in a research are not devoid of validity threats due to multiple
reasons and our research presented in this document is not an exception. This chapter
briefly discusses the validity issues associated with the use of particular methods and
data sets in this thesis.

Construct validity (i.e. face validity) assures that we are measuring what we actually intended

to measure [62]. Previous studies have concerned themselves with the construct validity of dif-

ferent performance measures for effort estimation (e.g. [41]). While, in theory, these performance

measures have an impact on the rankings of effort estimation predictors, we have found that other

factors dominate. For example, Figure 5.4 showed that some of the datasets have a major impact

on what could be concluded after studying a particular estimator on these datasets. Note that the

data sets used for the experimentation of this thesis have been extensively used in SEE community

by other research groups as well. Based on our experience with working these data sets as well as

based on our reading of the related literature using these data sets, we have no reason to believe

that there are fundamental construct validity issues associated with the collection of these data sets.

External validity is the ability to generalize results outside the specifications of a certain

study [63]. To ensure external validity, different research ideas presented in this document have

utilized a large number of projects coming from virtually all the available public SEE data sets as

well as additional proprietary ones. Our data sets are diverse, measured in terms of their sources,

their domains and the time they were developed in. We use datasets composed of software devel-

opment projects from different organizations around the world to generalize our results [32]. Our

reading of the literature is that we use more data, from more sources, than numerous other papers.
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For example, Table 4 of [64] list the total number of projects used by a sample of other studies.

The median value of that sample is 186; i.e. only a fraction of the 1200+ projects used in the

experimentation of this thesis.

Internal validity asks to what extent the cause-effect relationship between dependent and inde-

pendent variables holds [45]. The ideal case to observe that relationship would be to learn a theory

on the available data and apply the learned theory on completely new and unseen data. So as to

simulate the case of new and unseen data, sampling methods are employed.

It is clear that this research has not explored absolutely all the range of effort estimation meth-

ods. Future work may be helpful to repeat some of the research ideas in this document using the

top performing solo-methods found here and possibly more. Nevertheless, given the extent of our

experimentation, this thesis offers much more support compared to other SEE studies.

Another validity issue to mention (regarding the use of solo-methods) is that none of learners

have been exhausted via fine-tuning. Therefore, future work is required to exhaust all the parame-

ters of every learner to use their best version. However, exhaustive fine-tuning of a learner through

some heuristic may be as comprehensive as a paper on its own right, e.g. tabu search heuristic

proposed by Corazza and Mendes et al. [40].
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Chapter 4

Ground Zero: When Do I Have the Perfect
Data?

At the end of an industry presentation, one of the attendees directed me the question: “When

do you know you have the perfect data?”. This is a very valid question for any estimation task that

requires the use of past data. Unfortunately there is no formula or silver-bullet answer. This is

mainly due to the fact that reaching the right data is an interplay of various different factors such

as domain knowledge; people generating, using and collecting the data; particular characteris-

tics of the data. Hence, the principles we will use are along these lines. This brief chapter and

the principles recommended are less technical and less experimental compared to other chapters.

However, any researcher or practitioner is likely to face situations in an actual data collection set-

ting, where the recommended principles may come reasonable and helpful. This chapter is a result

of rewording the initial question into the following form: “When do I have the perfect data?” and

it aims to share our experiences.

4.1 Principle #1, Know your domain

Each domain or product has a way of reflecting on the collected data data. Sometimes what

seems to be a recurring anomaly has a reasonable explanation. However, this knowledge is usually

hidden to an outsider data analyst. Fayyad et al. highlight the importance of domain knowledge

even more [65]. They note that “Use of domain knowledge is important in all steps” in knowledge
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discovery.

It is vitally important to get an idea of the processes behind the observed data. However, such

knowledge is hidden in the particular domain of an organization and it takes time and effort to

learn and discover this knowledge. For example, if one is to analyze the commit information of

a particular company, it is best to spend some time understanding the generation and progression

of their code in that corporation’s particular branching structure. In one of the projects that we

were involved in, there would be users associated with tens of commits per a business day. This

information may indeed be true, e.g. some developers prefer to commit small changes just to be

on the safe side. Yet, it needed to be supplemented with domain knowledge. Further investigation

via domain experts revealed that these users were responsible for the progression of the code in

the branching structure and their commits were not related to code generation. Therefore, asking

the right questions such as which users or user types touch the code in the branching structure,

how is this captured in the data bases were important in that particular project to reveal important

indicators.

Another example can be the collection of effort data from a company’s project management

software. Mere use of the numbers stored in the data bases may be misleading. For example,

in an industry project “planned time” and “actual time spent” by developers had 100% match,

which is in fact probably the ideal case from a project manager’s perspective. However, a talk with

the domain experts revealed that the 100% match is merely a way developers used the tool, i.e.

regardless of the actual time spent for particular task, the time information that would be filled out

by the developers was only a re-type of the planned number. Hence, this information needed to be

updated and/or augmented with further investigation.

One further example to the requirement of domain knowledge in data collection emerged dur-

ing the productivity analysis for a commercial organization. An analysis of the percentage of edits

committed by each developer revealed that a handful of developers in different projects were re-

sponsible for more than 80% of the entire commits. In other words, the numbers were telling that

the projects were developed by less than 5 people, although there were close to 100 developers

involved in each project. This information obviously needed to be further clarified. Therefore, we

went and talked with the project managers and department heads to make sure that the observed

pattern in data was a reflection of the truth. They were also surprised to see such a pattern and
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suggested that this may indeed be the case, yet they recommended that we talked to the actual de-

velopers (finding the right person to talk to for the domain knowledge). When we talked with the

developers who were responsible for more than 80% of the commits, the fact revealed itself: The

commit structure in different teams was made in such a way that most of the new developers would

transfer their edits to the more experienced developers for a sanity check. Experienced develop-

ers would then make sure that there was not anything fundamentally wrong with the edits of the

less experienced developers. Then the experienced developers would perform the commit. Hence,

the observed pattern was indeed the reflection of the processes employed among the developers,

yet the numbers could have been interpreted much differently without the accompanying domain

knowledge.

It is possible to increase the number of examples, where suspicious information has perfectly

normal explanation through particular domain properties. However, the main idea is to get the

domain knowledge right. On the other hand, getting the right domain knowledge may not be as

easy as it seems. It requires one to ask the right questions to the right people. If possible, getting

to talk with multiple domain experts and cross-validating the learned domain knowledge proves to

be beneficial.

4.2 Principle #2, Let the Experts Talk

Very initial results have a higher chance of being blown by the domain experts, this is only

natural. Because, the very initial results are based on the data with limited domain knowledge

and with limited user input. Remembering from the war stories mentioned in the previous section,

the initial analysis is likely to be the analyst’s interpretation of the numbers and it may be very

different from the reality. Therefore, initial results or the initial analysis may be off the target. Yet,

the initial results presented in the early meetings of the project present fundamental opportunities.

The success of the very initial results are better to be measured by the amount of discussions

they stimulate among the experts or attendees of that meeting. If it creates a discussion and you

are bombarded with questions and suggestions regarding how to improve your analysis, then the

analysis is on a good track and this is the time to listen to experts regarding what false assumptions

were made during data collection, what other considerations should be included and so on. Fur-
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thermore, it may be a good time to know the right people to ask domain specific questions. Such

discussions and involvement also provide opportunity for the next projects. Multiple times the next

project to be funded was decided during the ongoing project, upon the discussions that the domain

experts built on top of the presented results, i.e. let the experts talk.

A caution regarding this principle is to make sure that all the experienced domain experts

are aware of the initial results. Because, experienced experts have domain knowledge and their

time is valuable. Therefore, they may choose to skip the initial meetings due to other priorities.

On the other hand, it may create fundamental flaws in the data collection not to have their input

and not to provide them the opportunity to talk. For example, during a project we needed to

find out the amount of code added to different work packages in a large software platform. The

problem was that work packages are associated with different work groups and different projects

that were all working on the same platform. The solution that emerged after the discussion with the

experienced domain experts that were attendees of the initial meetings was that although there is

the possibility that different teams may be committing to the same work package simultaneously,

in reality that was never the case. In other words it was safe to assume that the commits performed

on a work package during the course of a project were performed by a single team. An analysis of

some sample projects confirmed this assumption, so we built further analysis on this assumption.

However, after about 50% of the project was complete, an experienced domain expert, who was

responsible for a specific set of projects and who was unable to attend the prior meetings opposed

this assumption. He was able to identify a number of projects from his own domain that violated

this assumption, which resulted in finding ways to clean the data, then recollecting it and updating

the entire analysis until that point. Hence, although the experts may skip the initial meetings due

to more urgent priorities, it is best to organize one-to-one meetings with such experts to provide

them an opportunity to talk and make sure that they are on board with the current results and

assumptions.

4.3 Principle #3, Suspect your data

Anything to good or too surprising to be true has a high chance of being not true indeed. Once

one accumulates enough domain knowledge and enough feedback from the domain experts, it is
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time for the more mechanical part of the data analysis phase. In this phase, one can inspect the data

manually by looking at e.g. the min-max values of each feature or by plotting the values of each

individual feature value through -say- a box-plot. This sometimes works like a charm to identify

any errors in the data collection. It also can hint which instances are likely to be outliers.

It is also good to try to interpret the data, in other words what type of a story does the data tell?

John Rauser of Amazon points out this issue in his 2011 talk at the Strata conference [66]. He

mentions it as the “curiosity” to question the observed effects from the data and attributes it as one

of the key characteristics that a person dealing with data should have. Also note that all the prior

anomalies could have been simply ignored, unless we suspected the collected data.

4.4 Principle #4, Data collection is Cyclic

The data related war stories and ideas until now were presented in a certain order, yet note

that the principles associated with data collection are not necessarily sequential. In other words,

they are intermingled and can appear in any order multiple number of times. This fact requires

one to get more domain feedback or expert input in the case of data anomalies, then updating the

collected data as well as the analysis.

Fayyad et al. provide an in depth discussion of about data collection in the domain of knowl-

edge discovery in databases (KDD) [65]. The recommended framework for KDD by Fayyad et

al. is provided in Figure 4.1. Assuming that the principles recommended until now correspond to

different nodes of the framework in Figure 4.1, the “data collection is cyclic” principle makes the

following addition: Every step is connected to all the other steps with a bi-directional edge.

A recent work on the importance of the data collection in the general domain of SE was pre-

sented by Menzies et al [5], where they also agree on the fact that data collection has a cyclic

nature. In [5], Menzies et al. provide a manifesto for the so called “inductive engineers”, who

are the engineers that are expected to deal with data from the mining till making sense out of it.

They also provide an update of Figure 4.1, where they provide improvements along with the cyclic

nature of the data collection.

Note that the data collection related principles are not the fundamental to this thesis or to the

presented results later on in this document. They merely serve the purpose of sharing our hands
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Figure 4.1: The framework given by Fayyad et al. [65].

on experience and some of the war stories that helped us in understanding the data collection. The

reason for sharing such experience is the hope that they could help the SEE practitioners in case

they also require to collect data.
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Chapter 5

Principle #5, Use a Ranking Stability
Indicator

Being able to choose the most appropriate software development effort predictor for
the local software projects remains elusive for many project managers and researchers.
For decades, researchers have been seeking for the “best” software effort predictor. At
the time of writing, there is no such a commonly agreed “best” predictor found, which
provides consistently the most accurate estimate. The usual conclusion from studies
is that different researchers offer conflicting rankings as to what is “best” [4, 14]. It
seems, given different historical datasets, different sets of best effort predictors exist
under various different situations.

Being able to compare and determine the best effort predictor for different scenarios is criti-

cally important to the relevance of the estimates to the target problem. Software effort estimation

research focuses on the learner used to generate the estimate (e.g. linear regression, neural nets,

etc.) in many cases, overlooking the importance of the quality and characteristics of the data be-

ing used in the estimation process. We argue that this approach is somewhat misguided since, as

demonstrated in the following sections of this chapter, learner performance is greatly influenced

by the data preprocessing and the datasets being used to evaluate the learner. A combination of a

preprocessor and a learner forms a complete effort estimation solo-method in general; e.g. the data

normalization technique as a preprocessor with linear regression as the learner. The term “solo-

method” will be used extensively in this and also the following chapter. The reason of calling it

“solo” is due to the fact that a solo-method contains a single learner. We will see in the following

chapter that it is possible to combine different learners. Such combined methods of more than one
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learner will be referred as “multi-methods.”

Ranking stability in software effort estimation is of the primary research focus of this chapter.

Being able to correctly classify the characteristics of each method allows the most suitable pre-

dictors to be used in the estimation process. The study presented in this chapter is a natural result

of prior research in SEE, it is based on the success of a previous study described in Menzies et

al. [67], where a large number of predictors were applied on COCOMO datasets, and they were

able to derive precise and stable ranking of all the predictors under changing parameters in the

random number seeds, different evaluation criteria and subsets of the data used.

The hypothesis of the study presented in this chapter is that if we are able to derive a sta-

ble ranking conclusion using simulated data, similar behavior should be observed when applying

real heterogeneous datasets from public domains. Note that data sets from public domains come

from different sources with various differences in project characteristics and evaluation criteria.

The main contribution is that this comprehensive study presents a method, which can be used to

determine the best effort predictors to use at different situations.

Method combinations can produce vastly different results, in all, this study applies 90 predic-

tors (9 preprocessors × 10 learners) to 20 datasets and measure their performance using seven

performance criteria subject to a statistical check via Wilcoxon non-parametric statistical test. The

statistical test is used to generate the so called win-tie-loss statistics. One result of exploring such

a large space of data and algorithms is that we are able to report stable conclusions. We will refer

to our results coming from the aggregate of 90 predictors, 20 data sets and 7 error measures as the

“aggregate results.” The aggregate results are validated through focusing on a specific case of a

single error measure and a statistical method other than win-tie-loss statistics. For the error mea-

sure we chose to use magnitude of relative error (MRE) as it is one of the mostly used performance

measures in software effort estimation. As for the statistical method, we developed and applied

an algorithm that is called the “CLUSTER,” whose details are given in Section 5.4.1. CLUSTER

first sorts 90 predictors from best to worst (according to median MRE, i.e. MdMRE) and allows

each data set to group 90 predictors into a number of clusters. The methods in every cluster are

statistically the same according to Kruskal-Wallis statistical test (an ANOVA alternative) and the

neighboring methods in consecutive clusters (i.e. the methods where two cluster became disjoint)

are statistically different from one another according to Wilcoxon statistical test. So, CLUSTER
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uses:

• Wilcoxon to compare 2 learners to see whether or not the second method should start a new

cluster;

• and Kruskal-Wallis to compare n-many learners to see if the methods within a single cluster

would still be statistically the same after the addition of a new learner.

This sanity check showed us that:

• Some data sets (6 out of 20) are non-diverse, i.e. for these data sets the grouping of 90

methods into clusters do not create diversity (measured with Gini index).

• It is unnecessary to seek for a sanity check in non-diverse data sets (as most of the learners

are grouped into a big cluster), which gives 20-6=14 data sets for the sanity check.

• It is possible to have data sets, where the aggregate results and the specific results do not

completely agree on which group of methods is the best.

• However, such data sets are very rare (1 out of 14), i.e. aggregate results hold for most of the

data sets (13 out of 14) in a specific setting.

5.1 Comparison of Multiple SEE Methods

With the availability of different SEE methods, it is becoming a more non-trivial task to select

the most appropriate modeling methods for a particular software development situation. Despite

decades of research, there is still no consensus on which effort predictors are better or worse than

others. Researchers have expressed concerns and even doubt that such a ranking of predictors

can ever be generated. For example, Shepperd and Kododa [4] compared regression, rule induc-

tion, nearest neighbor and neural nets, in an attempt to explore the relationship between accuracy,

choice of prediction system, and different dataset characteristics by using a simulation study based

on artificial datasets. A number of conflicting results exist in the literature as to which method pro-

vides superior prediction accuracy, and possible explanations are offered including the misuse of

an evaluation criteria such as MMRE or a malformed dataset being used etc. All of these can have
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a strong influence on the relative effectiveness of different prediction models. The conclusion of

of Shepperd et al.’s study based on simulation is that it is generally infeasible to determine which

prediction technique is the “best”:

• None of these existing predictors were consistently the “best”;

• The accuracy of an estimate depends on the dataset characteristic and a suitable prediction

model for the given dataset.

5.2 Ranking Instability

More recent results suggest that we should be revisiting the changes of method rankings. Men-

zies et al. [67] applied 158 predictors to various subsets of two COCOMO datasets. In a result con-

sistent with Shepperd and Kododa, they found the precise ranking of the 158 predictors changed

according to

• the random number seeds used to generate train/test sets;

• the performance evaluation criteria used;

• and which subset of the data was used.

In addition, there are 4 methods consistently outperformed the other 154 across all datasets, across

5 different random number seeds, and across three different evaluation criteria, making the result

stable.

5.3 Experimental Design

The number of all the configurations of different SEE methods can easily exceed thousands.

For example, Keung et al. [49] shows that the number of options associated with only CBR methods

can easily exceed tens of thousands of different variants. It is impractical to explore all the variants

variants of every different SEE methods. Hence, we elected to explore variants commonly used

in the literature. For example, we explore neural nets, regression, and analogy because those
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methods were explored by Shepherd and Kododa [4]. Nevertheless, it is important to note that

our conclusions come from the predictors, performance criteria and datasets used in this research.

Further work may be required to confirm our findings on other predictors, performance criteria,

datasets. The total list of pre-processors and learners used in the experimentation of this chapter

has been provided earlier in §2.4.

5.3.1 Experimental Procedure

This research reused the experimental procedure of a recent prominent study [68]. In the leave-

one-out experiment, given N projects, 1 project at a time is selected as the test and the remaining

N − 1 projects are used for training, so eventually we have N predictions (this procedure refers

to Jack-knifing in statistics). The resulting N predictions are then used to compute our seven

evaluation criteria given in §2.3. To compare the performance of one predictor versus the rest, we

used a Wilcoxon non-parametric statistical hypothesis test. Wilcoxon is used to create the win, tie

and loss statistics in accordance with the algorithm, whose pseudo-code is given in Figure 2.5.

5.4 Results

After applying leave-one-out to all 20 data sets, the procedure of Figure Figure 2.5 was repeated

seven times (once for MAR, MMRE, MMER, MBRE, MIBRE, MdMRE and PRED(25)). Our

ninety predictors were then sorted by their total number of losses over all datasets. The resulting

sort order is shown in Figure 5.1. The predictor, with fewest losses (norm/CART(yes)) was ranked

#1 and the predictor with the most losses (PCA/LReg) was ranked #90.

Given 89 comparisons and seven performance measures and 20 datasets, the maximum number

of losses for any predictor was 89× 7× 20 = 12, 460. Figure 5.2 sorts all 90 predictors according

to their total losses seen in all seven performance criteria (expressed as a percentage of 12,460).

The x-index of that figure corresponds to the ranks of Figure 5.1; e.g. the top ranked predictor of

norm/CART(yes) lost in nearly zero percent of our experiments.
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rank # of losses pre-processor learner rank # of losses pre-processor learner

1 148 norm CART (yes) 46 1668 PCA NNet

2 150 norm CART (no) 47 1671 width3bin ABE0-5NN

3 151 none CART (yes) 48 1673 none NNet

4 152 none CART (no) 49 1682 width5bin SWR

5 155 log CART (yes) 50 1727 width5bin ABE0-1NN

6 157 log CART (no) 51 1737 none LReg

7 226 SWR CART (yes) 52 1776 width5bin ABE0-5NN

8 228 SWR CART (no) 53 1783 SFS NNet

9 400 SFS CART (yes) 54 1788 norm PLSR

10 404 SFS CART (no) 55 1809 freq5bin ABE0-1NN

11 412 SWR ABE0-1NN 56 1818 SWR NNet

12 634 log ABE0-1NN 57 1851 SWR LReg

13 641 SWR ABE0-5NN 58 1876 norm LReg

14 728 SFS ABE0-5NN 59 1941 freq3bin ABE0-1NN

15 732 PCA PLSR 60 1945 freq3bin CART (yes)

16 733 SWR PCR 61 1945 freq3bin CART (no)

17 734 none PLSR 62 1961 PCA ABE0-1NN

18 740 SFS ABE0-1NN 63 2284 width3bin SWR

19 749 PCA PCR 64 2284 width5bin PLSR

20 765 none PCR 65 2386 log SWR

21 888 PCA CART (yes) 66 2515 log PCR

22 888 PCA CART (no) 67 2665 log PLSR

23 907 freq5bin ABE0-5NN 68 2725 width3bin PLSR

24 918 SWR PLSR 69 2729 width3bin ABE0-1NN

25 927 SFS LReg 70 2810 width5bin PCR

26 929 norm ABE0-1NN 71 2853 norm PCR

27 933 none ABE0-1NN 72 3413 width3bin PCR

28 994 SFS PCR 73 3528 freq5bin PCR

29 999 SFS PLSR 74 3627 freq5bin SWR

30 1030 freq5bin CART (yes) 75 3647 width3bin LReg

31 1030 freq5bin CART (no) 76 3737 freq3bin PCR

32 1069 width5bin CART (yes) 77 3802 width5bin LReg

33 1069 width5bin CART (no) 78 3822 freq3bin PLSR

34 1123 norm ABE0-5NN 79 3829 freq5bin PLSR

35 1127 PCA SWR 80 3871 log LReg

36 1148 none ABE0-5NN 81 4656 freq3bin SWR

37 1231 SWR SWR 82 5980 freq5bin LReg

38 1269 SFS SWR 83 6405 width5bin NNet

39 1284 log ABE0-5NN 84 6411 norm NNet

40 1375 norm SWR 85 6414 width3bin NNet

41 1381 none SWR 86 6417 log NNet

42 1440 freq3bin ABE0-5NN 87 6420 freq3bin NNet

43 1493 PCA ABE0-5NN 88 6422 freq5bin NNet

44 1532 width3bin CART (yes) 89 7065 freq3bin LReg

45 1532 width3bin CART (no) 90 10252 PCA LReg

Figure 5.1: Detailed pre-processor and algorithm combinations (i.e. predictors), sorted by the
sum of their losses seen in all performance measures and all public data sets of Figure 2.1. The
predictor with fewest losses is ranked #1 and is norm/CART(yes). At the other end of the scale,
the predictor with the most losses is ranked #90 and is PCA/LReg.
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Figure 5.2: The ninety predictors of Figure 5.1, sorted by their percentage of maximum possible
losses (so 100% = 12,460).

Figure 5.3 tests the stability of the predictors. In this plot, we check if the sort orders are

changed by different performance criteria: In Figure 5.3, we report the mean of maximum rank

changes for each predictor with respect to their ordering in Figure 5.1.

• Each error measure defines its own ordering of predictors w.r.t. its win, loss or win − loss

values.

• Maximum rank change is the maximum absolute difference between either of these order-

ings.

• Then, mean of maximum rank changes coming from 7 performance measures gives us Fig-

ure 5.3.

The sort order on the x-axis of Figure 5.3 was kept the same as the before. A line drawn parallel to

x-axis at y = 10 gives predictors, whose mean rank change is less/more than 10. See in Figure 5.3

that y = 10 line divides all predictors into 3 regions: a (from predictor 1 to 13), b (from predictor

14 to 64) and c (from predictor 65 to 90). Regions a and c show “high-ranked” and “low-ranked”

predictors respectively. None of the predictors in regions a and c exceed mean rank change of

10, i.e. they are “stable” in high and low ranks. In region b “medium-ranked” predictors are

accumulated. However, all predictors in region b have mean rank changes above 10, i.e. they are

“unstable” in this region. In a result consistent with prior reports on ranking instability, the lines



Ekrem Kocaguneli Chapter 5. Ranking Stability Indicator for Selecting the Best Effort Estimator 44

in each region are not exactly smooth. However, they do closely follow the same general trends as

Figure 5.2.
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Figure 5.3: Predictors and the mean of their maximum rank changes over all performance mea-
sures. Mean rank change of smaller than 10 divides 90 predictors into 3 regions. Region “a”
consists of high-ranked stable predictors, whereas region “c” contains low-ranked but still stable
predictors. Region “b” on the other hand shows middle-ranked and non-stable predictors.

Since the sort orders seen using the number of losses and mean rank changes over seven per-

formance criteria are mostly stable, we use them to draw Figure 5.4. In that figure, each x,y

position shows the results of 623 comparisons (each predictor compared to 89 others using seven

performance measures; 89× 7 = 623). The y-axis of that figure shows the 90 predictors sorted

in the rank order of Figure 5.1. For example, the top-ranked predictor norm/CART(yes) appears

at y=1; the log/ABE0-1NN result appears at y=12; the log/LReg results appear at y=80; and the

worst-ranked predictor PCA/LReg appears at y=90.

In order to discuss which learners/preprocessors are “best”, we divide Figure 5.4 into 3 bands

of Figure 5.3. We reserve the lowest band from predictor 1 to 13 (containing the “best” predictors)

for the region where all predictors have a mean rank change of smaller than 10. Note that predictors

in that region almost always lose less than 1
8 th of the time (i.e. the rows y = 1 to y = 13 that are

almost completely yellow in Figure 5.4). In the other bands (boundaried at y = 14 to y = 64 and

y = 65 to y = 90), predictors lose much more frequently, i.e. behavior of predictors in the loss

percentage graph of Figure 5.4 are in agreement with the rank change graph of Figure 5.3.

Figure 5.5 shows the spectrum of PRED(25) values across the 3 bands. As might be expected,

the y-axis sort order of Figure 5.5 predicts for estimation accuracy. As we move over the three
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Figure 5.4: Number of losses seen in 90 predictors and 20 datasets expressed as a percentage of
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bands from worst to best, the PRED(25) values double (approximately), thus confirming the unique

performance of predictors in each band.

Figure 5.6 shows the frequency counts of preprocessors and learners grouped into the three

bands:

• A “good” preprocessor/learner appears often in the lower bands (tendency towards band a).

In Figure 5.6, CART is an example of a “good” learner.

• A “poor” preprocessor/learner appears more frequently in the higher bands (tendency to-

wards band c). In Figure 5.6, all the discretization preprocessors (e.g. freq3bin) are “poor”

preprocessors.

• The gray rows of Figure 5.6 shows preprocessor/learner that are neither “good” nor “poor”

(since they exist in all 3 bands and have high frequency counts in bands b and c); e.g. see

the log preprocessor.

5.4.1 Sanity Check

Our purpose in the sanity check is two-fold:

• To ensure our observations from the aggregate of loss values over 7 error measures and 20

data set would hold for a specific case due to a single error measure;

• Subjecting a specific error measure to a statistical procedure other than win-tie-loss statistics.

We chose to focus on the specific error measure of MRE. As for the proposed statistical as-

sessment, we devised an algorithm called CLUSTER, which makes use of 2 statistical tests in

combination: Wilcoxon and Kruskal-Wallis (an ANOVA alternative for the cases where ANOVA’s

normality assumptions may be invalid). For each data set, CLUSTER groups 90 predictors into “c”

clusters. The predictor(s) grouped in each one of the “c” clusters have statistically the same MRE

values with one another according to Kruskal-Wallis. The neighboring predictors in two consecu-

tive clusters have statistically different MRE values from one another according to Wilcoxon. The

detailed steps of CLUSTER are as follows:
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1. Take a single data set D

2. Sort 90 predictors according to their MdMRE values for D in ascending order (i.e. best

predictor appears at #1).

3. Set i = 1 and j = 1

4. Place predictor #i into group #j.

5. Compare MRE values of predictor #i with #i+1 w.r.t. Wilcoxon

Occurrence of learners in bands a, b, c

band a band b band c
y = 1..13 14..64 65..90

Le
ar

ne
rs

CART (yes) 34 28 1

CART (no) 33 28 2

ABE0-5NN 6 55 2

ABE0-1NN 11 44 8

PCR 3 29 31

PLSR 3 35 25

LReg 22 41

SWR 46 17

NNet 20 43

Pr
e-

Pr
oc

es
so

rs

SWR 25 37 1

SFS 14 49

none 14 48 1

log 20 17 26

norm 14 33 16

PCA 4 49 10

freq5bin 28 35

width3bin 31 32

width5bin 42 21

freq3bin 23 40

Figure 5.6: Frequency counts over 7 error measures for preprocessor and learners in the three
bands of Figure 5.3.
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6. Compare if MRE values of all the predictor(s) in group #j and MRE values of predictor #i+1

w.r.t. Kruskal-Wallis.

7. If both Wilcoxon and Kruskal-Wallis indicate MRE values are statistically the same; then

set i = i+1 and go to Step 4; else set i = i+1 and j = j+1 and go to Step 4. Do this until

all the 90 predictors are exhausted.

Note that the procedure of CLUSTER enables each data set to define its own groups of predictors

(clusters), where MRE values of the predictors within each group are statistically the same. The

number of groups formed for each data set through the CLUSTER as well as the number of pre-

dictors appearing in each group are given in Figure 5.7. Except the china data set, all the data sets

have less than 6 groups. For the reasons of space, we summed the number of predictors appearing

in groups #7 to #16 of china under the Rest column. The number distribution of predictors into

groups #7 to #16 are: 1, 9, 4, 8, 7, 7, 6, 1, 1, 6 (respectively).

Dataset # Groups G1 G2 G3 G4 G5 G6 Rest Gini Diversity

nasa93 6 20 27 1 10 25 7 - 0.76

D
iv

er
se

cocomo81 4 37 12 24 17 - - - 0.71

miyazaki94 4 22 42 13 13 - - - 0.68

nasa93center2 3 31 36 23 - - - - 0.66

maxwell 4 14 31 41 4 - - - 0.65

china 16 2 10 7 16 2 3 50 0.60
Se

m
i-D

iv
er

se

sdr 3 42 44 4 - - - - 0.54

desharnais 3 53 30 7 - - - - 0.54

finnish 3 23 57 10 - - - - 0.52

cocomo81e 2 48 42 - - - - - 0.50

nasa93center1 3 67 16 7 - - - - 0.41

desharnaisL3 4 2 67 18 3 - - - 0.40

nasa93center5 2 65 25 - - - - - 0.40

cocomo81s 2 70 20 - - - - - 0.35

albrecht 2 76 14 - - - - - 0.26

N
on

-D
iv

er
sedesharnaisL1 3 80 9 1 - - - - 0.20

desharnaisL2 2 80 10 - - - - - 0.20

cocomo81o 3 1 88 1 - - - - 0.04

telecom1 1 90 - - - - - - 0.00

kemerer 1 90 - - - - - - 0.00

Figure 5.7: The number distribution of 90 predictors to the groups formed by CLUSTER as well
as the Gini indices [69] calculated by that distribution. Data sets are sorted w.r.t. their Gini indices
in descending order.
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The group counts as well as the distribution of the 90 predictors to these groups for each data

set can be used as an indicator of the impurity of the data sets. One of the most commonly used

measures of impurity is the Gini index [69], which had also been used as a splitting criterion in the

classification and regression trees [48]. The formula for the Gini index of a data set D with “c”

clusters is given in Equation 5.1, where |ci| denotes the number of predictors within ith cluster.

Gini(D) = 1−
c�

i=1

�
|ci|
90

�2

(5.1)

Given that the data set D forms only a single cluster of 90 predictors, then its Gini index

becomes Gini(D) = 1 − (1)2 = 0. Such pure data sets with a Gini index of zero are “non-

diverse” data sets, meaning that they are unable to help us identify predictors with high and low

MRE values. telecom1 and kemerer data sets are examples to such “non-diverse” data sets.

Note that the data sets of Figure 5.7 are sorted according to their Gini indices. Starting from

Gini index of 0 we grouped all the 20 data sets into 3 bins with increment of 30 in the Gini index.

The resulting bins are called: Diverse (with 6 data sets), semi-diverse (with 8 data sets) and non-

diverse (with 6 data sets). These bins are indicated on Figure 5.7. When performing our sanity

check, we will focus our attention to diverse and semi-diverse data sets only.

Figure 5.8 is our sanity check on the top 13 learners. It shows the success of top 13 learners in

the diverse and semi-diverse data sets. The cells of Figure 5.8 show in which group (top 1, 2 and

so on) each one of the top 13 learners appeared. The cells in which top 13 learners do not appear

within the best group (i.e. top “1”) are highlighted. Note that there are only two data sets for which

the majority of the cells are highlighted: china and desharnaisL3. Thinking that china data set has

16 groups and that the top group has only 2 predictors in it, top 13 learners to be in the 2nd best

group is not dramatic result either. Among the 14 data sets, there is only 1 contradictory example,

where top 13 learners found through an aggregate analysis do not hold for a specific analysis.

