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Résumé 

L'évaluation non destructive (END) est un domaine permettant d'identifier tous les types de 

dommages structurels dans un objet d'intérêt sans appliquer de dommages et de modifications 

permanents. Ce domaine fait l'objet de recherches intensives depuis de nombreuses années. 

La thermographie infrarouge (IR) est l'une des technologies d'évaluation non destructive qui 

permet d'inspecter, de caractériser et d'analyser les défauts sur la base d'images infrarouges 

(séquences) provenant de l'enregistrement de l'émission et de la réflexion de la lumière 

infrarouge afin d'évaluer les objets non autochauffants pour le contrôle de la qualité et 

l'assurance de la sécurité. 

Ces dernières années, le domaine de l'apprentissage profond de l'intelligence artificielle a fait 

des progrès remarquables dans les applications de traitement d'images. Ce domaine a montré 

sa capacité à surmonter la plupart des inconvénients des autres approches existantes 

auparavant dans un grand nombre d'applications. Cependant, en raison de l'insuffisance des 

données d'entraînement, les algorithmes d'apprentissage profond restent encore inexplorés, 

et seules quelques publications font état de leur application à l'évaluation non destructive de 

la thermographie (TNDE). 

Les algorithmes d'apprentissage profond intelligents et hautement automatisés pourraient être 

couplés à la thermographie infrarouge pour identifier les défauts (dommages) dans les 

composites, l'acier, etc. avec une confiance et une précision élevée. Parmi les sujets du 

domaine de recherche TNDE, les techniques d'apprentissage automatique supervisées et non 

supervisées sont les tâches les plus innovantes et les plus difficiles pour l'analyse de la 

détection des défauts.  

Dans ce projet, nous construisons des cadres intégrés pour le traitement des données brutes 

de la thermographie infrarouge à l'aide d'algorithmes d'apprentissage profond et les points 

forts des méthodologies proposées sont les suivants:  

1. Identification et segmentation automatique des défauts par des algorithmes d'apprentissage 

profond en thermographie infrarouge. Les réseaux neuronaux convolutifs (CNN) pré-

entraînés sont introduits pour capturer les caractéristiques des défauts dans les images 

thermiques infrarouges afin de mettre en œuvre des modèles basés sur les CNN pour la 

détection des défauts structurels dans les échantillons composés de matériaux composites 

(diagnostic des défauts). Plusieurs alternatives de CNNs profonds pour la détection de défauts 

dans la thermographie infrarouge. Les comparaisons de performance de la détection et de la 

segmentation automatique des défauts dans la thermographie infrarouge en utilisant 

différentes méthodes de détection par apprentissage profond : (i) segmentation d'instance 

(Center-mask ; Mask-RCNN) ; (ii) détection d’objet (Yolo-v3 ; Faster-RCNN) ; (iii) 

segmentation sémantique (Unet ; Res-unet); 

2. Technique d'augmentation des données par la génération de données synthétiques pour 

réduire le coût des dépenses élevées associées à la collecte de données infrarouges originales 
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dans les composites (composants d'aéronefs.) afin d'enrichir les données de formation pour 

l'apprentissage des caractéristiques dans TNDE;  

3. Le réseau antagoniste génératif (GAN convolutif profond et GAN de Wasserstein) est 

introduit dans la thermographie infrarouge associée à la thermographie partielle des moindres 

carrés (PLST) (réseau PLS-GANs) pour l'extraction des caractéristiques visibles des défauts 

et l'amélioration de la visibilité des défauts pour éliminer le bruit dans la thermographie 

pulsée;  

4. Estimation automatique de la profondeur des défauts (question de la caractérisation) à 

partir de données infrarouges simulées en utilisant un réseau neuronal récurrent simplifié : 

Gate Recurrent Unit (GRU) à travers l'apprentissage supervisé par régression.  
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Abstract 

Non-destructive evaluation (NDE) is a field to identify all types of structural damage in an 

object of interest without applying any permanent damage and modification. This field has 

been intensively investigated for many years. The infrared thermography (IR) is one of NDE 

technology through inspecting, characterize and analyzing defects based on the infrared 

images (sequences) from the recordation of infrared light emission and reflection to evaluate 

non-self-heating objects for quality control and safety assurance. 

In recent years, the deep learning field of artificial intelligence has made remarkable progress 

in image processing applications. This field has shown its ability to overcome most of the 

disadvantages in other approaches existing previously in a great number of applications. 

Whereas due to the insufficient training data, deep learning algorithms still remain 

unexplored, and only few publications involving the application of it for thermography 

nondestructive evaluation (TNDE). 

The intelligent and highly automated deep learning algorithms could be coupled with infrared 

thermography to identify the defect (damages) in composites, steel, etc. with high confidence 

and accuracy. Among the topics in the TNDE research field, the supervised and unsupervised 

machine learning techniques both are the most innovative and challenging tasks for defect 

detection analysis.  

In this project, we construct integrated frameworks for processing raw data from infrared 

thermography using deep learning algorithms and highlight of the methodologies proposed 

include the following:  

1. Automatic defect identification and segmentation by deep learning algorithms in infrared 

thermography. The pre-trained convolutional neural networks (CNNs) are introduced to 

capture defect feature in infrared thermal images to implement CNNs based models for the 

detection of structural defects in samples made of composite materials (fault diagnosis). 

Several alternatives of deep CNNs for the detection of defects in the Infrared thermography. 

The comparisons of performance of the automatic defect detection and segmentation in 

infrared thermography using different deep learning detection methods: (i) instance 

segmentation (Center-mask; Mask-RCNN); (ii) objective location (Yolo-v3; Faster-RCNN); 

(iii) semantic segmentation (Unet; Res-unet); 

2. Data augmentation technique through synthetic data generation to reduce the cost of high 

expense associated with the collection of original infrared data in the composites (aircraft 

components.) to enrich training data for feature learning in TNDE;  

3. The generative adversarial network (Deep convolutional GAN and Wasserstein GAN) is 

introduced to the infrared thermography associated with partial least square thermography 

(PLST) (PLS-GANs network) for visible feature extraction of defects and enhancement of 

the visibility of defects to remove noise in Pulsed thermography;  
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4. Automatic defect depth estimation (Characterization issue) from simulated infrared data 

using a simplified recurrent neural network: Gate Recurrent Unit (GRU) through the 

regression supervised learning. 
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Foreword 

This thesis is submitted to the "Faculté des études supérieures et postdoctorales-Université 

Laval" to fulfill the requirement of the Philosophiae Doctor (Ph.D.) degree in Electrical 

Engineering. 

 

The presented thesis is consisted of 6 chapters along with introduction; general conclusions& 

perspectives; appendices.  

 

The introduction section mentioned after foreword and then the first chapter is literature 

review in second chapter where it over-viewed the infrared thermography with deep learning 

applications in relevant fields, including infrared thermography for defect detection 

approaches, defect characterizations methods, a very brief reviewing of infrared 

thermography with defect detection review literature, deep learning with infrared 

thermography review literature. Following this chapter, the second chapter highlighted the 

problems, hypothesis and objectives. 

 

Chapter third are in the form of journal article, several approaches and experiments were 

conducted in infrared thermography for automatic defect detection from deep learning 

algorithm, then followed by other chapters (fourth to sixth) for different approaches and 

algorithms about: synthetic data and experimental data for infrared thermography defect 

segmentation by deep learning; PLS-GANs data processing techniques; defect depth 

estimation via deep learning in stimulated infrared thermography. All of contents includes 

their results and their discussions accordingly.  

 

At the end, the results obtained in the current thesis are concluded. The last section presents 

a general conclusion and provided the perspective of the future of the performed studies. 

 

The first article in the 3rd chapter is titled Automatic detection and identification of defects 

by deep learning algortithms, was submitted for Nondestructive Testing and Evaluation 

Journal. Authors: Qiang Fang, Clemente Ibarra Castanedo, Xavier Maldague. This chapter 

also extended from a conference proceeding article - Automatic defect detection in 

infrared thermography by deep learning algorithm, published in Thermosense: Thermal 

Infrared Applications XLII; 2020, Authors: Qiang Fang, Ba Diep Nguyen, Clemente Ibarra 

Castanedo, Yuxia Duan, Xavier Maldague  

 

The second article in the 4th chapter is titled Automatic defects segmentation and 

identification by deep learning algorithm with pulsed thermography: Synthetic and 

experimental data, was published in Big Data and Cognitive Computing, 2021, 5(1): 9. 

Authors: Qiang Fang, Clemente Ibarra Castanedo, Xavier Maldague  
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The third article in 5th chapter which is titled Defects enhancement and images noise 

reduction analysis using Partial Least Square-Generative Adversarial Networks (PLS-

GANs) in Pulsed Thermography, Authors: Qiang Fang, Clemente Ibarra‐Castanedo, Duan 

Yuxia, Jorge Erazo-Aux, Iván Garrido, and Xavier Maldague which was accepted for the 

Journal of Nondestructive Evaluation in August, 2021. 

 

Finally, the fourth article in 6th chapter which is titled A Method of Defect Depth 

Estimation for Simulated Infrared Thermography Data with Deep Learning which was 

presented on 2020 Structural Health Monitoring &Nondestructive Testing conference 

(Quebec City) and published in Applied Science journal, 2020, Authors: Qiang Fang, and 

Xavier Maldague, A Method of Defect Depth Estimation for Simulated Infrared 

Thermography Data with Deep Learning, MDPI Appl. Sci. 2020, 10, 6819; 

doi:10.3390/app10196819 

 

Qiang Fang was in charge of designing and implementing the proposed algorithms and data 

collection for all experiments. He was also responsible for designing and analyzing the 

statistical calculations of the collected data, analysis and preparation of the manuscripts.  

 

Professor. Xavier P.V. Maldague, research supervisor, oversaw all steps of this and provided 

the idea for studies for applications of infrared thermography and guided the process.  

 

Dr. Clemente Ibarra Castanedo also provided the scientific support throughout the project.  

 

Mr. Iván Garrido, Mr. Ba Diep Nguyen, Mr. Jorge Erazo Aux, Mrs Yuxia Duan were 

involved in the preparation and designing of our partially experiment worked for part of the 

data validating and performing the experiments. Mrs. Farima Abdolahi.Mamoudan has 

contributed to the partial COMSOL simulation, numerical implementation for experimental 

work in this project. 

 

Furthermore, the candidate has presented this research in several different scientific 

conferences such as International Congress on Thermal Infrared Applications XXXVIII 

(Thermosense), April 2020, California, USA (remote, electronic venue); 15th Quantitative 

InfraRed Thermography Conference, September 2020, (Porto) Portugal (remote, electronic 

venue); 2020 Structural Health Monitoring &Nondestructive Testing conference, Quebec 

city (remote, electronic venue) and going to present the research at 20th World Conference 

on Non-Destructive Testing, Songdo Convensia, Incheon, South korean, 2022. 

 

Interestingly, our manuscript was pre-selected for QIRT journal publication, article titled: 

Automatic Defects Segmentation and Identification by Deep Learning Algorithm with Pulsed 

Thermography: Synthetic and Experimental Data.  
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Introduction 

Infrared inspection techniques have been widely applied to evaluate subsurface defects and 

hidden structures etc. for the quality control of materials such as metals, composites and so 

on. Due to the analysis of thermal wave propagation and attenuation, each thermal non-

homogeneity perturbs the thermal waves propagation on the specimen surface in comparison 

to the surrounding sound area and we can thus see the changes of the temperature variation. 

The infrared camera and corresponding equipment can record this thermal perturbation and 

the results can be analyzed to obtain further information. This approach also has some 

appreciated advantages such as safety, comparatively low cost, and non-invasiveness etc. 

The main object of Infrared Non-Destructive Evaluation (INDE) is to detect and classify the 

Regions of Interest (ROIs) that could be represented as a defect or an anomaly by analyzing 

the sequence images or singular image. In addition, another goal is to detect such ROIs as 

accurately as possible, visible when the conditions are maintained invariantly. For defect 

identification and segmentation, the Pulsed Phase Thermography (PPT) [1], Principal 

Component Thermography (PCT) [2], Difference of Absolute Contrast (DAC) [3], 

Thermographic Signal Reconstruction (TSR) [4], as well as Candid Covariance Free 

Incremental Principal Component Thermography (CCFIPCT) [5] are powerful tools which 

have been documented to give noticeable results.  

These mentioned methods show remarkable efficacy in improving defect visibility during 

data processing in infrared thermography. Whereas, all of these methods are traditional 

regular pattern-based unsupervised data processing which leads us to seek for innovative 

methods to further enhance the visibility of defect, analyze the inverse problem (defect 

characterization) in the industrial application, all of which are still crucial issues in 

Thermographic Nondestructive Evaluation (TNDE) literature. 

Moreover, the Condition monitoring (CM) [6] is also a crucial topic in non-destructive 

evaluation to avoid the unnecessary expense of supervising and preserving the lifetime 

quality of a machine or aerospace materials from the systems in order to recognize abnormal 

behavior of the components from the machine. Regular inspection of machine and materials 

by a human can easily be hampered by the effects of fatigue. Therefore, an automated 

inspection system compatible with high inspection rates to avoid human inspector fatigue, to 

meet accuracy and quality demands for quantitative analysis, and maintenance costs is highly 

recommended in the non-destructive evaluation of infrared thermography in like manner.  

Since the beginning of the twenty first century, the deep learning [7] (deep neural network)-

one of the fields of artificial intelligence, has made remarkable progress. Initially developed 

in order to make neural networks more efficient, deep learning neural networks have shown 

their capability to outperform most of the other approaches existing previously in a great 

number of applications and this has contributed to make them very popular in many scientific 
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communities. However, one must consider that the computing expense caused by the massive 

structure and multilayers of deep learning in its process and requirement of training datasets 

to be labelled and used in network which still remains unexplored in TNDE projects.  Only 

a few works in the literature dealing with defect detection in active infrared thermography 

coupling with deep learning algorithms due to training complexity and training data 

limitation.  

As a result, there are some innovative points which could further improve the feasibility of 

deep Learning models with infrared thermography. In this project, we are going to exploit 

the proposed deep learning algorithms during the infrared non-destructive evaluation for 

achieving automatic defect detection in order to extract and separate detects efficiently and 

accurately in an industrial NDT system while evaluating these approaches comparatively to 

the other state-of-the-art methods and obtain defect inverse information for those infrared 

signals (including defect characterization issues: defect depth, etc.) as well as enhance the 

visibility of defects (including internal and less visible cracks, delamination, subsurface 

defects case, etc.) by deep learning algorithms. Measurements are going to be conducted 

using active infrared thermography. 

Moreover, these innovative deep learning techniques will be validated and analyzed to enable 

them to be fully compatible to being applied with the infrared non-destructive evaluation 

cases. Several representative pretrained deep learning models will be introduced as a generic 

feature extractor and combined with an infrared thermography database to learn specific and 

detailed features during the learning process. 

It is worth noting that there are several scientific challenges involved in the successful 

application of these techniques in the projects which includes: 

1. The limited training data of thermography for deep learning. Due to issues such as the 

presence of noise, limited resolution, and probing of depths in TINDE, it is more difficult to 

precisely and fully extract defect information;  

2. For the defect characterization issue, it is complex to combine the information of thermal 

contrast and pixels of images with the depth in each pixel of the defect to train the neural 

network; 

3. Analysis with the cases of samples which contain noise and non-uniform heating; weak 

detection signal; limited IR data; etc. 

Our most compatible deep learning models and methods with infrared imaging  to overcome 

these challenging issues in defect detection, to obtain compelling results through the 

subsections are going to introduce and illustrate from chapter 4 – chapter 7 in this thesis as 

follows: a. Automatic detection and identification of defects by deep learning algorithms 

from pulsed thermography data (chapter 4); b. Synthetic and experiemntal data for defect 

segmentation in deep learning (chapter 5); c. Defects visibility enhancement and analysis by 
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deep learning in IRT (chapter 6); d. Defect Depth Estimation for Simulated Infrared 

Thermography Data with Deep Learning (chapter 7). 
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Chapter 1 The state of art and literature review 

1.1 Infrared thermography in Non-destructive techniques 

Non-destructive evaluation (NDE) has been widely applied in science and industry fields to 

detect the different kinds of material properties without causing damage. Due to the fact that 

NDE does not permanently change and modify any sample and article being inspected, this 

has become a highly worth technique that can reduce the cost and save time for any product 

inspection and research. 

In the non-destructive evaluation research field [1], traditional methodologies include eddy 

current testing (ECT), ultrasonic test, magnetic particle testing (MPT), and Infrared 

Thermography. Due to its rapid, contactless, quantitative analysis capabilities, and remote 

imaging infrared thermography is widely applied in the defect detection for various materials.  

Therefore, the development of commercial infrared cameras, the main equipment in 

performing infrared thermography, has been improved in spatial resolution and sensibility. 

