547 research outputs found

    Thermal Imaging for Enhancing Inspection Reliability: Detection and Characterization

    Get PDF
    Reliable performance of an equipment or structure depends on pre-service quality and in- service degradation of the equipment or structure under operating conditions. The role of non-destructive testing (NDT) is to ensure integrity, and in turn, reliability of equipment or structure. Besides, NDT can also monitor in-service degradation and to avoid premature failure of the equipments/structures and prevent accidents as well as save human life. Up to now, NDT has been used in various fields of applications such as the inspection o

    Application of infrared thermography to failure detection in industrial induction motors: case stories

    Full text link
    (c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works[EN] Infrared thermography has been extensively applied over decades to areas such as maintenance of electrical installations. Its use in electrical machinery has been mainly circumscribed to the detection of faults in static machines, such as power transformers. However, with regard to the predictive maintenance of rotating electrical machines, its use has been much more limited. In spite of this fact, the potential of this tool, together with the progressive decrease in the price of infrared cameras, make this technique a very interesting option to, at least, complement, the diagnosis provided by other well-known techniques, such as current or vibration data analysis. In this context, infrared thermography has recently shown potential for the detection of motor failures including misalignments, cooling problems, bearing damages or connection defects. This work presents several industrial cases that help to illustrate the effectiveness of this technique for the detection of a wide range of faults in field induction motors. The data obtained with this technique made it possible to detect the presence of faults of diverse nature (electrical, mechanical, thermal and environmental); these data were very useful to either diagnose or to complement the diagnosis provided by other tools.This work was supported in part by the Spanish Ministerio de Economia y Competitividad and the FEDER Program in the framework of the Proyectos I+D del Subprograma de Generacion de Conocimiento, Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia under Grant DPI2014-52842-P.Lopez-Perez, D.; Antonino-Daviu, J. (2017). Application of infrared thermography to failure detection in industrial induction motors: case stories. IEEE Transactions on Industry Applications. 53(3):1901-1908. https://doi.org/10.1109/TIA.2017.2655008S1901190853