Our sanity check on the worst performing (i.e. bottom) 26 learners is given in Figure 5.9, which

also only shows the diverse and semi-diverse data sets. Figure 5.9 shows in which group (top 1, 2

and so on) bottom 26 learners appeared. The cells where the bottom 26 learners appear within the

best group (i.e. top “1”) are highlighted. The data set that contradicts the most with our aggregate
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nasa93 6 1 1 1 1 1 1 1 1 1 1 1 1 1

cocomo81 4 1 1 1 1 1 1 1 1 1 1 1 1 1

miyazaki94 4 1 1 1 1 1 1 1 1 2 2 1 2 1

nasa93center2 3 1 1 1 1 1 1 1 1 1 1 1 1 2

maxwell 4 1 1 1 1 1 1 2 2 1 1 2 2 2

china 16 2 2 2 2 2 2 2 2 2 2 8 8 8

sdr 3 1 1 1 1 1 1 1 1 1 1 1 1 1

desharnais 3 1 1 1 1 1 1 1 1 1 1 1 2 1

finnish 3 1 1 1 1 1 1 1 1 2 2 1 2 1

cocomo81e 2 1 1 1 1 1 1 1 1 1 1 1 1 1

nasa93center1 3 1 1 1 1 1 1 1 1 1 1 1 1 1

desharnaisL3 4 3 3 3 3 3 3 3 3 3 3 2 2 2

nasa93center5 2 1 1 1 1 1 1 1 1 1 1 1 1 1

cocomo81s 2 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 5.8: The number of groups per dataset (only diverse and semi-diverse data sets) and the
group-rank of the top 13 learners. The cells where the top 13 predictors do not appear on the top
group are highlighted.

conclusions is cocomo81s, which has 11 highlighted cells. For the rest of the data sets, the bottom

26 learners, which were identified through an aggregate analysis also perform poorly in a specific

analysis.

In the sanity check, we checked the performance of the top and bottom learners of the aggre-

gate analysis in a specific scenario. In this specific scenario, we focused our attention to a single

error measure (MRE) and we also used a statistical procedure other than the win-tie-loss statistics.

For both top and bottom learners we saw contradictory cases, where the results of the aggregate

analysis did not hold for the specific case. However, these cases were only 1 out of 14 data sets.

Hence, we can conclude that our results presented in this chapter through an aggregate analysis are

most likely to be valid for a specific case too.
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nasa93 6 5 6 6 5 4 5 5 5 5 6 5 5 5 5 5 5 5 5 5 6 5 6 6 6 5 5

cocomo81 4 4 4 4 3 1 3 3 3 4 4 4 4 3 3 4 4 4 4 4 4 4 4 4 4 3 3

miyazaki94 4 4 4 4 2 3 2 3 2 3 3 4 3 4 3 4 4 3 3 4 4 4 4 4 4 3 2

nasa93center2 3 2 3 3 2 2 3 3 3 3 3 2 3 2 3 3 2 3 2 3 3 3 3 3 3 2 3

maxwell 4 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 2 3 4 4 3 3 4 4 3 3

china 16 13 12 16 11 10 12 11 13 13 13 11 12 10 13 15 13 12 12 16 16 16 14 16 16 12 12

sdr 3 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3 3

desharnais 3 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 3 3 3 3 3 3 2 3

finnish 3 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2 3

cocomo81e 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2

nasa93center1 3 1 1 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 1 3 3 3 3 3 3 2 3

desharnaisL3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 4 2 2 2 2 2 2 2 4

nasa93center5 2 2 2 2 2 1 1 2 1 1 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2

cocomo81s 2 2 2 1 2 1 2 2 1 2 1 2 2 2 2 2 1 2 2 1 1 1 1 1 1 2 2

Figure 5.9: The number of groups per dataset and the group-rank of the bottom 26 learners to these
groups. The cells where the bottom 26 learners appear on the top group are highlighted.

5.5 Discussion

5.5.1 Findings

Based on these figures and results, we summarize our findings as follows.

Finding1: Observing the small amounts of fluctuation (or jitter) in Figure 5.3 we can see

that our results may not be considered 100% stable, however they are sufficiently stable to draw

conclusions. We conjecture that prior reports on ranking instability could stem from using too few

data sets or too few predictors.

Finding2: Figure 5.1 shows the preprocessor and learner combination is important, as their

current rank can be changed if a different preprocessor is used in combination with the learner.

For example, the top-ranked predictor that uses CART(yes), is driven down to rank 60 if the

preprocessor is changed from norm to freq3bin. Clearly, the effectiveness of a learner can be

significantly altered by seemingly trivial details relating to data preprocessing as it will change the

dataset characteristics input to the learner. Hence, in future, researchers should explore learners

and the preprocessors, as they are both equally important.
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Finding3: Observe in Figure 5.6 how SWR, LReg and NNet are stand-out learners that fall

entirely into the worst two bands. Proponents of these learners need to defend their value for the

purposes of effort estimation.

The relatively poor performance of simple linear regression is a highly significant result. LReg,

with a log preprocessor, is the core technology of many prior publications; e.g. the entire CO-

COMO project [20]. Yet as shown in Figure 5.4, w.r.t. loss values over all error measures,

log/LReg ranks very poorly (position 80 out of a maximum of 90 predictors). We also did ex-

periments at individual level of error measures. At individual level the ranking is not very different

either, i.e. the ranking of LReg w.r.t. loss values over MAR, MMRE, MMER, MBRE, MIBRE,

MdMRE and Pred(25) are 80, 76, 81, 80, 75, 76 and 78 respectively.

Finding4: While SWR falls into the worst two bands of the learners, it is most commonly

found in the best two bands of the preprocessors. That is, stepwise regression is a poor learner but

a good preprocessor. Hence, in future, the fate of SWR might be as an assistant to other learners.

Finding5: While simple regression learners like LReg are deprecated by this study, more intri-

cate regression learners like regression trees (CART) and partial linear regression PLSR are found

in the better bands. Hence, in future, proponents of regression for effort estimation might elect to

explore more intricate forms of regression than just simple LReg.

Finding6: The top-ranked learner was norm/CART(yes).

Finding7: Simple predictors (e.g. k=1 nearest neighbor on the log of the numerics) perform

nearly as well as the top-ranked predictor. Figure 5.10 compares the PRED(25) results between

rank=12 and rank=1. The datasets in that figure are sorted by the difference between the top-ranked

and the twelfth-ranked predictor. Except for China dataset, the difference in PRED(25) values is

either slightly negative, or positive. That is, even though the rank=1 predictor is relatively “best”

(measured according to our comparative Wilcoxon tests), when measured in an absolute sense, it

is not impressively better than simpler alternatives.

Finding7 is an important result, for three reasons. Firstly, there are many claims in the literature

that software project follows a particular parametric form. For example, in the COCOMO project,

that form is effort ∝ KLOCx). The fact that non-parametric instance predictors perform nearly

as well as our best predictor suggests that debates about the parametric form of effort estimation

is misguided. Also, it means that the value of certain commercial estimation tools based on a
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norm/CART(yes) log/ABE0-1NN difference

kemerer 7 27 -20

desharnaisL3 20 40 -20

nasa93 center 2 43 57 -14

nasa93 29 39 -10

cocomo81s 9 18 -9

albrecht 33 42 -9

telecom1 33 39 -6

cocomo81 13 16 -3

nasa93 center 5 36 33 3

desharnaisL1 39 35 4

cocomo81o 29 21 8

desharnaisL2 48 40 8

cocomo81e 18 7 11

desharnais 43 32 11

sdr 42 29 13

miyazaki94 40 25 15

maxwell 32 15 17

finnish 61 37 24

nasa93 center 1 58 33 25

china 95 43 52

Figure 5.10: Using all data sets to compare the Pred(25) of norm/CART(yes) (rank=1) and
log/ABE0-1NN (rank=12).

particular parametric form may not be much more than simple instance-based learners.

Secondly, analogy-based estimation methods are widely used [13, 15, 28, 46, 68, 70–74]. Find-

ing7 says that while this approach may not be 100% optimal in all cases, compared to our best

predictor found by this study, there is not a dramatic lost if estimates are generated by analogy.

Prior to this publication, we are unaware of a large comparative study relating to this matter.

Thirdly it is easier to teach and experiment with simpler predictors (like the log/ABE0-1NN

predictor at rank=12) than more complex predictors (like the norm/CART predictor at rank=1).

For example, recently we have been experimenting with a very simple variant of ABE0-1NN that

is useful as a learner to find software process change [75]. Such experimentation would have

been hindered if we tried to modify the more complex CART learner (particularly if we included

sub-tree pruning).

Finding8: The aggregate results are “mostly” confirmed by the specific results in our study.

This has two implications: (1) The aggregate analysis on a large space of predictors and data sets

helps us derive stable conclusions that are valid for most of the cases. (2) Practitioners should
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be cautious that -although being rare, eg. 1 out of 14 data sets- there are specific cases where

aggregate results may not apply.

5.6 Conclusion

In this chapter we presented the results of a research, whose results come from the combination

of 10 learners and 9 data preprocessors into 90 effort estimation predictors. These were applied

to 20 public datasets of Figure 2.1. Performance was measured using 7 performance indicators

(AR, MRE, MER, MdMRE, MMRE, PRED(25), MBIRE). Performances were compared using

a Wilcoxon ranked test (95%). This procedure can be used as a ranking stability indicator for

selecting the most suitable effort predictor in SEE, which is an important stage in the estimation

process. Eight findings are identified to be noteworthy:

1. Prior reports of ranking instability about effort estimation may have been overly pessimistic.

Given relatively large number of publicly available effort estimation datasets, it is now pos-

sible to make stable rankings about the relative value of different effort predictors.

2. The effectiveness of a learner used for effort estimation (e.g. regression or analogy methods)

can be significantly altered by data preprocessing (e.g. logging all numbers or normalizing

them zero to one).

3. Neural nets and simple linear regression perform much worse than other learners such as

analogy learners.

4. Stepwise regression was a very useful preprocessor, but surprisingly a poor learner.

5. Non-simple regression methods such as regression trees and partial linear regression are

relatively strong performers.

6. Regression trees that use tree pruning performed best of all in this study (with a preprocessor

that normalized the numerics into the range zero to one).

7. Very simple predictors (e.g. K=1 nearest neighbor on the log of the numerics) performed

nearly as well as regression trees.
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8. It is important to validate the stable conclusions derived from aggregate results through spe-

cific scenarios. Such a validation in this study showed that stable conclusions hold for the

specific scenarios. Yet, it is still a possibility that “rarely” the aggregate and specific results

will favor different predictors.

The afore-mentioned findings are the result of an investigation for ranking deltas of a large set

of SEE solo-methods executed on a large space of 20 data sets and 7 error measures. Such use of

rank delta analysis can help to identify the superior solo-methods, which consistently outperform

inferior solo-methods. Knowledge of superior solo-methods (as we will see in the next chapter)

can be used to propose alternative ideas (e.g. ensembles of solo-methods). Hence, the principle

recommended as a result of this chapter is:

Principle #5: Use a Ranking Stability Indicator

The contributions associated with the research presented in this chapter are:

• A method to identify successful methods using their rank changes.

• An evaluation method of the diversity of the SEE data sets.

• Proof that use of a ranking stability indicator can help to identify successful methods both

for aggregate and specific cases.
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Chapter 6

Principle #6, Assemble Superior Methods

The results presented in this chapter build upon the results of the prior chapter. In
the previous chapter, we observed that the rank of a method is bound to change when
the data set or the error measure changes. Yet we observed that the the amount of
rank change (i.e. δr) is much smaller for certain methods (the so called superior solo-
methods). In this chapter, we exploit this fact to combine superior solo-methods (a
learner augmented with a pre or post-processing step) with low δr values into multi-
methods. A multi-method is a combination of two or more solo-methods. When the
performance of the multi-methods are compared to those of the solo-methods, we are
able to observe that multi-methods are consistently more successful than the solo-
methods.

This should not be a surprising result. Many researchers argue that, in theory, best estimates

come from combinations of multiple predictions. For example, Jorgensen advises that, for expert-

based estimation, it is best to generate estimates from multiple methods [27]. Machine learning

community also shares this optimism regarding multi-methods. For example Seni et al. report that

taking the average of the estimates coming from multiple solo-methods yield better results than the

individual solo-methods [76]. Similar conclusions are offered by other researchers in the field of

statistics [77] and machine learning [78, 79].

Unlike the studies in machine learning and statistics, the SEE studies that dealt with multi-

methods are pessimistic about their performance [9, 10, 61].

• Kocaguneli et al. failed to improve estimation through averaging the predictions of 14 esti-

mators [10].

• Baker could not improve estimation accuracy through boosting [61].
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When compared with the previous ensemble results in SEE, the results presented in this chapter

regarding ensembles turn out to be different. Whereas previous studies on the ensembles (through

different strategies) were reporting that ensembles are not statistically better than single learners,

our study reports that (through the right strategy) ensembles can outperform single learners. The

difference between the prior work and this one is that they were based on the assumption that all

the solo-methods were candidates to be included in multi-methods. However, this is hardly the

case. We know from the previous chapter that only a minority of the solo-methods have low rank

changes and successful performance. Hence, in this chapter we will recommend that only the

superior solo-methods should be employed in multi-methods.

The results of this chapter resolve the contradiction between theory and experimental results in

SEE. To the best of our knowledge, this is the first such result in the effort estimation literature that

is supported by extensive experimentation. We therefore offer the following advice for a successful

ensemble of methods:

1. Try a large number of methods among which there are at least some good methods (shown

to have a good performance by prior work).

2. Sort the methods using the evaluation methods discussed in this document. Discard all but

the best solo methods.

3. Built ensembles from the remaining solo-methods.

6.1 Ensemble of Methods

A standard machine learning technique is to try multiple methods on the available data, then

recommend the one that performs best [8]. Many effort estimation papers apply this technique to

demonstrate that (say) their preferred new method is superior to those proposed in prior work.

Ensemble learning takes a different approach. Rather than choosing one method, ensembles

build multiple predictors, where estimates coming from different learners are combined through

particular mechanisms, e.g. voting of individual learner estimates on the final prediction [80].

Before continuing any further we need to clear a terminology difference. From now on the term

“learner” refers to a stand-alone machine learning algorithm without any supplemental pre or
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post processing step (e.g. k-NN, neural nets etc.), whereas the term “solo-method” will refer to

a machine learning algorithm supplemented with a pre-processing option (e.g. logging+k-NN,

discretization+neural nets etc.).

Ensembles are useful since any particular learner comes with its own assumptions [8]. These

assumptions may be best suited to different parts of the training data [6, 8, 80]. In ensembles,

methods can augment each other, i.e. a method patches errors made by another method. For

example, when reducing estimated mean-squared-error, multi-methods attain smaller or equal error

rates than single-methods [76].

It is a recommended practice to combine solo-methods that have different characteristics [6–8].

There are many techniques to attain different-characteristic multi-methods. The first way is through

representation of the data. The multi-method structure may be based on uni-representation (all

learners use same representation of data) or multi-representation (different learners use different

representations) [8]. Examples to such strategies are the use of different feature sets [81, 82] or

different training sets [83].

The second way is through architectural methodologies. Bagging (Bootstrap Aggregating) and

boosting are among the most common examples of that approach [8,84]. In bagging n-many solo-

methods are independently applied on n-many different training samples, where each training sam-

ple is selected via bootstrap sampling [8] with replacement. Boosting on the other hand arranges

solo-methods in a sequential manner: each solo-method pays more attention to the instances on

which previous method was unsuccessful. Among the reported results, boosting is mostly reported

to be considerably better than bagging [84–86], but has trouble in handling noisy datasets [84,86].

The ensembles are employed in various domains. For example biometrics domain has very suc-

cessful applications in terms of bringing together the information coming from different sources.

Ross et al. show in [87] a successful application for an ensemble of 3 different biometrics modali-

ties. In [88] Ross et al. perform ensembles at feature extraction level. Another good domain for the

use of ensembles of learners is the SE domain. The details of the studies dealing with ensembles in

SE are given in the following subsection. However, we suffice to note that there is a slight termi-

nology difference between the two domains. The terminology used in biometrics domain [87] for

the ensemble of biometric systems is “fusion”. On the other hand, in SE domain the term used for

combining different learners or algorithms is “ensemble”. The SE community prefers to stick to
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conventional names. For example a criticism to an earlier work of us [10] was “using unorthodox

terms” for the SE domain, when dealing with ensembles. Therefore, we will use the term ensemble

when referring to combination of learner/algorithms throughout this report.

6.2 Ensemble of Methods in SE

Ensemble of solo-methods into multi-methods are widely used in data mining [76]. On the

other hand, the success of multi-methods in one domain does not promise that they will be suc-

cessful in another domain with different types of problems. For example in SE domain, they are

reported to be unsuccessful. Khosgoftaar et al. [9] question the performance of different multi-

method schemes under different scenarios in the domain of software quality. They use different

combinations of 17 learners induced on 7 datasets and report that multi-methods induced on single

datasets do not yield a significant increase in prediction accuracy.

Kocaguneli et al. [10] replicated [9] in the domain of software effort estimation. They exploited

combination of 14 methods applied on 3 software effort estimation datasets. Their conclusion was

similar to that of [9]: the application of multi-methods under different scenarios did not provide a

significant increase in the estimation accuracy. Similarly, in [11], different learners were employed

in two types of committees, but only one of them was reported to be successful.

Another example to ensembles is the committee of single-type learners, where multiple ver-

sions of a single algorithm are combined. Pahariya et al. use linear combinations of genetic

algorithms in [89], where they report improvements over single-learners. In [90] Kultur et al. re-

port improvements through collections of neural networks. Note that such single-learner methods

fall into the category of solo-methods (since there is only one type of learner) in this work.

There are also some applications of ensemble methods in effort estimation so as to process

datasets: In [91], Twala et al. use multiple imputation techniques to handle missing data and

in [92] Khoshgoftaar et al. make use of learner ensembles as a filter to improve the data quality.

Our ensemble is different from the above. We take care to prune inferior solo methods before

building the ensemble. As shown below, this leads to quite successful effort estimators.
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6.3 Solo and Multi Methods

The effort estimation methods studied in this chapter fall into two groups: solo-methods and

multi-methods. Solo-methods are some combination of a pre-processing option and a learner. For

example, Boehm’s preferred effort estimation method uses a log transform as the pre-processing

option, then linear regression as the learner [20]. Multi-methods are combinations of at least two

solo-methods.

6.3.1 Multi-Methods

Multi-methods combine two or more solo-methods. Many combination schemes have been

proposed in the literature [1, 6–8]. Complex combination schemes include bagging [69], boost-

ing [93] or random forests [94, 95]. Simpler methods include computing the mean, median or

inverse-ranked weighted mean (IRWM [1], see Figure 6.1) of estimates coming from n-many solo-

methods.

In IRWM, the final estimates from M methods e1, e2, ..., em that have been ranked r1, r2, ..rm is a

weighted sum by the ranks of all methods in the ensemble. The top and bottom-ranked methods of m

methods get a weight of m and 1 (respectively). More generally, a method with rank ri gets a weight

of m+ 1− ri. The final estimate in IRWM is hence (
�

i(m+ 1− ri)·ei) / (
�

i i).

Figure 6.1: IRWM. Generalized from [1].

Our aim is not to investigate complex schemes, but to observe how multi-methods perform

compared to solo-methods on effort datasets. Therefore, we adopt simple schemes (mean, median

and IRWM). In the ideal case, different multi-methods would perform optimally under different

combination schemes. For example when combining a high number of solo-methods, it would be

better to use a scheme that would catch the central tendency and be able to handle extreme val-

ues, e.g. median. However, our findings do not support that implication. In other words, our best

performing multi-method includes a high number of solo-methods and its combination scheme is

IRWM. That discrepancy between implications and results is a familiar concept in forecasting lit-

erature: It is difficult to give robust guidelines as to combine the methods in an optimum way [96].
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Investigation of robust combination schemes and their implications would be a good future direc-

tion to our study.

6.3.2 90 Solo-Methods

In our experiments, we used 10 different pre-processing options and 9 learners, which were in-

troduced in §2.4. As one would remember from that chapter, the combination of 10 pre-processing

options and 9 learners results in 10*9=90 solo-methods.

Note that new methods are being constantly invented (e.g. see [40, 46, 90]) so we make no

claim that the 90 methods explored here cover the space of all possible effort estimators. Hence,

we take care not to conclude that some particular combination of solo-methods is the best. Rather

our conclusions will be that, given a set of models, it is best to rank them and generate multi-model

estimators from the top-ranked models.

We also make no claim that one study can cover all the pre-processing options there is in the

literature and our study is is no exception. Our study covers a total of 10 options for pre-processing,

however it does not cover the effects of noise or outlier removal. The investigation of the effects

of noise/outlier removal on method performance would in fact be an interesting future direction to

this study.

6.3.3 Experimental Conditions

One important point highlighted in the studies of Shepperd et al. [4] and Menzies et al. [67] is to

evaluate the methods subject to various experimental conditions, since the change in experimental

conditions are likely to change the ordering of methods. The experimental conditions, which are

reported to be particularly important are [4, 67]:

1. Performance measures that measure a method’s performance,

2. Summary over multiple datasets and performance measures,

3. Data sets.

For our experiments, we use 7 different error measures: MAR, MMRE, MdMRE, MMER, PRED(25),

MBRE, MIBRE. For the summary over multiple performance measures and datasets we use the
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following procedure: Each of our 90 methods were compared to 89 others using the procedure

of Figure 2.5. According to this procedure, we sum the win, loss, win − loss values coming

from and we compare our methods according to each sum separately. These comparisons can be

summarized through many ways:

1. Number of losses;

2. Number of wins;

3. Number of wins-losses

In other words, for a method to be highly ranked, it must perform well across all error measures.

The δr ,i.e. the rank change amount of a method is calculated in the same manner as introduced

in §5.4 of Chapter 5. Eventually, we run this analysis over 20 public data sets of Figure 2.1. Note

that the results of this chapter are an extensive analysis of different conditions for effort estimation

experiments. Given 89 comparisons among solo-methods, 7 error measures, and 20 datasets, then

each method appears in 89× 7× 20 = 12, 460 comparisons.

6.4 Methodology

6.4.1 Focus on Superior Methods

Figure 6.2 is a plot, which was introduced in Chapter 5, that shows the success of the solo-

methods through ranking and the variability in that ranking. The x-axis of Figure 6.2 shows the

the ranking of the 90 solo-methods, according to number of losses over all 7 error measures and

20 data sets. The most successful methods have the lowest number of total losses whereas the the

least successful ones have the highest number of total losses. Then solo-methods are ranked on the

x-axis starting from the best one. Therefore, better methods appear on the left-hand-side of that

figure (so the top-ranked method appears at position x = 1).

The ranking of methods is identified by the x-axis of Figure 6.2, whereas the variability in that

ranking is given by the y-axis. The y-axis of Figure 6.2 shows the maximum changes, δr, seen

for each method as we compare the ranks across number of losses, number of wins, and number

of wins-losses. In other words, a solo-method has different rankings according to its win, loss
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or win − loss values and the related number seen on the y-axis is the biggest difference between

its best and worst rankings. In a result consistent with Shepperd et al., all methods have δr > 0.

However, the good news is that the top-ranked methods have a very low δr. That is, even if these

top-ranked methods jumped rank by their maximum δr, then they would still be performing better

than most of the other 90 methods.

In signal processing, it is standard practice to segment data based on the region of maximal

change [97]. An inspection of Figure 6.2 shows that the region of maximal δr occurs after X = 13.

This is an interesting division since the region 1 ≤ X ≤ 13 contains methods with high rank and

low δr. We call these methods superior and the rest inferior. The list of top 13 methods are shown

in Table 6.1.
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Figure 6.2: Methods and the associated changes, i.e. δr values. Note the sudden increase in δr

values, after X = 13. We call methods in the region 1 ≤ X ≤ 13 as superior.

Table 6.1: Ranking of top-13 superior solo-methods and related δr values. These solo-methods
are combined in various ways to form 12 multi-methods.

rank δr pre-processing option learner

1 8 norm CART (yes)

2 6 norm CART (no)

3 6 none CART (yes)

4 9 none CART (no)

5 5 log CART (yes)

6 4 log CART (no)

7 5 SWR CART (yes)

8 6 SWR CART (no)

9 6 SFS CART (yes)

10 5 SFS CART (no)

11 5 SWR ABE0-1NN

12 4 log ABE0-1NN

13 5 SWR ABE0-5NN
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The names of the top 13 superior solo-methods of Figure 6.2 are listed in Table 6.1. When we

look at Table 6.1, we see that none of the superior solo-methods try to fit one model to all the data:

• The CART regression tree learner appears at ranks 1 through 10 of Table 6.1. Each branch

of a regression tree defines one context in which an estimate may be different.

• Analogy-based estimation (ABE) appears at ranks 11,12,13. ABE builds a different model

for each test instance (using the test instance’s k-th nearest neighbors).

Solo-methods are not the focus of this report. Hence, we move on to discuss multi-methods.

6.4.2 Build Ensembles

To form multi-methods, we build ensembles using the top M solo-methods in the sort order of

Table 6.1. In this study, we use M ∈ {2, 4, 8, 13}.

To generate an estimate, we ask all members of an ensemble to offer a prediction. These are

combined in one of three ways: mean, median and IRWM.

With this scheme, we have 4 groups of solo-methods (group of top 2 methods, another group of

top 4 methods, then group of top 8 methods and finally the group of top 13 methods) times 3 (mean,

median, IRWM) = 12 multi-methods. These multi-methods are then ranked along-side the solo-

methods in the same manner as Figure 6.2. This gives us the comparison of 90 solo-methods + 12

multi-methods = 102 methods. Every method is compared to 101 others with respect to seven error

measures and over 20 datasets. Therefore, the maximum number of comparisons for any method

now becomes 101×7×20 = 14, 140. To the best of our knowledge this is the most extensive effort

estimation experiment yet reported in the literature (and for extensive non-experimental studies,

see [3, 64]).

6.5 Results

Figure 6.3 shows the rank of our 102 methods. As before, the x-axis ranks the methods ac-

cording to number of losses and the y-axis shows the δr of each method. Table 6.2 shows the 102

methods, sorted in the same way as the x-axis of Figure 6.3.

Two aspects of these result are worth commenting:
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Figure 6.3: Rank changes of solo and multi-methods. Region 1 ≤ X ≤ 9 contains 9 out of 12
multi-methods. See that Top13/Irwm at X = 1 has a δr of 1, i.e. it outperforms all other methods
w.r.t. 7 different error measures and 20 datasets.

• The top X = 9 methods (marked by a dashed line) are all multi-methods. The remaining

multiple methods appear at ranks 14,15,18. That is, in the majority case ( 9
12 = 75%), combi-

nations of methods perform better that any solo method. Further, in all cases (1212 = 100%),

they are ranked higher than the majority of other methods.

• The multi-method at X = 1 also has the lowest δr of any method in this study. This method

generated estimates using the mean value of 13 top-ranked methods.

Note that the second result is exactly the “ensembles are better” result as might be predicted by

the researchers mentioned at the beginning paragraphs of this chapter [27,76–79]. We remind that

prior SE researchers who failed to find that “ensembles are better” did not prune away inferior

solo-methods before building an ensemble.

Better yet, as shown in Figure 6.3, this largest ensemble at rank X = 1 had the lowest δr seen

in any of our 102 methods (δr = 1). This result underscores the main message of this report: the

method that scored the best (and had the greatest stability across different experimental conditions)

was the one that used the most number of superior solo-methods.

Figure 6.4 shows the sum of win, tie and loss values for the methods of Figure 6.3. Every

method of Figure 6.3 is compared to 101 other methods, over 7 error measures and 20 datasets, so

the maximum value that either one of the win, tie, loss statistics can attain is: 101 × 7 × 20 =

14, 140. Note in Figure 6.4 that except the low performing methods on the right hand-side, the tie

values are in 10, 000−12, 000 band. Therefore, they would not be so informative as to differentiate

the methods, so we consult to win and loss statistics. There is a considerable difference between
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Table 6.2: Detailed pre-processing option and learner combinations and related δr values. Meth-
ods are sorted by the sum of their losses seen in all performance measures and all data sets. The
method with fewest losses is ranked #1 and is Top13/Mean. At the other end of the scale, the
method with the most losses is ranked #102 and is PCA/LReg.

rank δr pre-proc. learner rank δr learner

1 1 Top13 Irwm 52 17 norm SWReg

2 4 Top13 Mean 53 6 none SWReg

3 13 Top13 Median 54 11 freq3bin ABE0

4 10 Top2 Mean 55 10 width3bin CART (yes)

5 13 Top4 Mean 56 19 width3bin CART (no)

6 10 Top2 Median 57 20 PCA ABE0

7 8 Top4 Median 58 11 PCA NNet

8 12 Top8 Median 59 14 none NNet

9 10 Top2 Irwm 60 11 width5bin SWReg

10 6 Top4 Irwm 61 15 width3bin ABE0

11 6 norm CART (yes) 62 14 SWReg NNet

12 7 norm CART (no) 63 23 SFS NNet

13 7 none CART (yes) 64 18 width5bin 1NN

14 7 none CART (no) 65 6 SWReg SLReg

15 11 Top8 Irwm 66 7 none SLReg

16 8 log CART (yes) 67 8 norm PLSR

17 8 log CART (no) 68 13 width5bin ABE0

18 12 Top8 Mean 69 13 norm SLReg

19 15 SWReg CART (yes) 70 7 freq5bin 1NN

20 17 SWReg CART (no) 71 9 freq3bin CART (yes)

21 17 SWReg 1NN 72 20 freq3bin CART (no)

22 16 SFS CART (yes) 73 30 PCA 1NN

23 3 SFS CART (no) 74 20 freq3bin 1NN

24 3 log 1NN 75 7 width3bin SWReg

25 14 SWReg ABE0 76 9 log SWReg

26 12 PCA PLSR 77 5 width5bin PLSR

27 9 none PLSR 78 13 log PCR

28 19 SWReg PCR 79 10 log PLSR

29 14 PCA PCR 80 3 width3bin 1NN

30 17 none PCR 81 5 width3bin PLSR

31 12 SFS 1NN 82 4 width5bin PCR

32 8 PCA CART (yes) 83 12 norm PCR

33 15 PCA CART (no) 84 5 width3bin SLReg

34 15 SFS ABE0 85 3 width3bin PCR

35 11 norm 1NN 86 9 freq5bin PCR

36 9 none 1NN 87 6 freq5bin SWReg

37 9 freq5bin CART (yes) 88 5 width5bin SLReg

38 12 freq5bin CART (no) 89 6 freq3bin PCR

39 11 freq5bin ABE0 90 4 freq3bin PLSR

40 10 SFS SLReg 91 5 freq5bin PLSR

41 10 width5bin CART (yes) 92 5 log SLReg

42 17 width5bin CART (no) 93 6 freq3bin SWReg

43 18 SWReg PLSR 94 10 freq5bin SLReg

44 16 SFS PLSR 95 5 width5bin NNet

45 9 SFS PCR 96 4 norm NNet

46 13 norm ABE0 97 3 width3bin NNet

47 13 PCA SWReg 98 5 log NNet

48 11 none ABE0 99 6 freq3bin NNet

49 18 SWReg SWReg 100 5 freq5bin NNet

50 16 log ABE0 101 7 freq3bin SLReg

51 16 SFS SWReg 102 12 PCA SLReg

the best and the worst methods in terms of win and loss values (in the extreme case it is close

to 4, 000). In a way Figure 6.4 is a sanity check of Figure 6.3, because it shows that the rankings

reported in Figure 6.3 are due to considerable win and loss value differences between high (left
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Figure 6.4: The sum of win, tie and loss values for all methods of Figure 6.3 (over all error
measures and all datasets). Since one method is compared to 101 other methods, over 7 error
measures and 20 datasets, the sum of win, tie and loss values is: 101× 7× 20 = 14, 140.

0.14

0.37

1

2.72

7.39

 20  40  60  80  100

lo
g
(M

d
M

R
E

)

all log(MdMRE)’s sorted

Performance, grouped by methods

region 1: multi-methods
region 2: solo-methods

Figure 6.5: Spectrum of MdMRE values for 2 regions of methods: Solo-methods and multi-
methods. Here we keep the order of methods same as those given in Table 6.2 and divide those
methods into 2 regions. Notice how multi-methods attain the lowest MdMRE scores.

hand-side) and low (right hand-side) performing methods.