Experiments can thus be performed more rapidly and at a lower cost. 

1.2 Approaches In infrared Thermography 

The traditional infrared thermography can be separated into [1] two different branches: the 

object or system has a distinguishable thermal contrast with respect to the ambient 

environment. We could use an infrared camera to display the whole process in the computer 

system directly.  

In active thermography like lock-in thermography (LT), the periodic deposition at a sampled 

frequency is used in the stationary regime to monitor the thermal response when it has 

amplitude and/or phase delay. In pulsed thermography (PT), during a short period time, a 

thermal stimulation pulse is used to heat t sample from inspection. The surface temperature 

is measured under the theory that a different temperature cooling down period will take place 

in the defect area with respect to the surrounding sound area. Square pulse thermography 

(SPT); step heating (SH); point or line scan thermography (LST) and so on, are additional 

methods that can be used. These methods have been designed through specific configurations 

with specific applications [1].  
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1.3 Data processing in infrared thermography 

1.3.1 Thermal Contrast-Based Techniques 

Thermal contrast is the basic concept for the fundamental cooperation in Pulsed 

thermography. Many types of thermal contrast all share the common demand to define a 

sound region, which is a surrounding non-defective area with respect to the subsurface defect.  

The classical definition equation (1.1) is used to compute the thermal contrast which is named 

the absolute thermal contrast [2]:  

   ∆𝑇(𝑡) = 𝑇𝑑(𝑡) − 𝑇𝑆𝑎(𝑡)                                                  (1.1) 

where  𝑇(𝑡) is defined as the temperature at a given time t, the  𝑇𝑑(𝑡) is the temperature of a 

pixel or the average value of a group pixels in the inspected defective location, and 𝑇𝑠𝑎(𝑡) is 

the temperature at time t for the sound area Sa. 

Under normal conditions, we identified a sound region in the image either automatically or 

by some operator. Then the thermal contrast can be computed in all the thermogram with 

corresponding time sequence. The advantages for computing ∆T are a better visualization of 

the defect and the visible comparison with respect to the background. 

1.3.2 Differential Absolute Contrast 

Another definition is differential absolute contrast (DAC) [3], using a sound region, we use 

some initial images (at least one at time t′ in particular) to compute the sound area temperature 

𝑇𝑠𝑎. Suppose that at time t′, this local point temperature in a sound area 𝑆𝑎 is the same as in 

an area containing a defect even though no defect is visible with: 

 

             𝑇(0, 𝑡) = 𝑇𝑜 +
𝑄

𝑒√𝜋𝑡
                                                          (1.2) 

Hence this t′ will be defined as a time value during the period that the pulse has been launched 

at 𝑡0 to the precise moment that the first defective spot appears on the thermogram sequence 

𝑡1 [1]. 

Due to fact that at t′ no existence defective region yet, therefore the sound region local 

temperature has the exact same value with the defective area [4]: 

 

           𝑇𝑠𝑎(𝑡′) = 𝑇(𝑡′) =
𝑄

𝑒√𝜋𝑡′
→

𝑄

𝑒
= √𝜋𝑡

′
∙ 𝑇(𝑡′)                                 (1.3) 

1.3.3 Principal Component Thermography 

Principal Component Thermography (PCT) is the data extraction tool to improve the 

visibility of defects in thermal images through the dimension reduction. [5] However due to 

the computing expense for the covariance matrix, it still suffers from the complexity of the 

analysis and the time-consuming nature of the computation. 
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In this topic, PCT divided the data into a group of Empirical Orthogonal Functions (E0F) 

obtained by Singular Value Decomposition acquired through S. Supposing data can be 

illustrated as a W×H matrix X (W>H), then the Singular Value Decomposition can be 

described as follow [1]: 

 

X = UBV                                                          (1.4) 

 

U is a W×K matrix; B is a diagonal K×K matrix.  V is a K×H matrix. K columns of U 

involve a set of orthonormal eigenvectors corresponding to the K largest eigenvalues of 𝑋𝑋𝑇. 

It is noteworthy that when we unfold the thermal data as a 2D matrix (columns with temporal; 

rows with spatial), then we know the K columns of U represent a set of EOFs. 

 

1.3.4 Statistical Method 

      

 
(a) 
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(b) 

Figure 1. 1 Principle of the statistical method 

(a) Learning stage; (b) Analysis stage  

 (Ibarra-Castanedo C, Maldague X P V. et al: [1]) 

Statistical regions of interest including background and defects have been used in the 

application of depth classification in TNDE. The basic theory described in Figure 1.1, which 

is that thermographic (temperature), amplitude, phase can be modeled as a Gaussian random 

process [2].  In the statistical principle, two stages are included.  First, in a “learning” stage, 

the local means, 𝑚, and standard deviations,𝑠, are computed during each discrete time for all 

the classes including background and known defects, since temperature images with defects 

of known depths and background location are made available. Second, in the analysis step, 

for the image sequence, we analyzed all the pixels one by one. For the unknown pixels, 

computing with m and for each given pixel to be part of a given class. Suppose that individual 

probabilities at each time step are multiplied together to form the global probabilities. The 

most probable category corresponds to the largest probability value. Through this method, 

unknown pixels can be located at the more probable known flaw or sound region.
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1.3.5 Partial Least Squares Thermography  

Partial least squares method is a type of multivariate statistical data analysis method, which 

was first proposed by S. Wold and C. Albano et al. in 1983. It has been rapidly developed in 

terms of theory being applied in different fields recently. The partial least squares algorithm 

organically merged regression patterning (multiple linear regression), data structure 

decomposition (principal component analysis), and correlation analysis between two sets of 

variables (classical correlation analysis) to be implemented simultaneously under united 

algorithm. This is a significantly improvement in the analysis of multivariate database 

statistic. It is a regression modeling method of manifold dependent variables on multiple 

independent variables, which can furtherly solve the issues that were previously unsolvable 

with regular multiple regression. 

The briefs theory of partial least square regression could be illustrated in the following in the 

below: PLSR decomposes the predictor X (𝑛 𝑥 𝑁) and predicted Y (𝑛 𝑥 𝑀)matrices into a 

series of latent variable (loadings, scores and residuals). The PLS model is illustrated as [6]: 

                                                       𝑋 = 𝑇𝑃𝑇 + 𝐸 

 
 

        (1.5) 

                                                             𝑌 = 𝑇𝑄𝑇 + 𝐹 
 

(1.6) 

In equation (1.5) and (1.6), T (𝑛 𝑥 𝑎) is defined as the scores matrix and its elements is 

represented by 𝑡𝑎  ( 𝑎 = 1,2, … , 𝐴 ). These scores can be deemed as a small amount of 

underlying or latent variables being responsible for the systematic variations from X. The 

matrices P(𝑁 𝑥 𝑎) and Q(𝑀 𝑥 𝑎) are named as the loadings (or coefficients) matrices which 

illustrated the relationship between the original data matrices X and Y and the variables in T. 

At the end, the matrices E (𝑛 𝑥 𝑁) and F(𝑛 𝑥 𝑀) are also named residuals matrices which 

means the noise or irrelevant information from X and Y separately.   

                

(a)                                                    (b) 

Figure 1. 2. The conceptual description of PLS model (b) and its correspondingly classical 

linear regression algorithms (a) 
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1.4 Defect detection in infrared thermography NDT 

1.4.1 Defect Detection 

The most important application in TNDT is to detect the existence of subsurface defects. The 

traditional methodology involves checking out dynamic thermal data on the screen by the 

operator who has a dynamic eye-brain entity filtering to reduce noise. Once trained well, we 

could be able to see the difference between the defect and the non-defect area based on this 

operator. 

In order to further improve the inspection to get more obvious and reliable detection, a new 

innovative method has been used. This method set up a threshold 𝑇𝑡ℎ . For a thermal contrast 

image, then if pixel values>𝑇𝑡ℎ; they will be set to 1, otherwise, they will be 0. In processed 

images, defects are indicated by 1 value pixels. Besides, to solve the difficulty of selecting 

threshold, distance criterion has been proposed to achieve the automatic defect detection [2]. 

1.4.2 Defect Characterization 

The original defect sizing approach is to compute the thermal contrast image’s gradient when 

the it arrives the maximum. Since defect visibility reaches its maximum at highest contrast, 

therefore this moment is easier for defect detection. However, the edge of the contrast curve 

is also blurred since if there the thermal front spreading tridimensional during maximum 

thermal contrast moment. The mean of an iterative technique was proposed: first recording 

the thermal data by pulse thermography during the elapse time, then for every single 

thermogram the defect size is recorded as the thermal contrast arriving at the half of the 

maximum amplitude, afterwards a plot of the defect size is defined by the function of square-

root with time. 

The interesting parameters for the quantitative characterization are temperature contrast 

values computed at specific times through thermal contrast-based methods including: time 

of maximum contrast tmax, half maximum contrast T1/2, time of maximum slope 𝑇𝑠𝑙𝑜𝑝𝑒, or 

time of the beginning of thermal contrast. During the traditional specific experiment, to 

extract these parameters from the recorded thermogram sequence could be instrumental to 

subsurface detection [1]. Regarding the evaluation of the defect characteristics for the depth 

𝑍𝑑𝑒𝑓, it can also find some similarity characterization with the thermal resistance 𝑅𝑑𝑒𝑓 and 

the size which is essentially represented by defect diameter 𝐷𝑑𝑒𝑓. 

1.5 Neural Network Application in defect detection for TNDE 

A neural network is an efficient mathematical model to analyze diverse and non- linear reality 

issues, due to the potentially powerful ability to detect and classify targets under changing 
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conditions of signature or environment. Through the provided training data, networks can 

generate the learning information from these examples for the data, not contained in the 

training database. 

The single neuron block model can be described below. We can also make an analogy 

between a neuron and a cell with several inputs 𝑋1,𝑋2 …,𝑋𝑛, and one scaler output. All the 

inputs from each neuron multiply with corresponding weight 𝑊1 ,..,𝑊𝑛 , and then these 

products are accumulated linearly. The global scaler S= 𝑋1 ∙ 𝑊1+𝑋2 ∙ 𝑊2+…+𝑋𝑛 ∙ 𝑊𝑛. The 

global scaler S is an input for another activation function: 

 

𝑌 = 𝑓(𝑆)                                                               (1.7)  

This activation function 𝑓(. )  is a threshold function corresponding to a different 

mathematical transformation. Based on this single neuron block, there are many possible 

diverse architectures which can involve a multitude of layers, longer feedforward or back-

propagation procedure. 

During the 1990s, the researchers started to use neural networks as a TNDE defect detector 

and classifier for analysis detection issues. In 1993 D. R. Prabhu et al. [8] applied two Neural 

networks to detect subsurface corrosion including a network to detect flaw and a corrosion 

estimation network. He tried to use these two networks through Parallel or Serial architecture 

connection to process data. Experiment results reveal that to use both these two networks can 

obtain greater results as shown in Figure 1.3 than only using one of network to train 

separately. Beside it reveals clearly that a huge training database also requires a longer 

period. 

 
Figure 1. 3 Two possible architectures for dual network processing 

a. Parallel architecture; b. Serial architecture (Martin, R.E., Gyekenyesi, A.L. [3]) 
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In 1997, H. Tretout, et al. [9] used the variation curves of temperature in time to represent 

each pixel of images. Then to proceed to spatial analysis, a neural network is used to train 

and distinguish the difference between the thermal curves of the defects from the non-defect 

regions curves. In order to choose the input of Artificial neural network, the authors selected 

three groups of curves respectively: raw curves; derivative of raw curves; contrast curves to 

make the comparison. The results prove that training on the curves of temperature contrast 

could improve the situation, but a precise theoretical base is also required to generate accurate 

temperature reference curves. 

In 1998, X. Maldague et al. [10], presented the first study to acquire quantitative data basing 

on the analysis pulsed phase thermography (PPT) results. During the experiment of this 

paper, the neural network has been used to test on the aluminum and plastic specimens for 

detecting the depth of each subsurface defect. The results revealed that the quantitative 

analysis basing on the neural network is limited by the insufficient sampling frequency of the 

thermal diffusivity with respect to the interest materials. 

In 2000, S. Vallerand et al. [11] proposed an innovative statistical processing method. This 

method was compared in terms of defect detection and characterization with the machine 

learning method, involving two different architectures of neuron networks (Perceptron 

(PNN) and Kohonen network (KNN)). The proposed novel method was also compared with 

the traditional statistical method: Gaussian random process. During the training, PNN is 

using supervised learning due to the training samples that are provided. However, unlike 

perceptron network, KNN involves unsupervised learning since this network determines how 

to classify the training samples into several groups. As a result, PNN implemented a greater 

performance than KNN. The reason for the poor performance in KNN is because the lack of 

quantity information. Therefore, the networks are not able to adjust the weights and bias. It 

also reveals that enough data is an Achilles heel during the neural network training. 

More detailed neural network analysis with TNDE was undertaken in a new study entitled. 

The new study in defect detection and characterization of defect depth with neural network 

shown by A. Darabi, et al. [12]. In this paper, authors used neuron network to extract the 

defect feature with carbon fiber reinforced plastic (CFRP). Two types of networks with 

multilayer have been applied. The running-contrast data curves vector was regarded as the 

input-output pair during the defect detector network training. Inversely, defect depth 

estimation networks keep the contrast vectors as input, replacing pixel depth of contrast 

vectors as output. These networks train with simulated and experimental data. The 

experimental results further prove defects quantities information can be successfully 

characterized in TNDE. 
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In 2008, H. D. Benitez et al. [13] proposed a feature extraction of data basing on differential 

absolute contrast (DAC) with artificial neural networks to identify the defects in composite 

materials. They combined the DAC with thermal quadrupoles in order to reduce the non-

uniform heating and the influence by the shape of plate in the inspection. This method 

enhanced the visibility of defective area from the sound area and eliminated the necessity of 

picking up a sound area. 

In [14], H. D. Benitez et al. developed a new approach for defect characterization in TNDE 

with learning machines (neural networks, support vector machines, radial based function). In 

this study, these learning machines combined together to evaluate the performance of defects 

detection in composite materials. However, during this study, it can also show the 

disadvantage of a neuron network which is only useful for testing the similar type material 

when it trained. And it required a group of defects and samples to train the system. 

In 2012, L. Junyan et al. [15] proposed a single hidden layer network to estimate the depth 

of subsurface defects in lock-in thermography. Experimental samples included composite 

and metal materials. In this study they use a feedback network architecture to obtain two 

neuron cells output layer respectively corresponding with identifying depth and measuring 

defect depth as shown in Figure.1.4. 

 
Figure 1. 4 An artificial neural network with one hidden layer and an output 

(L. Junyan et al. [15]) 

During the last five years, neural networks were still actively applied for the subsurface 

defect’s detection with composites or metal materials in TNDE research fields by J H. Sheng 

et al. [16] 2013; R. Marani et al. [17] 2016; H. Halloua et al. [18] 2017. Artificial Neural 
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Networks were used to characterize the defect depth, shape, and location. Feature extraction 

through neural networks has shown its ability to predict the results basing on test samples as 

accurately as possible with the ground truth of data, and generate the learning information 

from those samples for the data are not contained in the training datebase. However, to 

improve the efficiency of common neural networks, fitting the data with the deeper learning 

structure is still an interesting topic which requires further investigating with this project. 

In 2019, Yuxia Duan et et al [19] design a neural network to classify the type of defects in 

the composite materials which reported how to adapt a neural network combine with thermal 

databases to classify the types of defects such as air, oil, and water which could be able to 

influence the aircraft material performance. The thermal databases from two different 

resource experiment and finite element method were used to train and extract feature. The 

original thermal data, and the coefficients of thermographic signal reconstruction were being 

used to train, test, evaluate with two layers neural network. Furtherly, the Quantitative 

comparisons and analysis showed that the data feature extracted from using coefficients as 

performed better than the one using original data which show more precise result and test 

repeatability and reveal more generalizable. 

1.6 Deep learning algorithm application for defect detection in TNDE 

In comparison to the common neural network, deep learning is making a huge improvement 

in solving issues which were difficult to handle in the artificial intelligence research fields 

for many years. It has turned out to be impactful at discovering the meaningful feature from 

the highly and complex dimensional structures. As a result, it was applicable to different 

kinds of research fields.  Besides, in regards to beating records in computer vison, it has 

surpassed other learning techniques in predicting and analyzing the activity basing on 

scientific data especially in image recognition and classification. 

Why use a deep neural network? 

As we can see, in the data trained model, detailed and enough parameters to train data can 

lead to a much better performance for the trained results to some extent. However, in real 

training issues, collecting a huge amount of suitable data is a computationally expensive task. 

During the deep neural network training, every neuron represents a basic classifier (every 

classifier for a different attribute) and the neuron of every layer is shared by the following 

layer’s neurons as a module to build classifiers, and this modularization is learned from data. 