    Defect detection in infrared thermography by deep learning algorithms

    Get PDF
    L'évaluation non destructive (END) est un domaine permettant d'identifier tous les types de dommages structurels dans un objet d'intérêt sans appliquer de dommages et de modifications permanents. Ce domaine fait l'objet de recherches intensives depuis de nombreuses années. La thermographie infrarouge (IR) est l'une des technologies d'évaluation non destructive qui permet d'inspecter, de caractériser et d'analyser les défauts sur la base d'images infrarouges (séquences) provenant de l'enregistrement de l'émission et de la réflexion de la lumière infrarouge afin d'évaluer les objets non autochauffants pour le contrôle de la qualité et l'assurance de la sécurité. Ces dernières années, le domaine de l'apprentissage profond de l'intelligence artificielle a fait des progrès remarquables dans les applications de traitement d'images. Ce domaine a montré sa capacité à surmonter la plupart des inconvénients des autres approches existantes auparavant dans un grand nombre d'applications. Cependant, en raison de l'insuffisance des données d'entraînement, les algorithmes d'apprentissage profond restent encore inexplorés, et seules quelques publications font état de leur application à l'évaluation non destructive de la thermographie (TNDE). Les algorithmes d'apprentissage profond intelligents et hautement automatisés pourraient être couplés à la thermographie infrarouge pour identifier les défauts (dommages) dans les composites, l'acier, etc. avec une confiance et une précision élevée. Parmi les sujets du domaine de recherche TNDE, les techniques d'apprentissage automatique supervisées et non supervisées sont les tâches les plus innovantes et les plus difficiles pour l'analyse de la détection des défauts. Dans ce projet, nous construisons des cadres intégrés pour le traitement des données brutes de la thermographie infrarouge à l'aide d'algorithmes d'apprentissage profond et les points forts des méthodologies proposées sont les suivants: 1. Identification et segmentation automatique des défauts par des algorithmes d'apprentissage profond en thermographie infrarouge. Les réseaux neuronaux convolutifs (CNN) pré-entraînés sont introduits pour capturer les caractéristiques des défauts dans les images thermiques infrarouges afin de mettre en œuvre des modèles basés sur les CNN pour la détection des défauts structurels dans les échantillons composés de matériaux composites (diagnostic des défauts). Plusieurs alternatives de CNNs profonds pour la détection de défauts dans la thermographie infrarouge. Les comparaisons de performance de la détection et de la segmentation automatique des défauts dans la thermographie infrarouge en utilisant différentes méthodes de détection par apprentissage profond : (i) segmentation d'instance (Center-mask ; Mask-RCNN) ; (ii) détection d’objet (Yolo-v3 ; Faster-RCNN) ; (iii) segmentation sémantique (Unet ; Res-unet); 2. Technique d'augmentation des données par la génération de données synthétiques pour réduire le coût des dépenses élevées associées à la collecte de données infrarouges originales dans les composites (composants d'aéronefs.) afin d'enrichir les données de formation pour l'apprentissage des caractéristiques dans TNDE; 3. Le réseau antagoniste génératif (GAN convolutif profond et GAN de Wasserstein) est introduit dans la thermographie infrarouge associée à la thermographie partielle des moindres carrés (PLST) (réseau PLS-GANs) pour l'extraction des caractéristiques visibles des défauts et l'amélioration de la visibilité des défauts pour éliminer le bruit dans la thermographie pulsée; 4. Estimation automatique de la profondeur des défauts (question de la caractérisation) à partir de données infrarouges simulées en utilisant un réseau neuronal récurrent simplifié : Gate Recurrent Unit (GRU) à travers l'apprentissage supervisé par régression.Non-destructive evaluation (NDE) is a field to identify all types of structural damage in an object of interest without applying any permanent damage and modification. This field has been intensively investigated for many years. The infrared thermography (IR) is one of NDE technology through inspecting, characterize and analyzing defects based on the infrared images (sequences) from the recordation of infrared light emission and reflection to evaluate non-self-heating objects for quality control and safety assurance. In recent years, the deep learning field of artificial intelligence has made remarkable progress in image processing applications. This field has shown its ability to overcome most of the disadvantages in other approaches existing previously in a great number of applications. Whereas due to the insufficient training data, deep learning algorithms still remain unexplored, and only few publications involving the application of it for thermography nondestructive evaluation (TNDE). The intelligent and highly automated deep learning algorithms could be coupled with infrared thermography to identify the defect (damages) in composites, steel, etc. with high confidence and accuracy. Among the topics in the TNDE research field, the supervised and unsupervised machine learning techniques both are the most innovative and challenging tasks for defect detection analysis. In this project, we construct integrated frameworks for processing raw data from infrared thermography using deep learning algorithms and highlight of the methodologies proposed include the following: 1. Automatic defect identification and segmentation by deep learning algorithms in infrared thermography. The pre-trained convolutional neural networks (CNNs) are introduced to capture defect feature in infrared thermal images to implement CNNs based models for the detection of structural defects in samples made of composite materials (fault diagnosis). Several alternatives of deep CNNs for the detection of defects in the Infrared thermography. The comparisons of performance of the automatic defect detection and segmentation in infrared thermography using different deep learning detection methods: (i) instance segmentation (Center-mask; Mask-RCNN); (ii) objective location (Yolo-v3; Faster-RCNN); (iii) semantic segmentation (Unet; Res-unet); 2. Data augmentation technique through synthetic data generation to reduce the cost of high expense associated with the collection of original infrared data in the composites (aircraft components.) to enrich training data for feature learning in TNDE; 3. The generative adversarial network (Deep convolutional GAN and Wasserstein GAN) is introduced to the infrared thermography associated with partial least square thermography (PLST) (PLS-GANs network) for visible feature extraction of defects and enhancement of the visibility of defects to remove noise in Pulsed thermography; 4. Automatic defect depth estimation (Characterization issue) from simulated infrared data using a simplified recurrent neural network: Gate Recurrent Unit (GRU) through the regression supervised learning

    Sparse Low-Rank Tensor Decomposition for Metal Defect Detection Using Thermographic Imaging Diagnostics