Other results offer yet more evidence for the superiority of multi-methods over solo-methods.

Figure 6.5 sorts the MdMRE values of all the solo-methods and all the multi-methods:

• Multi-methods generated lower MdMRE values than the solo-methods;

• While some of the solo-methods have very large errors (as observed from the steep right-

hand-side of the dashed line in that figure), note that none of the 12 best multi-methods have

large MdMRE values.

That is, multi-methods are far less prone to incorrect effort estimates than solo-methods.
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6.6 Discussion

6.6.1 Learning Curve

One of our observations is that ensembles are more trustworthy (less ranking instability). For

someone with a strong background in machine learning algorithms, the number of learners to

combine is not an issue as he/she has already gone through the learning curve. However, from a

practitioner’s point of view, there is a cost-benefit trade-off between:

• the cost of learning new learners

• and the additional performance benefit

We acknowledge the fact that building an ensemble model from scratch may be too challenging

for practitioners without prior machine learning experience. However, our industry-collaborated

project experience shows that once the model is built by researchers, its adoption/implementation

by practitioners is a pretty straightforward process [98–101]. This section provides an in depth

discussion and alternative solutions for such practitioners.

Table 6.3: The learning curve of the top-13 superior solo-methods. The column “# of additions”
shows how many algorithms (learner or pre-processor) are needed for the transition to current
row from the previous one and the required algorithm for that transition is given in brackets. The
column “total learned” shows how many algorithms are needed to be learned until the current
row. Assumption is that common numeric methods such as normalizing and taking the natural
logarithm of numbers is known in advance.

rank pre-processor learner # of additions total learned

1 norm CART (yes) 1 [CART (yes) ] 1

2 norm CART (no) 1 [CART (no) ] 2

3 none CART (yes) 0 2

4 none CART (no) 0 2

5 log CART (yes) 0 2

6 log CART (no) 0 2

7 SWR CART (yes) 1 [SWR] 3

8 SWR CART (no) 0 3

9 SFS CART (yes) 1 [SFS] 4

10 SFS CART (no) 0 4

11 SWR ABE0-1NN 1 [ABE0-1NN] 5

12 log ABE0-1NN 0 5

13 SWR ABE0-5NN 0 5

The best multi-method reported in this report requires combination of top-13 solo methods.

The learning curve associated with top-13 solo methods is given in Table 6.6.1. From Table 6.6.1
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we see that a practitioner willing to use multi-methods at all has to learn at least 2 learners

(CART(yes) and CART(no)). Assuming that this hypothetical practitioner knows common nu-

meric manipulations such as normalizing an array of numbers and taking logarithm, mean or me-

dian of these numbers; learning just 2 learners in fact enables him/her to use up until the 6th best

performing solo-method. By using top-6 solo methods, we can build the 3rd, 4th, 5th and 6th best

methods out of 102 methods in Table 6.2.

In summary, building successful multi-methods is not necessarily a difficult process for a prac-

titioner. See in Table 6.6.1 that building the best method reported here requires learning 5 algo-

rithms (learner or pre-processor) and learning only 2 learners enables someone to build 4 very

successful multi-methods. Therefore, our recommendations to practitioners, who are willing to

use multi-methods but lack the knowledge of machine learning algorithms are:

• Start with initial 2 learners and build the associated multi-methods

• See the performance of the current multi-methods

• Build new multi-methods only if you are not pleased with the performance of the current

ones

6.6.2 Ensemble and Accuracy

Writing in the field of marketing, Armstrong reports in his 2007 study that the multi-method

forecasts out-perform single-method forecasts [102]. He cites 31 studies where multiple source

prediction consistently out-performs single source prediction by 3.4 to 23.4% (average = 12.5%).

It is expected to see that a meaningful combination method, such as ours, results in a superior

performance. On the other hand, it is impossible to cover all meaningful combination strategies

in this single report. Our study adopts only one of the many proposed successful combination

methods [103]. Work by Hogarth [104] demonstrates that a reduced inter-correlation between the

prediction sources may be just as important as finding the prediction sources with highest expected

accuracy (excluding the poor methods) when combining predictions.” For this research, it means

that understanding the inter-dependencies between different solo-methods could lead to clearer

definitions of when to combine which particular solo-methods. In return, such a strategy could
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yield more robust multi-methods. For example a very promising future work would be to include

the best neural network model into multi-methods.

6.7 Conclusions

The results of this chapter confirm the effect reported by Shepperd et al.: in Figure 6.2 and

Figure 6.3 we see that a method’s ranking can change by a certain amount δr. However, the results

of this study are more optimistic. While some methods have very large δr, others do not. For the

solo-methods shown in Figure 6.2, the better methods have smaller δr. An even better result is

that when we combine these superior solo-methods, we elicit multi-methods that can attain almost

zero δr. The benefits of using multi-methods that we observed as a result of the research reported

in this chapter are:

• The multi-methods consistently out-perform most of the solo-methods;

• The performance of the multi-methods are more stable with the smallest ranking instability.

• As shown in Figure 6.5, the multi-methods avoid large errors that were seen in other methods.

Therefore, the 6th principle to be reported in this thesis is:

Principle #6: Assemble Superior Methods

The contributions of the research following this principle are:

• A novel scheme for ensembling the best solo-methods.

• Stable multi-methods that outperform all solo-methods.
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Chapter 7

Principle #7, Weighting Analogies is
Over-elaboration

In this chapter, we will be investigating the analogy-based estimation (ABE from now
on) methods. As we will see in the following paragraphs, there are thousands of ABE
varieties that can be generated by altering different steps associated with ABE meth-
ods. In such a large space of possible options, it is important to investigate likely
varieties. However, this investigation should be aiming two directions: 1) Introduc-
tion of new successful ABE variants; and 2) Identifying and pruning the less promising
variants to reduce the large space of possibilities. In the next chapter of this thesis we
will introduce the easy-path principle (see Chapter 8), which is a good example to
the first direction of introducing new ABE variants. This chapter on the other hand
is along the lines of the second direction, i.e. reducing the space of possible ABE
variants.

Elsewhere [16, 67], we have studied a large number of different kinds of ABE methods in the

literature, which have the common steps of:

• ABE generates estimates by sampling the neighborhood of some test instance.

• The exact sampling method is controlled by the kernel method which we divide into uniform

and non-uniform (here after U-ABE and N-ABE, respectively).

• Uniform methods treat all items in the local neighborhood in the same way.

• Non-uniform methods weight those neighbors in different ways.

Our reading of the literature shows that different studies adopt different ways to handle:
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• The selection of relevant features;

• The similarity function;

• The weighting method used in similarity function;

• The case subset selection method (a.k.a selected analogies or k value);

• And the adaptation strategy (a.k.a solution function)

Choice of different solutions to each of the above steps define a different ABE configuration.

A detailed discussion on the studies using alternative configurations is given by Kocaguneli et

al. [16]. In [16] it is shown that we can easily find over 17,000 different ways to configure ABE-

style estimators. Then the question is: “How we select the right method from this large menagerie

of possibilities?” One way is to try many options, then see what works best on the local data.

Baker then Menzies et al., used exhaustive search (i.e. try all possible combinations) to find the

best combinations of project features, learners and other variables [26, 61]. The CPU intensive

nature of that approach begs the question: Is there a simpler way?

There is indirect evidence that there must be a simpler way. If we look at the size of the training

data available for effort estimation, it is usually only a few dozen (or less) instances. For example:

• The data accessible to researchers in four recent publications [1,46,61,70] have median size

of 13, 15, 33, 52, respectively.

• The data sets used in this research (all public-data sets of Figure 2.1 except China) vary in

size from 10 to 93 with a median of 28.

Given that the size of these data sets is so small, it seems reasonable to believe that (e.g.) complex

multi-dimensional partitioning schemes (partition data into subgroups according to a criterion that

uses multiple features/dimensions of the data and where each subgroup shares a common property,

e.g. regression trees) reduce to more simplistic methods such as “take the median of the variables

in the local region”.

This is indeed the case. The experiments of this chapter show that, for ABE, the simplest kernel

schemes are most often as good as anything else. This is an important result since it means that
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future researchers have less to explore (at least, in the field of ABE). Hopefully, if more researchers

critically reviewed the space of options for their tools, then we will arrive at a much smaller and

much more manageable sets of candidate effort estimation methods.

Below, we list some of the key concepts used in this research for convenience of the reader

and provide brief definitions upfront. Detailed explanations and examples are provided in related

sections.

• Analogy: The project instance from the training set, which will be used for estimating the

effort for the test instance(s).

• Kernel Density Estimation: A non-parametric method for estimating a probability density

function (PDF). In our case it acts like a PDF giving a probability value for the selected

analogies one at a time.

• Kernel: A function that evaluates the difference (normalized by bandwidth) between the

analogy (for which we want a probability value) and all the remaining training instances

(see Equation 7.5).

• Bandwidth: A smoothing parameter telling the kernel how big of a neighborhood around the

analogy in the training set is important.

• Feature of a project: One of the many variables defining a software project, e.g. lines of

code (LOC), function points (FP) etc.

• Instance Selection: The process of selecting out project instances from the training set ac-

cording to a distance function that are to be used in the estimation phase.

• Feature Weighting: Multiplying feature values with higher or lower values/weights to em-

phasize that they are more or less important, respectively.

To provide a focus this chapter, we will answer the following research questions:

RQ1 Is there evidence that non-uniform weighting improves the performance of ABE?

RQ2 What is the effect of different kernels for non-uniform weighting in ABE?
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RQ3 What is the effect of different bandwidths?

RQ4 How do the characteristics of software effort datasets influence the performance of kernel

weighting in N-ABE?

Note that, for reasons of space, our results will be presented in a summary format. For the full

results, see http://goo.gl/qpQiD.

7.1 Motivation

This chapter specifically focuses on ABE for several reasons:

• It is a widely studied approach [13, 15, 28, 38, 46, 47, 70–74, 105, 106].

• It works even if the domain data is sparse [15].

• Unlike other predictors, it makes no assumptions about data distributions or an underlying

model.

• When the local data does not support standard algorithmic/parametric models like CO-

COMO, ABE can still be applied.

Based on a literature review of just one sub-section of the field [67], we have found at least six

dimensions that distinguish different ABE methods:

A : The distance measure used to compute similarity;

B : The “neighborhood” function that decides what is a “near” neighbor;

C : The method used to summarize the nearest neighbors;

D : The instance selection mechanism;

E : The feature weighting mechanism;

F : The method for handling numerics, e.g. logging, discretization, etc.
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That review found in the literature three to nine variants of A,B,C,D,E, F (which combine to a

total over 17,000 variants). Some of these variants can be ruled out, straight away. For example,

for ABE that reasons only about the single nearest neighbor, all the summarization mechanisms

return the same result. Also, not all the feature weighting techniques require discretization, thereby

further decreasing the space of options. However, even after discarding some combinations, there

are still thousands of possibilities to explore.

In our view, it is unacceptable that researchers continually extend effort estimation methods

without trying to prune away the less useful variants. To that end, in previous work, we have tried

to rank and prune estimation methods based on model selection [67] or feature weighting [26] or

instance selection [16].

We have had much recent success in pruning different variants:

• For COCOMO-style data [20], only four variants were demonstrably better than the other

154 variants [67].

• Also, in non-COCOMO data, we have found 13 variants that perform better than 77 oth-

ers [49].

This chapter is an exploration of kernel methods. Kernel methods are important since they com-

ment on many of the options within A,B,C,D,E, F listed above:

• Simpler kernel methods mean simple neighborhood and summarization methods.

• In theory, better estimates could be generated by a smarter sampling of the neighborhood.

For example, an intelligent selection of the kernel might compensate for data scarcity.

We study kernel estimation since, if the effort data corresponds to a particular distribution, then

it would seem wise to bias that sampling by that distribution. Also, at least one other research

team in the field of effort estimation have also begun exploring different kinds of kernel methods

(e.g. inverse-ranked weighted mean) [1, 17]. The other kernel methods employed in our research

are also explored by other researchers [59, 107–110]. For a detailed discussion on the effect of

different commonly adopted kernel types, the reader can refer to Hardle et al. [110].

Despite the potential of kernel methods to improve effort estimation, it is an unexplored area.

For the most part, researchers in this area propose kernel methods with minimal motivation or
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experimentation [1, 17, 111, 112]. Hence, prior to performing the experiments reported in this

chapter, we believed that kernel methods would be a rich source of future insights into effort

estimation:

• The space of sampling and weighting schemes seen in the software engineering (SE) litera-

ture is much smaller than that seen in other fields (see for example the literature from data

mining or signal processing [59, 107, 108]).

• Hence, it seemed to us that a rigorous exploration of this under-explored area might be a

worthy topic of research, perhaps applying methods not yet used in the SE literature.

The research explained in this chapter presents a rigorous exploration and leads to the the negative

result summarized in the conclusion that simple kernel methods do as well as anything else, at

least for ABE. Considering the characteristics of software effort datasets (small size, high levels

of noise), it is wise to keep in mind that simple approaches may perform better than expected.

Thereby, making the more complex alternatives a choice that one should approach with caution.

7.2 On the Value of Negative Results

While it would have been gratifying to have found a positive result (e.g. that some kernel

method was very much better), it is important to report such negative results as well. A very

thorough discussion on the value of negative results can be found in [113]. The fundamental

question is whether a negative result poses a positive knowledge. Positive knowledge is defined by

Browman et al. to be the ability of being certain, not being either right or wrong [113]. However,

not all certain conclusions are knowledge. Common concerns are:

i. is the topic/hypothesis plausible,

ii. are the experiments sound,

iii. do the results propose “negative evidence” or “non-conclusive search” and

iv. will the reported results be valuable to future research.
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As for i., research on weighting methods in ABE is quite plausible, see weighting method proposed

earlier by Mendes et al. [1,17]. In that respect, our evidence of negative results serve the purpose of

guiding research away from conclusions (such as kernel weighting can improve ABE performance)

that would otherwise seem reasonable [113].

When presenting negative evidence it is crucially important to have sound and extensive ex-

perimentation (condition ii.). This report rigorously investigates kernel weighting on 19 datasets

subject to 3 performance measures through appropriate statistical tests.

The idea behind condition iii. is that “one should disvalue inconclusive results” [113], i.e.

negative conclusions are more meaningful than uncertainty. The kernel weighting experiments of

this chapter on a wide range of ABE variants are negative evidence to conclude that it does not

improve ABE performance, thereby satisfying iii. Finally condition iv. questions the benefit of

results to future research. After years of research, effort estimation still suffers from conclusion

instability, i.e. proposed results are not widely applicable, they are bound to change w.r.t. different

estimation methods and experimental conditions. Shepperd et al. list the likely causes leading to

conclusion instability as the estimation models, performance measures, SEE datasets and sampling

methods [4]. For more notes on conclusion instability see [49]. For stable conclusions, i.e. conclu-

sions that are widely applicable w.r.t. causes of instability, retiring a considerable portion of search

space is as important as the discovery of successful applications. The contribution of this work is

through retirement of 2090 of ABE variants.

In this research we will compare the results of ABE0 framework (which was introduced in

§2.7) with different non-uniform weighting strategies, i.e. with different N-ABE methods. Note

that since ABE0 is a framework for U-ABE methods, in the rest of the chapter the two terms will be

used interchangeably. N-ABE methods have been previously addressed in literature. For example

inverse rank weighted mean (IRWM) was proposed by Mendes et al. [1]. IRWM method enables

higher ranked analogies to have greater influence than the lower ones. Assuming that we have 3

analogies, the closest analogy (CA) gets a weight of 3�3
i=1 i

, the second closest (SC) gets a weight

of 2�3
i=1 i

and the last analogy (LA) gets 1�3
i=1 i

.
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7.3 Methodology

7.3.1 Kernel Density Estimation

Kernel density estimation (a.k.a. Parzen Windows) is a non-parametric technique used to es-

timate an unknown probability density function (PDF) [107, 114, 115]. Our short notes on kernel

density estimation given here are based on the excellent tutorial by Duda et al. [115]. Therefore,

reader is strongly suggested to see Chapter 4 of [115] for an in depth discussion.

The main idea behind non-parametric density estimation is rather simple, the density function

can be viewed as the probability of seeing other samples from the same distribution in a given

region. Think of the following intuitive example. Assume we have n points (x1, x2, ..., xn) that are

independently and identically distributed (i.i.d) with respect to probability p(x). Further assume

that we define a region R with volume V . Obviously only a portion of the n points (say k-many)

will fall into this region. We can use this fact to derive the following estimate for p(x):

p(x) =
k/n

V
(7.1)

According to this scenario, if we had 10 points (i.e. n = 10) and we had defined our sample

volume to be a unit-cube that contained only 5 of these 10 points, our estimate for p(x) would be

p(x) = 5/10
1 = 0.5.

To see how this simple formula is used as the basis of kernel density estimation, temporarily

assume that the region we sample from R is a hyper-cube centered at the origin with d dimensions.

Given one edge-length of this hyper-cube is h, its volume becomes: hd (the h value is also known

as the bandwidth value). So as to find an expression for the number of points (i.e. k) within this

region, we can define the following kernel function:

K(ρ) =





1, if |ρ| ≤ 0.5

0, elsewhere
(7.2)

Note that above kernel function (i.e. K(ρ)) is nothing but a unit hypercube centered at the

origin. If we center this hyper-cube at x (a point for which we want to get the probability estimate),
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the number of samples falling within the hypercube (i.e. (k)) can be calculated as follows1:

k =
n�

i=1

K

�
x− xi

h

�
(7.3)

Now if we replace the k value in Equation 7.1 with the expression of Equation 7.3, we get the

estimate as:

p(x) =
1

n

n�

i=1

1

Vn
K

�
x− xi

h

�
(7.4)

We should note that the kernel function (i.e. K
�
x−xi
h

�
) is used for interpolation and each

sample point in our space contributes to the estimate depending on its distance to the point x (for

which we want to find the probability).

However, see that just using a hyper-cube function as the kernel function is rather limiting. To

make p(x) a more general and a proper PDF, we need to make sure that all the values it returns are

greater than or equal to zero and it integrates to 1. This can be achieved by choosing the kernel

function itself as a probability distribution function [116].

There are different kernel functions used to make the p(x) a PDF [109]. This chapter explores

the commonly used kernels, which are given in Figure 7.1 as well as IRWM [1, 17]. IRWM is not

actually proposed as a kernel method and it does not fully conform to the definition of standard

kernel methods. However, due to the weighting strategy it proposes we can read it as an expert

proposed kernel.

A literature review revealed that the selection of bandwidth (h) for kernels is more influential

than the kernel types [109, 117]. Bandwidth h is fundamentally a scaling factor that controls

how wide probability density function will spread, i.e. appropriate choice of h is critical to avoid

under and over-smoothing [114,116]. To avoid both under and over-smoothing conditions we used

various bandwidth values. One of the bandwidths we used is suggested by John et al., which is

h = 1/
√
n where h is the bandwidth and n is the size of dataset [108]. The other bandwidth values

we used are: 2, 4, 8 and 16.
1Note that the effort values stored in software effort datasets are stored in a single column; hence our space is

1-dimensional. In other words, Vn in this formula will be just 1-dimensional too which is just the bandwidth value h,
i.e. Vn = h.
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Kernel Type Formula

Uniform Kernel K(ρ) = 1
21(|ρ|<1)

Triangular Kernel K(ρ) = (1− |ρ|) 1(|ρ|<1)

Epanechnikov Kernel K(ρ) = 3
4 (1− ρ2) 1(|ρ|<1)

Gaussian Kernel K(ρ) = 1√
2π
e
(−1

2 ρ2)

IRWM Kernel —

Figure 7.1: The formulas for different kernels used in this study, where 1(|x|<1) is the indicator
function. In formulas ρ = x−Xi

h . Note that IRWM kernel has different characteristics that standard
kernels.

7.3.2 Weighting Method

Assume that our dataset of size n is divided into two sets:

• A = {x1, ..., xi, ..., xk} (effort values of the selected Anologies with cardinality k and xi

(i ∈ {1...k}) representing an element of A)

• and R = {x1, ..., xj..., xn−k} (effort values of the Rest of the dataset with cardinality n − k

and xj (j ∈ {1...(n− k)}) representing an element of R).

We build the kernel density estimation on R and evaluate the resulting function at instances of A.

Equation 7.5 shows the probability calculation with kernel density estimation. In Equation 7.5 the

kernel K is built on training data xj ∈ R and is evaluated at analogy xi for a bandwidth of h. After

scaling these probability values to 0-1 interval according to Equation 7.6, we use them as weights

for analogies. After calculating weightxi for each analogy, we update their actual effort values
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according to Equation 7.7.

f(xi, h) =
1

nh

�

xj∈R

K

�
xi − xj

h

�
(7.5)

weightxi =
f(xi, h)−max(f(xi, h)values)

max(f(xi, h)values)−min(f(xi, h)values)
(7.6)

updatedEffortxi = actualEffortxi ∗ weightxi (7.7)

Uniform vs. Non-Uniform Weighting

The fundamental difference between N-ABE and U-ABE methods is that in U-ABE analogies

are given uniform weights and their actual effort values are used in an as is manner, whereas in

N-ABE analogies are assigned different weights and their actual effort values are multiplied by

these weight values. As for U-ABE, we defined a base method that we call ABE0 and for N-ABE

we use 5 different kernel methods.

One point that needs further clarification is the use of uniform kernel as a N-ABE method.

Figure 7.2 succinctly illustrates the difference between uniform kernel being a N-ABE method and

ABE0 being a U-ABE method. ABE0 assumes equal importance of all instances and assigns equal

probabilities. A uniform kernel would assign equal non-zero probabilities to only a certain portion

of the instances, whereas the rest of the instances would be assigned a weight of zero (i.e. they

would be ignored).

7.3.3 Experiments

Our experimental settings aim at comparing the performance of standard U-ABE (ABE0) to

that of N-ABE. To separate train and test sets we use leave-one-out method, which entails selecting

1 instance out of a dataset of size n as the test set and using the remaining n − 1 instances as the

training set. For each test instance, we run ABE0 and N-ABE separately and store their estimates.

As the analogy number is reported to play a critical role in estimation accuracy [47], both for

U-ABE and N-ABE methods, we tried different k values.
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Figure 7.2: In the case of ABE0 all instances are given equal probability values, hence equal
weights. However, uniform kernel prefers some instances over the others: Only a certain portion
of the instances are given equal non-zero weights.

We use 2 forms of ABE methods (uniform and non-uniform weighting) induced on 19 datasets

for 5 different k values. The k values we used in our research are: k ∈ {3, 5, 7, 9, best}. best

is a pseudo-best k value that is selected for each individual test instance through a process, in

which we randomly pick up 10 instances from the training set and select the lowest error yielding

k value as the best. Since pseudo-best k includes a random procedure, to hinder any particular

bias that would come from the settings of a single experiment, we repeated the afore mentioned

experimental procedure 20 times. Note that k > 1 for ∀k, because for k = 1 U-ABE and N-ABE

would be equivalent. In addition, we use 5 different kernels (Uniform, Triangular, Epanechnikov,

Gaussian and IRWM) with 5 bandwidth values in N-ABE experiments. To further explore field of

SEE, we investigate a total of 2090 different settings in this research:

• U-ABE Experiments: 95 settings

– 19 datasets * 5 k values = 95

• N-ABE Experiments: 1995 settings

– Standard Kernels: 19 datasets * 5 k values * 4 kernels * 5 bandwidths = 1900

– IRWM: 19 datasets * 5 k values = 95
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7.4 Results

To see the effect of kernel weighting, we studied 19 datasets and 3 different performance mea-

sures. For each performance measure we tried 4 different kernels subject to 5 different band-

widths, plus the IRWM kernel (which does not have a bandwidth concept) and reported associated

win, tie, loss statistics.

Figure 7.3 shows a sample of our results. It reports the win, tie, loss statistics of Desharnais

dataset for ABE0 and N-ABE through Gaussian kernel. For each dataset we have 4 such tables

(one for each kernel), so for all datasets there are 19 Datasets × 4 tables = 76 tables. For the

IRWM kernel there will be another 19 datasets × 1 kernel = 19 tables. Hence, in total, our results

comprise 76 + 19 = 95 tables to report. All these tables are available on line at http://goo.gl/qpQiD

(user-name: guest, password: guest). However, for space reasons, we summarize those tables as

follows.

In Figure 7.3 we see that each row reports win, tie, loss statistics of ABE0 methods (k=3,5,7,9,best)

as well as N-ABE methods (k=[3,5,7,9,best]+kern where kern stands for kernel weighting) sub-

ject to a particular performance measure. Similarly, each column shows the win, tie, loss statistics

associated with a particular bandwidth value. As can be seen in Figure 7.3, for Desharnais dataset

ABE0 methods always have higher win values and always have a loss value of 0, meaning that

they never lose against N-ABE methods. That is, by summarizing each row/column intersection

we can see that the performance of ABE0 is never improved by N-ABE.

Figure 7.4 and Figure 7.5 repeat that summarization process for all 19 datasets and all ker-

nel/bandwidth combination:

• Each row of these summary figures shows the comparison of ABE0 performance to that of

N-ABE subject to 3 different performance measures.

• Every kernel/bandwidth intersection in Figure 7.4 and Figure 7.5 has 3 symbols correspond-

ing to MdMRE, MAR and Pred(25) comparisons from left to right.

• Each of these 3 symbols can have 3 values: −,+, o.

– “−” means that N-ABE decreased the accuracy of ABE0;
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Figure 7.3: Desharnais dataset win, tie, loss statistics for ABE0 and N-ABE through Gaussian
kernel. For each dataset we have 4 of these tables (one for each kernel). In total it amounts to 19
Datasets × 4 tables = 76 tables. In addition we have another 19 datasets × 1 kernel = 19 tables
from IRWM kernel. It is infeasible to include all the tables into this chapter, therefore an executive
summary of 76 + 19 = 95 tables is provided in Figure 7.4. Furthermore, we provide all 95 tables
in excel format at http://goo.gl/qpQiD.
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Gaussian ooo ooo ooo ooo ooo

N
s9

3

Uniform −o− −o− −o− −o− −o−
Triangular −o− −o− −o− −o− −o−
Epanechnikov −o− ooo ooo ooo ooo

Gaussian −o− ooo ooo ooo ooo

N
s9

3c
1

Uniform −−− −−− −−− −−− −−−
Triangular −−− −o− −o− −o− −o−
Epanechnikov −−− −o− −o− −o− −o−
Gaussian −o− −o− −o− −o− −o−

N
s9

3c
2

Uniform ooo −o− −o− −o− −o−
Triangular −o− ooo ooo ooo ooo

Epanechnikov −o− ooo ooo ooo ooo

Gaussian ooo ooo ooo ooo ooo

N
s9

3c
5

Uniform −−− −o− −o− −o− −o−
Triangular −−− ooo ooo ooo ooo

Epanechnikov −−− ooo ooo ooo ooo

Gaussian −−− ooo ooo ooo ooo

Figure 7.4: Nine data sets comparing ABE0 to N-ABE. For every row in each cell, there are three
symbols indicating the effect of N-ABE w.r.t. 3 different error measures. From left to right, the
first symbol stands for N-ABE effect w.r.t. MdMRE, the second symbol w.r.t. MAR and the third
one w.r.t. Pred(25). A “+” indicates that for majority of k values (at least 3 out of 5 k values),
N-ABE improved ABE0 in terms of win − loss values. “−” indicates that N-ABE decreased
the performance of ABE0 in the majority case. If the former conditions do not satisfy, then a
“o” symbol is assigned. Note that the dataset come from Figure 2.1, yet the dataset names are
abbreviated to 3 to 5 letters due to space constraints.
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Dataset Kernel h=1/sqrt(size) h = 2 h = 4 h = 8 h = 16

D
es

Uniform −−− −−− −−− −−− −−−
Triangular ooo −−− −−− −−− −−−
Epanechnikov −−− −−− −−− −−− −−−
Gaussian −−− −−− −−− −−− −−−

D
es

L1

Uniform −−− −−− −−− −−− −−−
Triangular ooo −o− −o− −o− −o−
Epanechnikov −−− −o− −o− −o− −o−
Gaussian −−− −o− −o− −o− −o−

D
es

L2

Uniform −−− −−− −−− −−− −−−
Triangular ooo −−− −−− −−− −−−
Epanechnikov −−− −o− −o− −o− −o−
Gaussian −−− −o− −o− −o− −o−

D
es

L3

Uniform −o− −o− −o− −o− −o−
Triangular −o− ooo ooo ooo ooo

Epanechnikov −o− ooo ooo ooo ooo

Gaussian −o− ooo ooo ooo ooo

SD
R

Uniform −o− −o− −o− −o− −o−
Triangular ++− +o− +o− +o− +o−
Epanechnikov −+− ++− ++− ++− ++−
Gaussian

A
lb

r

Uniform −−− −−− −−− −−− −−−
Triangular −−− −o− −o− −o− −o−
Epanechnikov −−− −o− −o− −o− −o−
Gaussian −−− −o− −o− −o− −o−

Fi
nn

Uniform −−− −−− −−− −−− −−−
Triangular ooo −−− −−− −−− −−−
Epanechnikov −−− −o− −o− −o− −o−
Gaussian −−− −o− −o− −o− −o−

K
em

Uniform −o− −o− −o− −o− −o−
Triangular −−− ooo ooo ooo ooo

Epanechnikov −−− ooo ooo ooo ooo

Gaussian −−− ooo ooo ooo ooo

M
ax

w

Uniform −−− −−− −−− −−− −−−
Triangular −−− ooo ooo ooo ooo

Epanechnikov −−− ooo ooo ooo ooo

Gaussian −−− ooo ooo ooo ooo

M
iy

94

Uniform −−− −−− −−− −−− −−−
Triangular −−− −−− −−− −−− −−−
Epanechnikov −−− −o− −o− −o− −o−
Gaussian −−− −o− −o− −o− −o−

Te
l

Uniform −−− −−− −−− −−− −−−
Triangular −o− −o− −o− −o− −o−
Epanechnikov −−− −o− −o− −o− −o−
Gaussian −−− −o− −o− −o− −o−

Figure 7.5: Ten more data sets comparing ABE0 to N-ABE. Same format as Figure 7.4.
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– “o” means ABE0 and N-ABE are statistically same;

– “+” shows that ABE0 accuracy was improved through kernel weighting (i.e. N-ABE

has a better performance than ABE0).

We assign the symbols “+” or “−” if the performance associated with the majority of the k-values

(at least 3 out of 5) are improved or degraded by N-ABE (in terms of win − loss). If there is no

change, we assign a “o” symbol to that setting.

Observe that in all these summaries:

• There is only one dataset (SDR in Figure 7.5) where N-ABE provides a performance im-

provement in certain cases. Even for that dataset there are 15 “+” symbols and 21 “−”

symbols, meaning that most of the time N-ABE is still destructive.

• In 18 other datasets, which is 18
19 = 95% of all the datasets, there is not a single case where

N-ABE improves the performance of ABE0.

Note that these summary tables contain results from different performance criteria (MdMRE,

MAR, Pred(25)) as well as kernels and bandwidths. Therefore, our conclusion from Figure 7.4

and Figure 7.5 is that “non-uniform weighting through standard kernel methods does not improve

the performance of ABE” holds in the majority case across different datasets and error measures.

Another summary table is given in Figure 7.6. Figure 7.6 is very similar to Figure 7.4 in

the sense that it summarizes the performance of N-ABE over 19 datasets w.r.t. three different

performance measures. The difference is that Figure 7.4 summarizes the results of standard kernel

methods, whereas in Figure 7.6 we see the N-ABE performance under an expert-based kernel,

i.e. IRWM. Although there are important differences between standard and expert-based kernels

(IRWM has no bandwidth parameter), the results seen in Figure 7.6 is quite similar to those of

Figure 7.4. As can be seen in Figure 7.6, there is not a single case where N-ABE (under IRWM

kernel) improves the performance of ABE0. Furthermore, the amount of “−” symbols is much

more than “o”, meaning that N-ABE decreases the performance of ABE0 most of the time.
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Dataset Improvement
MdMRE MAR Pred(25)

Cocomo81 − o −
Cocomo8e o o o

Cocomo8o − − −
Cocomo8s o o o

Nasa93 − − −
Nasa93 center 1 − − −
Nasa93 center 2 − o −
Nasa93 center 5 − − −
Desharnais − − −
DesharnaisL1 − − −
DesharnaisL2 − − −
DesharnaisL3 − o −
SDR − o −
Albrecht − − −
Finnish − − −
Kemerer − − −
Maxwell − − −
Miyazaki94 − − −
Telecom − − −

Figure 7.6: The comparison of ABE0 to N-ABE under IRWM kernel. Similar to Figure 7.4 three
symbols indicate the effect of N-ABE w.r.t. 3 different error measures and “+” indicates that
for majority of k values N-ABE improved ABE0 in terms of win − loss values. A “−” symbol
indicates a decrease and a “o” symbol indicates neither decrease nor increase. Notice that subject
to IRWM kernel, N-ABE fails to improve ABE0 w.r.t. 3 different performance measures.
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7.5 Conclusions

RQ1. Is there evidence that non-uniform weighting improves the performance of ABE? The

results of our experiments do not show such an evidence. On the contrary, for almost all the

settings ABE0 yields much better results than N-ABE methods.