That is why we are using deep neuron networks to extract more effectively data used to train 

a learning system, in comparison to other artificial intelligence learning methods. 

Through the investigation in the field of TNDE, the research literature on infrared 

thermography for defect detection using deep learning algorithms is a new and relatively 
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unexplored topic. Based on the relevant research which scholars have carried out on detection 

of defect in machine vision and neural networks during the last decades, to develop a 

precisely enough and faster learning feature deep learning algorithm will have a meaningful 

impact. 

For this project, we propose to design the advanced deep learning algorithm to extract more 

information from IR thermography for Non-Destructive evaluation in order to achieve 

infrared defects visibility enhancement; automatic defect detection and segmentation; defect 

depth estimation; thermal data sequence model reconstruction etc. This would also lead to 

improvement in the detection of deeper subsurface defects for which IR signals are limited. 

1.7 Basic theory of deep learning 

1.7.1 Supervised learning 

During the training in deep learning, regarding shallow or multi-layer of architecture, the 

supervised learning [20] has been the most common and widely used form of learning 

method. Before the training, first we collect a huge amount of data such as   a set of images, 

each of data has been labelled with own corresponding kind. At output of this training, a 

series of score vectors have been shown on the images or other kinds   of data. The target for 

this training is to have the highest score for the desired category in all data. However, this 

situation is less possible to occur during the initial stages of learning. We established a loss 

function to minimize the error between prediction scores and the objective scores. The neural 

network adjusts the internal variables with respect to each neuron of all the layers based on 

the error from loss function. We define these internal variables as weights which are 

parameters that could make an analogy with ‘knobs’ to define this machine. It is also 

noteworthy that in a complex construction learning system, a huge amount of adjustable and 

labelling data must be provided to train this machine. 

1.7.2 Unsupervised learning 

The researcher introduced unsupervised learning [21] to design feature detectors layers 

without labelling data. Therefore, the objective for feature detectors of each layer learning 

could be possible to reconstruct the feature information from the previous layers. In practice, 

through the ‘pre-training’ procedure, complex highly dimensional feature detectors evolve 

from several layers using the objective from the reconstruction, and the weight can also be 

set up as sensitive values initially. In the end, in the output of the final layer, the 

reconstruction feature could be added at the top of the network and then the fine-tune training 

procedure start up at the entire deep network. 
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1.7.3 Multilayer neural networks and backpropagation 

From Figure 1.5, the input space can be distorted by the multi-layers of the neural network. 

Neural networks also classify the data (such as the data on the red and blue lines) linearly 

separable. We also see the input feature space (in the left) and then hidden feature space 

transformed from input (in the middle). In addition, one can see 2 input neurons; 2 hidden 

neurons; one output neuron in this architecture. However, usually tens or hundreds of 

thousands of units can be contained in the networks used for object recognition or image 

segmentation. 

 
Figure 1. 5 Multilayer neural network 

((Deep learning Review Yann LeCun et al [22]) 

 

1.7.4 The Chain Rule of derivatives 

 
Figure 1. 6 The chain rule of derivatives 

(Deep learning Review Yann LeCun et al [22]) 
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The chain rule of derivatives as shown in Figure 1.6 indicated that the small effects from x 

finally end up at z and also shows the connection from input x to the final output y. When a 

small difference of x changed y, then ∆𝑦 transformed the difference to the final output z. In 

the mathematical description, the variation of ∆𝑥  multiplied by the partial derivative 

definition ∂y/∂x to create a change of ∆𝑦 in y. Similarly, the variation of ∆𝑦 creates another 

change of 𝛥𝑧 in z. The researcher got this inspiration from the equation substitution. Besides, 

this chain rule also works when all the format of data is in the Jacobian matrices). 

1.7.5 The forward pass in a neural net 

From the equations in Figure 1.7, the complete forward-propagation is shown with the hidden 

and output layer. Each neuron of layers constructed a learning block to compute the results 

of feed-propagation. In the first steps, the total input z is are computed from each unit, then 

this input is multiplied with the weights from its corresponding unit to construct a total weight 

sum to the output unit. In this case, we omitted bias terms for simplicity. There are several 

non-linear functions which are useful in neural networks such as the rectified linear unit 

(ReLU):  𝑓(𝑧) = 𝑚𝑎𝑥(0, 𝑧), as well as the logistic function, 𝑓(𝑧) = 1(1 + 𝑒𝑥𝑝(−𝑧)). 

 
Figure 1. 7 A forward pass in a neural net with two hidden layers and one output layer 

(Deep learning Review Yann LeCun et al [22]) 
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1.7.6 Back propagation 

 
Figure 1. 8 The equations used for computing the backward pass 

(Deep learning Review Yann LeCun et al [22]) 

Figure.1.8 shows the difference derivative of the output regarding the units in each layer 

represent by a weighted sum of difference derivative from the layer above totally. Afterward, 

these difference derivative regarding the output is converted into the inputs by multiplying 

the gradient from 𝑓(𝑧).  At the output layer, the error derivative in regard to the output unit 

is computed by differentiating the cost function. For example, if the cost function for unit l 

is 0.5(y1 − t1)2, where t1 is the target value, the error derivative with respect to the output 

is y1 − t1. Besides, once the ∂E/ ∂Zk is known, the error-derivative for the weight wjk on 

the connection from unit j in the layer below is simply yj ∂E/ ∂Zk. 

1.7.7 Convolutional neural network 

Convolutional neural network is created in order to achieve feature extraction and learning 

through the multiple arrays data. For example, a color image is represented by a 3D matrix. 

This 3D matrix contains 2D spatial pixel and three dimensions of color category. At the same 

time a lot of data modalities could be regarded as multiple arrays, such as: 1D Sequences of 

signal: language; 2D images; 3D for the video or sequence images. Behind this Convolutional 

neural network, we can see four important ideas from multilayers; the information of signals; 

the sharing of weights; the connections of location of pixel. 
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As shown in Figure.1.9, the authors used a classical convolutional architecture network to 

detect a dog in the image. The outputs from different levels of layers are horizontally 

illustrated in the Fig. The authors regarded each rectangular image as the learned features 

output extracted from the raw images to detect the properties of the images and corresponding 

to each position in the images. The diverse feature information flows from bottom to top to 

represent the different level of feature extraction, such as the primary level features working 

as the rough edge detectors. Corresponding to each image class, a score is computed in 

output. 

 
Figure 1. 9 The architecture of a typical ConvNet 

(Deep learning Review Yann LeCun et al [22]) 

1.7.8 Recurrent neural networks 

 
Figure 1. 10 A recurrent neural network and the evaluation in time of computation during 

the forward propagation 

(Deep learning Review Yann LeCun et al [22]) 
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For some projects that are relevant to sequential inputs, it is often a wise choice to apply the 

recurrent neural networks (RNNs) in it. As shown in Figure.1.10, RNNs process the input 

data each element at a time respectively. At the same time a ‘state neuron’ save all the 

memory from the past history for each single unit of the sequence. We can also make an 

analogy of the outputs from the hidden units in every single time like the outputs form the 

different neurons in one hidden layer of a convolutional neural network. For the training, it 

is also problematic since the shrink and explosion of gradients in each discrete time may 

result in vanish or explode of gradients finally. 

RNNs, once having the evaluation through the discrete time, can be regarded as a rather long 

feed-forward network, where all the layers share the same weights. Although the main 

objective for the RNN is to extend terms of dependencies for learning, empirically, an amount 

of experiments shows that it is difficult to store information too long. 

Besides an innovative idea is to enlarge the network with enough memory. The first 

inspiration for this idea arises from long short-term memory (LSTM) networks. This network 

owns one unique hidden unit to save the memory from the inputs for a long time. This unit 

acts like an accumulator, having a self-connection for the next time corresponding to a 

weight. Therefore, it saves its own real-value and accumulates the external source. This self-

connection unit combined with another one by multiplication of the values to make decisions 

of whether or not to clean the memory. 

Subsequently, LSTM networks have improved the efficacy of the memory of the network in 

comparison to RNNs, in particular for the case when it has multi-layers for every single step. 

Besides, nowadays LSTM or similar forms of gated units are useful for combining with the 

different types of encoder and decoder networks to improve the performance.  
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1.7.9 Transfer learning Strategy  

Deep multilayer neural networks have been proven to outperform the state of the art for 

difference image processing databases. Especially CNNs illustrated an impressive performance 

in image segmentation. In classical deep neural networks, a certain amount of data is required 

to learn the features efficiently. However, limitation of the infrared thermography image dataset 

in this project is not the same case. 

In practice, researchers rarely train an entire Convolutional network from scratch due to the lack 

of sufficient number of datasets. To extract meaningful deep features, usually we use a pre-

trained ConvNet training on a huge dataset and then take the convolutional neural network as a 

generatic feature extractor with fixed parameters initially for each particular task [23]. The main 

Transfer Learning scenarios can be described as follows: 

• Using ConvNets as a fixed feature extractor  

Pre-training the Convolutional neural network on ImageNet then extracting from the final fully-

connected layer corresponding to a series of class score for each particular task and treating the 

remaining ConvNet as feature extraction for new datasets. Besides, different pre-trained 

network will output different dimension vector for the images. Those vectors are output from 

before the activation in hidden layers. For example, we used the ReLUd activation to 

thresholded feature at zero. Finally, a softmax classifier or SVM could be trained on to classify 

the data. 

• Fine-tuning the ConvNets as Pre-trained Model 

Secondly, not simply replacing and retraining the classifier on the later layers in a network for 

a new database, but also fine-tuning the parameters through back- propagation to learn the 

feature. There are two options for fine-tuning: tuning all the layers for this ConvNet or only 

fine-tuning the higher-level portion due to the over- fitting issue. The reason is inspired by the 

observation that the general features (e.g. edge detectors) are always contained in the earlier 

layer in a ConvNet that could be useful in other tasks. However, we use the layers in the later of 

network to detect more specifically feature distribution of data. 

In this project, there are three available options for pre-training CNNs: VGG, ResNet features 

which can help us overcome the lack of enough training data in infrared thermography for deep 

learning. Indeed, the different types of pre-trained architecture convolutional neural network 

have been widely applied in the computer vision research community. 

• VGG features 

VGG-16 is a deep convolutional network for object recognition developed and trained in 

Oxford’s Visual Geometry Group. [24]. VGG is pre-trained on more than one million images. 

A Pre-trained network can be regarded as a generic feature extractor to achieve learning of 



 

14 

 

 

 

 

 

transfer [25]. Considered as a feature extractor, the vectors from the outputs from a pre-

trained network can be fed into a new network like soft-max classifier. There are also two 

reasons for this strategy: First, the first several layers of CNNs always can extract the general 

and useful features for basic image segmentation. On the other hand, empirically, we take 

the pre-trained networks as an initial network and then a group of particular training samples 

with fine-tuning (thermal data for defect detection). Since all the weights and bias are tuned 

with particular tasks, the representative feature is adjusted to be more meaningful, the method 

can save an amount of data for learning than training in general, and it also trained much 

faster [25]. 

• ResNet feature 

Residual Network was developed by K. He et al. [23] who were awarded the best paper at 

the ILSVRC 2015. In order to address a degradation problem, the authors introduced this 

learning framework which involves the special skip connections.  

Rather than stacking a few layers directly to a target underlying projection, they force these 

layers to combine with a residual projection. First, defining this target underlying projection 

as 𝐻(𝑥), then they stacked plain layers to fit another projection: 𝐹(𝑥) = 𝐻(𝑥) − 𝑥. The 

original projection is recast to F(x) + x and this formulation of 𝐹(𝑥) + 𝑥 could be realized 

by a feed-forward neural network with special skip connections as shown in the Figure 1.11. 

This building block could be defined as equation (1.8): 

                     𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥                                               (1.8) 

Here   x   and   y   are   the vectors from the input and output layers.  The function 𝐹(𝑥, {𝑊𝑖}) 

represents the residual projection to implement. 

In order to match the dimensions, we add a linear projection Wc in the shortcut connection, 

                        𝑦 = 𝐹(𝑥, {𝑊𝑖} + 𝑊𝑠𝑥                                            (1.9) 

 
Figure 1. 11 Residual learning: a building block 

(He K, Zhang X et.al [23]) 
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Figure 1. 12 Example network architectures for ImageNet.  

(He K, Zhang X [23]) 
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In article [23], the authors test different plain/residual nets to observe the consistent 

phenomena. As described in Figure.1.12, the plain baselines in the middle are inspired by the 

VGG nets [35] on the left. Each convolutional layer is structured with 3 × 3 filters. This 

down-sampling procedure performed with convolutional layers with stride 2 and ends with 

an average pooling layer globally and a soft-max classifier with a certain amount of output. 

In Figure 1.12 at the right side, based on the plain network, the authors attached shortcut 

connects to reshape the network in the middle into residual version. The dotted lines are 

introduced in case of the increasing dimension. In Figure.1.12 below, two possible choices 

have been provided to solve this issue: (1) Using zero padding for increasing dimensions in 

shortcut performs identity mapping. (2) A shortcut path Wc in Equation. (1.9) is set up to be 

suitable with the dimensions. For these two choices, the convolutional net is performed with 

a stride of 2. 

1.7.10 Region Proposal Networks (RPN) 

During the process of the region proposal network (RPN) process, a group of rectangular 

object regions are outputted with corresponding score. A convolutional architecture network 

achieves this process, then mingles with the Fast R-CNN network. 

In order to generate the feature proposals, a tiny network is over the entire final feature map 

output from the last convolutional layer in the convolutional architecture network to slide a 

spatial window, then generate a tiny feature map as input. All of the features have been 

extracted and are then put into another two other types of layers: a layer for regression (reg); 

a layer for classification (cls). 

• Anchors 

At each sliding window location, a set of K-object proposals is defined. We suppose that the 

number of maximum possible feature maps is denoted as k in every single location. As a 

result, 4k outputs and 2k scores encode as the coordinates and probability for each feature 

map respectively. Each feature map is name as an “anchor”. We use the scale and aspect ratio 

parameters to adjust the total number of “anchors”. Anchors improve the handling of objects 

of different sizes and aspect ratio. For example, for a feature map of size 𝑊 × 𝐻, there are 

𝑊𝐻𝑘 anchors as illustrated in Figure.1.13 below [26]. 
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Figure 1. 13 Region Proposal Network 

(Ren S, He K, Girshick R, et al: [26]) 

• Training of RPN 

 Object probability is with reference to anchors, eg: 

 1. Anchors is regarded as positive samples if 𝐼𝑂𝑈 > 0.7 (regular value) or 𝐼𝑂𝑈 is max. 

 2. Anchors is regarded as negative samples if 𝐼𝑂𝑈 < 0.3 (regular value). 

 Lost function: 

                𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖,𝑖 𝑝𝑖

∗) + 𝛾
1

𝑁𝑟𝑒𝑔
∑ 𝑃𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗)𝑖                    (1.10) 

𝑡𝑥 = (𝑥 − 𝑥𝑎)/𝜔𝑎 , 𝑡𝑦 = (𝑦 − 𝑦𝑎)/ℎ𝑎 ,                           (1.11) 

𝑡𝑤 = 𝑙𝑜𝑔(𝜔/𝜔𝑎) ,  𝑡ℎ = 𝑙𝑜𝑔(ℎ/ℎ𝑎) ,                                    (1.12) 

𝑡𝑥
∗ = (𝑥∗ − 𝑥𝑎)/𝜔𝑎 ,  𝑡𝑦

∗ = (𝑦∗ − 𝑦𝑎)/ℎ𝑎 ,                                 (1.13) 

𝑡𝑊
∗ = 𝑙𝑜𝑔(𝜔∗/𝜔𝑎) ,  𝑡ℎ

∗ = 𝑙𝑜𝑔(ℎ∗/ℎ𝑎) ,                                (1.14) 

Here we illustrated those parameters in equation. (1.10) and equation. (1.11) – (1.14) from 

the original paper [37] as followed: 
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 i: index of an anchor in a min-batch. 

Pi : Probability of anchor being an object  

Pi
∗ : A ground truth label for 1 if it is positive or 0 if it is negative. 

ti: A vector representing the coordinate’s parameters of the predicted bounding box. 

tx
∗ : The ground truth box associated with a positive anchor 

Lcls: The classification loss is the loss over two classes (object or not object) 

Lreg: The regression loss -robust loss.  

x, 𝑦, 𝑤, ℎ:   the box’s center coordinates and its width and height. 

Ncls, Nreg: Normalization terms. 

• Fast R-CNN  

Fast R-CNN uses a technique such as ROI-Pool (Region of interest Pooling) to reduce the 

computation time spent to identify region proposals in each image as used by the R-CNN 

algorithm. Fast R-CNN takes as input a series of images and a list of R object proposals 

which for the purposes of this project, are the thermal defects contained in the subsurface of 

our samples. The second insight of this approach is to jointly train the CNN, classifier, the 

bounding box regression in a single model with a soft-max layer above the CNN to output 

the classification of the defect. 