    Get PDF
    With the increasing use of induction thermography (IT) for non-destructive testing (NDT) in the mechanical and rail industry, it becomes necessary for the manufactures to rapidly and accurately monitor the health of specimens. The most general problem for IT detection is due to strong noise interference. In order to counter it, general post-processing is carried out. However, due to the more complex nature of noise and irregular shape specimens, this task becomes difficult and challenging. In this paper, a low-rank tensor with a sparse mixture of Gaussian (MoG) (LRTSMoG) decomposition algorithm for natural crack detection is proposed. The proposed algorithm models jointly the low rank tensor and sparse pattern by using a tensor decomposition framework. In particular, the weak natural crack information can be extracted from strong noise. Low-rank tensor based iterative sparse MoG noise modeling is carried out to enhance the weak natural crack information as well as reducing the computational cost. In order to show the robustness and efficacy of the model, experiments are conducted for natural crack detection on a variety of specimens. A comparative analysis is presented with general tensor decomposition algorithms. The algorithms are evaluated quantitatively based on signal-to-noise-ratio (SNR) along with the visual comparative analysis

    Pixel frequency based railroad surface flaw detection using active infrared thermography for Structural Health Monitoring

    Get PDF
    Abstract With rapid increase in operation and development of high-speed trains, inspection of railroad surface flaws has become an important aspect for safe and reliable operation of rail network. Non-destructive testing using active infrared thermography has been useful in determining the structural health of different structures with additional benefit of robustness in overall inspection system. This study is based on detection of artificial surface flaws on an in-service railroad. Transverse and longitudinal flaws of various dimensions were machined on rough and smooth rail surface. The railroad surface was thermally stimulated to a temperature equivalent to practical conditions. Emitted radiations from rail surface were captured by an infrared camera to detect cracks. Results show a comparison between the surface flaws on rough and smooth rail surface. Subsequently, raw infrared images were post-processed by statistical image improvement to quantitatively analyse the results. Significant change in the frequency distribution of pixel intensity is observed as the flaw size and depth changes giving a clear quantification of crack topology. A comprehensive and inexpensive solution for damage diagnosis will be offered to railway authorities for Structural Health Monitoring (SHM) and NDT by the proposed framework

    A review of non-destructive testing on wind turbines blades

    Get PDF
    Wind energy, with an exponential growth in the last years, is nowadays one of the most important renewable energy sources. Modern wind turbines are bigger and complex to produce more energy. This industry requires to reduce its operating and maintenance costs and to increase its reliability, safety, maintainability and availability. Condition monitoring systems are beginning to be employed for this purpose. They must be reliable and cost-effective to reduce the long periods of downtimes and high maintenance costs, and to avoid catastrophic scenarios caused by undetected failures. This paper presents a survey about the most important and updated condition monitoring techniques based on non-destructive testing and methods applied to wind turbine blades. In addition, it analyses the future trends and challenges of structural health monitoring systems in wind turbine blades.Wind energy, with an exponential growth in the last years, is nowadays one of the most important renewable energy sources. Modern wind turbines are bigger and complex to produce more energy. This industry requires to reduce its operating and maintenance costs and to increase its reliability, safety, maintainability and availability. Condition monitoring systems are beginning to be employed for this purpose. They must be reliable and cost-effective to reduce the long periods of downtimes and high maintenance costs, and to avoid catastrophic scenarios caused by undetected failures. This paper presents a survey about the most important and updated condition monitoring techniques based on non-destructive testing and methods applied to wind turbine blades. In addition, it analyses the future trends and challenges of structural health monitoring systems in wind turbine blades

    Quantitative Evaluation on Electric Motor Thermal Image for Comparison Hot Spot and Measuring Point Regions

    Get PDF
    Inspection of the condition on industrial equipment becomes an urgent matter for industry. Infrared thermography inspection provides enormous benefits in preventive and predictive maintenance routines, especially for critical electrical equipment to prevent sudden damage to the equipment when the production process is underway, insofar that it impacts on the process. The result of inspection is in the form of thermal image which depicts the temperature of the electrical equipment. In general, thermal image evaluation is still analyzed manually by relying on visual reading by technicians. This would allow for errors in evaluating the image. Thus, this study used thermal images as the results of electric motor inspections, which are in hot spot and measuring point regions. Furthermore, this study aims to quantify the overheating resulted in electric motor by comparing those two regions using color entropy by Graphical User Interface (GUI) MATLAB. The study stages comprised of: zooming and object (region) cropping on color thermal image, color image histogram, calculating of color entropy (red, green, blue), and calculating of the color entropy average. The result of study on ten electric motor thermal images showed that the color entropy is higher in the measuring point region than the color entropy in the hot spot region. The average of color entropy in hot spot region were in the range of 2.9497 – 3.9578 and measuring point region were in the range of 5.1182 – 5.4489