RQ2. What is the effect of different kernels for non-uniform weighting in ABE? There are only

slight variations in performance when different kernels are used. However, these variations do not

follow a definite pattern and they are far from being considerable.

RQ3. What is the effect of different bandwidths? Change of bandwidths shows a random and

insignificant effect, which is very similar to that of kernel change effect. Therefore, we cannot say

that applying different bandwidths has a certain effect on N-ABE performance.

RQ4. How do the characteristics of software effort datasets influence the performance of ker-

nel weighting in N-ABE? Effort datasets are much smaller than most of the datasets in different

domains. The dependent variable (effort value of a completed project) is highly variable. Further-

more, the attribute values are very open to personal judgment and error. All these factors suggest

that non-parametric methods may be failing due to inherent characteristics of software effort data.

Following the results presented in this chapter, we define the 7th principle as follows:

Principle #7: Weighting Analogies is Over-elaboration

Note that the results presented in this chapter are negative in characteristic and we see the contri-

butions of this chapter as follows:

• Investigation of an unexplored and promising ABE option of kernel-weighting.

• An extensive experimentation of 2090 ABE scenarios, which reduces the ABE variants space

to be explored.
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Chapter 8

Principle #8, Use Easy-path Design

The principle that will be recommended at the end of this chapter is the use of a design
method called easy-path, which fundamentally recommends the removal of the training
cases that confuse the estimation method. Note that the term “confuse” refers to the
removal of the training instances for which the estimation method yields high error
rates. The research presented in this chapter uses the easy-path design to augment
an ABE method. However, the principle of easy-path can also be applied to different
contexts. For example, in another study we used easy-path design to configure a greedy
agglomerative clustering-based estimation method [16]. Since this principle worked
for different data sets and different contexts of SEE, we use it as one of the principles
of SEE. The rest of the chapter explains the details of using easy-path in the context of
ABE.

The standard ABE approach is to fix one parameter for each design alternative and try to find

the best parameter settings. Kocaguneli et al. report that (see Section 2 of [16]) different ABE

parameter settings seen in the SEE literature exceed 17, 000 configurations. It is reported that any

static-parameter ABE method is suboptimal [24], and trying out tens of thousands alternatives is

impractical.

Although there is a bewildering number of different options to set up an ABE method, by

following the related SEE literature we are able to design a baseline method, more commonly

known as ABE0, which is introduced in §2.7.

The fundamental design option in ABE0 is the number of analogous projects from the histori-

cal dataset (the k value) to be used. In his 2008 study, Keung reports that any static k value to be

used in ABE0 settings would result in a suboptimal performance [24]. He also proposes a theo-

retical maximum prediction accuracy (TMPA) as the skyline (the highest performance) for ABE0
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methods. That is, by using leave-one-out cross validation (a.k.a. Jackknifing) it has been observed

that different test instances are best estimated by different k values (dynamic k). Then the question

is how to best explore the space between the skyline and the suboptimal static-k approaches?

One alternative is to apply brute-force techniques and try out as many settings as possible. This

is an undesirable option due to intensive computations and run-times, which makes it impractical

to be used in software organizations. Furthermore, brute-force techniques are non-adaptive and

inflexible. For changing situations due to addition/deletion of new projects, they would require a

complete re-calibration.

Another alternative may be to use smart, low-cost heuristics that can perform comparable or -if

possible- better than static approaches. One such heuristic called “easy path principle” is proposed

by Kocaguneli et al. [16]. The heuristic is based on the following simple principle:

Find the situations that “confuse” the estimation and remove those situations prior to
estimation.

The application of easy-path principle on a variance-based ABE0 variant proved most beneficial

(for detailed results see [16]). In [16], an ABE0 variant -so called TEAK- is proposed as a heuris-

tic alternative to brute-force approaches. This heuristic is based on the assumption that “locality

implies homogeneity”: Spatially close instances (locality) should have similar effort values (ho-

mogeneity), i.e. the variance in effort values between close instances should be relatively small.

Therefore, “high-variance” regions in the dataset violate the assumption on which the learner

is built and hence “confuse” the estimation. TEAK works by removing the regions of “high-

variance” in a cluster tree of training instances.

We have observed that there is more to incorporate from a typical CBR-cycle (see Figure 2.6)

into ABE [51, 52]. For example, the “retain” phase in CBR dictates only keeping the most useful

and relevant instances of the past experience (the training instances) in the dataset. Following the

prior work on SEE [16,24] and CBR [51,52], we propose a new heuristic based on the same design

principle of “easy-path” but on a different assumption:

“TMPA indicates the best-set to be retained.”.

The details of the proposed method is in §8.2.3.
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8.1 Motivation

Standard ABE methods use static-k values (i.e. static number of analogies) in the estimation.

However, static-k approaches are sub-optimal, i.e. best estimates for different projects are attained

with different k-values. Methods that would dynamically choose different number of analogies for

each test instance are important for the performance improvement of ABE. Keung has proposed a

dynamic-k approach to indicate the theoretical maximum prediction accuracy (TMPA) of standard

ABE methods [24]. As noted in [24] there is a considerable space between static-k and TMPA for

performance improvement.

TMPA is proposed as a conceptual method to show the possible space of improvement. How-

ever, it is not applicable in an actual estimation setting: Since we do not know the effort value

of a test instance, we cannot know the best dynamic-k for that test instance. In this chapter we

will address this practicality issue and propose a Dynamic-ABE method (from now on called as

“D-ABE”). As it is shown in Section §11.6, the proposed D-ABE method significantly improves

the performance of static-k ABE methods. Furthermore, it is able to cover an important portion

of the space available (up to 32%) for performance improvement between static-k and dynamic-k

methods.

8.2 Designing a Dynamic ABE0 Variant

8.2.1 Easy-path Principle

Easy-path is a design option for implementing suboptimal methods, i.e. it is a heuristic rather

than standard practice. The standard practice for maturing prediction systems is through adding

in new mechanisms to handle hard cases (cases for whom estimation accuracy is lower). Ad-

aBoost [118] is a fine example for this general case: In a system of consecutive learners, each

learner focuses on the cases, for which the prior learner was unsuccessful.

With the easy path principle we adopt a different strategy, which entails removing the hard-

cases in the training set that would confuse the estimator. In fact focusing on just the easy cases

(cases for whom estimation accuracy is higher) could have been problematic. Only exploring

the easy cases might have meant that the estimator will perform poorly on the hard test cases.
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However, previously we observed that this is not the case: Easy-path design strategy has proven

to be very successful for a variance-based ABE0 variant [16]. Having positive results from such

a design principle means that we are able to find short-cuts that simplifies effort estimation and

avoids brute-force approaches.

8.2.2 TMPA: The skyline for ABE0

Following the success of easy-path in designing a prior ABE0 variant, we use the same design

methodology to propose another dynamic-k ABE0 variant. The new method mimics the behaviour

of an “optimum” ABE0 method called theoretical maximum prediction accuracy (TMPA), which

is proposed by Keung et al. [24]. TMPA is a “dynamic” ABE0 method. It selects a test instance

according to LOO cross-validation and tries out every possible k value. TMPA works as follows:

• Start executing on a dataset of size N

• Use leave-one-out cross validation to pick test instances one at a time

• Try all the k values from 1 to N − 1 and store the MRE values

• Pick the lowest MRE yielding k and return the estimate

As the name suggests, TMPA is a theoretical method used to define the highest prediction accu-

racy for ABE0. Since we cannot know the lowest MRE yielding k for an actual test instance (as

the independent variable’s value -effort- is kept hidden from the learner), TMPA is defined as a

performance skyline for ABE0 rather than an actual learner.

The initially proposed TMPA [24] tries out all possible k values from 1 to N − 1. However, in

this research we will restrict our attention on the k values from 1 to 5. The reasons for this focus

are:

• The frequency distribution of the best-k values given by Keung [24] shows that [1..5] interval

has the highest frequency.

• An exhaustive search of all the k values would defeat the initial purpose of using a heuristic.

• The use of low k values is consistent with prior results. For example, Li et al. [46] suggest

that a standard method is to always use 1 ≤ k ≤ 5 nearest projects. Also:
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– k = 1 is used by Lipowezky et al. [119] and Walkerden & Jeffery [15];

– k = 2 is used by Kirsopp & Shepperd [120]

– k = 1, 2, 3 is used by Mendes el al. [1]

8.2.3 Using Easy-path for a Dynamic ABE Method

Similar to TMPA, the proposed new method uses a dynamic number of k values for each test

instance, hence it is called “Dynamic-ABE” (D-ABE). The design of D-ABE is carried out through

the easy-path in 5 steps.

Stap 1. Select a prediction system: We select TMPA [24] as the base for the easy-path design.

TMPA is a theoretical learner used to define the limits of ABE0 methods using static-k values.

Our motivation in using TMPA is to implement a practical method that is significantly better than

ABE0 methods using static-k values. In other words, we make use of the assumptions of TMPA to

come up with a dynamic method to explore the performance space left between TMPA and static

ABE0 variants.

Step 2. Identify the predictor’s essential assumption(s): TMPA assumes that not all the

training instances are candidates to be retained. By choosing the best performance-yielding k-

value for each training instance, TMPA defines a best and a worst-set of training examples to be

and not to be retained, respectively. The best/worst-set idea is used to pinpoint training examples

that give high and low performance. We mark low-performance training instances “not to be

retained” for the estimation of the test instance. The assumption in this step is:

TMPA indicates the best-set to be retained.

Step 3. Recognize when those assumption(s) are violated: Run TMPA on the training set via

LOO and get the best estimate given by TMPA for each training instance. Then sort the training

instances according to an error measure starting from the lowest error to the highest error. The

training instances with error values close to the highest error are said to violate the assumption,

because even with the best instances retained by TMPA, the performance of those instances is still

poor. We used magnitude of relative error (MRE) as the error measure to define the best/worst

estimate.
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Step 4. Remove assumption-violating cases: After sorting the training instances (in Step

3) from the lowest MRE to the highest MRE, in this step we chop-off the training instances that

have MRE values within α percent (α = 60% in our experiments) of the worst MRE. This filter

is used to define and chop-off the assumption violating training instances, i.e. it is used to define

which training instances are to be retained. We store the retained instances together with their best

estimates as yielded by TMPA in Step 3.

Step 5. Execute the modified prediction system: Upon arrival of a test intance, we execute

ABE0 on the retained training set of Step 4. The closest retained training instance to the test

instance is retrieved. The best effort estimate (given by TMPA and stored in the previous step) for

the retrieved neighbor is returned as the estimate for the test instance. Although D-ABE uses the

estimate of the closest neighbor (i.e. k=1) in the retained training instances, it still implicitly uses

a dynamic-k value. Because note that the k values used for the estimates of the training instances

were dynamically selected by TMPA in Step 3.

8.2.4 Noise Removal in CBR

Chopping-off training instances on the basis of TMPA performance and retaining only the ones

with low error rates can be defined as a performance-based noise removal. In fact noise removal

in CBR systems is quite common. This section reviews the studies that use noise removal in the

context of CBR and explain why noise removal is an appropriate complement to a CBR.

Segata et al. note that, unlike other machine learning approaches (e.g. post-pruning in deci-

sion trees) CBR techniques lack a noise resistant mechanism [121]. Particularly for CBR methods

applied on SEE datasets, the lack of such a mechanism is a huge drawback. Indeed various stud-

ies have shown that complementing CBR methods with a noise-removal mechanism significantly

improves their performance on SEE datasets [16, 19, 46, 61, 122–124]. It has been shown that

when complemented with a noise removal mechanism, CBR methods attain significantly better

results [22, 23].

Segata et al. [121] follow the taxonomies proposed by Wilson et al. [125] and Brighton et

al. [126] to define a taxonomy of noise removal techniques w.r.t. their purpose. Taxonomy of

Segata et al. divides noise removal techniques into two categories: 1) Competence preservation
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and 2) competence enhancement techniques. The first group of noise removal techniques (compe-

tence preservation) aim at reducing the size of the instance-base for the purposes of low memory

requirement, while preserving the performance. The second group aims at performance improve-

ment when reducing the instance-base. Since SEE datasets are already relatively small, memory

concerns are insignificant for us. Our approach (D-ABE) aims at performance improvement by

removing noisy (low-performing) training instances. Hence, according to this taxonomy D-ABE

appears to be a competence enhancement noise removal technique.

8.3 Experimental Rig

In order to evaluate the performance of a method, the ideal case would be to learn from past data

and evaluate the model on new, unseen data. However, this strategy would be too impractical for

experimentation: Imagine waiting for months (even years) for new software projects to complete

so that you can finally test your new method. Cross-validation strategies simulate this ideal (yet

impractical) scenario on historical datasets of completed projects.

There is a wide range of cross-validation strategies in SEE, unfortunately there is no consensus

on which sampling method to use in SEE studies. We address the issue of which sampling method

to use in the last principle of this thesis (see Chapter 12), where different sampling methods are

empirically compared according to concerns of statistical properties (bias and variance). The rec-

ommendation of Chapter 12 is to use LOO in SEE studies. Hence, we also adopt LOO in the

experimentation of the current chapter.

8.4 Results

8.4.1 Identify Datasets to be Explored by D-ABE

D-ABE is a sub-optimal heuristic whose aim is to improve ABE0 methods that use a static-k

value. However, not all the datasets are feasible for further ABE0 performance improvement, i.e.

for some datasets (so called shallow datasets) even TMPA is incapable of any improvement over

static-k methods. For the shallow datasets, where even an optimum strategy -TMPA- is unable

to provide an improvement, it is futile to search for an improvement via a sub-optimal heuristic.
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Datasets MMRE MdMRE Pred(25)

cocomo81 5 0 0 5 0 0 5 0 0

cocomo81e 5 0 0 5 0 0 5 0 0

cocomo81o 2 3 0 2 3 0 2 3 0

cocomo81s 4 1 0 4 1 0 4 1 0

desharnais77 5 0 0 5 0 0 5 0 0

desharnaisL1 5 0 0 5 0 0 5 0 0

desharnaisL2 5 0 0 5 0 0 5 0 0

desharnaisL3 1 4 0 1 4 0 1 4 0

nasa93 5 0 0 5 0 0 5 0 0

nasa93 center 1 0 5 0 0 5 0 0 5 0

nasa93 center 2 4 1 0 4 1 0 4 1 0

nasa93 center 5 5 0 0 5 0 0 5 0 0

sdr 1 4 0 1 4 0 1 4 0

albrecht 3 2 0 3 2 0 3 2 0

finnish 5 0 0 5 0 0 5 0 0

kemerer 4 1 0 4 1 0 4 1 0

maxwell 5 0 0 5 0 0 5 0 0

miyazaki94 5 0 0 5 0 0 5 0 0

telecom1 2 3 0 2 3 0 2 3 0

TOTAL 71 24 0 71 24 0 71 24 0

Figure 8.1: The win (w), tie (t) and loss (l) values of TMPA compared to ABE0 with k ∈
{1, 2, 3, 4, 5}. The shallow datasets where TMPA does not win against most of the ABE0 methods
(w< 3) are highlighted. In these cases TMPA is unable to improve the static-k methods. Shallow
datasets will be excluded in the analysis as there is not enough space for further improvement of
static-k methods.

Therefore, we first identified the shallow datasets (highlighted rows of Figure 8.1) and excluded

them from evaluation. As for the exclusion, we expect TMPA to have a win value of 2 or less, i.e.

we expect ABE0 methods to tie with TMPA in the majority case (3 or more out of 5 comparisons).

Note that since TMPA is compared against 5 static k-values (k ∈ {1, 2, 3, 4, 5}), TMPA can have a

maximum a win value of 5.

Once we remove the shallow datasets of Figure 8.1, we get the datasets targeted for improve-

ment. Figure 8.2 shows w/t/l values of TMPA only for the target datasets. In Figure 8.2 TMPA is

compared to 5 static k-values (k ∈ {1, 2, 3, 4, 5}); hence, TMPA can have a maximum win value

of 5. Since we have 14 target datasets for improvement, the TOTAL number of w/t/l for each error

measure (last row of Figure 8.2) is 14 datasets × 5 = 70.

We see in Figure 8.2 (see the last row) that -as expected- TMPA never loses against any ABE0

method. Also note that from a total of 70 comparisons, TMPA has 65wins and 5 ties for each error
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Datasets MMRE MdMRE Pred(25)

cocomo81 5 0 0 5 0 0 5 0 0

cocomo81e 5 0 0 5 0 0 5 0 0

cocomo81s 4 1 0 4 1 0 4 1 0

desharnais77 5 0 0 5 0 0 5 0 0

desharnaisL1 5 0 0 5 0 0 5 0 0

desharnaisL2 5 0 0 5 0 0 5 0 0

nasa93 5 0 0 5 0 0 5 0 0

nasa93 center 2 4 1 0 4 1 0 4 1 0

nasa93 center 5 5 0 0 5 0 0 5 0 0

albrecht 3 2 0 3 2 0 3 2 0

finnish 5 0 0 5 0 0 5 0 0

kemerer 4 1 0 4 1 0 4 1 0

maxwell 5 0 0 5 0 0 5 0 0

miyazaki94 5 0 0 5 0 0 5 0 0

TOTAL 65 5 0 65 5 0 65 5 0

Figure 8.2: The w/t/l values values of TMPA vs. ABE0 with k ∈ {1, 2, 3, 4, 5} on selected datasets.
We can see these values of w/t/l as the skyline for D-ABE. Note that this figure is Figure 8.1 minus
the shallow datasets.

measure. This can be seen as the skyline for D-ABE. In other words, assuming that the heuristic

approach is as good as the theoretical maximum indicated by TMPA, we would expect a win value

of 65.

8.4.2 Static-k vs. Dynamic- K (D-ABE)

This section aims to answer the following questions: 1) How better/worse is D-ABE w.r.t.

ABE0, i.e. is it worth the effort of designing another heuristic method? 2) After having the skyline

of TMPA identified in the previous section, how much of this skyline is D-ABE able to cover?

Figure 8.3 shows the actual performance values of D-ABE and ABE0 variants in log-scale.

The reason for the use of log-scale is for the purposes of visibility, i.e. to separate points from

one another. Note that there are 3 plots (one for each error measure) in Figure 8.3. From these

plots, it is easy to observe that TMPA is much better than D-ABE as well as static-ABE0 variants.

Furthermore, we can see that D-ABE lies somewhere between TMPA and the best static-ABE0

variant. On the other hand, for some datasets D-ABE and static-ABE0 variants have overlapping

performance values.

Although Figure 8.3 is intuitive and helps to observe actual performance values, it is difficult
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to make a conclusive remark from from that figure. Therefore, we consult to Figure 8.4, where the

best performing method according to a particular error measure for a given dataset is marked with

the � symbol. In other words, Figure 8.4 acts like a magnifying-glass to Figure 8.3 in the sense

that it magnifies the overlapping regions and marks the best performing method.

The TOTAL rows (highlighted rows) of Figure 8.4 shows how many times a particular method

appeared as the best performer for a each one of the error measures. Since we have 14 datasets, the

maximum number of times a method can be the best performer is 14. For MMRE error measure,

D-ABE outperforms the ABE0 variants in 12 out of 14 cases. The closest followers of D-ABE

are ABE0 variants with 1NN and 4NN, which both appear only once as the best performer. For

MdMRE, D-ABE appears 9 times as the best performer, followed by 5NN which appears 3 times

as the best method. That is, D-ABE outperforms ABE0 variants by orders of magnitude. The

scenario for Pred(25) is similar to that of MMRE and MdMRE: With a sum of 9 out of 14 times,

D-ABE outperforms its closest followers (1NN, 2NN, 4NN all being the best performer 3 times)

by orders of magnitude.

The comparison of performance values helps us reveal the answer to the first question:

1) Is it worth the effort of designing another heuristic method? As we observed from
the comparisons, D-ABE attains better performance values than ABE0 variants. In
fact, the number of times D-ABE appears to be the best performer is by order of
magnitude more when compared to ABE0 methods. So the answer is: Yes, the effort
invested in designing the heuristic of D-ABE proves beneficial, hence is worth the
effort.

To see how much of the TMPA skyline was discovered by D-ABE, we need to consult the w/t/l

values. Figure 8.5 shows the w/t/l values of D-ABE, when compared to ABE0 variants of 1NN,

2NN, 3NN, 4NN and 5NN. Note that Figure 8.5 is identical to Figure 8.2, with the difference

that Figure 8.2 compares TMPA to static-ABE0 variants, whereas Figure 8.5 compares D-ABE

to static-ABE0 variants. The sum of w/t/l values for any dataset&error-measure intersection is 5.

The sum of all w/t/l values per error measure over 14 datasets is: 14 datasets × 5 comparisons =

70.

We see from Figure 8.5 that D-ABE has win values of 21, 22, 22 for the error-measures of

MMRE, MdMRE and Pred(25) respectively. Out of a total of 70 comparisons, these win values

correspond to 30%, 32% and 32% (respectively). Furthermore, note that D-ABE never loses against
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ABE0 variants when subject to MdMRE and Pred(25). When subject to MMRE it only loses 1 case

out of 70. Figure 8.6 combines the results of Figure 8.5 and Figure 8.2. By using this figure, we

can answer the second question: 2) How much of the TMPA-skyline is D-ABE able to cover? See

in Figure 8.6 that the highest percentage of win values that an optimum ABE0 variant can attain

against static-k variants is 93%. D-ABE is able to discover 30 to 32% of this space. In other

words, the proposed heuristic is able to discover around 1
3 of the space between static-k based

ABE0 variants and the optimum ABE0 variant (i.e. TMPA).

8.5 Conclusion

Easy-path supports the following strategy: Identify hard-cases and remove them from the train-

ing set. The definition of hard-case changes according to context. In the context of this research,

hard-cases refer to instances that violate the assumption on which D-ABE was built: “TMPA in-

dicates the best-set to be retained”. Since D-ABE is essentially a CBR system, we need a way to

identify the training instances that are to be retained prior to estimation. We used TMPA for that

purpose. After running TMPA on the training instances, we identified the hard cases for which

even the TMPA performs badly and retained only the easy-cases.

We have seen that D-ABE is far better than static-k based ABE0 methods, both in mere perfor-

mance value comparisons and in statistical checks. Also, we saw that D-ABE is able to discover

a significant portion (13 ) of the performance space that was left to be discovered between static-

ABE0 methods and TMPA. Furthermore, easy-path has proven beneficial in another research [16]

as well. Therefore, the recommended 8th principle of SEE is:

Principle #8: Use Easy-path Design

In summary, the contributions of the research that led to the 8th principle are:

• An ABE design principle that can be applied to different ABE methods.

• Discovering the performance space between static-k based ABE methods and TMPA.
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Figure 8.3: The performance measures for TMPA, D-ABE and other ABE0 variants.
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Datasets D
-A

B
E

1N
N

2N
N

3N
N

4N
N

5N
N

MMRE

cocomo81 �
cocomo81e �
cocomo81s �
desharnais77 �
desharnaisL1 �
desharnaisL2 �
nasa93 �
nasa93 center 2 �
nasa93 center 5 �
albrecht �
finnish �
kemerer �
maxwell �
miyazaki94 �
Total 12 1 1

MdMRE

cocomo81 �
cocomo81e �
cocomo81s �
desharnais77 �
desharnaisL1 �
desharnaisL2 �
nasa93 �
nasa93 center 2 �
nasa93 center 5 �
albrecht �
finnish �
kemerer �
maxwell �
miyazaki94 �
Total 9 1 1 3

Pred(25)

cocomo81 �
cocomo81e �
cocomo81s �
desharnais77 �
desharnaisL1 �
desharnaisL2 � �
nasa93 �
nasa93 center 2 �
nasa93 center 5 � � � �
albrecht �
finnish �
kemerer � �
maxwell � �
miyazaki94 �
Total 9 3 3 2 3

Figure 8.4: Based on the values of Figure 8.3, the method yielding the best performance for each
dataset is indicated with a � symbol. At the end of every performance measure a “Total” row
indicates how many times a method yielded the best performance. Note that the proposed method
D-ABE attains the best performance many more times than any other static-ABE0 method.
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MMRE MdMRE Pred(25)

Datasets w t l w t l w t l

cocomo81 4 1 0 4 1 0 4 1 0

cocomo81e 1 4 0 1 4 0 1 4 0

cocomo81s 0 5 0 0 5 0 0 5 0

desharnais77 1 4 0 1 4 0 1 4 0

desharnaisL1 0 5 0 0 5 0 0 5 0

desharnaisL2 1 4 0 1 4 0 1 4 0

nasa93 3 1 1 4 1 0 4 1 0

nasa93 center 2 4 1 0 4 1 0 4 1 0

nasa93 center 5 1 4 0 1 4 0 1 4 0

albrecht 1 4 0 1 4 0 1 4 0

finnish 5 0 0 5 0 0 5 0 0

kemerer 0 5 0 0 5 0 0 5 0

maxwell 0 5 0 0 5 0 0 5 0

miyazaki94 0 5 0 0 5 0 0 5 0

TOTAL 21 48 1 22 48 0 22 48 0

Figure 8.5: The w/t/l values values of D-ABE vs. ABE0 with k ∈ {1, 2, 3, 4, 5} on targeted
datasets. We can see these values of w/t/l as the skyline for our hybrid method.

Figure 8.6: The comparison of D-ABE to the skyline proposed by TMPA. The win values of both
TMPA and D-ABE, as well as their relative percentages out of 70 comparisons are given in the
form of a bar graph. The skyline is given by the gray-colored bars and the amount discovered by
D-ABE is indicated by the black bars.
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Chapter 9

Principle #9, Use Relevancy Filtering

Finding enough training data for local problems is one of the fundamental prob-
lems of estimation methods [21–23] and software effort estimation (SEE) is no ex-
ception [2, 21]. In this chapter, we argue that finding local training data can be ad-
dressed through filtering cross domain data with appropriate methods. We will provide
background information regarding earlier work on relevancy-filtering of cross domain
data. Then we will introduce our proposed relevancy-filtering method called TEAK.
The experimentation reported in this chapter covers a wide range of data sets: Pub-
lic data sets of Figure 2.1 as well as proprietary data sets of the Tukutuku database
(as given in Figure 2.3). Furthermore, we will evaluate the cross domain experiments
from the perspective of transfer learning and provide experimentation for the transfer
learning experiments across different time-frames.

In all the experiments we have conducted for the research presented in this chapter, we have

seen that relevancy filtering works for a big majority of the cross company data experiments. There-

fore, the principle we will defend in this chapter will be: “Use Relevancy Filtering” for the local

data problems. The rest of this chapter defines the problem, related terms and presents our findings.

Finally we conclude this chapter with the contributions of this research.

A company willing to use “within data”, a.k.a. local data, will face the problem of considerable

time and resource requirement for data collection and maintenance activities. In this research local

data refers to a company’s own domain data or data from the same time interval. Another problem

of local data is aging, i.e. how to choose or disregard projects from older time intervals [127].

We refer to aforementioned problems of within data as “local data issues”. The benefit of being

able to transfer knowledge of “cross data” (the data either coming from another domain or from

a different time interval) is twofold: 1) Possibility to cure the local data issues and 2) ability to
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identify which instances to use from past time intervals. Instance transfer is the process of keeping

some of the relevant training instances (while discarding the others).

For the cross domain data transfer research presented in this chapter, we use a novel transfer

learning method based on variance-based instance selection, called TEAK [16]. We show that the

use of this methods enables successful transfer of data across space (i.e. between organizations)

and across time (i.e. between different time intervals). To the best of our knowledge, this is the first

report in the SEE literature of a single method that can effectively transfer data across time and

space. The proposed method was evaluated on the proprietary data sets of 8 Web companies from

the Tukutuku [12] data base (for transfer between domains) as well as publicly available NASA

data sets called Cocomo81and Nasa93 (for transfer between time intervals). In the experimenta-

tion, each test instance is evaluated in two different scenarios:

• In the first scenario, the test instance is allowed to use only within training data (i.e. restricted

to its own domain or time interval).

• In the second scenario, the test instance is allowed to use cross as well as within data (i.e. it

is allowed to transfer knowledge from other domains or time intervals).

The performance of the test instances in both scenarios are compared according to 8 different error

measures (MAR, MER, MMRE, MdMRE, Pred(25), MBRE, MIBRE and SA) subject to Wilcoxon

test (at 95% confidence). In 6 out of 8 companies of the Tukutuku data base, the instance transfer

between domains enabled cross data performance to be statistically significantly the same as the

performance of within data. In all cases of the transfer learning between time intervals, the within

and cross data performance were statistically the same. The second scenario enables us to make a

novel contribution to the problem of cross data borders by investigating the “selection tendency”

of test instances. Selection tendency is defined to be the percentage of instances selected from

within and cross data sources. We have found that if a test instance is allowed to use a blend of

cross and within data sources (as in the case of the second scenario), test instances select equally

likely from within and cross data.
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9.1 Transfer Learning

The collection of local data requires allocation of time and resources. To remove the need

of local data collection in SEE, various transfer learning studies have been performed [19, 21].

Another reason for the necessity of transfer learning solutions in SEE is the aging of data [128].

In time, data can be outdated and some data instances belonging to an earlier time period may no

longer be representative of the current trends. Our study proposes a transfer learning solution that

can work both for domain as well as time period changes.

A learning problem can be defined by:

• a specific domain D, which consists of a feature space and a marginal distribution defining

this space;

• and a task T , which is the combination of a label space and an objective estimation function.

Transfer learning allows for the training and test data to have different domains and tasks [129].

According to Jialin et al. transfer learning can be formally defined as follows [128]: Assuming

we have a source domain DS , a source task TS , a target domain DT and a target task TT ; transfer

learning tries to improve an estimation method in DT using the knowledge of DS and TS . Note that

the assumption in the above definition is that DS �= DT and TS �= TT . There are various subgroups

of transfer learning, which define the relationship between traditional machine learning methods

and various transfer learning settings, e.g. see Table 1 of [128]. SEE cross data experiments have

the same task but different domains, which places them under the category of transductive transfer

learning [130]. Note that in this research a domain refers to particular companies within Tukutuku

data base, however that does not mean that domain always refers to organizations. The definition

of a domain is context dependent, i.e. whereas in this research it refers to particular companies, in

another study it may refer to certain software projects, certain business domains etc.

There are 4 different approaches to transfer learning [128]: instance-transfer (or instance-

based transfer) [131], feature representation transfer [132], parameter-transfer [133] and relational-

knowledge transfer [134]. The transfer learning approach of the estimation method used in this

research corresponds to instance-transfer. The benefits of instance-transfer learning are used in

various research areas, e.g. Ma et al. use transfer learning for cross-company defect prediction,
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where they use a weighted Naive Bayes classifier [129]. Other research areas that benefit from

instance-transfer are text classification [135], e-mail filtering [136] and image classification [137].

9.2 Instability of Transfer Learning Studies in SEE

A standard assumption in many model-based estimation methods is that it is necessary and

useful to process all the available training data points. The empirical lessons learned from instance

selection and irrelevancy removal say that it is not the case. The results of the experiments reported

in this chapter, as well as prior work [2, 19, 22, 23], are also along the same lines: Use of all the

training data from a cross data source is not useful; on the contrary, using relevancy filtering to

filter out irrelevant cross data training instances increases the performance of cross data.

Previous research focuses on 2 fundamental problems of cross data usage [2,21]: 1) Cross data

performance, when compared to within data performance and 2) defining cross data borders. Much

of the research focuses on the first problem [21, 22]. The second problem emerges upon recent

evidence that disagrees with the notion that features like domain or time interval define strict cross

and within data borders, hence disrupts knowledge transfer [2,19]. As part of the research that led

to this chapter, we authored a manuscript, which showed that transfer learning (through instance

transfer) helps cross data performance on public SEE data sets [19]. On a follow up study of this

manuscript [19] we aimed to tackle the second problem of cross data (i.e. cross data borders), we

found that using single features like domain (e.g. geographical location, company name) to define

strict cross data borders is misleading [2] and knowledge can be transferred through these borders

via instance transfer methods.