1.7.11 Generative adversarial network basic theory 

Generative Adversarial Network (GAN) is proposed by (Goodfellow et al. [27]) to be used 

as a model to generate simulated data in unsupervised learning. To some extent, the 

generative data from GAM could be indistinguishable from the real data when the dataset is 

provided. The relationship between the main networks of GAN can make an analogy like a 

mini-max game is played between them. During the training first, we sample a vector z from 

the prior gaussian distribution P(z). We design a generator network G to learn the feature 

from the distribution P(z) through the vector z randomly. This generate network projects a 

new output data G(z). Another network called the discriminator D which has the 

responsibility to distinguish the true data (from training distribution) and fake input (from 

the generator)” D’s objective is D(x) =1 for real x and D(x)=0 for fake x. While the generator 

is optimized to create realistic data that fools the discriminator, the discriminator also evolved 

the ability to precisely distinguish true and fake. 

Basic Generative Adversarial Network Algorithm: 

Initialize Parameter 𝜃𝑑 of Discriminator 𝐷(𝑥) and 𝜃𝑔 of Generator𝐺(𝑥) 
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In each training iteration： 

1. Sample m examples {𝑋1,𝑋2,...,𝑋𝑛} from data Distribution 𝑃𝑑𝑎𝑡𝑎(𝑥); 

2. Sample m noise samples {𝑍1,𝑍2 , ..., 𝑍𝑛} from the prior 𝑃𝑝𝑖𝑜𝑟(𝑥); 

3. Obtaining generated data {𝑋′1,𝑋′2 , ..., 𝑋′𝑛},𝐺(𝑋′𝑖) = 𝐺(𝑍𝑖); 

4. Update discriminator parameter 𝜃𝑑 to maximize 

𝑉′ =
1

𝑚
∑ log 𝐷(𝑥𝑖) +

1

𝑚
∑ log (1 − 𝐷(𝑥′

𝑖))𝑚
𝑖=1

𝑚
𝑖=1                                   (1.15) 

𝜃𝑑 ← 𝜃𝑑 + 𝛽∇V′(𝜃𝑑)  (for this procedure to learn𝐷(𝑥),we repeat K times) 

Sample another m noise samples { 𝑍1,𝑍2 , ..., 𝑍𝑚} from the prior 𝑃𝑝𝑖𝑜𝑟(𝑧) 

5.Update generator parameter 𝜃𝑔 to minimize 

1

𝑚
∑ log (𝐷 (𝐺(𝑧𝑖)))𝑚

𝑖=1                                                                            (1.16) 

𝜃𝑔 ← 𝜃𝑔 + 𝛽∇𝑉′(𝜃𝑔) (for this procedure to learn 𝐺(𝑥),we repeat only once) 

1.8. Evaluation Metrics in Deep learning with TNDE 

In this section, the main metrics to quantify and analysis the detection accuracy will be 

discuss in the following up subsections which include: 1. Confusion matrix, Accuracy, 

Precision, Recall, F-scores; 2. Receiver operating characteristic (ROC); 3. Probability of 

detection (POD); 4. mean Average Precision(mAP); 5. Signal to noise ratio (SNR & Peak 

signal to noise ratio (PSNR)  

1.8.1 Confusion matrix Accuracy, Precision, Recall, F-scores 

 

A confusion matrix (classifier or diagnosis) is a mapping of instances between certain 

classes/groups. Specifically, for a binary prediction problem, the results can be classified into 

two types as positive (𝑝) or negative (𝑛). Then four results could be obtained into in a binary 

classification. Therefore, given an instance, if the ground truth is positive and it is predicted 

as positive, it represents as a true positive (TP); if it is predicted as negative, it represents as 

a false negative (FN). If the ground truth is negative and it is predicted as negative, it 

represents as a true negative (TN); if it is classified as positive, it represents as a false positive 

(FP). When the certain number of samples and instance being calculated, the two-by-two 

confusion matrix could be illustrated a disposition from the samples as shown in the below: 
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Figure 1. 14 Confusion matrix 

The parameters’ rates in Figure.1.14 are calculated as following: 

 

The true positive rate (also called recall): 

 

𝑡p rate =
Σ True positives 

Σ Total positives (or Condition positive)
                                                                        (1.17) 

 

The false positive rate (also called false alarm rate): 

 

𝑓p rate =
Σ False positives 

Σ Total negatives (or Condition positive)
                                                                      (1.18) 

 

Additional rates associated are defined as: 

 

The true negative rate (also called specificity): 

 

   𝑡𝑛 rate =
Σ True negatives 

Σ Total negatives (or Condition positive)
                                                                      (1.19) 

 

The false negative rate: 

 

𝑓𝑛 rate =
Σ False negatives 

Σ Total positives (or Condition positive)
                                                                     (1.20) 

And: sensitivity = recall 

Accuracy in the equation (1.21) is one of the evaluation metrics to analysis that the number 

of samples being correctly classified divided by the number of all samples. In the general, 

the higher the correct rate, the better model that being obtained. However, although accuracy 
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is a meaningful evaluation metric to represent good model, a high accuracy rate does not 

directly represent that an algorithm is compatible. 

  

                                          𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                   (1.21) 

 

The precision rate equation (1.22) which indicates how many of the samples predicted to be 

positive are really positive samples for the predicted results. Furtherly there are two 

possibilities options to classify positive, one is to predict positive class as positive class (TP), 

and the other is to predict negative class as positive class (FP), which indicated equation 

(1.22), 

 

                                                  𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                      (1.22) 

   

Recall indicates equation (1.23) how many positive cases in the sample were predicted 

correctly for the raw samples, correspondingly, there are also two possibilities for the recall 

metrics, one is to classify the original positive class as positive (TP), and the other one is to 

classify the original positive class as negative (FN). 

 

                                                       𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                          (1.23) 

As a result, P(Precision) and R (Recall metrics has some contradiction to some extent).  It is 

necessary to consider them together and to focus one of metric more than another in the 

projects. In this project, we focus more on the recall metrics and introduced the F-Measure 

(F-score), by calculating the F-value equation (1.24) to evaluate the results and analysis. 

                                                F score = (β2 + 1)
Precision×Recall

(β2×Precision)+Recall
                                  (1.24)    

1.8.2 ROC concept 

The Receiver operating characteristic (ROC) is a type of conceptions which helps to 

visualize, organize and compare classifiers derived from model performance. ROC metrics 

have been applied in different fields as signal detection (Swets et al. [28]), diagnostic systems 

(Swets [29]), medical decision (Zou [30]), and the earliest one in machine Learning 

(Spackman [31]). Although it has been widely chosen as a standard method in different 

engineering fields, ROC is still quite rarely applied in the thermographic field. (Bison et al. 

[32]). 

The ROC curve, also called the subject operating characteristic curve, is based on the 

prediction results of machine learning to sort the samples into positive classes, and then 
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calculate the true case rate and false case rate. The ROC metric is drawn in the graph where 

the vertical axis defined as false positive rate and the horizontal axis defined as the true case 

rate. In practice, only a limited number of test data samples can be used to draw the ROC 

curve, so the ROC curve presents an unsmooth line, and the area under the curve is the AUC 

value, the larger the AUC value is, the better the classification effect is. 

1.8.3 Mean Average Precision (mAP) 

The precision and recall curve (P-R curve) are basically the way of visualizing the way of 

the deep learning models performing while the confidence threshold is decreasing that your 

model is making prediction that. 

mAP (mean average precision) [33] is calculated as the mean value of average precisions.  

Mean average precision is a measure of recognition accuracy in target detection and an 

indicator to measure the detection accuracy in object detection. In multiple category target 

detection, a curve can be plotted for each category based on recall and precision. mAP is the 

area under the curve, and mAP means averaging the AP for each category again.  

In the Figure 1.15 in the below, these are the drawing mAP curve which represent visual 

depiction but also has an illustration of the sense of the calculations of underneath for each 

average Precision. Each color of curve is corresponding to a specific class (red; green; blue; 

organs). 

 

Figure 1. 15 The definition of mean average precision 

1.8.4 Probability of detection (POD) 

POD curves are the generally accepted way to quantify of nondestructive inspection 

reliability [34]. It is usually expressed as a function of the flaw size, but some time as a 
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function of other parameters metric (such as ratio = defect size/defect depth). POD curves 

are usually estimated from data taken from inspections.  

Can we find a crack or defect of size a reliably?  

We would like to find a defect at least 90% probability of detection with 95% confidence, 

which is a traditional-defined inspection approach to indicate a good trade-off what we can 

achieve in specific method. In NDT inspection, a confidence interval score needs to be 

defined as a statistical method to evaluate the POD metric for the practical testing. Therefore, 

the practical principle (90/95) in inspection industry represent the inspector could find the 

defect(flaws) with 90% chance and has 95% confidence to make sure about it. In modern 

inspector principle, 29/ 29 minimum rules had been introduced as the standard of the 

saturation of the 95% confidence score (29 flaws can be detected in 29 flaws totally) which 

is high burden to the inspector and need to assume the POD increases with the increasing 

flaw size.  

In additional, the POD metrics are adapted to evaluate the minimum flaw size or ratio (defect 

size/defect depth) which being acceptable and reliably from NDT method. A good way is to 

illustrate the probability or percentage of detects that being detection against the minimum 

size of defects that being detected and introduced a threshold. In the ideal situation, all the 

defects that over than some key size that are going to be detected otherwise will not being 

detected (smaller than that). In Figure 1.16, it has introduced a POD curve for the description, 

which indicated that the defect that higher than 2.2 mm corresponding to 80% probability 

being detected, furtherly we have 90% confidence to make sure that the defects are not bigger 

than 3.3mm. In contrast, we can also state with 90% confidence that a defect at 2.2mm high 

could be detected over than a POD of 65%. 

In regular, there is two way to analysis the inspection results. Based on the quantitative 

stimulus responses, the inspection results can be recorded as â. In another way, the inspection 

results can be also classified as found/ non-found of the flaws (1 indicates a flaw was found; 

0 indicates a flaw was no found), which is being called as binary data or hit/miss data. 

Therefore, the POD function could be formulated in two different formats either by 

quantitative response data (â vs. a data) or the hit/miss data. The size of defect (or other 

variables such as the ratio (𝑠𝑖𝑧𝑒/𝑑𝑒𝑝𝑡ℎ) need to be uniformly spaced on a suitable range on 

a Cartesian scale, which is a common practice in recommended [35]. It has to realized that if 

a large defect is always being found (or being saturating in the recording device) or a small 

defect is always being missed (or the noise obscuring the signal in the system), which means 

the only limited information from the POD function. 

In this project, we will define a confidence threshold scores (CTS) [36] as a standard for 

measuring the confidence and reliability of detection as well in DL with POD function of the 
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NDT inspection, which adapted as the criterion is used to measure the correlation between 

ground true labeling and predicted detection results; the higher the correlation and accuracy, 

the higher the confidence threshold score value. 

             

Figure 1. 16 sample POD curve 

1.8.5 Signal-to-noise (SNR) and Peak signal-to-noise ratio analysis (PSNR) 

The signal-to-noise ratio (SNR) parameter [37] could be adopted to evaluate the performance 

of the proposed processing DL models for defect visibility enhancement. It could quantify 

the relationship between the signal from the desired and the level of thermal noise when it at 

the certain signal contrast.  It also effectively reflects the thermal contrast and defect feature 

based on the inequality between the defect regions and non-defect regions in infrared 

thermography. The higher SNR values indicate that the image contains more defect 

information and indicate a better implementation of the learning model for the defect 

visibility enhancement. In equation (1.25), 𝑀𝑑𝑒𝑓 represents the average pixel of the defect’ 

regions and the 𝑀𝑖𝑛  represents the average pixel of the boundary non-defect regions. 𝜎𝑖𝑛 

means the standard deviation of the pixel value in the non-defect regions. 

         𝑆𝑁𝑅 =
𝑀𝑑𝑒𝑓−𝑀𝑖𝑛

𝜎𝑖𝑛
                                                          (1.25) 

In order to discuss the SNR at maximum signal contrast, Peak Signal-to-Noise Ratio (PSNR) 

is also defined to objective measurement to assess picture quality, and the unit of PSNR is 

db. In this project, we define the results for the SNR at maximum signal contrast as Peak 

signal to noise ratio. In order to discuss the SNR at maximum signal contrast, the PSNR is 
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also defined through the mean square error (MSE) (equation (1.26)), assuming that the image 

has the size of (𝑚 × 𝑛) from the denoising image 𝐼 and the noise image 𝑘 (the coordinate 

value in each image is noted by 𝑖, 𝑗 in these images). 

   𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ [𝐼(𝑖, 𝑗) − 𝑘(𝑖, 𝑗)]2𝑛−1

0
𝑚−1
𝑖=0  ;                                                        

The PSNR (in dB) is defined as: 

                           𝑃𝑆𝑁𝑅 =  10 ∙ 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)                                            (1.26);                  

The 𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the image (this is 255 when pixels using 

8 bits represent the sample). 

1.9 Modelling and stimulation  

                         

(a) Simulated thermogram at t = 106.5 s;              (b) corresponding geometric distribution 

Figure 1. 17 Stimulation data 

In this thesis, all modeling and simulation work are undertaken in two different kind of 

stimulation platform: Finite element model (FEM) (COMSOL Multiphysics®) and Thermal 

®, which might be helpful when comparing with the experimental results.  

COMSOL Multiphysics is a stimulation software platform, based on advanced numerical 

methods, for modeling and analysis physics-based problems, which represent the finite 

element analysis, simulation software package applied in Nondestructive evaluation 

applications. In the Figure 1.17, it is an example that  

The advantages of using COMSOL for DL defect detection research analysis modeling 

(assembles finite-element method matrices): 

• clean and automated supervision data; 
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• rather than other physical software is highly non-linear and has uncertainty issue, it can 

be abundantly simplified due to the thermal principle; 

• specific generate syntenic data in order to featuring and extracting less visible defect 

regions for training                        

• has an environment that integrated with modeling  

One example of application of COMSOL simulation in infrared thermography for NDT & E 

can be found in (Cannas et al. [38]). Where a CFRP samples embedded 25 regular defects 

was heated by two halogen lamps to detect the defects position. A 3D model by finite element 

method under COMSOL platform has also been implemented to simulate the heating process. 

Experimental and numerical data have well matched, which allows parametric studies free 

from the experimental tests. In the Figure 1.18, they are the (a) colorful simulated 

thermograph at t=106.5s; (b) its correspondents the geometric distribution of the sample. 

1.10 The recent research progress in literature with deep learning in IRT-NDE  

Similarly, with other non-destructive evaluation methods, the main objective of active 

infrared thermography being employed to analysis and evaluate the discontinuity or 

abnormally regions in the different industrialized fields or regions such as the materials in 

the composites from aerospace industry. Currently, the application and literature of DL in 

active thermography is fewer than that applied in passive thermography. Since the active 

thermography NDT method have several main application fields, we divided Deep learning 

for defect detections projects in active thermography NDT into three categories (Quality 

control; Structural health monitoring; Materials) based on the industrial application. In the 

Figure 1.18, two representative situation that could be applied with IRT and deep learning 

techniques (a) Transportation inspection; (b) aerospace materials inspection [39]. 

                     

                                           (a)                                                          (b) 

Figure 1. 18 Thermal infrared machine vision(a)(b) 
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• Quality control  

In article [40], the merge of Infrared thermography with DL model was employed for the 

quality inspection of the adulterations from honey.  During the procedure of cooling, the pure 

honey samples have been mixed with the rice syrup at the different level of concentrations 

which could be possible to being inspected from Infrared camera, then by analyzed by the 

CNN modeling. The whole procedure was trained and validated by the samples from the 

thermograms that captured from the experiments. The trained model has the capability to 

detect and identify the original floral honey with the adulterer honey with highly accuracy 

95% and 93%, respectively. Similarly, when the method being employed to the of extra virgin 

olive oil with adulteration, it could reach the accuracy of 97% as well. The same situation is 

being applying for detect and classify of bruises of pears from the proposed DL model which 

research the accuracy of 99.25% [41]. 

• Structural health monitoring  

In article [42], a modified deep neural network being proposed to detect damage from 

subsurface from steel samples of truss bridge through IRT. With a FLIR camera (LWIR 

T650SC), 35 thermal sequences were collected and converted to be 2000 images around with 

the resolution of 299 × 299 pixels (200 thermal images with higher resolution of 640 × 480 

pixels). In order to save the computation expense, the state of art of deep inception neural 

network (DINN) is being modified in order to achieve the transfer learning strategy. The 

damage from the coating and steel surface are being detected, then visualized and localized 

with the bounding boxes through the proposed modified Dl model. 200 tested thermal images 

are being evaluated and obtain the highly robustness and accuracy 96%. A combination from 

IRT and CNN model being adapted to the diagnosis of rotating machinery diagnosis fault in 

article [43]. A CNN (LeNet-like) is being proposed to identify the faults in the system and 

classify the health condition. Two different databases from experiment indicated that 

proposed algorithm has more advanced performance of detection for various faults of the 

components from rotor and bearings in comparison with other the state of deep learning 

models and regular vibration-based method. 