    Infrared Thermography for the Assessment of Lumbar Sympathetic Blocks in Patients with Complex Regional Pain Syndrome

    Full text link
    [ES] El síndrome de dolor regional complejo (SDRC) es un trastorno de dolor crónico debilitante que suele afectar a una extremidad, y se caracteriza por su compleja e incomprendida fisiopatología subyacente, lo que supone un reto para su diagnóstico y tratamiento. Para evitar el deterioro de la calidad de vida de los pacientes, la consecución de un diagnóstico y tratamiento tempranos marca un punto de inflexión. Entre los diferentes tratamientos, los bloqueos simpáticos lumbares (BSLs) tienen como objetivo aliviar el dolor y reducir algunos signos simpáticos de la afección. Este procedimiento intervencionista se lleva a cabo inyectando anestesia local alrededor de los ganglios simpáticos y, hasta ahora, se realiza frecuentemente bajo el control de diferentes técnicas de imagen, como los ultrasonidos o la fluoroscopia. Dado que la termografía infrarroja (TIR) ha demostrado ser una herramienta eficaz para evaluar la temperatura de la piel, y teniendo en cuenta el efecto vasodilatador que presentan los anestésicos locales inyectados, se ha considerado el uso de la IRT para la evaluación de los BSLs. El objetivo de esta tesis es, estudiar la capacidad de la TIR como una técnica complementaria para la evaluación de la eficacia en la ejecución de los BSLs. Para cumplir este objetivo, se han realizado tres estudios implementando la TIR en pacientes diagnosticados de SDRC de miembros inferiores sometidos a BSLs. El primer estudio se centra en la viabilidad de la TIR como herramienta complementaria para la evaluación de la eficacia ejecución de los BSLs. Cuando se realizan los BSLs, la colocación correcta de la aguja es crítica para llevar realizar el procedimiento técnicamente correcto y, en consecuencia, para lograr los resultados clínicos deseados. Para verificar la posición de la aguja, tradicionalmente se han utilizado técnicas de imagen, sin embargo, los BSLs bajo control fluoroscópico no siempre aseguran su exacta ejecución. Por este motivo, se han aprovechado las alteraciones térmicas inducidas por los anestésicos locales y se han evaluado mediante la TIR. Así, cuando en las imágenes infrarrojas se observaron cambios térmicos en la planta del pie afectado tras la inyección de lidocaína, se consideró que el BSL era exitoso. El segundo estudio trata del análisis cuantitativo de los datos térmicos recogidos en el entorno clínico a partir de diferentes parámetros basados en las temperaturas extraídas de ambos pies. Según los resultados, para predecir adecuadamente los BSLs exitosos, se deberían analizar las temperaturas de las plantas de los pies durante los primeros cuatro minutos tras la inyección del anestésico local. Así, la aplicación de la TIR en el entorno clínico podría ser de gran ayuda para evaluar la eficacia de ejecución de los BSLs mediante la evaluación de las temperaturas de los pies en tiempo real. Por último, el tercer estudio aborda el análisis cuantitativo mediante la implementación de herramientas de machine learning (ML) para evaluar su capacidad de clasificar automáticamente los BSLs. En este estudio se han utilizado una serie de características térmicas extraídas de las imágenes infrarrojas para evaluar cuatro algoritmos de ML para tres momentos diferentes después del instante de referencia (inyección de lidocaína). Los resultados indican que los cuatro modelos evaluados presentan buenos rendimientos para clasificar automáticamente los BSLs entre exitosos y fallidos. Por lo tanto, la combinación de parámetros térmicos junto con de clasificación ML muestra ser eficaz para la clasificación automática de los procedimientos de BSLs. En conclusión, el uso de la TIR como técnica complementaria en la práctica clínica diaria para la evaluación de los BSLs ha demostrado ser totalmente eficaz. Dado que es un método objetivo y relativamente sencillo de implementar, puede permitir que los médicos especialistas en dolor identifiquen los bloqueos realizados fallidos y, en consecuencia, puedan revertir esta situación.[CA] La síndrome de dolor regional complex (SDRC) és un trastorn de dolor crònic debilitant que sol afectar una extremitat, i es caracteritza per la seua complexa i incompresa fisiopatologia subjacent, la qual cosa suposa un repte per al seu diagnòstic i tractament. Per a evitar la deterioració de la qualitat de vida dels pacients, la consecució d'un diagnòstic i tractament primerencs marca un punt d'inflexió. Entre els diferents tractaments , els bloquejos simpàtics lumbars (BSLs) tenen com a objectiu alleujar el dolor i reduir alguns signes simpàtics de l'afecció. Aquest procediment intervencionista es duu a terme injectant anestèsia local al voltant dels ganglis simpàtics i, fins ara, es realitza freqüentment sota el control de diferents tècniques d'imatge, com els ultrasons o la fluoroscopia. Atés que la termografia infraroja (TIR) ha demostrat ser una eina eficaç per a avaluar la temperatura de la pell, i tenint en compte l'efecte vasodilatador que presenten els anestèsics locals injectats, s'ha considerat l'ús de la TIR per a l'avaluació dels BSLs. L'objectiu d'aquesta tesi és, estudiar la capacitat de la TIR com una tècnica complementària per a l'avaluació de l'eficàcia en l'execució dels BSLs. Per a complir aquest objectiu, s'han realitzat tres estudis implementant la TIR en pacients diagnosticats de SDRC de membres inferiors sotmesos a BSLs. El primer estudi avalua la viabilitat de la TIR com a eina complementària per a l'analisi de l'eficàcia en l'execució dels BSLs. Quan es realitzen els BSLs, la col·locació correcta de l'agulla és crítica per a dur a terme el procediment tècnicament correcte i, en conseqüència, per a aconseguir els resultats clínics desitjats. Per a verificar la posició de l'agulla, tradicionalment s'han utilitzat tècniques d'imatge, no obstant això, els