Transferring knowledge between cross borders of different time intervals has been paid very

little attention. To the best of our knowledge, the only work that has previously questioned transfer

learning between different time frames is that of Lokan et al. [138, 139]. In [138] Lokan and

Mendes found out by using chronological sets of instance in a cross-company learning setting

that time frame divisions of instances did not affect prediction accuracy. In [139], they found out

that it is possible to suggest a window size of a time frame of past instances, which can yield

performance increase in estimation. They also note that the size of the window frame is data set

dependent. Our research builds on the prior findings to provide evidence of knowledge transfer
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through both domain and time.

The prior results on the performance of cross data in transfer learning are unstable. In their

review, Kitchenham et al. [21] found equal evidence for and against the value of transfer learning

in SEE. Among 7 studies reviewed by Kitchenham et al., 4 studies favored within data, whereas 3

found that cross data is not statistically significantly worse than within data. In the field of defect

prediction, Zimmermann et al. studied the use of cross data [23]. Zimmermann et al. found that

predictors performed worse when trained on cross-application data than from within-application

data. From a total of 622 cross and within data comparisons, they report that within outperformed

cross in 618 cases. Recently Ma et al. defined the cross data learning problem in the research

field of defect prediction as a transfer learning problem [129]. Ma et al. propose a Naive Bayes

variant, so called Transfer Naive Bayes (TNB), so as to use all the appropriate features from the

training data. TNB is proposed as an alternative transfer learning method for defect prediction

when there are too few training data. According to Ma et al. cross data learning problem of defect

prediction corresponds to an inductive transfer learning setting; where source and target tasks are

the same, yet source and target domains are different. The inductive transfer learning methods are

summarized as either instance transfer or feature transfer [140]. The current literature of cross data

learning in defect prediction as well as SEE focuses on instance transfer.

Turhan et al. compared defect predictors learned from cross or within data. Like Zimmermann

et al., they found that using all cross resource data leads to poor estimation method performance

(very large false alarm rates). However, after instance selection pruned away irrelevant cross re-

source data, they found that the cross resource estimators were equivalent to the estimators learned

from within resource data [22]. Motivated by Turhan et al. [22], Kocaguneli et al. [19] used in-

stance selection as a pre-processor for a study of transfer learning in SEE, where test instances are

allowed to use only cross or only within data. In a limited study with three data sets, they found

that through instance selection, the performance differences in the predictors learned from cross

or within data were not statistically significant. This limited study was challenged by Kocaguneli

et al. in another study that uses 8 different data sets [2]. The results were identical: performance

differences of within and cross data are not significant.
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9.3 Resolving Instability

Conflicting results are nothing new for SEE. As we noted in the previous section of this chapter,

there are different studies reporting conflicting results on the use of cross company data. The

problem of conflicting results is attracting attention from the SEE community and a promising

progress can be seen towards that issue. For example, in Chapter 5 we were able to see that we can

elicit superior solo-methods, provided that we investigate a large corpus of SEE methods, datasets

and error measures. Hence, this chapter challenges prior results in transfer learning studies in SEE,

on a large number of data sets, which include public as well as proprietary data sets. Note that one

of the major results of Chapter 5 is that all the superior 13 solo-methods use CART or k = 1 nearest

-neighbor. This is significant since both these estimators use multiple features to sub-divide the

training data:

• k-th nearest neighbor algorithms use all project features (perhaps, weighted by some feature)

to determine related projects [38];

• Tree-based algorithms, like CART [48], divide the data into multiple branches, where each

branch tests and divides that data on multiple features.

9.3.1 TEAK

TEAK is a variance-based instance selector that discards training data associated with regions

of high dependent variable (effort) variance [16]. TEAK is based on the locality principle, which

states that instances that are close to one another in space according to a distance measure (e.g. Eu-

clidean distance measure) are similar instances and should have similar dependent variable values.

A high variance region, where similar instances have very different effort values (hence the high

variance) violates the locality assumption and is pruned away by TEAK [16]. TEAK augments

ABE0 with instance selection and an indexing scheme for filtering relevant training examples. In

summary, TEAK is a two-pass system:

• Pass 1 prunes training instances implicated in poor decisions (instance selection);

• Pass 2 retrieves closest instances to the test instance (instance retrieval).
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In the first pass, training instances are combined using greedy-agglomerative clustering (GAC),

to form an initial cluster tree that we call GAC1; e.g. see Figure 9.1. Level zero of GAC1 is formed

by leaves, which are the individual project instances. These instances are greedily combined (com-

bine the two closest instances) into tuples to form the nodes of upper levels. The variance of the

effort values associated with each sub-tree (the performance variance) is then recorded and normal-

ized: min..max to 0..1. The high variance sub-trees are then pruned, as these are the sub-trees that

would cause an ABE method to make an estimate from a highly variable instance space. Hence,

pass one prunes sub-trees with a variance in the vicinity of rand() ∗ α% of the maximum vari-

Figure 9.1: A sample GAC tree with regions of high and low variance (dashed triangles). GAC
trees may not always be binary. For example here, leaves are odd numbered, hence node “g” is left
behind. Such instances are pushed forward into the closest node in the higher level. For example,
“g” is pushed forward into the “e+f” node to make “e+f+g” node.

Figure 9.2: Execution of TEAK on 2 GAC trees, where tree on the left is GAC1 of Figure 9.1 and
the one on the right is GAC2. The instances in the low variance region of GAC1 are selected to
form GAC2. Then test instance traverses GAC2 until no decrease in effort variance is possible.
Wherever the test instance stops is retrieved as the subtree to be used for adaptation (var=lowest
labeled, dashed triangle of GAC2).
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ance seen in any tree, where rand() gives a normal random value from 0-1 interval. After some

experimentation, we found that α = 10 leads to estimates with lowest errors.

The leaves of the remaining sub-trees are the survivors of pass one. They are filtered to pass 2

where they are used to build a second GAC tree (GAC2). GAC2 is generated in a similar fashion

to GAC1, then it is traversed by test instances that are moved from root to leaves. Unlike GAC1,

this time variance is a decision criterion for the movement of test instances: If the variance of the

current tree is larger than its sub-trees, then continue to move down; otherwise, stop and retrieve

the instances in the current tree as the analogies. TEAK is a form of ABE0, so its adaptation

method is the same, i.e. take the median of the analogy effort values. A simple visualization of

this approach is given in Figure 9.2.

We use TEAK in this study since, as shown by the leave-one-out experiments of Kocaguneli et

al. [16], its performance is comparable to other commonly-used effort estimators including neural

networks (NNet) and linear regression (LR). For a complete analysis of TEAK compared to NNet,

Simple ABE0

TE
A

K

LR N
N

et

k=
be

st

k=
1

k=
16

k=
2

k=
4

k=
8

MdMRE
Cocomo81 �
Cocomo81e �
Cocomo81o �
Nasa93 �
Nasa93c2 �
Nasa93c5 �
Desharnais �
Sdr �
ISBSG-Banking �
Count 6 3 0 0 0 0 0 0 0
Pred(25)
Cocomo81 �
Cocomo81e �
Cocomo81o �
Nasa93 �
Nasa93c2 �
Nasa93c5 �
Desharnais �
Sdr �
ISBSG-Banking �
Count 5 3 1 0 0 0 0 0 0
MAR
Cocomo81 �
Cocomo81e �
Cocomo81o �
Nasa93 �
Nasa93c2 �
Nasa93c5 �
Desharnais �
Sdr �
ISBSG-Banking �
Count 6 3 0 0 0 0 0 0 0

Figure 9.3: Results from 20 repeats of a leave-one-out experiment, repeated for the performance
measures of MdMRE, Pred(25) and MAR. Black triangles mark when an estimator was one of the
top-ranked methods for a particular data set (where ranking was computed via win− loss from a
Wilcoxon test, 95% confidence). The Count rows show the number of times a method appeared
as the top performing variant. The results of this figure come from [16].
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LR as well as various ABE0 methods please refer to Figure 7 of [16]. Figure 9.3 can be interpreted

as follows:

• The columns k = 1, 2, 4, 8, 16 denote variants of standard ABE0 where estimates are gener-

ated from the k-th nearest neighbors.

• The column k = best denote a variant of ABE0 where k was chosen by an initial pre-

processor that chose a best k value after exploring the training data.

• The columns LR and NNet refer to linear regression and neural nets.

The black triangles in Figure 9.3 mark when an estimator was one of the top-ranked methods for

a particular data set. Ranking was accomplished via the win − loss calculation. The key feature

of Figure 9.3 is that TEAK always performed better than the other ABE0 methods, and usually

performed better than neural nets. TEAK’s only near-rival was linear regression but, as shown in

the LR columns, TEAK was ranked top nearly twice as much as linear regression.

9.4 Experimentation

The goals of the experiments carried out in this chapter can be summarized as follows:

1. Compare the performance of TEAK when trained from just within data versus when trained

from a combination of cross and within data.

2. The retrieval tendency goals question the tendency of a within test instance to retrieve within

or cross data. In other words, given the chance that a test instance had access to within

and cross data at the same time, what percentage of every subset would be retrieved into k

analogies used for estimation?

The first goal challenges the findings from older publicly available SEE data sets on the proprietary

datasets of 8 different contemporary Web development companies. This is quite important, since

the results pertaining to our first goal can give the practitioners an idea about how well cross data

studies may perform in their actual settings. The second goal challenges our assumptions regarding

the definition of cross data, i.e. is it right to draw a border and say some data is cross or within based
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on single features like the company name? The results regarding the second goal are indicators

for practitioners regarding which factors to consider and which factors to ignore when using cross

data.

9.4.1 Performance Comparison

With regard to performance comparison we have two settings: Within and cross. In the within

data setting, only the within source is used as the dataset, and a testing strategy of leave-one-out

cross-validation (LOOCV) is employed.

Cross data setting uses one instance at a time (since we use LOOCV) from the within data as

the test set and the combination of remaining within instances and all the cross data as the training

set. In this setting TEAK derives an estimate for each test instance by adapting the analogies of

the training set. Ultimately we end up with T predictions adapted from the training set. Finally,

the performances under within and cross data settings are compared. For that purpose, we use both

mere performance values as well as win-tie-loss statistics.

9.4.2 Retrieval Tendency

For retrieval tendency experiments we mark every within and cross instance in the training

set and let the test instance choose analogies from the training data set of within and cross data

instances. Note that retrieved analogies are the unique training instances in the lowest-variance

region of GAC2 (see Figure 9.2). In this setting our aim is to see what percentage of within and

cross subsets would appear among retrieved k analogies. The retrieval percentage is the average

(over all test instances) ratio of instances retrieved in analogies to the total size of the training set:

Percentage =
NumberOfRetrievedAnalogies

TrainingSetSize
∗ 100 (9.1)
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Dataset W MAR

Win Tie Loss W C
tuku1 8 12 0 27.8 55.9

tuku2 20 0 0 6.1 60.6

tuku3 20 0 0 661.7 2577.6

tuku4 2 18 0 104.5 177.4

tuku5 0 20 0 305.8 315.4

tuku6 8 12 0 25.8 42.7

tuku7 2 18 0 542.7 551.6

tuku8 1 19 0 87.6 103.0

Dataset W MMRE

Win Tie Loss W C
tuku1 9 11 0 0.9 3.1

tuku2 20 0 0 1.1 20.6

tuku3 20 0 0 0.3 0.9

tuku4 2 18 0 0.4 5.5

tuku5 0 19 1 2.9 1.0

tuku6 5 15 0 0.3 0.7

tuku7 3 17 0 1.2 1.0

tuku8 0 20 0 0.9 0.8

Dataset W MdMRE

Win Tie Loss W C
tuku1 8 12 0 0.6 1.0

tuku2 20 0 0 0.7 10.2

tuku3 20 0 0 0.2 1.0

tuku4 2 18 0 0.3 0.9

tuku5 0 19 1 0.9 0.8

tuku6 5 15 0 0.3 0.4

tuku7 3 17 0 0.6 0.7

tuku8 0 20 0 0.4 0.6

Dataset W Pred(25)

Win Tie Loss W C
tuku1 6 10 4 0.4 0.1

tuku2 18 0 2 0.1 0.2

tuku3 20 0 0 0.7 0.4

tuku4 2 18 0 0.5 0.5

tuku5 1 19 0 0.2 0.2

tuku6 5 15 0 0.4 0.4

tuku7 3 17 0 0.2 0.3

tuku8 0 20 0 0.4 0.4

Figure 9.4: Performance comparison of within (W) and cross (C) data w.r.t. 4 of 8 different
performance measures: MAR, MMRE, MdMRE, Pred(25). Win, tie, loss values are w.r.t. W. Last
two columns are the actual performance measure values of W and C.
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9.5 Results

9.5.1 Performance Comparison

Comparing the performance of within and cross data is the first goal of this experimentation.

Due to space constraints and also in order to make the results more readable we equally divided the

domain transfer results of the Tukutuku subsets into two figures: Figure 9.4 and Figure 9.5. The

time interval transfer results of Cocomo81 and Nasa93 are provided in Figure 9.7 and Figure 9.8,

respectively.

Figure 9.4 shows a uniformity of results. The tie values are very high for 5 out of 8 companies

(tuku1, tuku4-to-7), which means that cross data performance of is as good as within data perfor-

mance. The high tie values are also reflected in the actual error measures. See that the values of

the error measures (last two columns of Figure 9.4 ) for within (W) and cross (C) data sources

are very close to one another for tuku1 and tuku-4-to-7. For 1 company, tuku8, within and cross

data performance depends on the error measure: According to all error measures except MMER

the within and cross performances are very close, whereas for MMRE the within data performance

appears to be better. For 2 companies out of 8 (tuku2 and tuku3), the within data performance

is dominantly better than cross data performance with a win value of 20. Remember from §9.3.1

that TEAK performs 20 times LOOCV, hence the total of win, tie and loss values for each data set

subject to each error measure amounts to 20. The reason of 20 LOOCV repeats is to remove the

bias due to the random pruning step of TEAK.

Figure 9.5 shows the within and cross data performance of TEAK for the error measures of

MMER, MBRE, MIBRE and SA. The reading of Figure 9.5 is exactly the same as of Figure 9.4,

i.e. it shows the win, tie, and loss values according to 4 error measures as well as the actual error

measure values. The general pattern we have observed from 4 error measures in Figure 9.4 are

also visible in Figure 9.5. In relation to the error measures MBRE, MIBRE and SA, in 6 data sets

(tuku1, tuku2, tuku4-to-7) cross and within performances are the same. According to the MMER,

within performance is better than the cross performance for 2 data sets: tuku3 and tuku8.

The aforementioned results support the prior results reported by Kocaguneli et al. [2], where

they have used 21 public data sets from PROMISE data repository. A summary of their results
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Dataset W MMER

Win Tie Loss W C
tuku1 0 20 0 1.0 1.2

tuku2 0 20 0 1.6 0.8

tuku3 20 0 0 0.3 58.2

tuku4 0 20 0 4.9 4.9

tuku5 6 14 0 2.3 8.2

tuku6 8 12 0 0.4 2.5

tuku7 6 14 0 5.1 9.2

tuku8 14 6 0 0.7 2.5

Dataset W MBRE

Win Tie Loss W C
tuku1 6 14 0 1.4 3.8

tuku2 20 0 0 2.2 20.6

tuku3 20 0 0 0.3 58.2

tuku4 1 19 0 4.9 9.7

tuku5 0 20 0 4.6 8.5

tuku6 6 14 0 0.4 2.8

tuku7 5 15 0 5.7 9.6

tuku8 2 18 0 1.2 2.7

Dataset W MIBRE

Win Tie Loss W C
tuku1 2 18 0 0.5 0.6

tuku2 17 3 0 0.5 0.8

tuku3 20 0 0 0.2 0.9

tuku4 1 19 0 0.4 0.8

tuku5 0 20 0 0.6 0.6

tuku6 6 14 0 0.3 0.4

tuku7 4 16 0 0.5 0.6

tuku8 3 17 0 0.4 0.5

Dataset W SA

Win Tie Loss W C
tuku1 8 12 0 0.2 -0.7

tuku2 20 0 0 -0.0 -

10.3

tuku3 20 0 0 0.0 -2.7

tuku4 2 18 0 0.4 0.1

tuku5 0 20 0 0.1 0.0

tuku6 8 12 0 0.2 -0.5

tuku7 2 18 0 0.3 0.3

tuku8 1 19 0 -0.1 -0.4

Figure 9.5: Performance comparison of within (represented with W) and cross (represented with
C) data w.r.t. 4 of 8 different performance measures: MMER, MBRE, MIBRE, SA.

on 21 public data sets are provided in Figure 9.6. As can be seen in Figure 9.6, Kocaguneli et al.

uses 4 error measures and identifies only 2 data sets (gray highlighted rows) for which within data
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Dataset MAR MMRE MdMRE Pred(30)
WinTieLoss WinTieLoss WinTieLoss WinTieLoss

cocomo81e 0 20 0 0 16 4 4 16 0 4 16 0
cocomo81o 0 20 0 2 18 0 2 18 0 2 18 0
cocomo81s 18 2 0 15 5 0 15 5 0 13 5 2

nasa93 center 1 0 20 0 0 20 0 0 20 0 0 20 0
nasa93 center 2 4 16 0 2 18 0 2 18 0 2 18 0
nasa93 center 5 0 20 0 0 12 8 8 12 0 8 11 1

desharnaisL1 11 9 0 9 11 0 9 11 0 9 11 0
desharnaisL2 0 20 0 0 20 0 0 20 0 0 20 0
desharnaisL3 0 20 0 2 18 0 2 18 0 2 18 0

finnishAppType1 0 20 0 0 20 0 0 20 0 0 20 0
finnishAppType2345 0 20 0 0 17 3 0 17 3 0 17 3

kemererHardware1 0 0 20 0 0 20 0 0 20 0 0 20
kemererHardware23456 0 20 0 0 20 0 0 20 0 0 20 0

maxwellAppType1 6 14 0 1 19 0 1 19 0 0 19 1
maxwellAppType2 0 18 2 0 19 1 0 19 1 0 19 1
maxwellAppType3 0 20 0 1 19 0 1 19 0 1 19 0

maxwellHardware2 0 20 0 0 20 0 0 20 0 0 20 0
maxwellHardware3 0 20 0 0 20 0 0 20 0 0 20 0
maxwellHardware5 0 20 0 0 20 0 0 20 0 0 20 0

maxwellSource1 6 14 0 1 19 0 1 19 0 1 19 0
maxwellSource2 0 20 0 0 20 0 0 20 0 0 20 0

Figure 9.6: Summary of prior TEAK results [2] on 21 public data sets. For 19 data sets, cross and
within data performances are the same (note high tie values). For only 2 data sets (highlighted)
within data performance is better than cross.

performance is worse than cross company. For 21 − 2 = 19 data sets, cross data performance is

statistically significantly the same as that of within company.

Figure 9.7 and Figure 9.8 show the performance results of transfer learning in time intervals

for Cocomo81 and Nasa93. For Cocomo81, two within sources are defined: 1) projects developed

from 1960 to 1975 (called as coc-60-75) and 2) projects developed from 1976 onwards (called

as coc-76-rest). Similarly, the subsets of Nasa93 are: 1) projects from 1970 to 1979 (called as

nasa-70-79) and 2) projects from 1980 onwards (called as nasa-80-rest). In both Figure 9.7 and

Figure 9.8, the tie values are quite high with the smallest tie value of 16. Note that in none of

the two figures there is a highlighted row, which means that in none of the time interval instance

transfer experiments was there a case where TEAK failed to transfer instances between different

time intervals. The implications of within and cross data experiments through instance transfer in

time intervals are important for practitioners. Transfer learning results on Cocomo81 and Nasa93

subsets show that instance transfer methods, such as TEAK, may help companies use aged data

sets. Figure 9.7 and Figure 9.8 fundamentally show that decades of time difference can be crossed
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Dataset W MAR
Win Tie Loss W C

coc-60-75 0 20 0 1181.0 1194.1

coc-76-rest 0 20 0 383.6 385.5

Dataset W MMRE
Win Tie Loss W C

coc-60-75 0 19 1 2.3 1.2

coc-76-rest 0 20 0 1.9 1.6

Dataset W MdMRE

Win Tie Loss W C
coc-60-75 0 19 1 0.9 0.9

coc-76-rest 0 20 0 0.8 0.8

Dataset W Pred(25)

Win Tie Loss W C
coc-60-75 0 19 1 0.1 0.0

coc-76-rest 0 20 0 0.1 0.1

Dataset W MMER

Win Tie Loss W C
coc-60-75 0 20 0 34.4 47.6

coc-76-rest 0 20 0 8.9 8.8

Dataset W MBRE

Win Tie Loss W C
coc-60-75 1 19 0 35.9 48.1

coc-76-rest 0 20 0 10.2 9.7

Dataset W MIBRE

Win Tie Loss W C
coc-60-75 0 19 1 0.8 0.7

coc-76-rest 0 20 0 0.6 0.6

Dataset W SA

Win Tie Loss W C
coc-60-75 0 20 0 0.3 0.2

coc-76-rest 0 20 0 0.2 0.2

Figure 9.7: Performance comparison of Cocomo81 subsets for transfer learning in time.

with the help of instance transfer.

The results of this research on proprietary data sets combined with the prior results of public

data sets [2] give us a broader picture of the cross data performance. By using instance transfer

methods, such as TEAK between domains, we have:

• 5 out of 8 proprietary data sets;
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Dataset W MAR
Win Tie Loss W C

nasa-70-79 0 20 0 640.0 744.5

nasa-80-rest 4 16 0 339.6 377.6

Dataset W MMRE
Win Tie Loss W C

nasa-70-79 0 20 0 3.8 2.2

nasa-80-rest 4 16 0 1.1 2.0

Dataset W MdMRE

Win Tie Loss W C
nasa-70-79 0 20 0 0.7 0.8

nasa-80-rest 4 16 0 0.6 0.7

Dataset W Pred(25)

Win Tie Loss W C
nasa-70-79 0 20 0 0.2 0.2

nasa-80-rest 4 16 0 0.3 0.2

Dataset W MMER

Win Tie Loss W C
nasa-70-79 4 16 0 2.3 4.4

nasa-80-rest 0 20 0 2.7 2.5

Dataset W MBRE

Win Tie Loss W C
nasa-70-79 2 18 0 5.6 5.9

nasa-80-rest 2 18 0 3.2 4.0

Dataset W MIBRE

Win Tie Loss W C
nasa-70-79 2 18 0 0.6 0.6

nasa-80-rest 2 18 0 0.5 0.6

Dataset W SA

Win Tie Loss W C
nasa-70-79 0 20 0 0.2 0.1

nasa-80-rest 4 16 0 0.2 0.1

Figure 9.8: Performance comparison of Nasa93 subsets for transfer learning in time.

• 19 out of 21 public data sets;

where the performance difference between within and cross data is not statistically significant.

This shows us that from a total of 21+8 = 29 public and proprietary data sets, cross data performs

as well as within data for 5 + 19 = 24 cases. Also, by using TEAK for transfer learning between

time intervals, we have 2 data sets subject to 8 error measures (2× 8 = 16 cases), where cross data
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performance is always the same as within data performance.

9.5.2 Inspecting Selection Tendencies

The second goal of our experimentation is to observe the selection tendencies of the test in-

stances. Figure 9.9 shows what percentage of instances are selected from within data sources

(diagonal cells) as well as cross data sources (off diagonal cells) in transfer learning experiments

between domains. The first column of Figure 9.9 shows the within data sources (8 different com-

panies) as well as their sizes in parenthesis. The second column shows the number of analogies

retrieved from GAC2 on average over 20 runs. For each row, the columns tuku1-to-8 show how the

number of analogies in the second column is distributed to each data source. The values outside

the parenthesis in each cell of columns tuku1-to-8 are the number of analogies selected from that

data source; the percentage value of that number w.r.t. the second column is given inside the paren-

thesis. Figure 9.10 and Figure 9.11 show the selection tendency of test instances for Cocomo81

and Nasa93 time interval transfer learning experiments. These figures are structured in the same

manner as Figure 9.9.

Dataset #
of

A
na

lo
gi

es

tu
ku

1

tu
ku

2

tu
ku

3

tu
ku

4

tu
ku

5

tu
ku

6

tu
ku

7

tu
ku

8

tuku2 (20)11.0 1.1 (8.0) 1.6 (8.2)0.3 (2.0)0.8 (12.9)0.7 (5.0)0.7 (8.3)2.7 (8.7)3.1 (17.2)

tuku3 (15) 7.3 0.9 (6.2) 1.3 (6.3)0.4 (2.9) 0.2 (4.1) 0.8 (6.4)0.2 (2.9)1.5 (4.9)1.9 (10.5)

tuku4 (6) 6.7 0.6 (4.4) 1.5 (7.6)0.2 (1.5) 0.3 (5.0) 0.2 (1.7)0.7 (8.9)1.2 (3.8)2.0 (10.9)

tuku5 (13) 9.3 2.4 (17.2)1.4 (7.2)0.3 (2.1) 0.5 (8.5) 0.5 (4.2)0.4 (5.4)1.3 (4.0)2.4 (13.1)

tuku6 (8) 8.9 0.7 (4.7) 1.6 (7.8)0.2 (1.5)0.7 (12.4)0.7 (5.5)0.7 (8.4)1.8 (5.7)2.6 (14.3)

tuku7 (31) 7.8 1.2 (8.3) 1.3 (6.4)0.3 (2.3) 0.5 (8.4) 0.6 (4.5)0.1 (1.5)1.7 (5.5)2.1 (11.6)

tuku8 (18) 6.9 1.1 (7.9) 1.1 (5.7)0.3 (2.3) 0.3 (4.5) 0.7 (5.5)0.3 (3.3)1.3 (4.3) 1.8 (9.7)

Figure 9.9: The amount of instances selected from within and cross company datasets. The first
column is the subset names and their sizes in parenthesis. The second column is the average
number of retrieved instances in GAC2. The following columns show the number of analogies
from each particular subset, in parenthesis the percentage values of these numbers w.r.t. the second
column are given.

The selection tendency values of Tukutuku, Cocomo81 and Nasa93 subsets provide us with

suggestions regarding how much data a test instance uses from within and cross data sources dur-

ing the domain and time interval transfer of instances. From the selection tendency figures, we can
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Dataset #
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coc-60-75 (20) 3.6 0.8 (4.1) 2.8 (6.4)

coc-76-rest (43) 4.5 1.3 (6.6) 3.2 (7.4)

Figure 9.10: The amount of instances selected from within and cross company datasets of
Cocomo81.

Dataset #
of

A
na

lo
gi

es

na
sa

-7
0-

79

na
sa

-8
0-

re
st

nasa-70-79 (39) 7.3 2.6 (6.6) 4.7 (8.7)

nasa938089 (54) 9.5 3.2 (8.2) 6.3 (11.7)

Figure 9.11: The amount of instances selected from within and cross company datasets of Nasa93.

identify two findings:

Finding #1: See the second columns of Figure 9.9, Figure 9.10 and Figure 9.11 that only a very

small portion of all the available data (cross and within) is transferred as useful analogies. This

finding points to the importance of: a) instance transfer, a.k.a filtering; b) estimation methods

like TEAK that are capable of transferring relevant analogies between domains and time intervals.

The low number of instances selected are also supported by relevant literature: Chang’s proto-

type generators [141] replaced training sets of size T = (514, 150, 66) with prototypes of size

N = (34, 14, 6) (respectively). That is, prototypes may be as few as N
T = (7, 9, 9)% of the original

data. Note that these values are close to how many instances were retrieved in the above results.

Finding #2: When we compare the diagonal and off-diagonal percentages, we see that the values

are very close. This is consistent with what Kocaguneli et al. had reported from public data sets [2].

The second finding bears importance regarding the definition of cross data. It shows that defining

cross data on the basis of a single feature -e.g. w.r.t. a particular company- is misguided. It also

shows that prior findings of domain transfer experiments on the public data sets [2] are stable for

proprietary data sets as well as for time interval transfer. TEAK, being an instance transfer method

using all features to transfer analogies, selects close amounts of instances from each data source.

To better observe how close within and cross data percentages are, we plot the percentage val-
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ues of within and cross data sources of Tukutuku subsets in Figure 9.12(a) and Figure 9.12(b),

respectively. Figure 9.12(a) and Figure 9.12(b) are basically the plots of diagonal and off-diagonal

percentage values of Figure 9.9. We see from Figure 9.12(a) and Figure 9.12(b) that the maximum

and minimum percentages of within and cross data selection are very close. To align these percent-

ages, we took the percentile values from 0th percentile to 100th percentile with increments of 10.

The resulting percentiles are shown in Figure 9.12(c). See in Figure 9.12(c) that within and cross

data have similar percentile values, i.e. the selection tendencies from within and cross sources are

very close to one another. Note that percentage and percentile plots are unnecessary for Figure 9.10

and Figure 9.11, since the closeness of within and cross data selection percentages of Cocomo81

and Nasa93 subsets can easily be verified with manual inspection: For Cocomo81 subsets the

biggest percentage difference is 6.6− 4.1 = 2.5%; for Nasa93 subsets it is 11.7− 8.2 = 3.5%.

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 1  2  3  4  5  6  7  8

S
o
r
t
e
d
 
P
e
r
c
e
n
t
a
g
e
s

Index

Within

(a) Within Percentages

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60

S
o
r
t
e
d
 
P
e
r
c
e
n
t
a
g
e
s

Index

Cross

(b) Cross Percentages

 0

 4

 8

 12

 16

10 30 50 70 90100

P
e
r
c
e
n
t
a
g
e

Percentile

Within
Cross

(c) Within and Cross Percentiles

Figure 9.12: Percentages of retrieved instances (a.k.a. analogies) from within (a) and cross (b)
data sets. The percentage values come from Figure 9.9. Within company percentages are the gray-
highlighted diagonal cells, whereas cross company percentages are the remaining off-diagonal
cells. The percentile graph (c) shows the percentiles of (a) and (b).
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Figure 9.13: Percentages and percentiles of instances retrieved by TEAK from within and cross
datasets as given by Kocaguneli et al. [2]. Note the similarity of the percentile plot of this figure to
that of Figure 9.12.

Figure 9.13 is taken from our manuscript published as part of the research presented in this

chapter, regarding the selection tendency experiments on the public data sets [2]. In the perfor-

mance experiments, we have seen the similarity between the results of this research and that of

Kocaguneli et al. in terms of performance. Comparison of Figure 9.13 to Figure 9.12 shows that

the similarity of results are also valid in terms of the selection tendencies. See in particular the per-

centile values of Figure 9.12 and Figure 9.13 that transfer learning between domains of proprietary

data sets and public data sets have similar selection tendencies.

9.6 Discussion

Based on the majority of the companies in the domain transfer learning experiments (depending

on the error measure, 5 or 6 companies out of 8) the cross data performance is the same as the

within data performance. In terms of time interval transfer learning, in all of the cases, within and

cross data performances were statistically the same. This shows us that instance transfer methods

like TEAK that filter cross data can help transfer learning between domains and time intervals so

that cross data can perform as well as within data. However, for a minority of the companies in

the domain transfer learning experiments, the cross data performance may be far from satisfactory.

The reason for the difference of these companies may be hidden in their within data quality, but

this statement is just our speculation. For concrete reasons leading to failure of cross data in certain

companies, further research is needed on the features defining within and cross data borders.
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Another interesting fact is that error measures can result in different conclusions. For example,

see in Figure 9.4 and Figure 9.5 that cross data performance for the company tuku8 depends on

error measures. This disagreement may cause different companies to make different conclusions

depending on the particular error measures they are using.

Note that in the experiments of this chapter, the cross borders are defined by same-area (Web)

companies or same time interval projects. Different companies and different time intervals may

mean different geographical locations, possibly different development languages or development

methodologies. Such single features are deemed to define cross data borders that hinder knowledge

transfer. However, the selection tendencies of the test instances are in disagreement with defining

cross borders according to single features. Given the option, test instances select training instances

equally likely from within and cross data sources by using all the features of a data set via instance

transfer methods like TEAK.

9.7 Conclusion

In this chapter we questioned two fundamental problems of cross data usage: 1) Cross data

performance and 2) selection tendency. We challenged previous findings [2, 19, 22, 23, 64] via

transfer learning experiments on contemporary projects coming from Web development compa-

nies and projects from different time periods. Our findings are in agreement with the prior results.