• Materials 

Inverse issue is a challenging topic to find the solution although it has ubiquitous heat 

conduction. In Ref [44], a data-driven semantic segmentation-U-net for heterogeneous 

composites for is proposed which could be adapted to distinguish the thermal images into 

defect and non-defect regions based on the pixel level wisely.  The 1200 synthetic thermal 

databases for the temperature regions have been generated through simulation. The 

temperature distribution of fillers has been successfully predicted at the accuracy of 0.979 
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from the trained model when the true temperature from each pixel being given which 

indicated the capability of the semantic segmentation from deep learning model-U-net to 

undertake the inverse issues with a dimension transformation method.  

1.11 The representative DL models in literature with deep learning in TNDE  

Several classic DL models (Res-Net; Autoencoder; Long Short-Term Memory (LSTM); 

Generative Adversarial Networks (GAN)) have the meaningful potential to apply for the 

Active infrared thermography for the analysis and defects diagnosis, which will be discussed 

and illustrated in the several sessions in the following: 

• Applying CNN in INDE 

In paper [45], a proposed approach by B. Yousefi, et al. for these issues in infrared 

thermography   is to use a Pre-trained CNN (ImageNet-vgg-f-13) to be used as a generic 

feature extractor and combined with the spectral analysis to learn specific features of the 

defects through the vector from the output. This methodology can be described as follows: 

An infrared image 3D matrix is used in different time series as the raw input and is compared 

with the spectral analysis. Suppose that s is one frame of infrared image 3D matrix such that 

s ∈ R 𝒏×𝒎×𝒌, where k represents the time sequences. S ∈ { 𝑺1 , 𝑺2 , , 𝑺𝐾}, and n and m are 

the infrared image’s spatial resolution, and w is a thermal reflectance from s, w ∈ { 𝒘1 , 𝒘2 

, …, 𝒘𝐾},  𝜑 is a re-scale squared 2D matrix reshaped by w as the input to a deep pre-trained 

convolutional network. To fully utilize this image 𝜑, a color image 𝜑𝑟𝑏𝑐concatenated by 𝜑 

in three times is used to complete the application in CNN [45]. 

Using a pre-trained network could efficiently handle the learning issue of insufficient training 

data. During the forward propagation of training in a neural network, an input- output 

procedure could be illustrated as a function as follow: 

 

  𝑓(𝜑) = 𝑓𝑛(… 𝑓2(𝑓1(𝜑; 𝜔1); 𝜔2), 𝜔𝑛)    𝑓: 𝑅𝐴×𝐵×𝐶 → 𝑅𝐴′×𝐵′×𝐶′
       𝜑 → 𝛾                    (1.27) 

 

 𝜑 𝑖 is a three-dimensional matrix 𝑨 × 𝑩 × 𝑪 where 𝑨 × 𝑩 represents the size of the images 

and C represent time frame. In fact, 𝑓𝑛  is defined as a set of functions having convolutional 

structure applying to the input 𝜑. Due to these convolutional structures involving a series of 

filters inner product, the output follows the input dimensional property also. 

In Spectral similarity measurement, the Spectral Angle Mapper (SAM) is an algorithm 

having a vector in n-dimensional geometrical space. It calculates the un- similarity between 

the spectrum type vector FC7 and the reference spectrum vector Ref using the equation below 

[45]: 
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                                     𝛼 = cos−1 ∑ 𝐹𝐶34𝑖𝑅𝑒𝑓𝑛
𝑖=1

(∑ 𝐹𝐶34𝑖
2𝑛

𝑖=1 )
1
2(∑ 𝑅𝑒𝑓𝑖

2𝑛
𝑖=1 )

1
2

                                          (1.28) 

where 𝒏  is a high dimension feature size vector (depending on the neural network 

architecture) and represents the defectiveness score from each infrared image as an input to 

the designed system. 

However, due to the fact that deeper neural networks are more difficult to train, a degradation 

problem could be possible as shown in Figure 1.19 when VGG-net are able to start 

converging. With the layers of network increasing, accuracy becomes saturated and declines 

quickly. Unexpectedly, this degradation problem is not due to the overfitting, but is caused 

by the problem of gradients vanishing and exploding, as seen in Figure.1.19 [23]. 

 
Figure 1. 19 Training error (left) and test error (right) on CIFAR-10 

With 20-layer and 56-layer “plain” networks. The deeper network has higher training error, and 

thus test error. (He K, Zhang X, Ren S et.al [23]) 

• Autoencoder for feature extraction 

 
Figure 1. 20 Basic Structure of an Auto-encoder (AE) model 
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Auto-encoder (AE), is a feed-forward neural network which reproduces its input with 

the output layer in order to automatically extract meaningful features from the dataset 

and leverage the availability of unlabeled data. 

The simplest architecture of the AE model is elaborated in Figure.1.20 which includes 

three layers, corresponding to the input, the hidden, and the output layer. There are two 

work periods called encoding and decoding during training. During the encoding 

period, the input data x is projected to the hidden layer vector y. Then, the decoding 

period, the hidden layer vector y is projected to a reconstruction data z in the output 

lay. During training, the CAE model forces z to be as similar as possible with the input 

data.  

During the recent years, due to its wide application, the auto-encoder has been a 

powerful research tool as a building block in this research field. During previous study, 

an innovative approach termed as Auto-encoder thermography (AE) has been proposed 

to improve Pulse thermography for defect visibility enhancement in article [46]. 

However, the autoencoder model can only reflect variations observed in the training set 

which is difficult to keep the good feature and information to be invariant to the other 

variations. 

• The LSTM network with infrared data 

The infrared data is a type of temporal sequence data. As the 3D matrix, infrared data 

could reveal that temperature evolution through the time basing on a whole 2D spatial 

image. The recurrent neural networks have the ability to repeatedly learn and remember 

information through the time. This networks with the loops of recurrent units [48] could 

allow the information persist. In order to solve the “gradient vanishing” issue, a long-

term memory (LSTM) recurrent unit has been designed [49,50]. 

 
Figure 1. 21 LSTM Block 

(Gao, Yang, et al: [47]) 
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In article [50], the author introduced the spatial input from infrared data to be compatible 

explicitly with the temporal characteristic model multiple LSTM to segment the thermal 

images for defect analysis based on temporal behavior from the thermal sequences. The 

LSTM model is employed to handling the prediction of the transient characteristics. 

Unfortunately, based on the results from the article [50], the regular LSTM model still quite 

sensitive to the noises from the thermal sequences and its particular irregular shape of defects 

whiles partially defects cannot fully and automatic segmented.  The LSTM formula is shown 

in Equation (1.29) - (1.33) and Figure.1.21. Notice that 𝛹 is a convolutional operator in 

Equation. (1.29) - (1.33), and the input data 𝑥𝑡 be given at the current time point t in Equation. 

(1.29) - (1.33). Hidden state ℎ𝑡−1and cell state 𝐶𝑡−1are input state at previous time point 𝑡 −

1 respectively. 𝑖𝑡,𝑓𝑡, and 𝑜𝑡 are the input ,forget, output gates, 𝑐𝑡 and ℎ𝑡 are the new cell and 

hidden states at time t. 𝜎(𝑥) =
1

1+𝑒−𝑥 , tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 and O are element-wise 

multiplication. 

                                          𝑖𝑡 = 𝛿(𝛹𝑥𝑖(𝑥𝑡) + 𝛹ℎ𝑖(ℎ𝑡−1) + 𝑏𝑖)                                        (1.29) 

                                         𝑓𝑡 = 𝛿(𝛹𝑥𝑓(𝑥𝑡) + 𝛹ℎ𝑓(ℎ𝑡−1) + 𝑏𝑓)                                      (1.30) 

                                          𝑜𝑡 = 𝛿(𝛹𝑥𝑜(𝑥𝑡) + 𝛹ℎ𝑜(ℎ𝑡−1) + 𝑏𝑜)                                     (1.31) 

                                𝑐𝑡 = 𝑓𝑡°𝑐𝑡−1 + 𝑖𝑡°𝑡𝑎𝑛ℎ (𝛹𝑥𝑐(𝑥𝑡)+𝛹ℎ𝑐(ℎ𝑡−1) + 𝑏𝑐                        (1.32) 

                                                          ℎ𝑡 = 𝑜𝑡°𝑡𝑎𝑛ℎ (𝑐𝑡)                                                 (1.33) 

• Generative Adversarial Networks (GAN) with TNDE 

As shown in Figure.1.22, the Generative Adversarial Networks (GAN) are an innovative 

developed generative model that can use two types of networks (generative and 

discriminative). Particularly, for this project, we decomposed the thermal sequence data into 

N frame images as the real data. Using N samples random Gaussian noise was fed through 

the generator to generate N false images. Utilizing these 2N images jointly as the input of 

discriminative network and train the discriminator to classify them as real or generated (As 

output, we labeling the thermal data as 1 and labelled the generated images as 0. In the second 

step, we fixed the parameters of the discriminator, the errors are back-propagated through 

both of two networks simultaneously. Therefore, the generator initially changes the 

parameters of network from learning to fool the discriminator and to generate more realistic 

images. In this way, these two networks have been optimized independently so that the 

generator improve the ability to generate approximately real images and discriminator is 

more sensible to identify the real images from fake. This way, the discriminator forces the 

generator to learn the feature further and to improve the generative data further until the 
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discriminator was fooled by considering this new data as real. The final results of these 

generated image can be used as training data for defect detection through a deep learning 

algorithm as the next step. 

In article [51], it has introduced a modified GAN network as a joint loss network to achieve 

the semantic segmentation on the inner deboned defects from the carbon fiber reinforced 

polymer which enables a stable training performance and improved detection rate. However, 

the noise interference and non-uniform heating still being a crucial factor that influences the 

GANs network to segment the irregular shape of defect from the samples. 

      

 

Figure 1. 22 GAN Images generation Model 

• Neural network for defect depth estimation (Defect characterization) 

In infrared thermography, it has been defined that the feature extraction like the depth of 

subsurface depth, an inverse problem. This problem also has been studied for many years in 

TNDE. The procedure for quantitative analysis of relevant parameters in defect 

characterization is also a complex heat transfer issue [52]. 

In article [53], it used a single neural network to detect defect depth and the scheme of this 

algorithm is shown in Fig.18. First, it needs to record a complete temporal thermal file from 

the investigated specimens. This sequence of thermograms is transformed into training 

feature maps through the process referred to unfolding. Next, after these feature maps have 
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formed, we labelled a group of temperature values with corresponding pixel positions in 

feature maps during every discrete time and these values as well as the values of all pixel’s 

position in the map also corresponding to N columns totally (see: Figure.1.23). It is 

noteworthy that these temperature values are not directly fed into the regression Neural 

network. They are processed by Principal Component Analysis (PCA) in Figure 1.23. PCA 

is a data preprocessing tool to extract the meaningful feature and to reduce the dimension of 

raw data.  

In this study, the regression network own M inputs neurons which is equal to the number of 

neurons in the middle layer (i.e. The dimension of the code vector in the middle layer) in 

PCA. inputs neurons also depend on the number of time frames N in the raw data we 

acquired. The quantity of vectors in a regression neural network is equal to the number pixels 

of sequence of thermograms in each frame. This regression neural network has a group of 

hidden layers and a single output. During the training, we labelled the known depth value 

with the given pixel. During the testing, we got the prediction values of pixel depth in the 

output of neural network This multi-layer regression neural network trained with the 

backpropagation to compute the difference with target values (the known depth and 

prediction) [54]. 

 

Figure 1. 23 Scheme of the neural algorithm for defect depth estimation 

(Dudzik, et al [53]) 

During the training, all images are divided into ten subsets equally [53]. Then, ten training 

sessions were carried out. During one training procedure, it randomly sampled nine subsets 
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for training, the tenth subset for testing using the network as trained. Finally, a field of defects 

depth estimation has formed. The mean error of depth estimation in the defected area, can be 

described as the sum of the squared error loss function equation. (1.34) 

 

𝐿(𝑥, 𝑦) =
∑ ‖𝑦(𝑖) − 𝑥(𝑖)‖

2𝑚
𝑖=1

2𝑚
⁄ + 𝛾 ∑ 𝑤2

2⁄                                 (1.34) 

 

where x(i) represents the depth of the defect predicted from the output of regression neural 

network. y(i) is a known depth of defects to participate training procedure as a target value. 

(corrected value). m is the quantity of training samples in databases the second term is the 

sum of the squares of all the weights scaled in order to prevent the overfitting problem. y is 

the weight decay parameter. 

 

However, in this article, the biggest issue from the neural network being applied on defect 

dept estimation (defect characterization) is the dimensionality correspondent. Especially 

when the materials that being evaluated is from the low thermal diffusivity materials with 

stepping heating method. The input number from neural network which is highly depending 

on the sample instants from the sequence. Although principal components analysis could help 

it overcome the issue through dimension reduction procedure, the depth training from the 

neural network caused high time complexity and instability.  

1.12 The summary 

In view of the above-mentioned research studies, the variety of deep learning applications of 

infrared thermography has been applied or combined with simple and various deep learning 

models in the form of defect detection and identification which play a significant role to 

improve the safety and quality of non-destructive evaluation in the previous literature. 

Several research studies have adapted the infrared thermography and particularly temporal 

or spatial deep neural network (long-short term memory (LSTM); singer neural network; 

autoencoder; GANs) to extract the feature and analysis through feature classification and 

identification from deep learning  based on the thermal sequences that captured from the 

infrared camera and experimental pipeline (Ruan L et al., 2020; [19] Duan Y et al., 2019; 

Zeng X et al., 2020; Yongbo L I et al., 2020; Wu H, 2020 et al.; Ali R et al., 2019; Marani R 

et al., 2016; Darabi A et al., 2002). 

However, all the proposed applications of this research have some limitation and 

disadvantages that could still to be improved. Therefore, the furtherly points of the 

identification and classification of defects in the infrared thermography could be described 

in the following:  
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 1. introduce the synthetic data from Finite element modeling or the GANs network training 

which could be not only provide a great benefit for improving the accuracy but also saving 

the highly expense from real experimental samples (CFRP; GFRP); 

 2. a combination of data processing method with deep learning model for feature extraction 

could be an efficient way for defect enhancement and identification to improve the visibility 

of defects in pulse thermography; 

 3. a modified deep learning neural network to achieved the automatic identification of 

defects from the training could be innovative method to replace the human inspectors to avoid 

the human fatigue and also represent an efficiently way of computer-aided identification 

which can be used to assist non-destructive evaluation and infrared experts in the field or 

laboratory conditions.  

Therefore, in this project, we are going to propose and illustrate the several deep learning 

modeling’s and methods to achieve the objectives and improved the feasibility of itself in 

order to compensate and disadvantage that previous academic literature that have. 
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Chapter 2 Issues, Objectives 

2.1 Problem Statement  

For defect identification and detection, several state-of-the-art regular approaches in infrared 

thermography especially pulsed thermography are powerful tools which are known to give 

noticeable results, such as the Pulsed Phase Thermography (PPT) [1], Principal Component 

Thermography (PCT) [2], Difference of Absolute Contrast (DAC) [3], Thermographic Signal 

Reconstruction [4], as well as Candid Covariance Free Incremental Principal Component 

Thermography [5]. These mentioned methods show remarkable efficacy in improving defect 

visibility during INDE and also have been demonstrated to be powerful tools that are well-

documented and provide noticeable results in Infrared Thermography.  

However, these methods are pattern-based unsupervised methods [6] which means extracting 

more distinctly defect information from time and frequency domains, and seeking for new 

methods to further improve defect visibility are still crucial issues in TNDE literature. 

Convolutional Neural networks (CNN) have been widely applied by scientists in image 

processing, and have shown the ability to perform well in data analysis and feature extraction. 

Due to the particular characteristics from the spatial deep learning model, the implementation 

of supervised learning algorithms in infrared non-destructive evaluation (pulsed thermography) 

is a potential tendency in future research. There are few available works in the literature dealing 

with automatic defect detection in infrared thermography by using deep learning algorithms [7] 

[8] [9]. Certain articles have introduced a few single algorithms from DL for defects detection 

analysis in infrared thermography. A systematic investigation and comparison of deep learning 

algorithms and innovative deep learning algorithms to further improve its efficacy for the defect 

detection and analysis in Pulsed thermography is still in demands.  