BSLs baix control fluoroscòpic no sempre asseguren la seua exacta execució. Per aquest motiu, s'han aprofitat les alteracions tèrmiques induïdes pels anestèsics locals i s'han avaluat mitjançant la TIR. Així, quan en les imatges infraroges es van observar canvis tèrmics en la planta del peu afectat després de la injecció de lidocaIna, es va considerar que el BSL era exitós. El segon estudi tracta de l'anàlisi quantitativa de les dades tèrmiques recollides en l'entorn clínic a partir de diferents paràmetres basats en les temperatures extretes d'ambdós peus. Segons els resultats, per a predir adequadament l'execució exitosa d'un BSL, s'haurien d'analitzar les temperatures de les plantes dels peus durant els primers quatre minuts després de la injecció de l'anestèsic local. Així, l'implementació de la TIR en l'entorn clínic podria ser de gran ajuda per a avaluar l'eficàcia d'execució dels BSLs mitjançant l'avaluació de les temperatures dels peus en temps real. El tercer estudi aborda l'anàlisi quantitativa mitjançant la implementació d'eines machine learning (ML) per a avaluar la seua capacitat de classificar automàticament els BSLs. En aquest estudi s'han utilitzat una sèrie de característiques tèrmiques extretes de les imatges infraroges per a avaluar quatre algorismes de ML per a tres moments diferents després de l'instant de referència (injecció de lidocaïna). Els resultats indiquen que els quatre models avaluats presenten bons rendiments per a classificar automàticament els BSLs en exitosos i fallits. Per tant, la combinació de paràmetres tèrmics juntament amb models de classificació ML mostra ser eficaç per a la classificació automàtica dels procediments de BSLs. En conclusió, l'ús de la TIR com a tècnica complementària en la pràctica clínica diària per a l'avaluació dels BSLs ha demostrat ser totalment eficaç. Atés que és un mètode objectiu i relativament senzill d'implementar, pot ajudar els metges especialistes en dolor a identificar els bloquejos realitzats fallits i, en conseqüència, puguen revertir aquesta situació.[EN] Complex regional pain syndrome (CRPS) is a debilitating chronic pain condition that usually affects one limb, and it is characterized by its misunderstood underlying pathophysiology, resulting in both challenging diagnosis and treatment. To avoid the patients' impairment quality of life, the achievement of both an early diagnosis and treatment marks a turning point. Among the different treatment approaches, lumbar sympathetic blocks (LSBs) are addressed to alleviate the pain and reduce some sympathetic signs of the condition. This interventional procedure is performed by injecting local anaesthetic around the sympathetic ganglia and, until now, it has been performed under different imaging techniques, including the ultrasound or the fluoroscopy approaches. Since infrared thermography (IRT) has proven to be a powerful tool to evaluate skin temperatures and taking into account the vasodilatory effects of the local anaesthetics injected in the LSB, the use of IRT has been considered for the LSBs assessment. Therefore, the purpose of this thesis is to evaluate the capability of IRT as a complementary assessment technique for the LSBs procedures performance. To fulfil this aim, three studies have been conducted implementing the IRT in patients diagnosed with lower limbs CRPS undergoing LSBs. The first study focuses on the feasibility of IRT as a complementary assessment tool for LSBs performance, that is, for the confirmation of the proper needle position. When LSBs are performed, the correct needle placement is critical to carry out the procedure technically correct and, consequently, to achieve the desired clinical outcomes. To verify the needle placement position, imaging techniques have traditionally been used, however, LSBs under radioscopic guidance do not always ensure an exact performance. For this reason, the thermal alterations induced by the local anaesthetics, have been exploited and assessed by means of IRT. Thus, the LSB procedure was considered successfully performed when thermal changes within the affected plantar foot were observed in the infrared images after the lidocaine injection. The second study deals with the quantitative analysis of the thermal data collected in the clinical setting through the evaluation of different temperature-based parameters extracted from both feet. According to the results, the proper LSB success prediction could be achieved in the first four minutes after the block through the evaluation of the feet skin temperatures. Therefore, the implementation of IRT in the clinical setting might be of great help in assessing the LSBs performance by evaluating the plantar feet temperatures in real time. Finally, the third study addresses the quantitative analysis by implementing machine learning (ML) tools to assess their capability to automatically classify LSBs. In this study, a set of thermal features retrieved from the infrared images have been used to evaluate four ML algorithms for three different moments after the baseline time (lidocaine injection). The results indicate that all four models evaluated present good performance metrics to automatically classify LSBs into successful and failed. Therefore, combining infrared features with ML classification models shows to be effective for the LSBs procedures automatic classification. In conclusion, the use of IRT as a complementary technique in daily clinical practice for LSBs assessment has been evidenced entirely effective. Since IRT is an objective method and it is not very demanding to perform, it is of great help for pain physicians to identify failed procedures, and consequently, it allow them to reverse this situation.Cañada Soriano, M. (2022). Infrared Thermography for the Assessment of Lumbar Sympathetic Blocks in Patients with Complex Regional Pain Syndrome [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181699TESI