Regarding cross data performance between domains, our analysis showed that cross data perfor-

mance is indistinguishable from within data performance for majority (5 or 6 out of 8, depending

on the error measure) of the data sets. However, a minority of companies (2 out of 8) are better

off using their own within data. Practitioners should also be warned that for some cases, different

error measures lead to different conclusions. Our recommendations to practitioners regarding the

cases of conflicting error measures are:

• to use a number of different error measures;

• and to make their decisions based on:

– either the agreement of the majority of the error measures

– or the particular error measure favoring their priorities.



Ekrem Kocaguneli Chapter 9. Use Relevancy Filtering 125

The selection tendency results showed that the definitions of cross and within data based on

single features like company name or time interval may be handled with instance transfer methods.

Our results show that test instances select both from within and cross data sources. The meaning of

this result is that the most similar project(s) to the one currently being estimated is not necessarily

within the same company or time interval, but it may be in a cross data set collected on the other

side of the world in another time period. This research shows that instance transfer methods like

TEAK can make it possible for companies to automatically prune away irrelevant projects and

transfer knowledge from relevant training data.

As a consequence of the transfer learning research presented in this chapter, we recommend

the following principle regarding the use cross company data for their local data issues:

Principle #9: Use Relevancy Filtering

In summary, the contributions of the research that led to the above principle are:

• Utilization of a novel method for time interval transfer.

• Evaluation of the proposed transfer learning method on recent proprietary as well as public

data sets; hence, providing evidence for practitioners as well as benchmark availability for

further research.

• To evaluate the previous cross-company research in SE from a transfer learning perspective.
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Chapter 10

Principle #10, Use Outlier Pruning

Although SEE is a maturing field of SE with hundreds of publications, among which a
significant portion (61% according to a recent survey by Jorgensen and Shepperd [3])
offers new estimation methods, the number of companies interested in SEE is lim-
ited. For example, commercial companies like Google1 and Microsoft2 and others
(e.g. from Turkey [16]) do not use an algorithmic estimation method. The lack of
adoption of methods suggested by SEE research in industrial environments is a seri-
ous issue. Without addressing the problems that hinder the knowledge transfer from
SEE research to industry, the future of SEE is bound to be a mostly theoretical field
rather than a practical one. In this chapter, we target this very problem. We will intro-
duce a method called pop1NN that compensates for the removal of the size attributes
by removing the outliers (i.e. non-popular instances without neighbors) before the
estimation.

There are various reasons from which the lack of adoption of SEE methods stems, such as the

difficulty of attaining accurate estimates, difficulty of collecting effort related data and the difficulty

of adopting complex methods. It is possible to increase the items in this list. However, at the heart

of the most widely accepted SEE methods lies the measurement of software size. For example,

parametric models such as COCOMO use LOC to measure software size and FP approaches use

the number of basic logical transactions in a software system. Accurate measurement of both LOC

and FP can be problematic in industrial settings [16, 142].

Aside from the difficulty of accurate measurement, the concept of measuring the “size” of

software is not well adopted. Quoting the former CEO of Microsoft, Bill Gates [142]:“Measuring

software productivity by lines of code is like measuring progress on an airplane by how much it
1Personal communication.
2Personal communication.
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weighs.” A similar notion is also adopted by Dijkstra [143]: “... This (referring to measuring

productivity through LOC) is a very costly measuring unit because it encourages the writing of

insipid code, but today I am less interested in how foolish a unit it is from even a pure business

point of view. ”

Our notion that we will present in this chapter is that it is possible to develop SEE methods that

avoid the use of software size. We propose an estimation method that works without size features

(through pruning of non-popular instances, i.e. outliers), yet can attain performance values as good

as methods that use size features. Hence, we recommend the “use outlier pruning” principle in

order to compensate for the lack of size features in SEE. We see the implications of this principle

used for the compensation of the lack of size attributes as threefold:

• Promoting development of SEE methods that do not require software size features.

• A proof-of-concept for data collection activities (in research and in industry) that size is not

a “must”.

• Providing industry practitioners an easy-to-adopt estimation method that does not require

size features.

10.1 Notes on the Datasets of This Chapter

In this chapter we will make use of the Cocomo81, Nasa93, Desharnais data sets (as well as

their subsets) and SDR. We start with the definition of two keywords that will be fundamental

to our discussion in this chapter: full data set and reduced data set. We will refer to a data set

used with all the features (including the size feature(s)) as a “full data set.” A data set whose

size feature(s) are removed will be called a “reduced data set.” The features of the full data sets

are given in Table 10.1. Note in Table 10.1 that the full data sets are grouped under 3 categories

(under the “Methodology” column) depending on their collection method: COCOMO [20], CO-

COMOII [144] and FP [30, 145]. These groupings mean that all the data sets in one group share

the features listed under the “Features” column. The difference between COCOMO data sets (co-

como81* and nasa93*) and COCOMOII data sets (sdr) is the additional five cost drivers: prec, flex,

resl, team, pmat. Hence instead of repeating the COCOMO features for COCOMOII, we listed
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Table 10.1: The full data sets, their features and collection methodology. The bold-face features
are identified as size (or size related) features.

Methodology Dataset Features

C
O

C
O

M
O

cocomo81 RELY, ACAP, SCED,

cocomo81o DATA, AEXP, KLOC,

cocomo81s CPLX, PCAP, EFFORT,

nasa93 TIME, VEXP,

nasa93c1 STOR, LEXP,

nasa93c2 VIRT, MODP,

nasa93c5 TURN, TOOL,
C

O
C

O
M

O
II

sdr addition to COCOMO features:

PREC,

FLEX,

RESL,

TEAM,

PMAT

FP

desharnais TeamExp, Effort, Adjustment,
desharnaisL1 ManagerExp, Transactions, PointsAjust,
desharnaisL2 YearEnd, Entities, Language,

desharnaisL3 PointsNonAdjust

only the additional cost driver features for COCOMOII under the column “Features”.

The bold-font features in Table 10.1 are identified as size (or size related) features. These

features are removed in reduced data sets. In other words, the full data sets minus the highlighted

features gives us the reduced data sets. For convenience, the features that remain after removing the

size features are given in Table 10.2. Note that both in Table 10.1 and in Table 10.2, the acronyms

of the features are used. These acronyms stand for various software product related features. For

example COCOMO groups features under 6 categories:

• Product Factors

– RELY: Required Software Reliability

– DATA: Database Size

– CPLX: Product Complexity

– RUSE: Required Reusability

– DOCU: Documentation match to life-cycle needs

• Platform Factors
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– TIME: Execution Time Constraint

– STOR: Main Storage Constraint

– PVOL: Platform Volatility

• Personnel Factors

– ACAP: Analyst Capability

– PCAP: Programmer Capability

– PCON: Personnel Continuity

– AEXP: Applications Experience

– PEXP: Platform Experience

– LTEX: Language and Tool Experience

• Project Factors

– TOOL: Use of Software Tools

– SITE: Multi-site Development

– SCED: Development Schedule

• Input

– LOC: Lines of Code

• Output

– EFFORT: Effort spent for project in terms of man month

In addition to the original COCOMO method, the improved COCOMOII version defines an addi-

tional new category called exponential cost drivers, under which the following features are defined:

• Exponential Cost Drivers:

– PREC: Precedentedness

– FLEX: Development Flexibility

– RESL: Arch/Risk Resolution
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– TEAM: Team Cohesion

– PMAT: Process Maturity

For detailed information and an in depth discussion regarding the above-listed COCOMO and CO-

COMOII features refer to [20, 144]. The FP approach adopts a different strategy than COCOMO.

The definitions of the FP data sets (desharnais*) features are as follows:

• TeamExp: Team experience in years

• ManagerExp: Project management experience in years

• YearEnd: The year in which the project ended

• Transactions: The count of basic logical transactions

• Entities: The number of entities in the systems data model

• PointsNonAdjust : Equal to Transactions + Entities

• Adjustment: Function point complexity adjustment factor

• PointsAdjust: The adjusted function points

• Language: Categorical variable for programming language

• Effort: The actual effort measured in person-hours

For more details on these features refer to the work of Desharnais [145] or Li et al. [146]. Note

that 4 projects out of 81 in desharnais data set have missing feature values. Instead of removing

these projects from the data set, we employed a missing value handling technique called simple

mean imputation [45].

10.2 Proposed Method: pop1NN

The method proposed in this chapter is a variant of the 1NN algorithm. The proposed variant

makes use of the popularity of the instances in a training set. We define the “popularity” of an

instance as the number of times it happens to be the nearest-neighbor of other instances. The pro-

posed method is called pop1NN (short for popularity-based-1NN). The basic steps of pop1NN can

be defined as follows:
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Table 10.2: The reduced data sets, their collection methodology and their non-size features. Re-
duced data sets are defined to be the full data sets minus size-related features (bold-face features
of Table 10.1).

Methodology Dataset Features

C
O

C
O

M
O

cocomo81 RELY, ACAP, SCED,

cocomo81o DATA, AEXP,

cocomo81s CPLX, PCAP, EFFORT,

nasa93 TIME, VEXP,

nasa93c1 STOR, LEXP,

nasa93c2 VIRT, MODP,

nasa93c5 TURN, TOOL,
C

O
C

O
M

O
II

sdr addition to COCOMO features:

PREC,

FLEX,

RESL,

TEAM,

PMAT

FP

desharnais TeamExp, Effort,

desharnaisL1 ManagerExp

desharnaisL2 YearEnd, Language

desharnaisL3

Step 1: Calculate distances between every instance tuple in the training set.

Step 2: Convert distances of Step 1 into ordering of neighbors.

Step 3: Mark closest neighbors and calculate popularity.

Step 4: Order training instances in decreasing popularity.

Step 5: Decide which instances to select.

Step 6: Return Estimates for the test instances.

The following paragraphs describe the details of these steps:

Step 1: Calculate distances between every instance tuple in the training set: This step uses the

Euclidean distance function (as in 1NN) to calculate the distances between every pair of instances

within the training set. The distance calculation is kept in a matrix called D, where ith row keeps

the distance of the ith instance to other instances. Note that this calculation requires only the inde-

pendent features. Furthermore, since pop1NN runs on reduced data sets, size features are not used

in this step .
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Step 2: Convert distances of Step 1 into ordering of neighbors: This step requires us to merely

replace the distance values with their corresponding ranking. We work one row at a time on matrix

D: Start from row #1, rank distance values in ascending order, then replace distance values with

their corresponding ranks, which gives us the matrix D�. The ith row of D� keeps the ranks of the

neighbors of the ith instance.

Step 3: Mark closest neighbors and calculate popularity: Since pop1NN uses only the closest

neighbors, we leave the cells of D� that contain 1 (i.e. that contains a closest neighbor) untouched

and replace the contents of all the other cells with zeros. The remaining matrix D�� marks only the

instances that appeared as the closest neighbor to another instance.

Step 4: Order training instances in decreasing popularity: This step starts summing up the

“columns” of D��. The sum of, say, ith column shows how many times the ith instance was marked

as the closest neighbor to another instance. The sum of the ith column equals the popularity of

the ith instance. Finally in this step, we rank the instances in decreasing popularity, i.e. the most

popular instance is ranked #1, the second is ranked #2 and so on.

Step 5: Decide which instances to select: This step tries to find how many of the most popular

instances will be selected. For that purpose we perform a 10-way cross validation on the train set.

For each cross-validation (i.e. 10 times), we do the following:

• Perform steps 1 to 4 for the popularity order;

• Build a set S, into which instances are added one at a time from the most popular to the least

popular;

• After each addition to S make predictions for the hold out set, i.e. find the closest neighbor

from S of each instance in the hold-out set and use the effort value of that closest instance

as the estimate;

• Calculate the error measure of the hold-out set for each size of S. As the size of S increases

(i.e. as we place more and more popular instances into S) the error measure is expected to

decrease;
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• Traverse the error measures of S with only one instance to S with t instances (where t is the

size of the training set minus the hold-out set). Mark the size of S (represented by s�) when

the error measure has not decreased more than ∆ for n−many consecutive times.

Note that since we use a 10-way cross-validation, at the end of the above steps, we will have 10 s�

values (one s� value from each cross-validation). We take the median of these values as the final s�

value. This means that pop1NN only selects the most popular s�-many instances from the training

set. For convenience, we refer to the new training set of selected s�-many instances as Train�.

Step 6: Return Estimates for the Test Instances: This step is fairly straightforward. The estimate

for a test instance is the effort value of its nearest neighbor in Train�.

Figure 10.1: A simple illustration of the pop1NN method. Note that the test and train sets are
generated through a 10-way cross-validation as well.

For the error measure in Step 5, we used “MRE”, which is only one of the many possible error

measures. Even though we guide the search using only MRE, the resulting estimations (as shown

in the Result Section of this chapter) score very well across a wide range of error measures. In the

following experiments, we used n = 3 and ∆ < 0.1.

10.3 Experiments

The experiments are performed in two stages: 1) 1NN and CART performances on reduced

data sets compared to their performance on full data sets; 2) pop1NN performance on reduced data

set compared to 1NN and CART performance on full data sets.
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In the first stage we question whether standard SEE methods can compensate mere removal

of the size features. For that purpose we run 1NN as well as CART on reduced and full data sets

separately through 10-way cross-validation. Then each method’s results on reduced data sets are

compared to its results on full data set. The outcome of this stage tells us whether there is a need

for pop1NN like methods or not. If the performance of CART and 1NN on reduced data sets are

statistically the same as their performances on the full data sets, then this would mean that standard

successful estimation methods are able to compensate the lack of size features. However, as we

will see in the Results Section, that is not the case. The removal of size features has a negative

effect on 1NN and CART.

The second stage tries to answer whether simple SEE methods like 1NN can be augmented

with a pre-processing step, so that the removal of size features can be tolerated. For that purpose

we run pop1NN on the reduced data sets and compare its performance to 1NN and CART (run on

full data sets) through 10 way cross-validation. The performance is measured in 7 error measures:

MAR, MMER, MMRE, MdMRE, Pred(25), MBRE and MIBRE.

10.4 Results

10.4.1 Results Without Instance Selection

Table 10.3 shows the CART results for the first stage of our experimentation, i.e. whether

or not standard estimation methods, in that case CART, can compensate for the lack of size. In

Table 10.3 we compare CART run on reduced data sets to CART run on full data sets and report

the loss values. The loss value in each cell is associated with an error measure and a data set.

Each loss value shows whether CART on reduced data lost against CART on full data. Note that

it is acceptable for CART-on-reduced-data, as long as it does not lose against CART-on-full-data,

since we want the former to perform just as well as (not necessarily better than) the latter. The

last column of Table 10.3 is the sum of the loss values over 7 error measures. The rows in which

CART on reduced data loses for most of the error measures (4 or more out of 7 error measures)

are highlighted. See in Table 10.3 that 7 out of 13 data sets are highlighted, i.e. more than half the

time CART cannot compensate the lack of size features.
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Although Table 10.3 is good to see the detailed loss information, the fundamental information

we are after is summarized in the last column: total loss number. Repeating Table 10.3 for all

the methods in both stages of the experimentation is cumbersome and would redundantly take too

much space. Hence, from now on we will use summary tables as given in Table 10.4, which shows

only the total number of losses. See that the “CART” column of Table 10.4 is just the last column

of Table 10.3 . Aside from the CART results, Table 10.4 also shows the loss results for 1NN run

on reduced data vs. 1NN run on full data. The highlighted cells of “1NN” column show the cases,

where 1NN lost most of the time, i.e. 4 or more out of 7 error measures. Similar to the results

of CART, 1NN-on-reduced-data loses against 1NN-on-full-data for 7 out of 13 data sets. In other

words, for more than half the data sets mere use of 1NN cannot compensate for the lack of size

features.

The summary of the first stage of experimentation is that standard SEE methods are unable

to compensate for the size features for most of the data sets. In the next section we show the

interesting result that it is possible to augment a very simple ABE method like 1NN so that it can

compensate for size features in a big majority of the data sets.

Table 10.3: The loss values of CART run on reduced data set vs. CART run on full data set,
measured per error measure. The last column shows the loss values in total of 7 error measures.
The data sets where CART running on reduced data sets lose more than half the time (i.e. 4 or
more out of 7 error measures) against CART running on full data sets are highlighted.

M
M

R
E

M
A

R

Pr
ed

(2
5)

M
dM

R
E

M
BR

E

M
IB

R
E

M
M

ER

To
ta

l

cocomo81 1 0 1 1 1 1 0 5

cocomo81e 0 0 0 0 0 0 0 0

cocomo81o 0 0 0 0 0 0 0 0

cocomo81s 0 0 0 0 0 0 0 0

desharnais 1 0 1 1 1 1 0 5

desharnaisL1 1 1 1 1 1 1 1 7

desharnaisL2 0 0 0 0 0 0 0 0

desharnaisL3 0 0 0 0 0 0 0 0

nasa93 1 1 1 1 1 1 1 7

nasa93c1 1 0 1 1 1 1 0 5

nasa93c2 1 1 1 1 1 1 1 7

nasa93c5 0 0 0 0 0 0 0 0

sdr 1 0 1 1 0 0 1 4
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Table 10.4: The loss values of estimation methods run on reduced data sets vs. run on full data
sets. The cases where reduced data set results lose more than half the time (i.e. 4 or more out of 7
error measures) are highlighted.

Methods
CART 1NN

D
at

a
Se

ts

cocomo81 5 5

cocomo81e 0 0

cocomo81o 0 0

cocomo81s 0 0

desharnais 5 7

desharnaisL1 7 7

desharnaisL2 0 2

desharnaisL3 0 0

nasa93 7 7

nasa93c1 5 6

nasa93c2 7 7

nasa93c5 0 6

sdr 4 0

10.4.2 Results With Instance Selection

The comparison of pop1NN (which runs on reduced data sets) to 1NN and CART (which run

on full data sets) is given in Table 10.5. Table 10.5 shows the total loss values of pop1NN over 7

error measures, so the highest number of times pop1NN can lose against 1NN or CART is 7. The

cases where pop1NN loses more than half the time (i.e. 4 or more out of 7 error measures) are

highlighted.

The comparison of pop1NN against 1NN shows, whether the proposed pop1NN method helps

standard ABE methods to compensate for the lack of size features. See that in the second column

of Table 10.5 there are only 2 highlighted cells. For 11 out of 13 data sets, the performance of

pop1NN is statistically the same to that of 1NN. The only 2 data sets, where pop1NN cannot

compensate for size are the cocomo81e and desharnais.

The fact that pop1NN compensates for size in cocomo81e’s superset (cocomo81) and in de-

sharnis’ subsets (desharnaisL1, desharnaisL2 and desharnaisL3) but not in these two data sets may

at first seem puzzling. Because, the expectation is that subsets share similar properties as their

supersets. However, a recent work by Posnett et al. have shown that this is not necessarily the

case [147]. The focus of Posnet et al.’s work is the “ecological inference”; i.e. the delta between

the conclusions drawn from subsets vs. the conclusions from the supersets. They document the
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interesting finding that conclusions from the subsets may be significantly different to the conclu-

sions drawn from the supersets. Our results support their claim that supersets and subsets may

have different characteristics.

The last column of Table 10.5 shows the number of times pop1NN lost against CART. Again

the cases where pop1NN loses for more than 4 error measures are highlighted. The purpose of

pop1NN’s comparison to CART is to evaluate a simple ABE method like pop1NN against a state-

of-the-art learner like CART. As can be seen in Table 10.5, there are 4 highlighted cells under

the last column, i.e. for 13-4=9 data sets, the performance of pop1NN is statistically same to

that of CART. This is an important result for two reasons: 1) a simple ABE method like pop1NN

can attain performance values as good as CART for most of the data sets; 2) the performance of

pop1NN comes from data sets without any size features.

10.5 Discussion

An important point of discussion is the meaning of our results for practitioners. Should the

size features and the models built on size features be abandoned? The answer is simply: “No.”

Parametric methods whose fundamental input is size, like COCOMO, can be calibrated to local

environments for high estimation performances. Also in the absence of size features, machine

Table 10.5: The loss values of pop1NN vs. 1NN and CART over 7 error measures. The data sets
where pop1NN (running on reduced data sets) lose more than half the time (i.e. 4 or more out of 7
error measures) against 1NN or CART (running on full data sets) are highlighted.

pop1NN vs. 1NN pop1NN vs. CART

cocomo81 0 3

cocomo81e 7 3

cocomo81o 0 7

cocomo81s 0 0

desharnais 7 5

desharnaisL1 0 0

desharnaisL2 0 7

desharnaisL3 0 0

nasa93 3 0

nasa93c1 0 7

nasa93c2 0 3

nasa93c5 0 0

sdr 0 0
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learning methods such as 1NN and CART perform poorly. Hence, it would be a misinterpretation

of this study to claim that size features are deprecated. On the other hand, if practitioners need

simple methods for the cases, where measuring size features accurately (or at all) is not possible,

then: 1) the use of parametric methods may be questionable and 2) the use of machine learning

methods (e.g. 1NN and CART) may yield low estimation performances. For such cases the use of

methods like pop1NN can actually compensate for the lack of size features and provide an alterna-

tive solution to practitioners.

10.6 Conclusion

Size features are fundamental to many estimation methods such as COCOMO, COCOMOII,

FP and so on. In this chapter we question whether the size features are indispensable or not. We

evaluate 1NN and CART, which are reported as the best methods out of 90 methods in a prior

study [148]. Our results show that the performance of 1NN and CART on reduced data sets are

worse than their performance on full data sets. Hence, mere use of these methods without size

features is not recommended.

Then we augmented 1NN with a popularity based pre-processor to come up with pop1NN.

We run pop1NN on reduced data sets and compare its performance to 1NN and CART, which

are both run on full data sets. The results of this comparison show that for most of the cases (11

out of 13 data sets), pop1NN running on reduced data sets attains the same performance as its

counterpart 1NN running on full data sets. Hence, pop1NN can compensate for the lack of size

features for a big majority of the cases. Also, for 9 out of 14 datasets, a Euclidean distance based

learner like pop1NN even attains performance values that are statistically significantly the same as

a state-of-the-art learner like CART.

Size features are essential for standard learners such as 1NN and CART. SEE practitioners with

enough resources to collect accurate size features should do so. On the other hand, when standard

learners (in this research it is 1NN) are augmented with pre-processing options, it is possible to

remove the necessity of size features. Hence, SEE practitioners without sufficient resources to

measure accurate size features should consider alternatives like pop1NN and the recommended
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principle as a result of this chapter is:

Principle #10: Use Outlier Pruning

The contributions of the research presented in this chapter can be summarized as follows:

• Promotion of SEE methods that can compensate the lack of the software size features.

• A method called pop1NN that shows that size features are not a “must”.
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Chapter 11

Principle #11, Combine Outlier and
Synonym Pruning

In the previous chapters of this thesis, we have seen that there is a wide variety of
estimation methods used in SEE. Particularly in Chapter 5, we have evaluated a large
number of methods of varying complexity. In SEE, the justification for the complexity
of the introduced method is a critical yet mostly overlooked issue. In this chapter
we will argue that the complexity of the learning method should be matched the to
essential content of the data.

Given a matrix of N instances and F features, the essential content is N � ∗F � where N � and F ’

are subsets of the instances and features, respectively. The models learned from N � and F � perform

as well as the models learned from N and F . In this chapter, we are interested in discovering N �

and F � using a novel method called QUICK, a tool that is remarkably simple. QUICK computes

the Euclidean distance between the rows (instances) of SEE data sets. That distance calculation is

also performed between matrix columns (features) using a transposed copy of the matrix. QUICK

then removes synonyms (features that are very close to other features) and outliers (rows that are

very distant to the other rows). QUICK then reuses the distance calculations a final time to find

estimates for test cases, using their nearest neighbor in the reduced space. Note that QUICK is an

improvement over the pop1NN algorithm, which was introduced in the previous chapter. Recall

that in the previous chapter pop1NN used popularity of the instances in order to remove the size

requirements in SEE data sets. QUICK builds on to pop1NN and in addition to the removal of the

outliers, it also performs synonym pruning. As we will see later on in this chapter, synonyms are

the features that are nearest neighbors to a high number of other features. The purpose of QUICK
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in this chapter is to discover the essential content of SEE data sets and to maintain low error rates.

We show in this chapter that QUICK’s estimates from the reduced space are as good as those

of a state-of-the-art method (that uses all the data). Further, it does so using only 10% (or less) of

the original data- see Table 11.1.

Our only explanation for the success of such a fundamentally simple method (using such tiny

regions of the original data) is that the essential content of effort data sets can be localized in just

a few rows and just a few columns. If so, then:

• Elaborate estimation methods will learn little more than simpler ones (since there is so little

to find).

• We can recommend simpler methods (e.g. QUICK).

11.1 Why the Need for Simpler Methods?

In this chapter we show that QUICK is able to reduce the SEE data sets to a fraction of the

instances and the features and we support the principle that states “Combine Outlier and Synonym

Pruning”. We argue that it is possible to reduce the complexity of the SEE methods. But why

should we bother? If the complex methods already exist, and they work, why explore simpler

ones? We have five replies to this challenge.

11.1.1 Elaborate on the Data, not on the Algorithms

We are concerned about excessive over-elaboration of the effort estimation problem. Since

the essential content of effort data sets is so small, it may be unproductive to explore further

elaborations of effort estimation methods. Rather, it may be more productive to increase the data’s

information density. Although it is not in the scope of our research presented in this chapter, we

want to note that this is an active area of research. For example, researchers have proposed:

• Combining data sets from different sources [2];

• Adding contextual knowledge to represent more business information, as explored by many

including Petersen & Wohlin [149];
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Table 11.1: Last column shows fraction of data N �∗F �

N∗F selected by QUICK.
Dataset Used by % Selected Cells
nasa93 [152–154] 4%

cocomo81 [20, 153, 154] 7%

cocomo81o [122, 155, 156] 7%

maxwell [154, 157, 158] 8%

kemerer [38, 154, 159] 9%

desharnais [105, 120, 157] 9%

miyazaki94 [37] 10%

desharnaisL1 [46] 10%

nasa93 center 5 [122, 160, 161] 11%

nasa93 center 2 [122, 160, 161] 11%

cocomo81e [32, 156, 160] 14%

desharnaisL2 [19] 14%

sdr [90, 154, 162] 16%

desharnaisL3 [19] 18%

nasa93 center 1 [122, 160, 161] 19%

cocomo81s [122, 156] 20%

finnish [38, 111] 26%

albrecht [38, 46, 157] 31%

• Dividing existing data into subsets more relevant to particular business units, as explored by

ourselves and Posnett et al. [147, 150];

• Understanding how the relevant parts of a data set changes as we move from older projects

to newer projects, as explored by Passos et al. [151].

One of our aims with the research presented here is to encourage more work on increasing

information density, while discouraging research on needlessly elaborate effort estimation models.

11.1.2 Simpler Explanation and Wider Adoption

Business users often need justification of how an estimate was reached. Explaining (e.g.)

the 100 methods used in our ensemble learner [148] is a non-trivial matter. On the other hand,

explaining QUICK is very simple:

• Group rows and columns by their similarity;

• Discard redundant columns that are too similar;

• Discard outlier rows that are too distant;
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Table 11.2: Explanation of the symbols that will be used in the rest of this chapter.
Symbol Meaning

D Denotes a specific data set

D� Denotes the reduced version of D by QUICK

DT Transposed version of D

N Number of instances in D

N � Number of selected instances by QUICK from D

F Number of independent features in D

F � Number of independent features by QUICK from D

P Represents a project in D

Feat Represents a feature in D

i, j Subscripts used for enumeration

Pi, Pj ith and jth projects of D, respectively

DM An N × N distance matrix that keeps distances be-

tween all projects of D

DM(i, j) The distance value between Pi and Pj

k Number of analogies used for estimation

ENN Everyone’s nearest-neighbor matrix, which shows the

order of P ’s neighbors w.r.t. a distance measure

E(k) E(k)[i, j] is 1 for i �= j and ENN ≤ k, 0 otherwise

E(1) Specific case of E(k), where E(1)[i, j] is 1 if j is i’s

closest neighbor, 0 otherwise

E(1)[i, j] The cell of E(1) that corresponds to ith row and jth

column

Pop(j) Popularity of j: Pop(j) =
�n

i=1 E(1)[i, j]

n Number of projects consecutively added to active

pool, i.e. a subset of D, i.e. n ≤ N

∆ The difference between the best and the worst error of

the last n instances.

xi, x̂i Actual and predicted effort values of Pi, respectively.

Perfi, P erfi ith and jth performance measures

Mi,Mi ith and jth estimation methods

• In the remaining data, generate an estimate from the nearest example.

Such simple explanations increase the acceptance of an estimation method, amongst senior busi-

ness users as well as more junior engineers. For example, when engineers implement methods

like COSEEKMO [26] or ensemble methods [148], they complain to us about the complexity of

those methods (those tools require the implementation and execution of hundreds of variants of

different estimation models). While we have shown that COSEEKMO and the ensemble method

are effective, it is still a legitimate engineering question to ask “how much can we achieve with far

fewer methods?”.
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11.1.3 More Complexity = More Operator Error

The more complex the methods become, the more prone they become to operator error. This

is a growing problem. Shepperd et al. [163] report that the dominant factor that predicts for model

performance is who operates the data miner (and not which data set is studied; and not which data

miner is used). This is a very troubling result that suggests our sophisticated data mining methods

are now so complex, that they have become very troublesome and error-prone. One of the main

points of this chapter is that the complexity inherent in an SEE method is only necessary, if the

value-added is worth it. The experiments presented in the rest of this chapter show that for SEE, the

value-added above a very simple set of nearest neighbor calculations (i.e. those used in QUICK)

is minimal at best.

11.1.4 A New Ability to Certify Simpler Solutions

For the first time in the history of this field, it is possible to conduct simplification studies.

In the last year, there have been published two studies in IEEE TSE commenting on what effort

estimation methods are best [148, 164]. These studies assert that, in terms of assessing new effort

estimation methods, existing methods such as CART’s regression tree generation may be more

than adequate. For example, Dejaeger et al. found little evidence that learners more elaborate

than CART offered any significant value-added [164]. Also, in our study with 90 effort estimators

that use all combinations of 10 pre-processors and 9 learners to build ensemble methods [148], we

found that CART was all-round best performer. Hence, in the following, we will compare QUICK

(running on the reduced data) with CART (running on all the data).

11.2 About QUICK

11.2.1 Pruning Synonyms

Synonyms are features that are closely associated to each other. QUICK detects and removes

these redundant features as follows.

1) Take an unlabeled data set (i.e. no effort value) and transpose it, s.t. the independent features

become the instances (rows) in a space whose dimensions (columns) are defined by the original
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instances.

2) Let ENN be a matrix ranking the neighbors of a feature: closest feature is #1, the next is #2

and so on.

3) E(k) marks k-closest features (e.g. E(1) marks #1’s).

4) Calculate the popularity of a feature by summing up how many times it was marked as #1.

5) Leave only the unmarked features, i.e. the ones with a popularity of zero. These features are not

closest neighbor to others.

11.2.2 Pruning Outliers

Outlier pruning uses the same machinery as synonym pruning- with certain important differ-

ences:

• With synonym pruning, we transpose the data to find the distances between “rows” (which,

in the transposed data, are really features). Then we count the popularity of each feature and

delete the popular features (these are the features that needlessly repeated the information

found in other features).

• With outlier pruning, we do not transpose the data before finding the distances between

rows. Then we count the popularity of each row and delete the unpopular rows (these are

the instances that are most distant to the others).

Note that the data set used to prune outliers contains only the selected features of the previous

phase. Also note that the terms feature and variable will be used interchangeably from now on.

Following is the brief description of the outlier pruning phase:

1) Let ENN be a matrix ranking the neighbors of a project, i.e. closest project is #1, the next is

#2 etc.

2) E(k) marks only the k-closest projects, e.g. E(1) marks only #1’s.

3) Calculate the popularity of a project by summing up how many times it was marked as #1.

4) Collect the costing data, one project at a time in decreasing popularity, then place it in the

“active pool”.

5) Before a project’s, say project A, costing data is placed into the active pool, generate an estimate
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for A. The estimate is the costing data of A’s closest neighbor in the active pool. Note the difference

between the estimate and the actual cost of A.

6) Stop collecting costing data if the active pool’s error rate does not decrease in 3 consecutive

project additions.

7) Once the stopping point is found, a future project -say project B- can be estimated. QUICK’s

estimate is the costing data of B’s closest neighbor in the active pool.

11.2.3 More Details

The above paragraphs are informal descriptions, which are repeated, in full detail in §11.5.