2.2 Objectives and Description of the problems addressed throughout this research 

The main purpose of this proposal is to design appropriate deep learning frameworks in 

thermal non-destructive evaluation for defect detection to extract and separate detects 

(including internal and invisible cracks and delamination etc.) efficiently and accurately. 

Furthermore, we are going to exploit the proposed deep learning algorithms to enhance the 

visibility of defects (subsurface defects case) and obtain defect inverse information for those 

infrared signals (including defect characterization issues: defect depth etc.), as well as 

achieve automatic defect detection by deep learning algorithms. Measurements are going to 

be conducted using active infrared thermography. For the knowledge of the author, there are 

very few works available in the literature dealing with defect detection in infrared 
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thermography using deep learning algorithms. The goal of this project also is to validate and 

develop those known techniques to the infrared non-destructive evaluation case.  

The main scientific challenge lying in the successful application of these techniques is the 

limited training data of thermography for deep learning. Due to the issue such as the presence 

of noise, limited resolution, and probing of depths in TINDE, it is more difficult to precisely 

and fully extract defect information. For the defect characterization issue, it is complex to 

combine the information of thermal contrast and pixels of images with the depth in each pixel 

of defects to train the neural network. 

       A list of the objectives of this project are provide here: 

1. Develop novel deep learning algorithms and frameworks to process inspected thermal 

data to enhance subsurface defect visibility in infrared thermography. 

2. Building a novel automatic defect detection system by deep learning algorithms through 

inspected thermal data (including the case of less detectable subsurface defects in the 

limited infrared signals) and achieve the automatic condition monitoring. 

3. Develop novel deep learning algorithms and frameworks to solve the defect inverse 

issues in infrared thermography using inspected data. 

4. Build the numerical and experimental models to measure specific specimens in active 

infrared thermography and pre-process the experimental inspect data for deep learning 

feature extraction. 

2.3 Methodology 

2.3.1 Infrared NDE  

In this project, different infrared NDE processing techniques will be used to inspect 

specimens. These techniques include Pulsed Thermography, Lock-in Thermography, and 

Inductive Thermography, etc. Infrared NDE techniques will be the fundamental techniques 

used for data acquisition of deep learning frameworks and pre-processing defects of ROI.  

2.3.2 Deep algorithms in INDE Thermal data in Infrared NDE for defect detection.  

In this project, the innovative deep learning frameworks as shown below will be used to 

analyze thermal data in Infrared NDE for defect detection. 

1) To improve the visibility of defects in the pulsed thermography, we introduce generative 

adversarial network (GAN). Proposing the GAN methods will allow the reconstruction of 

conspicuous images through the underlying features extraction in temperature evolutions of 

Pulse Thermography [10] [11]. We will use WGANs network for input dimension reduction 
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and visible feature extraction of defects in Pulse thermography by adding an explicit term in 

the loss that penalizes that solution which is an optimized approach to avoid uninteresting 

solutions to overcome model collapse and overfitting issues. 

2) To perform defect segmentation in infrared thermography (PT, LT, etc.), we will introduce 

several types of detection and segmentation methods in deep learning, such as (i) objective 

detection: YOLO-V3 [12], Faster-RCNN [13]; (ii) semantic segmentation: U-net [14], Res-

U-net [15]; and (iii) an instance segmentation model: Mask-RCNN, Center-Mask [16][17]. 

These neural network architectures could achieve detection and segmentation of defects 

automatically. A data augmentation is also introduced effectively to enlarge training data. 

3) To achieve the defect depth detection in thermal sequence data, we will use a recurrent 

neural network (Gated Recurrent Units: GRUs) [18] to estimate the depth of defects in testing 

samples from the active thermography data. We will explicitly use the architecture of the 

simplified GRUs temporal model for spatial and temporal thermography data to be trained 

end to end. Due to the feature extraction, the deep auto-encoder architecture may be able to 

compress the meaningful feature and enhance the accuracy of defect depth estimation. A 

cross-validation routine will be introduced to improve the efficacy of the algorithm in the 

case of over-fit issues in deep learning.  

4) We will try to use the Generative Adversarial Network and synthetic data from finite 

element modeling (COMSOL) to generate a series of simulated thermal data to offset limited 

thermal data and obtain enough training data to meet the standard for identifying the feature 

of the defect. Then a pre-trained Convolutional Neural Network (Mask-RCNN) could be 

used as a supervised feature extractor to analyze defects in specimens and fine-tune with 

specific thermal sequences to predict the vectorized features along with segmentation maps 

with detection probability. 

2.3.3 The implementation steps and relationships of the novel deep learning defect 

detection frameworks  

In this project, we are going to discuss the subsections below as shown in each section which 

has certain connections as illustrated in Figure 3.1 including:  

For a defect detection to adapt the deep learning algorithms and models, one could :1. 

Enhance the defect visibility and enhance the defect when we acquired the original thermal 

data from the thermal experiments to remove original noises; 2. Due to the limitation of the 

experimental data and the high expense of composites for the training, a data augmentation 

strategy will be introduced based on the synthetic data generation pipeline from software or 

augmented and generated data from unsupervised deep learning models, such as a generative 

adversarial network; 3. Automatic defect detection and segmentation without human 
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involvement and inspection with high accuracy results will avoid the issues associated with  

human fatigue.  

For a quantitative analysis of the defect characterization issue, a defect depth estimation 

method using a recurrent neural network (Gated Recurrent Units (GRUs)) will be used to 

train with the stimulated data from the COMSOL software to evaluate the accuracy and 

performance of synthetic CFRP data from FEM for defect depth prediction. 

 

Figure 2. 1 Detection framework in this project 

2.3.4 Deep learning opensource software support 

Given that deep learning is the key to executing tasks of a higher level of sophistication, 

building and deploying them successfully proves to be quite the Herculean challenge for data 

scientists and data engineers across the globe. Deep learning frameworks offer building 

blocks for designing, training and validating deep neural networks, through a high-level 

programming interface. There is a myriad of frameworks that allows us to develop tools that 

can offer a better level of abstraction along with the simplification of difficult programming 

challenges. In this project, we use a flexible framework TensorFlow that allows users to build 

all relevant deep learning models of our designs through tensor arrays. 
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Part I. Automatic detection and identification of defects by deep 

learning algorithms from pulsed thermography data 

The following chapter will present an article concerning the application of infrared 

thermography for Non-Destructive Testing & Evaluation applied in procedure. The whole 

section of this chapter was submitted to Nondestructive Testing and Evaluation Journal, 

2021.The partial result of this study was firstly presented at an online oral session of SPIE 

Thermosense, then published in conference proceedings Volume 10214, Paper 11409-35, 

Thermal Infrared Applications XXXIX in 2020 (California, United States, remote electronic 

venue).  

General explanation: 

During the industrial processing procedure, the inspection services involving manual 

inspection during the stages of quality control can be hampered by the fatigue of human 

inspectors.  In this case, automatic quality control and defect detection become more vital so 

as to improve the inspection rates and achieve cost-effective condition monitoring.  

In this study, we mainly focused on the proposed deep learning algorithms to achieve automatic 

defect detection and precise localization (subsurface defects case) from different thermal image 

sequences. To evaluate the efficiency and robustness of the proposed methodology, specimens 

containing artificial defects were selected for experimental configuration.  

It systematically investigation and comparison of the different types of deep learning techniques 

for defect detection and analysis in Pulsed thermography. The innovative instance segmentation 

method is introduced for defects segmentation and identification for each object of defects with 

different specimens to predict each irregular shape of defects instance in the thermal images at 

the pixel level. It also introduced the numerical and experimental modeling and analysis for 

post-processing of inspected experimental thermal sequences from deep learning feature 

extraction. 
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Chapter 3 Automatic detection and identification of defects by 

deep learning algorithms from pulsed thermography data 

The results of this study were firstly presented at an oral session of SPIE Commercial+ 

Scientific Sensing and Imaging. International Society for Optics and Photonics, 2020, then 

it was published in Proceedings Volume 10214, Thermosense: Thermal Infrared 

Applications XXXIX; 102140T (2020), cited 15 times up to now. 

3.1 Résumé 

La thermographie infrarouge (IRT), est l'une des techniques les plus intéressantes pour 

identifier différents types de défauts tels que la délamination et les dommages existants pour 

la gestion de la qualité des matériaux. Les algorithmes de détection et de segmentation des 

objectifs en apprentissage profond ont été largement appliqués dans le traitement d'images, 

mais très rarement dans le domaine de l'IRT. Dans cet article, les méthodes de traitement 

d'image par apprentissage profond spatial pour la détection et l'identification des défauts ont 

été discutées et étudiées. Les algorithmes d'apprentissage profond ont été appliqués pour 

mettre en œuvre des modèles basés sur les réseaux de neurones convolutionnels (CNN) pour 

la détection de défauts structurels dans des échantillons en matériaux composites, puis ont 

été comparés à une méthode de combinaison de traitement d'image ordinaire. L'objectif de 

ce travail est d'intégrer de tels modèles d'apprentissage profond (DL) pour permettre 

l'interprétation automatique d'images thermiques pour la gestion de la qualité (QM). Cela 

nécessite d'atteindre une précision suffisamment élevée pour chaque méthode d'apprentissage 

profond afin qu'ils puissent être utilisés pour aider les inspecteurs humains en fonction de la 

formation. Il existe plusieurs alternatives de réseaux neuronaux convolutifs profonds pour la 

détection des images qui ont été employées dans ce travail, notamment : 1. les méthodes de 

segmentation d'instance Mask-RCNN (Mask Region based Convolutional Neural Networks) 

et Center-Mask ; 2. les méthodes de segmentation sémantique indépendante : U-net ; Res-

net-U-net ; 3. les méthodes de localisation objective : You Only Look Once (YOLO-v3) ; 

Faster Region based Convolutional Neural Networks (Faster-RCNN) ; en outre, une méthode 

de traitement combinée de segmentation d'images infrarouges ordinaires (Absolute thermal 

contrast (ATC) and global threshold) a été introduite pour comparaison. Une série 

d'échantillons académiques composés de différents matériaux et contenant des défauts 

artificiels de différentes formes et natures (trous à fond plat, inserts en téflon) ont été évalués 

et tous les résultats ont été étudiés afin d'évaluer l'efficacité et la performance des algorithmes 

proposés. Les principales mesures d'évaluation ont été analysées sur la base des résultats de 

détection des modèles DL : Probabilité de détection (POD) ; précision moyenne (mAP) ; 
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complexité de l'accélération du temps. Les résultats montrent que les modèles DL ont la 

fiabilité requise pour l'évaluation des défauts par détection automatique. En comparant les 

résultats expérimentaux de ces méthodes, le masque central est le plus prometteur en termes 

de précision et YOLO-V3 est le plus rapide en termes de temps, d'après l'évaluation de la 

base de données de tests infrarouges. 
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3.2 Abstract 

Infrared thermography (IRT), is one of the most interesting techniques to identify different 

kinds of defects such as delamination and damage existing for quality management of 

material. Objective detection and segmentation algorithms in deep learning have been widely 

applied in image processing, although very rarely in the IRT field. In this paper, spatial deep 

learning image processing methods for defect detection and identification have been 

discussed and investigated. The deep learning algorithms were applied to implement 

Convolutional neural networks (CNNs) based models for detecting structural defects in 

samples made of composite materials, then were compared with a regular image processing 

combination method. The aim in this work is to integrate such deep learning (DL) models to 

enable interpretation of thermal images automatically for Quality management (QM). That 

requires achieving a high enough accuracy for each deep learning method so that they can be 

used to assist human inspectors based on the training. There are several alternatives of deep 

Convolutional Neural Networks for detecting the images that were employed in this work 

which included: 1. the instance segmentation methods Mask-RCNN (Mask Region based 

Convolutional Neural Networks) and Center-Mask; 2. the independent semantic 

segmentation methods: U-net; Res-net-U-net; 3. the objective localization methods: You 

Only Look Once (YOLO-v3); Faster Region based Convolutional Neural Networks (Faster-

RCNN); in additionally a regular infrared image segmentation processing combination 

method (Absolute thermal contrast (ATC) and global threshold) has been introduced for 

comparison. A series of academic samples composed of different materials and containing 

artificial defects of different shapes and nature (flat-bottom holes, Teflon inserts) have been 

evaluated and all results were studied in order to evaluate the efficacy and performance of 

the proposed algorithms. The key evaluation metrics were analyzed based on the detection 

results from DL models: Probability of Detection (POD); Mean-average Precision(mAP); 

Time speeding complexity. The results show that DL models have the reliability required for 

the assessment of defects by automatic detection. Comparing the experimental results among 

these methods, the Center-Mask is the most promising one for accuracy and YOLO-V3 has 

the faster time frame speed based on the infrared testing database evaluation. 
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3.3 Introduction 

Quality management (QM) [1] is playing a crucial role in modern industrial production fields. 

A qualified quality management and controlling system can be a significant technology 

advancement for industry and manufacturing applications such as in the aerospace field. In 

order to preserve the health structural monitoring, the application of visual inspection systems 

becomes more and more essential in the production lines. However, the inspection services 

involving manual inspection during the stages of quality control can be hampered by the 

fatigue of inspectors. In this case, automatic quality control and defect detection become 

more vital so as to improve the inspection rates and achieve cost-effective [2] condition 

monitoring.  

Non-destructive Evaluation (NDE) [3] is a group of techniques used in industry for analyzing 

and evaluating the properties of a material without causing damage. NDE methods rely upon 

use of electromagnetic radiation, sound and other signal conversions to examine a wide 

variety of articles. Due to the analysis of thermal front propagation, each thermal non-

homogeneity perturbs the thermal waves propagation on the surface of specimen in 

comparison to the surrounding sound region. We can then see the changes of the temperature 

variation. The infrared camera and corresponding equipment can record this thermal 

perturbation, and the results can be analyzed to obtain further information. Infrared 

inspection techniques have been applied frequently to evaluate subsurface defects and hidden 

structures etc. for the quality control of materials such as metals, composites and so on. 

Infrared Thermography (IR) is one of many NDT techniques used to “see the unseen” is a 

non-destructive technique of measuring and mapping surface temperature of the materials. 

The main objective of Infrared Non-Destructive Evaluation (INDE) is to detect and classify 

the Regions of Interest (ROIs) that could be represented as a defect or an anomaly by 

analyzing the sequence images or singular image. In addition, another goal is to detect such 

ROIs as accurately as possible, visible when the conditions are maintained invariantly. Pulsed 

Thermography (PT) is one of the types of infrared thermography that is based on the heat 

flux diffusion (radiation) and energy absorption from the instant impulse, then to evaluate 

and visualize the defects based on the temperature difference which is reflected from the 

surface of Specimens. 

For defect identification and detection, several state-of-the-art regular methods in infrared 

thermography especially on pulsed thermography are powerful tools which have been 
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documented to give noticeable results, such as the Pulsed Phase Thermography (PPT) [4], 

Principal Component Thermography (PCT) [5], Difference of Absolute Contrast (DAC) [6], 

Thermographic Signal Reconstruction [7], as well as Candid Covariance Free Incremental 

Principal Component Thermography [8]. These mentioned methods show remarkable 

efficacy in improving defect visibility during INDE and also have demonstrated to be 

powerful tools that have been well-documented and provide noticeable results in Infrared 

Thermography. However, although these methods are pattern-based unsupervised methods 

[9] which means that they can extract defect information distinctly from time and spatial 

domains. The search for new methods to further improve defect visibility and achieve 

automatic detection is still being crucial issues in TNDE literature. 

Moreover, in a general way, every contribution working for defect detection with 

thermography in Nondestructive Evaluation (NDE) for Quality management (QM) has to 

deal with image processing issues. Some methods and networks have already introduced the 

researcher’s efforts applied to other fields and they also have the potential capability to 

provide good results for Pulsed thermography (PT) in NDT, such as: (1) Artificial Neural 

Networks(ANNs; the machine learning model )which is discussed in [10] to achieve fiber 

orientation assessment from composite materials on a learning process based on 

interconnected elements (neurons); (2) A SLFNs (Single hidden Layer Feed forward neural 

net-works) which provide an unlimited number of neurons in one hidden layer for defect 

classification [11]; (3) A SVM(Support Vector Machine) automatic classification model has 

been proposed for breast cancer detection through images from Thermal pattern[12]; (4) the 

k-means clustering method that was applied on automatic defect detection in fruits for the 

quality classification[13]; (5) a self-learning softmax with a 9-layer Convolutional Neural 

Network (CNN) model was constructed in [14] to identify the near nighttime pedestrians 

which has potential competitive accuracy to classify(background; pedestrians; the vehicles) 

in real-time recognition.(6) In [15], a Fully Convolutional Network(FCN) has been 

introduced to estimate the surface damages from deck areas of bridges.  