    Thermography data fusion and non-negative matrix factorization for the evaluation of cultural heritage objects and buildings

    Get PDF
    The application of the thermal and infrared technology in different areas of research is considerably increasing. These applications involve nondestructive testing, medical analysis (computer aid diagnosis/detection—CAD), and arts and archeology, among many others. In the arts and archeology field, infrared technology provides significant contributions in terms of finding defects of possible impaired regions. This has been done through a wide range of different thermographic experiments and infrared methods. The proposed approach here focuses on application of some known factor analysis methods such as standard nonnegative matrix factorization (NMF) optimized by gradient-descent-based multiplicative rules (SNMF1) and standard NMF optimized by nonnegative least squares active-set algorithm (SNMF2) and eigen-decomposition approaches such as principal component analysis (PCA) in thermography, and candid covariance-free incremental principal component analysis in thermography to obtain the thermal features. On the one hand, these methods are usually applied as preprocessing before clustering for the purpose of segmentation of possible defects. On the other hand, a wavelet-based data fusion combines the data of each method with PCA to increase the accuracy of the algorithm. The quantitative assessment of these approaches indicates considerable segmentation along with the reasonable computational complexity. It shows the promising performance and demonstrated a confirmation for the outlined properties. In particular, a polychromatic wooden statue, a fresco, a painting on canvas, and a building were analyzed using the above-mentioned methods, and the accuracy of defect (or targeted) region segmentation up to 71.98%, 57.10%, 49.27%, and 68.53% was obtained, respectively
    • …
    corecore