Note that we make no claim for optimality- we do not presume that QUICK finds the absolute

smallest set of features and rows. As long as we can show that the selected subset of the data is

very small and that simple estimation methods executing in this reduced space perform as well as

state-of-the-art methods executing over all the data, then the goal of the research presented in this

chapter is attained.

11.3 Active Learning

One way to view QUICK’s outlier pruning method is an active learning method. In active

learning, some heuristic is used to sort instances from most interesting to least interesting (in our

case, that heuristic is each row’s popularity value). The data is then explored according to that sort

order. Learning can terminate early if the results from all the N instances are not better than from

a subset of M instances, where M < N .

There is a wealth of active learning studies in machine learning literature. For example Das-

gupta et al. [165] seek for generalizability guarantees in active learning. They use a greedy active

learning heuristic and show that it is able to deliver performance values as good as any other heuris-

tic, in terms of reducing the number of required labels [165]. In [166], Wallace et al. used active

learning for a deployed practical application example. They propose a citation screening model

based on active learning augmented with a priori expert knowledge.

In software engineering, the practical application exemplars of active learning can be found

in software testing [167, 168]. In Bowring et al.’s study [167], active learning is used to augment



Ekrem Kocaguneli Chapter 11. Combine Outlier and Synonym Pruning 147

learners for automatic classification of program behavior. Xie et al. [168] use human inspection

as an active learning strategy for effective test generation and specification inference. In their

experiments, the number of tests selected for human inspection were feasible; the direct implication

is that labeling required significantly less effort than screening all single test cases. Hassan et al.

list active learning as part of the future of software engineering data mining [169]. However, to the

best of our knowledge this promising direction for data analysis has not been explored in SEE.

11.4 Feature Subset Selection

Another way to view QUICK’s synonym pruning is as an unsupervised feature subset selec-

tion (FSS) algorithm. It is well known that selecting a subset of the SEE data set features can

improve the estimation performance. For example Chen et al. use WRAPPER FSS algorithm on

COCOMO data sets and report dramatic increases in the estimation performance [170]. Azzeh

et al. propose a fuzzy feature subset selection method in analogy-based SEE [171]. They report

improvements over using all features as well as over standard FSS methods such as forward and

backward feature subset selection. Lum et al. capture and report the best practices in SEE [122].

One of the fundamental suggestions among the best practices is FSS. They show that both manual

and supervised FSS methods improve estimation performance [122]. Other FSS examples are the

stepwise regression (SWR) [111] and principal component analysis (PCA) [148, 172].

It is possible to find many other studies supporting the adoption of FSS in SEE. For exam-

ple Kadoda et al. propose FSS as a performance improvement technique for analogy-based es-

timation [173]. In a similar manner Kirsopp and Shepperd show that FSS improves estimation

performance in case-based reasoning [120]. The common property of the aforementioned FSS

algorithms except PCA is that they are supervised. Supervised algorithms require the instance

labels (i.e. dependent variables). QUICK on the other hand is an unsupervised FSS algorithm.

Unlike supervised algorithms, QUICK can execute without labels, which removes the necessity of

label collection prior to FSS. In comparison to PCA QUICK’s method of finding feature subsets is

easier to implement and understand, in particular for those without machine learning background.

QUICK only requires the knowledge of normalization of an array of instances and the calcula-

tion of the Euclidean distance. PCA on the other hand requires the user to know the concepts
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of correlation between the features as well as the orthogonal transformation [45]. Furthermore,

unlike QUICK, PCA’s output is not a subset of the individual features that user sees on the data

sets, but rather a new set of -less correlated- features (the principal components), which are linear

combinations of the original features.

11.5 The Application of QUICK

QUICK is an active learner that works in two phases:

1. Synonym pruning (a.k.a. feature selection);

2. Outlier removal (a.k.a. instance selection) and estimation.

Each phase requires a number of execution steps, some of which are shared. The following para-

graphs are the detailed descriptions of the steps in each phase.

11.5.1 Phase1: Synonym Pruning

1. Transpose data set matrix;

2. Generate distance-matrices;

3. Generate E(k) matrices using ENN ;

4. Calculate the popularity index based on E(1) and select non-popular features.

1. Transpose data set matrix: This step may or may not be necessary depending on how

the initial data set is stored. However, rows of SEE data sets usually represent the past project

instances, whereas the columns represent the features defining these projects. When such a matrix

is transposed the project instances are represented by columns and project features are represented

by the rows. Note that columns are normalized to 0-1 interval before transposing to remove the

superfluous effect of large numbers in the next step.

2. Generate distance-matrices: For the transposed dataset DT of size F , the associated

distance-matrix (DM ) is an F × F matrix keeping the distances between every feature-pair ac-
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cording to Euclidean distance function. For example, a cell located at ith row and jth column

(DM(i, j)) keeps the distance between ith and jth features (diagonal cells (DM(i, i)) are ignored).

3. Generate ENN and E(1) matrices: ENN [i, j] shows the neighbor rank of “j” w.r.t. “i”, e.g.

if “j” is “i’s” 3rd nearest neighbor, then ENN [i, j]=3. The trivial case where i=j is ignored, i.e. an

instance’s nearest neighbor does not include itself. The E(k) matrix is defined as follows: if i �= j

and ENN [i, j] ≤ k, then E(k)[i, j] = 1; otherwise E(k)[i, j] = 0. In synonym pruning, we want

to select the unique features without any nearest-neighbors. For that purpose we start with k=1;

hence E(1) identifies the features that have at least another nearest-neighbor and the ones without

any nearest-neighbor. The features that appear as one of the k-closest neighbors of another feature

are said to be popular. The “popularity index” (or simply “popularity”) of feature “j’, Pop(Featj),’

is defined to be Pop(Featj) =
�n

i=1 E(1)[i, j], i.e. how often “jth” feature is some other feature’s

nearest-neighbor.

4. Calculate the popularity index based on E(1) and select non-popular features: Non-popular

features are the ones that have a popularity of zero, i.e. Pop(Feati) = 0.

11.5.2 Phase2: Outlier Removal and Estimation

1. Generate distance-matrices;

2. Generate E(k) matrices using ENN ;

3. Calculate a “popularity” index;

4. After sorting by popularity, find the stopping point.

1. Generate distance-matrices: For a dataset D of size N , the associated distance-matrix (DM ) is

an N ×N matrix whose cell located at row i and column j (DM(i, j)) keeps the distance between

ith and jth instances of D. The cells on the diagonal (DM(i, i)) are ignored. Note that D in this

phase comes from the prior phase of synonym pruning, hence it only has the selected features.

2. Generate ENN and E(1) matrices: ENN [i, j] shows the neighbor rank of “j” w.r.t. “i”.

Similar to the step of synonym pruning, if “j” is “i’s” 3rd nearest neighbor, then ENN [i, j]=3.

Again the trivial case of i=j is ignored (nearest neighbor does not include itself). The E(k) matrix

has exactly the same definition as the one in synonym pruning phase: if i �= j and ENN [i, j] ≤ k,
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Table 11.3: The percentage of the popular instances (to data set size) useful for prediction in a
closest-neighbor setting. Only the instances that are closest neighbors of another instance are said
to be popular. The median percentage value is 63%, i.e. 1/3 of the instances are not the closest
neighbors and will never be used by, say, a nearest neighbor system.

Dataset % popular instances

kemerer 80

telecom1 78

nasa93 center 1 75

cocomo81s 73

finnish 71

cocomo81e 68

cocomo81 65

nasa93 center 2 65

nasa93 center 5 64

nasa93 63

cocomo81o 63

sdr 63

desharnaisL1 61

desharnaisL2 60

desharnaisL3 60

miyazaki94 58

desharnais 57

albrecht 54

maxwell 13

then E(k)[i, j] = 1; otherwise E(k)[i, j] = 0. In this study the nearest-neighbor based ABE is

considered, i.e. we use k=1; hence E(1) describes just the single nearest-neighbor. All instances

that appear as one of the k-closest neighbors of another instance are defined to be popular. The

“popularity index” (or simply “popularity”) of instance “j’, Pop(j),’ is defined to be Pop(j) =
�n

i=1 E(1)[i, j], i.e. how often “j” is someone else’s nearest-neighbor.

3. Calculate the popularity index based on E(1) and determine the sort order for labeling:

As shown in Table 11.3, the popular instances j with Pop(j) ≥ 1 (equivalently, E(1)[i, j] is 1

for some i) have a median percentage of 63% among all datasets; i.e. more than 1/3 of the data

is unpopular with Pop(j) = 0. Following this observation, we speculated that if we label data in

order of its popularity, then we would be labeling the most important projects first.
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4. Find Stopping Point and Halt: The notion behind instance selection is to reach conclusions

using fewer instances. To test that, QUICK labels some instances (adding them to the active pool)

then stops, we have defined the following stopping rules:

1. All instances with Pop(j) ≥ 1 are exhausted.

2. Or if there is no estimation accuracy improvement in the active pool for n consecutive times.

3. Or if the ∆ between the best and the worst error of the last n instances in the active pool is

very small.

For the error measure in point #3, we used “MRE”; i.e. the magnitude of relative error (abs(actual−

predicted)/actual). MRE is only one of many possible error measures. As shown below, even

though we guide the search using only MRE, the resulting estimations score very well across a

wide range of error measures.

Note that retaining policy of instances is different to that of features. Instances with high pop-

ularity are retained, whereas for the features high popularity is a reason to be discarded. Distant

instances without any neighbors are likely to be outliers and we expect an essential set of instances

with high popularity to capture the essential content of a data set. Distant features with low pop-

ularity are expected to reflect a different view of the data, whereas features with high popularity

may be repeating information that could have been conveyed by their neighboring features.

In the following experiments, we used n = 3 and ∆ < 0.1. The selection of (n,∆) values is

based on our engineering judgment. The sensitivity analysis of trying different values of (n,∆)

can be a promising future work.

11.5.3 Examples

This section offers a small example of QUICK. Assume that the training set of the example

consists of 3 instances/projects: P1, P2 and P3. Also assume that these projects have 1 dependent

and 3 independent features. Our dataset would look like Figure 11.1.
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Project Feat1 Feat2 Feat3 Effort
P1 1 2 20 3

P2 2 3 10 4

P3 3 6 40 7

Figure 11.1: Three projects defined by 3 independent features/variables and a dependent variable
(staff-months).

11.5.4 Synonym Pruning

Step 1: Transpose data set matrix: After normalization to 0-1 interval, then transposing our

data set, the resulting matrix would look like Figure 11.2.

P1 P2 P3

Feat1 0.0 0.5 1

Feat2 0.0 0.5 1

Feat3 0.3 0.0 1

Figure 11.2: Resulting matrix after normalizing and transposing D.

Step 2: Generate distance-matrices: The distance matrix DM keeps the Euclidean distance

between features. The matrix of Figure 11.2 is used to calculate the DM of Figure 11.3.

Feat1 Feat2 Feat3

Feat1 na 0.0 0.6

Feat2 0.0 na 0.6

Feat3 0.6 0.6 na

Figure 11.3: DM for features.

Step 3: Generate ENN and E(1) matrices: According to the distance matrix of Figure 11.3 the

resulting ENN [i, j] of Figure 11.4 shows the neighbor ranks of features. Using ENN we calculate

the E(1) matrix that identifies the features that have at least another nearest-neighbor. E(1) matrix

is given in Figure 11.5.

Feat1 Feat2 Feat3

Feat1 na 1 2

Feat2 1 na 2

Feat3 1 1 na

Figure 11.4: The ENN matrix for features, resulting from the distance matrix of Figure 11.3.
Diagonal cells are ignored.
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Step 4: Calculate the popularity index based on E(1) and select non-popular features: Popularity

of a feature is the total of E(1)’s columns (see the summation in Figure 11.5). Non-popular

features are the ones with zero popularity. In this toy example, we only select Feat3, since it is the

only column with zero popularity.

Feat1 Feat2 Feat3

Feat1 0 1 0

Feat2 1 0 0

+ Feat3 1 1 0

Popularity : 2 1 0

Figure 11.5: Popularity of the features. Popularity is the sum of the E(1) matrix columns.

11.5.5 Outlier Removal and Estimation

In this phase QUICK continues execution with only the selected features. After the first phase,

our data set now looks like Figure 11.6.

Project Feat3 Effort
P1 20 3

P2 10 4

P3 40 7

Figure 11.6: Three projects defined by Feat3 (say KLOC) and effort (say, in staff-months).

Since our data now has only 1 independent variable, we can visualize it on a linear scale as in

Figure 11.7.

Figure 11.7: Visualization of projects on a linear KLOC scale.

Step 1: The first step of QUICK in this phase is to build the distance matrix. Since projects are

described by a single attribute Feat3 (say KLOC), the Euclidean distance between two projects

will be the difference between the normalized KLOC values. The resulting distance-matrix is

given in Figure 11.8.
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P1 P2 P3

P1 0 0.3 0.7

P2 0.3 0 1

P3 0.7 1 0

Figure 11.8: The distance matrix of the projects P1, P2 and P3.

Step 2: Creating the ENN matrix based on the distance matrix is the second step. As we

are creating the ENN matrix we traverse the distance matrix row-by-row and label the instances

depending on their distance order: closest neighbor is labeled 1, the second closest neighbor is

labeled 2 and so on. Note that diagonal entries with the distance values of 0 are ignored, as they

represent the distance of the instance to itself, not to a neighbor. After this traversal, the resulting

ENN is given in Figure 11.9.

P1 P2 P3

P1 na 1 2

P2 1 na 2

P3 1 2 na

Figure 11.9: The ENN matrix resulting from the distance matrix of Figure 11.8. Diagonal cells are
ignored.

Step 3: Calculating the popularity index based on ENN and determining the labeling order is

the final step of the algorithm. Remember from the previous section that E(1) is generated from

ENN : E(1)[i, j] = 1 if ENN [i, j] = 1; otherwise, E(1)[i, j] = 0. The popularity index associated

with each instance is then calculated by summing the values in every column. (i.e. the sum of the

1st column is the popularity index of the 1st instance, the sum of the 2nd column is the popularity

index of the 2nd instance and so forth.) The E(1) matrix and the popularity indicies of our example

is given in Figure 11.10. Note that E(k) matrices are not necessarily symmetric, see that E(1) of

Figure 11.10 is not symmetric.

In our dataset example, Figure 11.10 produces the labeling order of the instances: {P1, P2,

P3}. In other words, in the first round we will ask our expert to label P1 and place that label in

the active pool. In that round, since the active pool contains only 1 labeled-instance it will be the

closest labeled neighbor of every test instance and the estimates for all the test instances will be

the same (the label of P1).

In the second round, P2 will be labeled by the expert and placed into a pool of “active” (i.e.
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P1 P2 P3

P1 0 1 0

P2 1 0 0

+ P3 1 0 0

Popularity : 2 1 0

Figure 11.10: Popularity is the sum of the E(1)’s columns.

labeled) examples. This time the test instances will have 2 alternatives to choose their closest-

neighbor from, hence the estimates will be either the label of P1 or the label of P2. Finally the

expert will label P3 and place it into the active pool. The change of the active pool is shown in

Figure 11.11. Note that we only move from Roundi to Roundi+1 if the stopping rules (described

above) do not fire.

Figure 11.11: The change of active pool for the toy example. Note that in an actual setting transi-
tion between Roundi to Roundi+1 is governed by the stopping rules.

11.5.6 Experimental Design

Our experimental rig has three parts:

1. Generate baseline results: Apply CART and passiveNN (passiveNN is the standard ABE0

algorithm) on the entire training set.

2. Generate the active learning results: Run QUICK on the active pool.

3. Compare the baseline results against results of QUICK.
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1. Generate baseline results by applying CART and passiveNN on the entire training set. The

algorithms are run on the entire training set and their estimations are stored. We use 10-way cross-

validation:

• Randomize the order of instances in the dataset

• Divide dataset into 10 bins

• Choose 1 bin at a time as the test set and use the remaining bins as the training set

• Repeat the previous step using each one of the 10 bins in turn as the test set

2. Generate the active learning results by running QUICK. At each iteration firstly the features

are selected and the active pool is populated with training instances in the order of their popularity.

Training instances outside the active pool are considered unlabeled and QUICK is only allowed to

use instances in the pool. Train and test sets are generated by 10-way-cross-validation.

Before a training instance is placed in the active pool, an expert labels that instance, i.e. the

costing data is collected. When the active pool only contains 1 instance, the estimates will all be

the same. As the active pool is populated, QUICK has more labeled training instances to estimate

from.

3. Compare baseline to active learning: Once the execution of the algorithms is complete,

the performance of QUICK, passiveNN and CART are compared under different performance

measures. The QUICK estimates used for comparison are the ones generated by the active pool

at the stopping point. An important point to note here is that QUICK has no relation with the

derivation of the baseline results for passiveNN and CART. It is true that QUICK makes use of k-

NN methods in its execution; however the derivation of baseline passiveNN and CART are separate

procedures from the derivation of QUICK’s. In the comparison phase, the results of these separate

procedures are compared. Another point to note is that QUICK only uses the selected features

(from the first execution phase) to decide which instances are to be labeled and placed into the

active pool.



Ekrem Kocaguneli Chapter 11. Combine Outlier and Synonym Pruning 157

11.6 Results

11.6.1 Estimation Performance

Figure 11.12 is a sample plot for a representative data set (shown is the desharnais data set). It

is the result of QUICK’s synonym pruning (4 features selected for desharnais) followed by labeling

N � instances in decreasing popularity. Following is the reading of Figure 11.12:

• Y-axis is the logged MdMRE error measures: the smaller the value the better the perfor-

mance.

• The line with star-dots shows the error seen when ith instance was estimated using the labels

1..(i− 1).

• The horizontal lines show the errors seen when estimates were generated using all the data

(either from CART or passiveNN).

• The vertical line shows the point where QUICK advised that labeling can stop (i.e. N �).

• The square-dotted line shows randNN, which is the result of picking any random instance

from the training set and using its effort value as the estimate.

Figure 11.12: Sample plot of a representative (in that case desharnais) dataset showing the stopping
point (the line parallel to the y-axis at x = 19) and MdMRE values (logged with base 10 for easier
visualization). Note that QUICK uses only the selected 4 features of desharnis data set, whereas
other methods use all of the 10 features.
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Three observations of importance from Figure 11.12 are the (a) reduction in the number of

instances required, (b) the reduction in the number of features and (b) the estimation error. With a

fraction of the instances and the features of the original data set, QUICK is able to get as low error

rates as CART and passiveNN, which both use entire data set. Furthermore, we have seen that

the observed effect of QUICK is not random, as the randNN has a much higher prediction error.

Possible other performance scenarios are: QUICK is statistically significantly (1) the same as

CART and passiveNN, (2) better than passiveNN but worse than CART, (3) worse than passiveNN

but better than CART and (4) worse than passiveNN and CART. To observe the possible scenarios

we cannot make use of Figure 11.12 any more due to two reasons: 1) Repeating Figure 11.12

for 7 error measures × 17 data sets would be consuming too much space without conveying any

new information; 2) more importantly, Figure 11.12 does not tell whether or not differences are

significant; e.g. see Table 11.5 and Table 11.6 that performance difference of QUICK to passiveNN

and CART are not significant for desharnais data set. Therefore, we provide summary analysis in

the following subsections.

Table 11.4: The number of selected features (F �) and selected instances (N �) of a data set D with
N instances and F independent features. QUICK uses N �

N percent of the instances and F �

F percent
of the features for estimation. Thinking that each N×F intersection is a cell of D, the last column
shows what percent of the original cells are used by QUICK. This table is sorted by the last column.

Dataset N N � N�

N F F � F �

F
N�∗F �

N∗F

nasa93 93 21 23 % 16 3 19 % 4 %

cocomo81 63 11 17 % 16 6 38 % 7 %

cocomo81o 24 13 54 % 16 2 13 % 7 %

maxwell 62 10 16 % 26 13 50 % 8 %

kemerer 15 4 27 % 6 2 33 % 9 %

desharnais 81 19 23 % 10 4 40 % 9 %

miyazaki94 48 17 35 % 7 2 29 % 10 %

desharnaisL1 46 12 26 % 10 4 40 % 10 %

nasa93 center 5 39 11 28 % 16 6 38 % 11 %

nasa93 center 2 37 16 43 % 16 4 25 % 11 %

cocomo81e 28 9 32 % 16 7 44 % 14 %

desharnaisL2 25 6 24 % 10 6 60 % 14 %

sdr 24 10 42 % 21 8 38 % 16 %

desharnaisL3 10 6 60 % 10 3 30 % 18 %

nasa93 center 1 12 4 33 % 16 9 56 % 19 %

cocomo81s 11 7 64 % 16 5 31 % 20 %

finnish 38 17 45 % 7 4 57 % 26 %

albrecht 24 9 38 % 6 5 83 % 31 %
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11.6.2 Reduction in Sample and Feature Size

Table 11.4 shows reduction results from all 18 data sets used in this study. The N column shows

the size of the data and the N � column shows how much of that data was labeled by QUICK. The
N �

N column expresses the percentage ratio of these two numbers. In a similar fashion, F shows

the number of independent features for each data set, whereas F � shows the number of selected

features by QUICK. The F �

F ratio expresses the percentage of selected features to the total number

of the features. The important observation of Table 11.4 is that, given N projects and F features,

it is neither necessary to collect detailed costing details on 100% of N nor is it necessary to use

all the features. For nearly half the data sets studied here, labeling around one-third of N would

suffice (median of N �

N for 18 data sets is 32.5%). There is a similar scenario for the amount of

features required. QUICK selects around one-third of F for half the data sets. The median value

of F �

F for 18 data sets is 38%.

The combined effect of synonym and outlier pruning becomes more clear when we look at the

last column of Table 11.4. Assuming that a data set D of N instances and F independent features

is defined as an N -by-F matrix, the reduced data set D� is a matrix of size N �-by-F �. The last

column shows the total reduction provided by QUICK in the form of a ratio: N �∗F �

N∗F . The rows of

Table 11.4 are sorted according to this ratio. Note that the maximum size requirement (albrecht

data set) is only 32% of the original data set and with QUICK we can go as low as only 4% of the

actual data set size (nasa93). This is an important observation regarding the intrinsic complexity

of SEE data sets. From the above result we are able to conclude that the reduced data sets (D�)

proposed for discussion adequately represent all the project cases available in the dataset, given

the resultant differences are statistically insignificant.

11.6.3 Comparison QUICK vs. CART

Figure 11.13 shows the PRED(25) difference between CART (using all the data) and QUICK

(using just a subset of the data). The difference is calculated as PRED(25) of CART minus

PRED(25) of QUICK. Hence, a negative value indicates that QUICK offers better PRED(25) esti-

mates than CART. The left hand side (starting from the value of -35) shows QUICK is better than

CART, whereas in other cases CART outperformed QUICK (see the right hand side until the value
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of +35).

From Figure 11.13 we see that 50th percentile corresponds around PRED(25) value of 2, which

means that at the median point the performance of CART and QUICK are very close. Also note

that 75th percentile corresponds to less than 15, meaning that for the cases when CART is better

than QUICK the difference is not dramatic. Our results show that the value-added in using all the

projects and features is limited. A QUICK analysis of just a small percentage of the data can yield

estimates as good as the more complex learners like CART.

11.6.4 Detailed Statistical Analysis

Table 11.5 and Table 11.6 compare QUICK to passiveNN and CART using seven evaluation

criteria. Smaller values are better in these tables. When calculating “loss” for six of the measures,

“loss” means higher error values. On the other hand, for PRED(25), “loss” means lower values.

The last column of each table sums the losses associated with the method in the related row.

By sorting the values in the last column of Table 11.5, we can show that the number of losses

is very similar to the nearest neighbor results:

QUICK : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 6

passiveNN : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 6, 6, 7

The gray rows of Table 11.5 show the datasets where QUICK loses over most of the error measures

(4 times out of 7 error measures, or more). The key observation here is that, when using nearest

neighbor methods, a QUICK analysis loses infrequently (only 1 gray row) compared to a full

analysis of all projects.

-35
-15

-3
 15
 35

0-th 25-th 50-th 75-th 100-th
all values, divided into percentiles

PRED(25): CART minus QUICK

Figure 11.13: CART minus QUICK values for PRED(25) in 18 data sets. Negative values mean
that QUICK outperformed CART. The median is only 2% with a small interquartile range (75th −
25th percentile) of 15%.
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As noted in Figure 11.13, QUICK has a close performance to CART. This can also be seen

in the number of losses summed in the last column of Table 11.6. The 4 gray rows of Table 11.6

show the data sets where QUICK loses most of the time (4 or more out of 7) to CART. In just

4/18 = 22% of the data sets is a full CART analysis better than a QUICK partial analysis of a

small subset of the data. The sorted last column of Table 11.6:

QUICK : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 6, 7, 7, 7

CART : 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

11.7 Discussion

An important point of discussion is how an industry practitioner can use the proposed approach.

An example application process would be as follows:

1. Identify dependent and independent variables.

2. Decide the importance and easiness-to-collect of the independent variables.

3. Start collecting important and easy-to-collect independent variables.

4. Run QUICK to decide which of these features to keep.

5. Run QUICK to find popular projects, i.e. which would be used by ABE0-1NN.

6. Collect dependent variables of only the projects marked in the previous step.

One last remark regarding QUICK is its contradictory results with pre-experimental expecta-

tions. The number of instances contained within a data set is fundamental to the information con-

tent of this data set. Hence, the expectation is that unless the instances are identified as statistical

outliers, their removal will destabilize a prediction model and decrease the estimation performance.

On the other hand, QUICK is demonstrated to work as good as passiveNN and CART. This can be

explained by the underlying simplicity of the data. Except for a core set of instances, the rest can

safely be removed.
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Table 11.5: QUICK (on the reduced data set) vs. passiveNN (on the whole data set) w.r.t. number
of losses, i.e. lower values are better. Right-hand-side column sums the number of losses. Rows
highlighted in gray show data sets where QUICK performs worse than passiveNN in the majority
case (4 times out of 7, or more). Note that only 1 row is highlighted.
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cocomo81 passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

cocomo81e passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

cocomo81o passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

cocomo81s passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

desharnais passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

desharnaisL1 passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

desharnaisL2 passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

desharnaisL3 passiveNN 0 0 0 0 0 0 0 0
QUICK 1 0 1 1 1 1 1 6

nasa93 passiveNN 0 0 0 0 1 1 0 2
QUICK 0 0 0 0 0 0 0 0

nasa93 center 1 passiveNN 1 0 1 1 1 1 1 6
QUICK 0 0 0 0 0 0 0 0

nasa93 center 2 passiveNN 1 1 1 1 1 1 1 7
QUICK 0 0 0 0 0 0 0 0

nasa93 center 5 passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

sdr passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

albrecht passiveNN 1 1 1 1 1 1 0 6
QUICK 0 0 0 0 0 0 0 0

finnish passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

kemerer passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

maxwell passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 1 1 1 3

miyazaki94 passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

11.8 Conclusion

The goal of this research was to investigate the essential content of SEE data sets and make

recommendations regarding which estimation methods (simple or complex) should be favored. We

defined the essential content as the number of F � ⊆ F features and N � ⊆ N instances required to

hold the information of a data set.
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Table 11.6: QUICK (on the reduced data set) vs. CART (on the whole data set) w.r.t. number of
losses, i.e. lower values are better. Right-hand-side column sums the number of losses. Gray rows
are the data sets where QUICK performs worse than CART in the majority case (4 times out of 7,
or more).
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cocomo81 CART 0 0 0 0 0 0 0 0
QUICK 1 1 1 1 1 1 1 7

cocomo81e CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

cocomo81o CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

cocomo81s CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

desharnais CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

desharnaisL1 CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

desharnaisL2 CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

desharnaisL3 CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 1 1 1 3

nasa93 CART 0 0 0 0 0 0 0 0
QUICK 0 1 0 0 0 0 0 1

nasa93 center 1 CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

nasa93 center 2 CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

nasa93 center 5 CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

sdr CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

albrecht CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

finnish CART 0 0 0 0 0 0 0 0
QUICK 1 1 1 1 1 1 1 7

kemerer CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

maxwell CART 0 0 0 0 0 0 0 0
QUICK 1 1 1 1 1 1 1 7

miyazaki94 CART 0 0 0 0 0 0 0 0
QUICK 1 0 1 1 1 1 1 6

Our results showed that essential content of SEE data sets is surprisingly small. Even the most

commonly studied data sets (e.g. nasa93 data set which could be summarized only by 4% of its

actual size) could be summarized by a small portion of their features and instances. We also saw

that such a reduction protects the estimation performance. The implications of our research is

two-folds:

1. SEE data sets can be reduced to a small essential content and fortunately simple methods are
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Table 11.7: QUICK’s sanity check on 8 company data sets (company codes are C1, C2, ..., C8)
from Tukutuku. Cases where QUICK is loses for majority of the error measures (4 or more) are
highlighted. QUICK is statistically significantly the same as CART for 5 out of 8 company data
sets for majority of the error measures (4 or more). Similarly, QUICK is significantly the same as
passiveNN for 5 out of 8 company data sets.
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C1 CART 0 0 0 0 0 0 0 0
QUICK 1 1 1 1 1 1 1 7

C2 CART 0 0 0 0 0 0 0 0
QUICK 1 1 1 1 1 1 1 7

C3 CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

C4 CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

C5 CART 1 0 1 1 0 0 0 3
QUICK 0 0 0 0 0 0 0 0

C6 CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

C7 CART 0 0 0 0 0 0 0 0
QUICK 1 1 1 1 1 1 1 7

C8 CART 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

C1 passiveNN 0 0 1 0 0 0 0 1
QUICK 1 1 0 1 1 1 0 5

C2 passiveNN 0 0 1 0 0 0 0 1
QUICK 1 1 0 1 1 1 0 5

C3 passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

C4 passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

C5 passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

C6 passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

C7 passiveNN 0 0 0 0 0 0 0 0
QUICK 1 1 1 1 1 1 1 7

C8 passiveNN 0 0 0 0 0 0 0 0
QUICK 0 0 0 0 0 0 0 0

still able to perform well on the essential content.

2. QUICK can help to identify the important features and instances.

Therefore, at the end of the research presented in this chapter, we recommend the following prin-

ciple:

Principle #11: Combine Outlier and Synonym Pruning
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The contributions of this research can be summarized as follows:

• An unsupervised method to find the essential content of SEE data sets and reduce the data

needs.

• Promoting research to elaborate on the data, not on the algorithm.
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Chapter 12

Principle #12, Be Aware of Sampling
Method Trade-off

This chapter targets a more theoretical aspect of SEE research compared to the prior
chapters. In this chapter we will address the choice of sampling methods (SM) used in
various SEE studies. In that regard, this chapter targets a more research oriented au-
dience than a practical audience. However, the implications of the research presented
in this chapter is equally important both for practitioner as well as researchers. The
reason being is that the case for a new estimation method is usually made by compar-
ing the new method to existing ones through evaluation of existing data sets. These
data sets are separated into training and test sets through the use of SMs. The choice
of the appropriate SM is a matter of trade-off between associated bias and variance
values, run times and the ease of replication. In order to evaluate the trade-off between
these factors, it is essential to have an extensive empirical experimentation, hence the
rest of this chapter. The proper evaluation of the trade-off and a consensus on the
right SM to use in SEE studies is also likely to decrease the fact that different research
groups come with different conclusions. The implication of a consensus on the right
SM to use is likely to reflect on the recommendations to practitioner audiences.

Assessing new prediction methods is complicated by small sample sizes of the training data.

Valerdi [174] and Hihn [26] offer the rule of thumb that there should be five to ten rows of training

data per attribute. Most effort estimation data sets are smaller than that: for example, five recent

effort estimation publications [1, 16, 46, 61, 70] use data sets with dozens of attributes but only a

handful of rows (median values of the number of rows are 13, 15, 31, 33, 52, respectively).

As a result, prediction models tend to be overfitted to the particulars of the training data used

in particular studies. This leads to the problem of conclusion instability; i.e. different studies make

different conclusions regarding what is the “best” effort estimator. Shepperd et al. [4, 14] studied
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a large number of synthetic data sets (generated from distributions found in a real-world data set).

They found that, as they changed the conditions of their experiments, no method was consistently

best across every condition. Specifically, the performance of a method depends on:

1. The dataset;

2. The evaluation method used to assess model accuracy;

3. The generation method used to build training and test sets.

Elsewhere, we have addressed points #1 and #2 [49, 148]1. This chapter focuses on the third point

listed above; i.e. the generation method used to build training and test sets. SEE research uses

historical data to estimate future performance. The induced predictor is tested on data that is not

used in generating the predictor. In practice, this means using some sampling method (SM) to

divide historical data into:

• Training data that the prediction system can learn from

• Unseen or test validation data that is used to assess predictive accuracy.