On the other hand, initially developed in order to make neural networks more efficient, deep 

learning methods have already shown their ability to outdate most of the other approaches 

existing previously in a great number of applications, which has contributed to making them 

very popular in many scientific communities. It also has been proven that Convolutional 

Neural Network (CNN) from Deep learning (DL) can perform well in Infrared Non-

Destructive Testing, due to the fact that the vectors extracted from convolutional neural 

networks can be utilized as features for defect detections via Pulsed thermography. 

To the best of our knowledge, there are only a few works available in the literature dealing 

with automatic defect detection in Pulsed thermography by using deep learning algorithms. 



 

53 

 

 

 

 

 

Although some articles have introduced a few single algorithms from DL for defects 

detection analysis, there is no systematically investigation and comparison of DL algorithms 

for defect detection and analysis in Pulsed thermography. Due to the particular characteristics 

from the spatial deep learning model, the implementation of supervised learning algorithms 

in infrared non-destructive evaluation (pulsed thermography) [16] is a potential tendency in 

the future research. 

The main purpose of this research is to introduce the appropriate deep learning frameworks 

with thermal non-destructive evaluation of pulsed thermography for automatic defect 

detection so as to extract and separate detects (including internal and less visible cracks and 

delamination structure cases, etc.) efficiently and accurately. The pro-posed methods can 

effectively achieve the defect identification and segmentation with the cases of data 

limitation.   

Therefore, a small amount of pulsed thermography experimental data will be used to train 

the deep spatial characteristic models for identification or segmentation of defects in this 

research. The convolutional neural network will be adapted to extract the specific feature for 

each visible region, then force the learning system to learn how to distinguish and detect less 

visible defects from limited infrared signal images based on the position and extraction of 

specific features. Three types for defect detection methods will be introduced and 

investigated in detail for automatic defect detection and identification of Pulsed (infrared) 

thermography in an infrared system respectively. In addition, a regular infrared segmentation 

method (Absolute Thermal Contrast (ATC) and global threshold) [17] has been introduced 

as well for the purpose of comparison with DL models. A systematic discussion and 

comparison of performance will be pro-vided in the further sections.  

Three types of deep learning algorithms which have achieved potential results of defect 

identification or segmentation in PT thermal data will be discussed in this article, including: 

a) Objective localization [18] 

The objective detection algorithms can detect multiple objects with their bounding boxes in 

the images. It can identify or locate the defects in the real time thermal sequence and images. 

b) Semantic segmentation [19] 

The semantic segmentation associates each pixel of an image with a categorical label as a 

single entity. The idea of semantic segmentation is recognizing and understanding the objects 

(defects) at the pixel level.  

c) Instance segmentation [20] 

The idea of instance segmentation is that given an input image and to predict an image, the 

location and identities of objects in that image is carried out similar to object detection. But 
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rather than just predict a bounding box for each of those objects, instead it can predict a whole 

segmentation mask for each of those objects and predict which pixels in the input image 

correspond to each object instance.  

The contribution of this work can be illustrated in the following: 

1) systematic investigation and comparison of the three types of classical deep learning 

methods for the defect detection accuracy and efficiency analysis in Pulsed thermography.  

2) an innovative instance segmentation method is being introduced for defect segmentation 

and identification for each defect with different specimens to predict each irregular shape 

of the defect instance in the thermal images at the pixel level. 

3) experimental modeling and analysis for post-processing of inspected data is introduced, 

based on deep learning feature extraction. 

The remainder of this paper is structured as follows: Section 2 provides the main principles 

and methods; Section 3 provides the introduction of the pulsed thermography (PT); Section 

4 includes the related experimental set-up indication, the data and defect features and samples 

description; Section 5 illustrates the methodologies from the spatial deep learning models: 

(a)YOLO-V3[21]; (b) Faster-RCNN[22]; c) U-net[23]; (d) Resnet-U-net[24]; (e) Mask-

RCNN[25]; (f) Center-Mask[26]. A full experimental results and training procedure from 

each investigated algorithm is provided in Section 6. Section 7 will present the discussion on 

the experiment results. Section 8 concludes the research and outlines the future work. 

3.4 Principles 

In this section, a detection system trained with pulsed thermography data has been proposed 

to segment and identify defects in thermal images. The spatial characteristic deep learning 

model is introduced separately and comparatively in this strategy as shown in Figure 3.1. The 

design of this defect detection system is based on the three types of detection frameworks. 

The implementation steps can be illustrated as follows:  

1. First, the infrared thermal sequences are acquired by the pulsed thermography (PT) system; 

2. Secondly, the raw thermal sequences are preprocessed and decomposed by augmentation 

methods: 1. Principal Component thermography (PCT): sequences being decomposed into 

several orthogonal functions (Empirical Orthogonal Functions: EOF); 2. Flip; 3. Random 

crop; 4. Shift; 5. rotation etc.; 

3. In the final step, the defect regions are recognized via deep neural networks which 

visualized the defects with the bounding boxes. All defects have to be labeled with the 

locations, then trained with the deep region neural network.  
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Figure 3. 1 Proposed detection strategy (Instance segmentation; Semantic segmentation; 

objective detection) 

3.5. Thermography Consideration- Optical pulsed thermography      

In PT [27], a high-power thermal pulse is applied to the surface of the specimen through heat 

radiation. Due to the heat conduction of the thermal front absorbed by the specimen’s surface, 

the thermal front travels from the surface and propagates through the materials. As the time 

elapses, the surface temperature will decrease uniformly for a zone with-out defect. 

Conversely, if there is an internal defect beneath the surface (e.g. delamination, disbands, 

damage, etc.), this defect can become a resistance to heat flow that produces higher 

temperature patterns at the surface with a decay of temperature, which can be inspected by 

an infrared (IR) camera. Figure 3.2 indicates the fundamental principle of pulsed 

thermography. In a solid of semi-infinite isotropic conduction, a 1D solution of the 

propagation of the pulse of a Dirac heat pulse is indicated in Equation. (3.1) as a Fourier 

mathematical equation [28],                   

                                                  𝑇(𝑧, 𝑡) = 𝑇0 +
𝑄

√𝑘𝑝𝑐𝑡
𝑒𝑥𝑝(−

𝑧2

4𝛼𝑡
)                                     (3.1) 
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where the energy absorbed by the surface is Q [𝐽/𝑚2]  and 𝑇0[K]  is the temperature of 

initialization. The surface temperature progression at T (0, t) can be written as follows: 

                                                  𝑇(0, 𝑡) = 𝑇0 +
𝑄

e√𝜋𝑡
                                                         (3.2)    

from Equation. (3.2), where e=kpc is the effusively. The temperature of surface evolution 

following a Dirac heat pulse will decay as a monotonous decrease as 𝑡−1/2 without defects, 

while areas with defects will diverge more or less from this behavior based on the actual 

thermo-physical properties of the region. 

 
Figure 3. 2 Pulsed thermographic testing using optical excitation 

3.6 Specimens and Experimental Setting up 

3.6.1 Experiment Setup  

Infrared measurement and the inspected system are the essential parts of collecting infrared 

data from pulsed thermography. In order to evaluate the robustness of the proposed 

algorithms, a certain number of samples was tested. In general, the inspected system used in 

this experiment consists of: Two photographic flash lamps (Balcar FX 60,5 ms thermal pulse) 

6.4 kj/flash, an infrared thermal camera and a personal computer (PC)- Ubuntu 14.04 as 

shown in Figure 3.3. To be more detailed, the sampling rate was 157 Hz, a total of three types 

(steel; CFRP; plexiglass) of 8 pieces of specimens were inspected.  

The analysis of the thermography process has been conducted with the PC (Intel(R) Core 

(TM) i7-2600 CPU, 3.40 GHz, RAM 16.0 GB, 64-bit, Operating System) and the processing 

of the thermal data has been conducted using the MATLAB computer program R2019a and 

a Tensor-flow deep learning open source library. A Mid-wave infrared (MWIR) camera with 

a special mid-infrared lens (to filter the MWIR spectrum) and two normal lamps was utilized 
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for collecting the infrared data. The normal lamp (containing the entire visible spectrum) was 

used as an illumination source to illuminate the specimen during the inspection performed 

inside the laboratory.  

 
Figure 3. 3 Pulsed thermography experiment platform 

3.6.2 Validation Samples Preparation  

In order to evaluate the performance of the proposed method, academic samples were 

collected independently from three types of materials: Plexiglas (Plexi), Carbon Fiber-

Reinforced Polymer (CFRP), Steel. All of the experiments with DL models were conducted 

under the databases collected from these samples.  

As shown in Table 4.1, the description of eight validation samples in this work are explained. 

The aspect ratio (𝑠𝑖𝑧𝑒/𝑑𝑒𝑝𝑡ℎ) for all trained and validated samples is designed at [0,60] in 

order to reveal if the detection model has a flexible performance to detect defects. Among 

the eight validated specimens, the detailed description can be illustrated as follows:  

1. The 1st sample (a) is from plexiglass material with 25 sub-surface circle defects of 

different diameter and depth;  

2. The 2nd sample (b) has 8 multiple angle defects which are embedded on the surface of the 

plexiglass specimen; 

3. The 3rd sample (c) is from plexiglass material with 25 sub-surface circle defects of same 

diameter but different depths, increasing from the left to right column (deeper); 

4. The 4th sample (d) Plexiglass has 25 circle and quadrilateral defects of various depth and 

size;  
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5. The 5th sample (e) is a steel sample that has three different diameters of circle defects; the 

depth being shallower from top to bottom 

6. The 6th sample (f) CFRP has 25 triangle defects embedded in the specimen in the form of 

a folding plane; 

7. The 7th sample (g) CFRP has 25 triangle defects embedded in the specimen in the form of 

a flat plane; 

8. The 8th sample (h) CFRP has 25 triangle defects embedded in the specimen in the form of 

a curved plane. 

Table 3. 1 The description of each experimental sample 

Nu

mbe

r 

Type of 

Materials 
 Geometrics Specimen Cross Section 

Dimensi

on 
Defect Diameters (mm) 

1 Plexiglass 

 

     

    

         

 
 

  

 

30*30c

m 

Depth: 5.15 mm, 4.9 mm, 

4.65 mm,4.4 mm, 4.15 

mm; 

Diameter: 9 mm, 18 mm 

 

2 Plexiglass 

 

 

 

 

     

30*30cm 

Different angle cracks 

(0°,15°, 30°, 45°, 60°, 75°, 

90°); 

Size: 15 mm ×3 mm; 

Depth: 3.4 mm; 4.4 mm; 

5.15 mm; 
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3 Plexiglass 

 

  

 

 

 

 

 

 
  

  

 

 

30*

30c

m 

Depth: 3.4 mm; 4.4 mm; 5.15 

mm; 

Diameter: 10mm 

4 Plexiglass     

 

 

 

 

      
    

30*

30c

m 

 

 

Depth: 

0.2, 0.4, 0.6, 0.8, 1.0; 

Diameter or Size: 

3.4, 5.6, 7.9, 11.3, 16.9 

 

      D1: 15 mm x 6 mm; D2: 8 

mm x 5 mm 

      D3: 5 mm x 4 mm; C1: 14 

mm x 6 mm 

      C2:9 mm x 5 mm; C3: 6 

mm x 4 mm 

      B1: 16 mm x 6 mm; B2:15 

mm x 6 mm 

      B3: 8 mm x 4 mm; I1: 18 

mm x 6 mm 

      I2: 11 mm x 6 mm; I3: 7 

mm x 4 mm 
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5 Steel              

  

 

                 

   

   

     

 

30*

30c

m 

 

Depth: 

Size: 

A = 5 x 5.0 mm2 

B = 2.5x 10 mm2 

C = 1 x 25 mm2 

 

6 CFRP 

    

 

 

30*

30c

m 

 

 

Five equivalent diameters 

(3.4mm, 5.6mm, 7.9mm, 

11.3mm, 

16.9mm) 

with five different depth of 

defects (1.0mm; 0.6mm; 

0.2mm; 0.4mm; 

0.8mm) 

The plate has two time folding  

and at 30 degrees to the  

horizontal level 
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7 CFRP 

 

    
   

 

30*

30c

m 

Five different lateral size of 

defects:(3mm, 5mm, 7mm, 

10mm, 15mm) with 

five different depth (0.2mm; 

0.4 mm; 0.6mm; 0.8mm; 

1.0mm) 

 

8 CFRP         

      

30*

30c

m 

Different angle of defects 

(0°;7.6°; 15°)  

with different equivalent 

diameter 

(3.4mm, 5.6mm, 7.9mm, 

11.3mm, 16.9mm)  

and corresponding depth 

(1.0mm,15°), (0.6mm,7.6° ), 

(0.2mm,0°), (0.4mm,7.6°), 

(0.8mm,15°) 

 

 

3.7 Validation Datasets and features 

a)  Acquisition of the training database 

In order to maximize the probability of detection, we independently sampled 4000 thermal 

images in total from the pulsed thermography experiment in three types of materials 

(Plexiglas, Carbon fiber reinforced polymer (CFRP), Steel) respectively to build a training 

and testing database from pulsed thermography data. As the images used for training should 

be the same size, the database was split into 512x640 pixels.  

b)  Calibration of the data  

The marking process was conducted with the Two labelling software based on the model 

type: Colabeler toolkit (YOLO-V3; Faster-RCNN); LabelMe toolkit (Mask-RCNN; Center-

Mask; U-net; Res-Unet). 
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In the Colabeler toolkit, only one label (square shape label) was used for all of the different 

kinds of marks in Figure 3.4 (a). The bounding boxes were prepared by hand for each of the 

images, then exported to a .xml file by Colabeler. Each bounded defect was used as training 

for the algorithm. The process has to be repeated for all images used for training. Each rep-

resentative image file from the four types of samples was extracted from the sfmov.format 

sequence files or matrix raw files. These samples created multiple shapes of defects in the 

database such as squares and rectangles.  

In the Labelme toolkit, a different labeling curve in Figure 4.4(b)(c) from the procedure will 

be provided regardless of the shape of the defects for segmentation, a labeling curve on each 

object in the images is then exported to a json. file by labelme to transform into a large-scale 

object segmentation database (COCO). 

                   
                         (a)                                          (b)                                                (c) 

 

Figure 3. 4 Processing of labeling 

c)  Preprocessing and data augmentation  

In the case of the overfitting issue during the training, data augmentation plays a significant 

role.  

We encourage this model to learn the invariant and transformations by using rotation and 

flipping for the raw images. Since the defects in these materials remain in permanent 

positions and shapes, it leads to a requirement of capturing images in diverse conditions. As 

known, the defect is not clear because of the shaping process and/or the specifications of 

materials that lead to captured images on cluttered background. Those reasons lead to the 

augmentation of the captured images before entering them into a deep learning network 

which is important. Partial images for the training are undertaken in a preprocessing stage.  

We adapted the preprocessed sequence images from feature extraction methods: Principal 

Component Thermography (PCT) which extracts meaningful features by dimension 
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reduction and reflects the intuitions of the data. For example, when the data arise from the 

high dimensional form (sparse and unstable estimation), the PCT can give more redundancy 

to our classier to enable them to make a better decision.  

3.8 Methodologies: Defect detection methods by deep learning algorithms 

As shown in Figure 3.5 below, three main deep learning feature extraction methods and their 

implementation steps have been introduced: A. Objective localization algorithms: Method 1. 

Single stage real time algorithm-You Only Look Once (YOLO-V3), and Method 2. Two 

stages real time algorithm- Faster Region based Convolutional Neural Networks- Faster-

RCNN. B. Semantic segmentations: Method 3. U-net, and Method 4. Res-U-net. C. Instance 

segmentation: Method 5. Mask-RCNN, and Method 6. Center-Mask. D. Regular thermal 

segmentation: Method 7. The Absolute thermal contrast with global threshold. 

 
Figure 3. 5 Three types of Deep Learning methods (Objective detection; Instance 

segmentation; Semantic segmentation) 

A. Objective localization algorithms 

 • Method 1: Real time defect localization (YOLO-V3) 
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YOLO-v3 is a proposed supervised deep learning algorithm which has excellent detection 

capability both on the large or small objectives due to its concatenation through merging the 

features from the earlier layer with the features from the deeper layer especially during the 

infrared nondestructive evaluation with an automatic defect detection task (subsurface 

defects case).  

Processing images with YOLO v3 is quite fast and simple, allowing defects to be detected 

and localize directly. In order to perform the feature extraction, residual networks and 

successive 3×3 and 1×1 convolutional layer are localized in YOLO v3 in Figure 3.6. The 

skip connections mechanism achieved by residual networks through multiple residual units 

[9-10], which was proposed to improve the performance of objective detection and also solve 

the gradient vanishing issue. In this research, the YOLO v3 based deep architecture neural 

network are proposed to perform the detection of defects (at various sizes). This algorithm 

includes the implementation of three steps. First, the pictures are resized as the input size; 

Then an entire convolutional network is run on these pictures; Lastly, we threshold the 

detection results based on the model confidence scores. 