SEE validation studies adopt different SMs such as leave-one-out (LOO), 3Way and 10Way [45,

76, 175, 176]. The difference between these SMs is as follows:

LOO:

Take one instance at a time as the test set

Build the learner on the remaining N − 1 instances (training set)

Use the model to estimate for the test set.

1 If Ri is the rank of method Mj within a set of M methods, then we use δr to denote the maximum rank change of
that method as we alter the evaluation method and the data set. Our own experiments confirmed Shepperd’s previous
work; i.e. that δr �= 0. Hence, we cannot say for certain that a method ranked at Ri is always better than another
ranked at Ri+1. However, we have found that if we analyzed enough methods using enough evaluation methods, then
the ranking variability is much smaller than the number of methods; i.e. for large M , δr � |M |. That is, given 90
methods, we can say that (a) the top 30 are better than the bottom 30; (b) the value of the methods ranked 31 to 59
is unknown; so (c) we should focus on those methods in the top third [49]. Other experiments have confirmed the
superiority of those top ranked methods [148].
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N-Way:

Randomize order of rows in data

Divide dataset into N subsets of size close or equal to 1/N

Use each subset as the test set and the remaining subsets as the training set

Repeat this procedure multiple times: Hall & Holmes recommend ten repeats of a 10-way

study [56].

As shown in Figure 12.1, there is no consensus in the effort estimation literature as which SM

should be used to evaluate new predictors. Note that, in that figure, many researchers use some

variant of N-way. We argue that the use of N-way contributes significantly to the conclusion in-

stability problem. The randomization step of N-way makes the results virtually unrepeatable since

a sequence of random numbers are usually very different when generated by different algorithms

implemented in different languages running different toolkits on different platforms. This means

that an N-way analysis incurs the problem of point #3, discussed above.

Method Used by

LOO [13, 16, 19, 24, 38, 74, 105, 157]

Others (ad-hoc, 6-Way etc.) [26, 28, 46, 90, 111, 158]

10-Way [16, 32, 122, 162]

3-Way [16, 177, 178]

Figure 12.1: SEE papers that use different SEE methods.

On the other hand, a LOO analysis is deterministic and repeatable since, given access to the

same data, it is possible to generate identical train and test sets. However, there are two problems

with LOO: the high variance of LOO and its long runtimes:

• High variance: In theory, as discussed below, the results of a LOO analysis will have a

different (and higher) variance and bias than a N-way study. This introduces a complication

into the analysis; e.g. using LOO it will be harder to distinguish the performance of different

methods since the performance of those methods will exhibit a wider variability.

• Long runtimes: A 3-way analysis of 1000 examples will require the construction of three

effort models. On the other hand, a LOO analysis of the sample examples will require the
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construction of 1000 effort models. If the effort model is slow to generate (e.g. some genetic

algorithm exploring all subsets of possible attributes [46]) then 1000 repeats is impractically

slow.

We show in this chapter that neither of these problems are necessarily an issue:

• For 20 data sets from the PROMISE repository, we show that the variance (and the bias)

of results generated by LOO is statistically indistinguishable from 10-way and 3-way. That

is, while in theory LOO and N-way studies generate different results, in practice, those

differences are insignificant.

• LOO conducts many repeated calculations over the same data sets. If those calculations are

cached and re-used later in the LOO, then the runtimes for LOO become close to those of

N-way.

The conclusion of this chapter will be that there is no reason from the effort estimation community

to suffer with N-way studies:

• The deterministic nature of LOO studies makes them more repeatable.

• They are not necessarily slower than N-way.

• Nor do they generate different biases and variances.

Therefore, for SEE research we recommend LOO, at the very least for the SEE research using the

data sets studied in this chapter. A more general recommendation we have is the principle endorsed

in this chapter, i.e. to “be aware of the bias-variance, run-time and replication trade-off” inherent

in different SMs.

12.1 Defining Bias & Variance

A typical SEE dataset consists of a matrix X and a vector Y. The input variables (a.k.a. features)

are stored in X, where each row corresponds to an observation and each column corresponds to

a particular variable. Similarly, the dependent variable is stored in a vector Y, where for each

observation in X there exists a response value.
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Now assume that a prediction model represented by f̂(x) has been learned from a training

dataset and the actual values in the training set were generated by an unknown function f(x). So

as to measure the errors between the actual values in Y and the predictions given by f̂(x), we can

make use of an error function represented by L(Y, f̂(x)). Some examples of error functions are

squared loss (Equation 12.1) and absolute loss (Equation 12.2).

L(Y, f̂(x)) =
�
Y − f̂(x)

�2
(12.1)

L(Y, f̂(x)) = |Y − f̂(x)| (12.2)

Given the assumptions that the underlying model is Y = f(X) + � and V ar(�) = σ2
� , we can

come up with a derivation of the squared-error loss for f̂(X) [77], where f(X) is the underlying

true model and f̂(X) is the learned model through an SM. The error for a point X = x0 is:

Error(x0) = E

��
Y − f̂(x0)

�2
|X = x0

�

= σ2
� +

�
E[f̂(x0)− f(x0)]

�2
+E

�
f̂(x0)− E[f̂(x0)]

�

= σ2
� +Bias2(f̂(x0)) + V ar(f̂(x0))

= IrreducableError� �� �
1stTerm

+ Bias
2

� �� �
2ndTerm

+V ariance� �� �
3rdTerm

In the above derivation, the explanations of the 1st, 2nd and 3rd terms are as follows:

• The 1stTerm is the so called “irreducible error”, i.e. the variance of the actual model

around its true mean. This variance is inevitable regardless of how well we model f(x0),

only exception to that is when the actual variance is zero (when σ2
� = 0).

• The 2ndTerm is the square of the bias, which is the measure of how different the model

estimates are from the true mean of the underlying model.

• The 3rdTerm is the variance of the estimated model. It is the expectation of the squared

deviation of the estimated model from its own mean.
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Seni and Elder warns about the calculation of bias that it cannot be computed but can be used

as a helpful theoretical concept (see p. 23 of [76]). The biggest handicap towards calculation of

bias comes from the fact that we can never know the true model [76,179], unless it was designed as

a mathematical model in the first place. Then we cannot derive the bias (see the true model, f(x0),

in the derivation). That is a critical problem that needs to be handled, if we are to make empirical

investigations on the B&V trade-off in SEE. Without concrete definitions of “bias”; hence the

“true model”, B&V discussions regarding sampling methods in SEE will be nothing more than

expert opinions.

To handle that problem, we need to make assumptions regarding the true model. A successful

application of such an assumption is provided by Molinaro et al.: A learner trained on the whole

dataset is taken as the true model [179]. This approach is quite useful as it replaces the unknown

true model with a known, mathematically definable model; thereby, enabling the bias derivation.

In our experimentation we used the option provided by Molinaro et al. [179].

12.2 In Theory, SMs Affect Results

An important question associated with SMs is how B&V relate to different choices of the

training size (K). To answer this question, we make two observations. Given a data set D of fixed

size, and test and training data sets D = train ∪ test, then:

• The training set grows progressively smaller from LOO to 10way to 3way.

• The test set grows progressively larger from LOO to 10way to 3way.

The first observation effects the bias and the second observation effects the variance. To see that,

recall that any induction algorithms seeks for a target concept in some training data. As a training

set gets smaller, it becomes less likely to contain examples that describe the target. Hence, the

induction algorithm will “miss” the target and the resulting model will be biased (its predictions

will deviate away from true predictions). That is, in theory, bias will increase from LOO to 10way

to 3way. This theoretical prediction is endorsed by Kitchenham and Mendes who have discussed

the effects of SMs on B&V in the context of cross-within-company data [21]. They write that LOO

biases positively towards within-company data (but they do not confirm that with experimentation).
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On the other hand, as the training set shrinks, the test set grows. To understand the effect of

test set size N on the variance, recall that variance is the difference between each prediction and

the mean prediction; i.e.

V ar(f̂(x0)) = E

�
f̂(x0)− E[f̂(x0)]

�
=

�N
i (Xi − µ)

N

Note that limN→0 V ar(f̂(x0)) = ∞; i.e. smaller tests sets can have larger variance. Hence, in

theory, variance will increase from 3way to 10way to LOO.

In summary, according to the above discussion, we would expect:

• LOO : High variance, low bias (see upper left of Figure 12.2)

• 3Way : Low variance, high bias (see lower right of Figure 12.2)

• 10Way : Values between LOO and 3Way (see center of Figure 12.2)
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Figure 12.2: A simple simulation for the “expected” case of B&V relation to testing strategies.

The results of this chapter can be expressed with respect to Figure 12.2: the empirical results

(reported below) cannot distinguish between the B&V of LOO, 3Way, and 10Way.
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12.3 Experiment1: Comparing Bias & Variance

12.3.1 Experiments

Generate True Model f(x): Each algorithm is trained on each entire dataset and the estimates

are stored as the values of f(x). The values of f(x) will be used for B&V calculations.

Get estimates: Let Ai ( i ∈ {1, 2, ..., 90} ) be one of the 90 algorithms (as introduced in §2.4)

and let Dj ( j ∈ {1, 2, ..., 20} ) be one of the 20 public datasets (of Figure 2.1 in §10.1). Also let

SMk ( k ∈ {1, 2, 3} ) be one of the 3 SMs. In this step every Ai is run on every Dj subject to every

SMk. In other words every Ai ×Dj × SMk combination is exhausted, and related predictions are

stored to be used for B&V calculations.

Calculate B&V values: The f(x) values and predictions coming from Ai ×Dj × SMk runs

are used to calculate the B&V . At the end of this step, we have separate B&V values for every

Ai ×Dj × SMk. Another interpretation is that for every algorithm-dataset combination ( Ai ×Dj

) we have 3 values of B&V (1 for each SMi).

Statistical Check on B&V values: In this step we check if the B&V values for every Ai ×Dj

combination are statistically different from one another (checks are based on Mann-Whitney at

95% confidence interval). This way we can see if the run of an algorithm on a single dataset

subject to different SMs generate significantly different B&V values. Since we have 3 different

for Dj , where j ∈ 1...20 do
for Ai, where i ∈ 1...90 do

for Tupple, where Tupple ∈ {LOOvs3Way; LOOvs10Way; 3Wayvs10Way} do
if Mann-Whitney(Bias values of Ai for Dj from SM’s in Tupple, 95%) says the same then

Mark method as “tied” for bias values
else

Mark method as “not-tied” for bias values
end if
if Mann-Whitney(Var. values of Ai for Dj from SM’s in Tupple, 95%) says the same then

Mark method as “tied” for variance values
else

Mark method as “not-tied” for variance values
end if

end for
end for

end for

Figure 12.3: Comparing B&V values coming from different Ai×Dj combinations under different
SM tuples. This comparison helps us see what percentage of 90 methods “tie” w.r.t. B&V values.
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SMs, for every Ai × Dj there are 3 different tuples to look at: LOO vs. 3Way; LOO vs. 10Way;

3Way vs. 10Way. For each tuple we ask Mann-Whitney if the B&V values coming from Ai ×Dj

are different under the SM’s of that tuple. We note down whether they are statistically the same (i.e.

they “tie”) or not. After processing all the SM tuples for all Ai×Dj , we can see what percent of the

90 algorithms generated statistically same B&V values for different SM tuples and for different

datasets. The pseudo-code for this process is given in Figure 12.3.

12.3.2 Results

After calculating the B&V values for 90 algorithms on all the datasets, we were unable to

observe the behavior of Figure 12.2, i.e. we did not observe three clusters at predicted B&V

zones. On the contrary, we observed that B&V values associated with different SMs were very

close to one another.
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Figure 12.4: B&V values for china data set (shown values are the natural logarithm of the actual
values).

For example, see in Figure 12.4 the mean B&V values of 90 algorithms for china data set. Note

that different SMs are represented with different symbols and for every SM there are 90 symbol

occurrences corresponding to 90 algorithms. The B&V values associated with each SM overlap,
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instead of forming separate clusters. Also, the expected relative low and high B&V values of SMs

(see Figure 12.2 for expected low and high) were not visible too. Unlike the expected behavior,

the actual B&V values were both high, regardless of the utilized SM.

We have conducted these experiments on all the pubic datasets and generated Figure 12.4 for

every dataset. However, the results are the same:

1. The expected behavior was not found LOO, 3-Way and 10Way;

2. The different SMs did not form distinct clusters (as witnessed by the overlapping B&V

values of LOO, 3-Way and 10Way in Figure 12.4).

There is insufficient space to repeat Figure 12.4 for every dataset. Hence, we summarized these

B&V values in terms of quartile charts of Figure 12.5. Figure 12.5 shows every dataset in a sepa-

rate row, which is then divided into 3 sub-rows. Sub-rows correspond to 3 different SMs and they

show the related B&V quartile charts separately. In every quartile chart, the median (represented

with a dot), 25th quartile (the left horizontal line-end) and the 75th quartile (the right horizontal

line-end) are shown. Note that all of Figure 12.4 appears as the last 3 rows of Figure 12.5.

Figure 12.6 shows what percent of 90 algorithms “tied” w.r.t. to Mann-Whitney; i.e. difference

in their B&V values were statistically indifferent. See Figure 12.3 for the pseudo-code of the

comparison of B&V values w.r.t. Mann-Whitney. Every cell of Figure 12.6 reports the percentage

of methods (out of 90) that “tied” for particular SM tuples (LOO vs. 3Way, LOO vs. 10Way, 3Way

vs. 10Way) under different datasets.

The distributions of Figure 12.6 are summarized in Figure 12.7: note the high number of ties.

That is, measured in the number of ties as witnessed by Mann-Whitney, these results were the same

more often than not.

In order to better explore the deltas between our treatments, we applied a 1-way ANOVA

analysis. 1-way ANOVA test takes a vector of output values (bias and variance one at a time) and

a factor, which in our case is the sampling method. The p-value yielded by this 1-way ANOVA

tests the null hypothesis that all samples are drawn from populations with the same mean. If a

p-value is near zero, then this casts doubt on the null hypothesis, i.e. at least one of the sample

means is significantly different than the others. The p-value for bias values is: 0.107, which is a
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Dataset SM Bias Variance

albrecht
3Way � �
10Way � �
LOO � �

cocomo81
3Way � �
10Way � �
LOO � �

cocomo81e
3Way � �
10Way � �
LOO � �

cocomo81o
3Way � �
10Way � �
LOO � �

cocomo81s
3Way � �
10Way � �
LOO � �

desharnais
3Way � �
10Way � �
LOO � �

desharnaisL1
3Way � �
10Way � �
LOO � �

desharnaisL2
3Way � �
10Way � �
LOO � �

desharnaisL3
3Way � �
10Way � �
LOO � �

finnish
3Way � �
10Way � �
LOO � �

kemerer
3Way � �
10Way � �
LOO � �

maxwell
3Way � �
10Way � �
LOO � �

miyazaki94
3Way � �
10Way � �
LOO � �

nasa93
3Way � �
10Way � �
LOO � �

nasa93center1
3Way � �
10Way � �
LOO � �

nasa93center2
3Way � �
10Way � �
LOO � �

nasa93center5
3Way � �
10Way � �
LOO � �

sdr
3Way � �
10Way � �
LOO � �

telecom1
3Way � �
10Way � �
LOO � �

china
3Way � �
10Way � �
LOO � �

0% 50% 100% 0% 50% 100%

Figure 12.5: B&V values in quartiles for all datasets. Black dots denote median values. Horizontal
lines denote the inter-quartile range (25 to 75 percentile band). In many results, the inter-quartile
range is so small that it disappears behind the median dots. For the purposes of display, all the bias
values were normalized min to max (of each dataset row), 0 to 100 (ditto with variance). The key
observation from this result is that within each group of SMs, the B&V are very similar.
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dataset bias variance
3Way 10Way 3Way 10Way

cocomo81 LOO 53 61 61 61
3Way - 90 - 61

cocomo81o LOO 74 81 70 73
3Way - 91 - 50

cocomo81e LOO 62 61 48 50
3Way - 86 - 53

cocomo81s LOO 59 58 48 48
3Way - 40 - 28

nasa93 LOO 47 46 60 64
3Way - 90 - 71

nasa93 center 1 LOO 72 74 40 43
3Way - 92 - 50

nasa93 center 2 LOO 56 54 49 58
3Way - 72 - 48

nasa93 center 5 LOO 58 61 66 61
3Way - 94 - 69

desharnais LOO 81 81 80 78
3Way - 100 - 92

desharnaisL1 LOO 79 79 79 79
3Way - 100 - 83

desharnaisL2 LOO 89 90 77 82
3Way - 99 - 79

desharnaisL3 LOO 79 80 60 71
3Way - 94 - 47

sdr LOO 39 40 39 37
3Way - 2 - 22

albrecht LOO 80 82 73 80
3Way - 80 - 69

finnish LOO 83 83 83 83
3Way - 100 - 83

kemerer LOO 70 64 56 53
3Way - 100 - 77

maxwell LOO 67 73 87 88
3Way - 92 - 70

miyazaki94 LOO 38 46 30 38
3Way - 64 - 48

telecom LOO 84 82 78 72
3Way - 100 - 76

china LOO 40 46 53 52
3Way - 80 - 58

Figure 12.6: Percentage of algorithms for which B&V values coming from different SMs are the
same (according to Mann-Whitney at 95). Note the very high percentage values, meaning that for
the majority of the algorithms different SMs generate statistically the same values.

border value for a significance level of 99%. Similarly, p-value for the variance values is: 0.348

for a significance level of 99%.

Due to: 1) the border p-value of ANOVA and 2) the fact that ANOVA assumes sample distri-

butions are Gaussian (which is hardly the case for SEE datasets2), we also performed a Friedman

test (which is a rank-based non-parametric test) followed by a multiple comparison test. Fried-

man’s test is appropriate when the assumptions of a parametric test do not hold and when we are

interested in the effects of treatments (represented by columns) under study [180]. In our study

columns represent the B&V values (separately) coming from 3 different SM’s. The Friedman

test compares the means of multiple groups to test the hypothesis that “they are all the same”,
2To see the non-Gaussian behavior of B&V values, refer to http://goo.gl/HH5b9 where B&V values are plotted in

the form of 10-bin equal-width histograms for each SM and dataset.
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Percentile

Comparison 25th 50th (median) 75th

Bias LOO vs 3Way 53 67 79

LOO vs 10Way 58 69 81

3way vs 10Way 80 91 99

Variance LOO vs 3Way 48 60 77

LOO vs10way 48 61 77

3Way vs 10Way 50 64 76

Figure 12.7: Percentiles of number of ties from Figure 12.6.

versus they are not all the same. When this differentiation is too general, i.e. when we want to

see further information regarding which pairs of means are different and which are not, we follow

the Friedman test with a rank-based multiple comparison procedure [181]. The confidence level

used for the multiple comparison test is 99%. Based on the selected confidence interval, multiple

comparison test calculates the span of confidence interval in terms of ranks around the mean rank

value of each SM. The expectation is that for two sample means to be statistically different, their

span of confidence interval around the mean rank should form disjoint sets 3. Figure 12.8 shows

the results of the multiple comparison test. The x-axis of this figure shows the average ranks (ac-

cording to bias and variance values, separately) corresponding to different sampling methods. The

y-axis shows the ID’s of the sampling methods (1 is for LOO, 2 is for 3Way and 3 is for 10Way).

The mean ranks of each sampling method is represented with a symbol and an interval around the

symbol. The interval -so called comparison interval- shows the span of the confidence interval for

each SM (the selected confidence interval here is 99%). Two means are statistically different from

one another if their comparison intervals are disjoint. As can be seen in Figure 12.8, none of the

SM’s has a disjoint comparison interval, i.e. none of the SM’s is significantly different.
3For actual B&V values see the csv file at http://goo.gl/C6dkF. In this link you will also find a “readme” file

explaining the contents. The code to generate Figure 12.8 is given in this link too. For further implementation details
regarding friedman and multcompare functions of MATLAB, refer to [180, 181] as well as related Mathworks
tutorials.
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Figure 12.8.A : bias Figure 12.8.B : variance

Figure 12.8: Friedman test followed by multiple-comparison test. The x-axis shows the average
ranks, whereas the y-axis shows the ID’s of the SM’s: 1 is for LOO, 2 is for 3Way and 3 is for
10Way. Two means are statistically different from one another if their comparison intervals are
disjoint. None of the SM’s has a disjoint comparison interval.

12.4 Experiment2: Reducing the Run-times for LOO

The total execution time of the experimentation is associated with a particular implementa-

tion method, i.e. different implementations of the same algorithm will have different run times.

Therefore, we used standard MATLAB functions in this study: All methods except ABE0-1NN

and ABE0-5NN, and all pre-processors except discretizers are found in MATLAB libraries.

The run times are also expected to be greatly affected by particular SMs. Each SM dictates a

different number of times a learner is trained. The training-time of a learner is much greater than

the testing-time since, once a learner is trained, the prediction for a particular test instance can be

very quick. Below are the number of training times required for each SM on a single dataset:

• LOO: N trains where N is the dataset size.

• 3Way: 10 repeats x 3 bins = 30 trains

• 10Way : 10 repeats x 10 bins = 100 trains

For 20 datasets in this study (a total of 1198 instances), we expect the following training times:

• LOO: 1198 trains.
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• 3Way: 30 trains/dataset ×20 datasets = 600 trains

• 10Way: 100 trains/dataset ×20 datasets = 2000 trains

From above number of training times, we expect 3Way to be the fastest SM, followed by LOO and

10Way.

In Figure 12.9 we see run times for 20 datasets. Our expectation that 3Way would be the fastest

SM followed by LOO, then 10Way holds. However, the difference is much smaller than expected.

Although there are orders of magnitude differences between SMs in terms of train-times, the run

time difference is limited to a couple of minutes. Therefore, run time is not a critical factor in the

choice of SMs.

SM Run time
LOO 9, 960

3Way 9, 360

10Way 10, 140

Figure 12.9: The run times in seconds. The expected order of SMs from fastest to lowest (3Way,
LOO, 10Way) holds, however the difference is in the order of minutes.

One word of caution is that ABE0-xNN variants are the slowest methods in our experiments

and if such slow methods are to be employed with LOO, then they need to be implemented care-

fully. Initially we coded ABE0-1NN and ABE0-5NN without regard to optimization: i.e. for every

test instance, its distance to all the training instances were calculated from scratch. This way of

brute-force implementation skyrockets the run times associated with LOO. The solution is to cal-

culate the distance matrix of a dataset only once and cache that for future uses in LOO. The run

time of the cached implementation for LOO -as given in Figure 12.9- is 9, 960 seconds, whereas

the brute-force implementation is 25, 920 seconds. So the caching strategy decreases the run time

of LOO by orders of magnitude.

12.5 Conclusions

To the best of our knowledge, in the field of SEE, this is the first empirical investigation on

B&V and runtime trade-off inherent in different SMs.



Ekrem Kocaguneli Chapter 12. Be Aware of Sampling Method Trade-off 181

Our experimentation investigates a large space of 90 algorithms and 20 datasets. The results

present the surprising finding that B&V values in SEE domain behave quite different than the

expected:

• Measured in terms of B&V , different SMs are statistically the same.

• Similarity of SMs also persists in terms of the run times. See in Figure 12.9 that the biggest

run time difference is between 3Way and 10Way, which is 780 seconds (13 minutes) or only

a 7% difference in runtimes between the methods. However, note that some coding tech-

niques(e.g. caching distance results in ABE0-xNN variants) can significantly lower LOO

run times.

Thus, for SEE research (particularly for the experiments that target the public data sets studied in

this chapter), we recommend the use of LOO. A more general recommendation could be summa-

rized with the following principle:

Principle #12: Be Aware of Sampling Method Trade-off

The contributions of the research presented in this chapter are:

• The first systematic investigation of B&V trade-off in SEE domain

• An extensive experimentation with 20 public datasets and 90 algorithms

• Showing that B&V trade-off and run times of SMs are not the main concerns for SEE

• Recommendation based on experimental concerns:

– For reproducibility, we prefer LOO since this avoids non-deterministic selection of

train and test sets.
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Chapter 13

Final Remarks

Until now we shared our experiences regarding data collection in industrial settings as
well as our rigorous experimentation for the open issues of the SEE field. We summa-
rized our findings in the form of 12 principles and presented the related contributions
at the end of each chapter. In this final chapter, we present our final remarks, where
we discuss the possible future directions to this research and present our conclusions.

13.1 Future Work

All the previous chapters are the result of a maturing field. The research and the principles

reported in this document would not be possible without the accumulation of the prior work. In a

similar manner, the research presented in this document is just another step in the SEE field that

needs to be investigated and improved with further research. In this section we share our ideas

regarding how our research can be extended.

Larger Data Sets: One of the possible future directions to the research presented in this thesis is

the application of the proposed methods to larger data sets. In SEE, the data sets are usually limited

to a couple of hundred instances at most. That is quite normal, given the fact that each instance

of an SEE data set is a completed software project, which can take months or years to complete.

However, small data sets is not always the case for other domains. The proposed methods in this

document can also be adapted to big data problems. For example, currently we are applying the

QUICK algorithm introduced in Chapter 11 on defect prediction data sets, which are orders of

magnitude bigger compared to SEE data sets. Our initial results are quite promising, which shows

that it is possible to extend the proposed methods to larger data sets. The problem inherent in



Ekrem Kocaguneli Chapter 13. Final Remarks 183

applying these algorithms to larger data sets is related to implementation issues. Depending on the

size of the data set, it may be necessary to find low-memory alternatives to implementation or to

use parallelism in the programming of the proposed algorithms.

Change of Domains: A very promising future direction can be to extend the solutions proposed

in this work to domains other than SEE. Note that although the presented solutions are developed

to solve issues associated with SEE domain, the addressed issues are common in other domains.

For example, finding an essential content of a noisy data set can be beneficial for different domains.

One can use such a solution to summarize a large and noisy data set, so that the experts can look

at the core of the data manually and interpret it. Another example can be the use of filtering to

facilitate cross data usage. The lack of local data is not necessarily restricted to SEE domain and

the proposed solutions of filtering relevant cross data can be applied to different domains.

Smarter Algorithms: This thesis introduces multiple different algorithms for different kind of

problems. For example, in Chapter 5 we see that it is possible to find a subset of more successful

methods with less rank deltas (so called superior solo-methods); in Chapter 6 we make use of

the superior solo-methods to come up with even better performing multi-methods. However, the

process of coming up with superior solo-methods require trial of a wide range of pre-processors

and learners. It should be possible to make this process faster and smarter, also in an automated

manner. In other words, the process to find superior solo-methods can be investigated as a future

direction to come up with a quicker way of finding them. Which in return will make the formation

of ensembles more straightforward. Note that formation of multi-methods use simple means of

combining solo-methods. So, an interesting direction would be to investigate smarter means of

combining solo-methods. Also note that multi-methods performed better than almost all the solo-

methods in a big majority of the cases, which shows that it is possible to improve the performance

of the solo-methods. Another future direction could be to compare how the solo and multi-methods

differ in terms of their prediction at the instance level and improve solo-methods accordingly. This

future direction could also lead the gateway to even more successful multi-methods.

Improving Common Ideas: Note that Chapter 8, Chapter 9, Chapter 10 and Chapter 11 all have

common properties. Although the proposed algorithms of D-ABE, TEAK, pop1NN and QUICK

work in different ways, they all share the fundamental property of getting rid of the unnecessary

parts of the data. D-ABE, TEAK, pop1NN deal with the row pruning, whereas QUICK remarkably
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shows that row and column pruning can be combined to come up with a much smaller essential

content of the SEE data sets. However, note that all these methods work based on nearest-neighbor

ideas, in other words, if implementation of these methods are not done with performance consider-

ations they may turn out to be taking too much execution time. Caching the distances between all

the instances is a trick that we used during the implementation. However, there may be ways other

than nearest-neighbor calculations to prune away instances and features in SEE data sets. Con-

sidering different alternatives to identify which rows and features to prune may be a good future

direction. For example, an obvious future direction could be to investigate linear time nearest-

neighbor methods, which would dramatically decrease the run times. Another future direction

could be to use other alternatives to point out irrelevant instances and features, e.g. the variance or

entropy of the features (to prune away features); projection of features to lower dimensions so as

to see which instances cluster together and which features stay as outliers and so on.

Much Data to Touch: The fundamental aim of this thesis is to make a contribution to the SEE

domain. The previous future work directions point out the facts that the presented algorithms: 1)

Can be used for larger data sets; 2) Can be extended to other domains; 3) Can be improved to

work in a smarter way; 4) Can be made more efficient. All these suggestions can hint a researcher

to get involved with the ever increasing public data sets. For example, social media presents a

giant pile of structured or unstructured data. Dealing with such big data sources as a future work

and adapting the proposed ideas and solutions should inevitably include all or part of the the prior

future directions. Therefore, an extension of this work as a future direction could be to tackle

the publicly accessible big data sources and their problems. Note that the pursuit of big data

problems with the proposed solutions is likely to call not only for prediction purposes, but also for

the reasoning regarding the investigated data. Solid reasoning about the big data sources in or to

provide trade-off ideas, future plans and summarizations of the observed phenomena will surely

spur further algorithms and ideas.

13.2 Conclusion

The research presented in this document is built on the prior SEE work of more than 3 decades.

The accumulation of the prior work identifies the important problems of SEE. The questions such
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as: “What is the best SEE method?”; “How can we handle the lack of local data?”; “How can we

avoid the use of size attributes?”; “How can find an essential subset of the SEE data sets?”; “How

should we choose sampling methods for SEE experiments?” are still open and we lack concrete

answers to these questions. These questions are critical for the issues of new SEE methods, the

understanding of the SEE data sets, experimentation as well as the sharing of experiments. The

research presented in this document tackles the important and open questions of SEE; hence, it

provides an important insight to the critical issues of SEE methods, data sets and experimentation.

The afore-mentioned issues are strongly related to industry practices, which often require a

researcher/practitioner to deal with data collection in industrial settings. During the duration of this

thesis, we have dealt with industrial projects and it is our opinion that sharing of our experiences

can prove to be helpful. Therefore, the first 4 principles are the result of our experiences and are

less technical than the following chapters. These 4 principles are:

1) Know your domain
2) Let the Experts Talk
3) Suspect your data
4) Data Collection is Cyclic

We see the contributions of our discussion regarding the data collection experiences as follows:

• Sharing of hands-on experience with industrial data collection

• Identification of possible pitfalls and likely solutions

In the remainder of the chapters we summarize the principles that emerged as a rigorous ex-

perimentation with a large corpus of SEE methods and data sets. These chapters target finding

successful SEE methods with small rank changes; providing methods to evaluate SEE methods;

improving ABE methods; targeting the issues of cross domain data; compensating the lack of size

features; finding an essential set of SEE data sets and providing an evaluation of the sampling

methods. The principles that emerged as a result of this extensive experimentation on the critical

issues of SEE can be listed as follows:

5) Use a Ranking Stability Indicator
6) Assemble Superior Methods
7) Weighting Analogies is Over-elaboration
8) Use Easy-path Design
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9) Use Relevancy Filtering
10) Use Outlier Pruning
11) Combine Outlier and Synonym Pruning
12) Be Aware of Sampling Method Trade-off

There exists a number of contributions associated with the research that led to each of these

principles. The summary of all the contributions can be listed as follows:

• A method to identify successful methods using their rank changes.

• An evaluation method of the diversity of the SEE data sets.

• A novel scheme for assembling the best solo-methods.

• Stable multi-methods that outperform solo-methods.

• Investigation of an unexplored and promising ABE option of kernel-weighting,
which reduces the ABE variants space to be explored by 2090 ABE scenarios

• An ABE design principle (easy-path) applicable to different ABE methods.

• Discovering the performance between static-k based ABE methods and TMPA.

• Utilization of a novel ABE method for time interval transfer.

• Successful transfer learning method on proprietary as well as public data sets.

• Promotion of SEE methods that can compensate the lack of size features.

• A method called pop1NN that shows that size features are not a “must”.

• An unsupervised method to find the essential content of SEE data sets.

• Promoting research to elaborate on the data, not on the algorithm.

• The first systematic investigation of B&V trade-off in SEE domain.

• Showing that B&V trade-off and run times are not the main concerns for SMs

• Recommendation of LOO as it avoids non-deterministic of train and test sets.
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