In the Figure 3.7, it is shown an example of an original image(a) and a detected image (b) 

from YOLO-V3 network. The CNN could be able to distinguish the components which has 

similar thermal pattern with defects during the processing of thermal diffusion, which 

indicated the supervised learning method (YOLO-V3) is less influenced by the boundary 

information in the components. 

             
Figure 3. 6 The architecture of Residual units in Yolo-v3 
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                                     (a)                                     (b) 

Figure 3. 7. An example of method A (a) the original thermal image; (b) the detected image 

•  Method 2: Real time multiple stages defect localization model (Faster-RCNN) 

Faster-RCNN is a real time detector which achieved satisfying accuracy with several 

previous object localization applications in NDT [29]. In 2018, the Faster-RCNN has been 

used for crack detection in an eddy current thermography diagnosis system. The neural 

network based on a deep architecture was proposed to deal with the problem of accurate 

crack detection and localization via the preprocessing unsupervised method (Principal 

Component Analysis). 

 The deep architecture of Faster-RCNN is composed of several modules (Figure 3.8): 

1. a fully convolutional network which included five blocks of basic convolutional layers, 

a Relu layer with pooling layer to extract feature from the input images; 

2. a region proposal network (RPN) connected with the fully convolutional network to 

obtain the region of interest (RPI);  

3. a Fast-RCNN detector using the feature region extracted in the (1)-(2), to achieve 

bounding box regression and SoftMax classification.  

    The Faster R-CNN trained from multi-properties rather than the regular unsupervised 

method was limited with respect to certain properties that the defect information contained. 

An example image detected from Faster-RCNN and a corresponding original thermal image 

are shown in Figure 3.9. 
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Figure 3. 8 Faster-RCNN defect detection for infrared data 

                               

(a)                                                         (b) 

Figure 3. 9 An example of method B (a) the original thermal image; (b) the Faster-RCNN 

detected image 

C.  Semantic defect segmentation method  

• Method 3: U-net for semantic defect segmentation  

The U-net is an excellent auto-encoder format model to handle the training data with 

dimensionality reduction and data augmentation. It is worth evaluating the performance of 

semantic segmentation by U-net after extracting objective features from the temporal infrared 

sequence. In the previous article [30], the U-net has been employed for the segmentation of 
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wildland and forest fires as a deep-fire convolutional network obtaining very good 

performance.   

The convolutional architecture of U-net is inspired from the auto-encoder network 

architecture as indicated in Figure 3.10. Contracting path maps from the original image to a 

low dimension vector by extracting meaningful feature representations and the expansive 

path reconstructs the output of the desired feature maps. The contracting path is composed 

of a group of convolutional blocks: convolutional layers; rectified linear unit (ReLU) [31]; 

max pooling (dimension reduction). The expansive path included groups of reconstruction 

blocks to up-sample the feature: up-conv (half-reduce the feature channels); concatenation 

with a feature map from cropping in the contracting path and so on. In the final layer, the 

feature vectors are classified into the target number of the class by 1x1 convolution. 

Moreover, this architecture relies heavily on data augmentation for its performance, which is 

explained in below. The data augmentation strategy from the U-net architecture also brings 

a significant benefit for the performance for the training. Due to the characteristics of the 

spatial thermal temperature sequence, the infrared thermal profile for the defect and non-

defect pixels can be distinguished based on the labeling to force implementation of the 

supervised learning method (U-net segmentation).  

 
 

Figure 3. 10 U-net Model structure 
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(a)                                                      (b)  

Figure 3. 11 An example of method C (a) the original thermal image; (b) the segmented 

image 

During the cooling period of the thermal data, a temperature change curve over time is 

obtained on the given image sequence. Therefore, each single thermal frame is fed into this 

model at the pixel level and the thermal image can gradually capture the physical properties 

of temperature variation by U-net. The input values of U-net are particular thermal temporal 

evaluation vectors from each pixel. The output label is set either as 1 or 0 corresponding to 

the defect or non-defect region. During the validation stage, an obtained thermal sequence is 

selected as the input data after de-background and normalization. The output is a segmented 

image reconstructed from the predicted value as shown in Figure 3.11(b). The Figure 3.11(a) 

is the corresponding original thermal image. 

• Method 4: Res-U-net for defect semantic segmentation 

It is worth investigating comparatively to evaluate thermal sequence databases based on these 

different defect segmentation methods. As indicated in Figure 3.12, Res-U-net is an adapted 

novel encoder/decoder structure evolved from U-net in combination with several particular 

structures: residual connections [32]; atrous convolutions [33]; pyramid scene parsing 

pooling [34]. Res-U-net can infer sequentially the boundary of the objects, the distance 

transforms of the segmentation mask, the segmentation mask and a colored reconstruction of 

the input.  

Due to the fact that Residual blocks in Res-u-net are able to remove vanishing and exploding 

gradients [35] to a great extent to improve the implementation efficacy of the learning mode 

and to achieve the pixel level of segmenting of defects and classification, it was compared 

with other state-of-the-art DL algorithms. The Res-Unet original was performed on the 

mono-temporal aerial images for the task of semantic segmentation. The framework adapted 

here for segmenting defects included: A Res-Unet framework and a corresponding novel loss 
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function: Dice loss [36]. This reliable framework can perform semantic segmentation 

resulting in high resolution images. In order to avoid the overfitting, the Res-Unet relied on 

the data augmentation strategy as well. Each image has been rotated to the angle, zoom in/out, 

flip and so on to enlarge the datasets of Res-U-net. In Figure 3.13, a segmented sample from 

Res-Unet (b) and the corresponding raw images(a) are shown.  

 
Figure 3. 12 Res-U-net model structure 

        

                                                                    

(a) (b)  

 

Figure 3. 13 An example of method 4 (a) the original thermal image; (b) the segmented 

image 

D. Instance defect segmentation algorithm 

•   Method 5: MASK-RCNN for defect segmentation 
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The Mask-RCNN detection procedure can be considered as either an object detection 

function or object segmentation function. Compared with the semantic segmentation, the 

instance segmentation associates each pixel of an image with an instance label. It can forecast 

a whole segmentation mask for each of those objects and predict which pixels in the input 

image correspond to each object instance. It also reduces the restriction to the position of 

defects rather than predicting a group of bounding boxes for the defects. Mask R-CNN is a 

classical instance segmentation method extended intuitively from Faster-RCN, which is an 

end to end trainable model to achieve pixel-to-pixel alignment segmentation between inputs 

and outputs of a convolutional backbone architecture. ROI Align preserves spatial orientation 

of features with no loss of data for extraction over the entire image of the network. This 

approach efficiently detects objects in an image while simultaneously generating a high-

quality segmentation mask for each instance.  

Each thermal image was fed into the backbone convolutional network from Mask R-CNN, 

once some learned region proposal was obtained from the backbone network. These features 

projected learned region proposals onto convolutional feature maps. Mask-RCNN using ROI 

aligning [37] to warp our feature from the convolutional feature map into the right shape then 

outputs into two different branches. As shown in Figure 3.14, there are two different branches 

providing an output of predicted results. The top branch (blue line box) is a classification 

score of categories of region proposals and a bounding box for regression of coordinates in 

the output. In addition, at the bottom (red line box), a segmentation mask is predicted by the 

model for each of those region proposals to classify for each pixel in that input region 

proposal whether or not it is an object. Figure 3.15 provides an example of an original image 

from pulsed thermography (a) and a segmented image from Mask RCNN (b). 

  
 

Figure 3. 14 Mask- RCNN Processing Architecture 
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                                       (a)                                                             (b) 

Figure 3. 15 An example of method 5 (a) the original thermal image; (b) the detected image 

• Method 6: Central-Mask for defect segmentation  

Since the Mask-RCNN relies on the pre-defined anchors, it influenced slowed down for the 

speed and accuracy in detection. Central-Mask is a simple yet efficient real time anchor-free 

instance segmentation. Based on the structure, Central-Mask could be regarded as a novel 

spatial attention-guided mask (SAG-Mask) branch adding on free anchor one stage object 

detector (FCOS) [38]. A segmentation mask head located on each detected box with the 

spatial attention map that helps to aim attention at informative pixels and suppress noise. 

Figure 3.16 show the overview architecture of Center Mask. A feature pyramid extractor 

combines with the FCOS box head to predict classification scores and bounding box 

regression. A spatial attention-guided mask (SAG-MASK) predicts the segmentation map 

for the defects based on a spatial attention module [39] from each bounding box, which 

focuses on meaningful pixels and eliminates the noised influence. Central Mask achieves a 

faster speed and surprising accuracy better than other state of the art instance segmentation 

approaches (Mask-RCNN). In this work, we adapted the Central-Mask network for feature 

extraction and defect segmentation. The main goal is to precisely detect and analyse defect 

information from the thermal images. The core strategy from this network is to extract the 

meaningful thermal pattern from the sequence for each specific defect. Figure 3.17 show a 

raw thermal image(a) and a corresponding segmented thermal image (b) from Center-Mask. 

Each defect is precisely localized and segmented by the Mask. 
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Figure 3. 16 The structure of Center-Mask 

 

                    
                             (a)                                                                                (b) 

Figure 3. 17 An example of method 5 (a) the original thermal image; (b) the detected image 

 

E. Regular infrared defect detection algorithm 

 

• Method 7: Absolute thermal contrast (ATC) with global threshold (GT) 

In combination with a global threshold method (GT) , the ATC was adapted for the procedure 

of segmenting defect areas. The vital concept of this method was to compare the grey level 

of the pixel in the image coordinated (𝑥, 𝑦) with the average grey level of a sound region of 

the sample and it is often adapted in infrared image processing. Equation (3.3) describes how 

this method works: where 𝑇𝑎𝑡𝑐 is the grey level in the ATC image in the coordinate (𝑥, 𝑦) of 

the ATC image. 𝑇𝑑(𝑥, 𝑦) is the average grey level of the group pixels in the defect region 

and 𝑇𝑠(𝑥, 𝑦) is the average temperature of a nearly sound region.                                

                                                  𝑇𝑎𝑡𝑐 = 𝑇𝑑(𝑥, 𝑦)  −   𝑇𝑠(𝑥, 𝑦)                                           (3.3) 

                                               
                                      (a)                                                          (b)  

Figure 3. 18 An instance of method 7 applied on the thermal image (a) the original thermal 

image; (b) the detected image 
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Figure 3.18 provides an example of the segmentation with this method: (a) the original 

thermal image from pulsed thermography; (b) the corresponding segmented image in method 

7. This method made it possible to reduce the effect from non-uniform heating and remove 

some thermal pattern noises. 

3.9 Experimental results and implementation details 

3.9.1. Training 

The training procedure for deep learning models was set according to the following principles 

for different neural network architecture parameters adjusted based on the Pytorch 

framework. The training processing was conducted on a GeForce GTX1080TI about 30 min. 

The operating system is set as: Ubuntu 16.04. The framework of the learning model is set as: 

Darknet. CPU: i7-7700k. Memory: 16GB, GPU: NVIDIA GeForce GTX1080TI. For each 

modeling training procedure and hyperparameters setting, we configurated the parameters as 

shown below in Table 3.2. 

Table 3. 2 The training detailed from each DL model 

Deep learning model Training detailed information 

U-net 

1. A high learning momentum (0.99); 2. The weight decay is set as - 

0.005; 3. A learning rate is 0.005; 4. The number of epochs is 200; 5. 

The input sequences and the corresponding segmentation images are 

used to train with U-net with min-batch gradient descent implantation 

from Pytorch deep learning framework. 

Res-Unet 

1. The Res-Unet in this work was training based on the MXNET[25] 

deep learning library; 2. A batch size of 256 with mammal gradient 

aggregation [26]; 3. The number of epochs is 300 ; 4. The weight decay 

is set as - 0.00066; 5. Adam optimizer with initial rate 0.005; 6. A multi-

dimension learning momentum [27]; (𝛽1, 𝛽2)  is (0.9,0,09) and the 

initial learning rate is 0.0005. 

YOLO-V3 

1.The Momentum was implemented as optimizer during the training; 2. 

The learning momentum was 0.9 ;3. the learning rate was set as 0.001; 

4. The backbone is adapted Darknet51; 5. The weight decay was 

0.0005; 6. The maximum batches size of iteration was 50200.  

Faster-RCNN 
Batch size 256; Overlap threshold for ROI 0.5; Learning Rate 0.001; 

Momentum for SGD 0.9; Weight decay for regularization 0.0001 
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Mask-RCNN 

1. Network training used Resnet50 as backbone; 2. The mini mask size 

is 28x28; 3. The weight decay is set as - 0.0001; 4. The loss weight is 

equal for each class and mask ( RPN class, RPN bounding box, 

MRCNN class, MRCNN bounding box and MRCNN mask) ; 5. The 

learning momentum is 0.9 and learning rate is 0.0003; 6. Training of 

the first 20 epochs of network heads, was followed by the training of all 

network layers for 80 epochs, the model weight.   

Center Mask 

Stochastic Gradient Descent (SGD) for 90K iterations (200 epoch) with 

a mini-batch of 2 images and initial learning rate of 0.01; a weight decay 

of 0.9 and a momentum of 0.01, respectively. All backbone models are 

initialized by ImageNet pre-trained weights. 

 

3.9.2 Evaluation metrics 

F-score and the probability of detection [40] are introduced to analysis the capability of 

detection of each detection deep learning model, which is being interpreted by equations 

(3.4)-(3.7). The precision means the ratio from the cases that actually contain the defects over 

the cases that are recognized by the system that contains the defects, which represent how 

accurate the system is in identifying the defects. The recall means the system correctly 

recognized the defects over the cases that actually contained the defects. The precision and 

recall values heavily depend on the confidences scores that the system is setting. The F-score 

is a method to estimate the detection and segmentation capability from these algorithms. 𝛽 

is a value to represent the weight between the Precision and Recall value. In this work, the 

Recall is a metric which is more influencial in evaluating the performance. Therefore, 𝛽 is 

equal to 2. The POD reveals the accuracy of the method to detect the defects, which are 

always calculated at a specific confidence score value. Although the POD keeps the same 

mathematical format as the Recall in the equation, POD represents a further explanation in 

quantifying research with NDT inspectors. In this work, we set the threshold for CTS at 75% 

for POD metric. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                            (3.4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                               (3.5) 

𝑃𝑂𝐷 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                   (3.6) 

𝐹 𝑠𝑐𝑜𝑟𝑒 = (𝛽2 + 1)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑅𝑒𝑐𝑎𝑙𝑙
                (3.7) 
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Where TP is true positive, FN is the false negative representing the number of the defects 

which have not been detected. Meanwhile, FP is the false positive defects representing the 

defects which are wrongly detected as defects, when they are in fact not defects.  

Moreover, the confidence threshold score (CTS) has been defined as a standard for measuring 

the accuracy of detecting corresponding objects in a given data set. CTS is a simple 

measurement standard that can be used for any task that yields a prediction range (bounding 

boxes, segmented maps) in the output regarding the ground truth. 

3.9.3 Learning curves 

   
                               (a)                                                              (b)                                                              (c) 

       

                                 (d)                                                           (e)                                                               (f)        

Figure 3. 19 The loss curves in each deep segmentation models (a) Mask-RCNN; 

(b)Center-Mask ;(c) YOLO-V3 (d) Res-U-net; (e) U-net (f) Faster-RCNN 

In Figure 3.19 (a)-(f), each deep learning model was trained for 1000 epochs respectively. 

Figure 3 .19 (a) shows the average loss curve for training and validation process for the Mask-
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CNN model. The Training loss curves decreased while the number of iterations increased. It 

can be seen that the loss dramatically decreases during the first 200 batches, then gradually 

flattens out around 0.225 as the batch number of the iterations increases and then remains 

steady. The validation loss coverage involves a similar loss. This indicates that the 

performance of Mask-RCNN was promising during the training procedure. In Figure 3.19 

(b), the loss curves of the Center-Mask model have a similar momentum to that of the Mask-

CNN loss but more smoothly. The training loss stably decreased as well while the whole 

number of iterations increased, and then converged around 0.341. 

 In comparison with Figure 3.19(a)(b), the four other DL models in Figure 3.19(c)-(f) seem 

to maintain a similar momentum. The average curve of the training loss became more 

dramatic and oscillating decreases in the first 500 epochs and then it flattens out late. The 

loss curves of steel stabilized at a value lower than 0.5 after 500 epochs. As a result, based 

on the obtained model, the loss from the 6 different kinds of deep learning models, this 

furtherly indicated an impressive performance during the whole procedure (training and 

validation) when it is applied on defect segmentation and localization of composite materials. 

   

3.9.4 Detection results 

This model provided the shape and location of each defect detection results based on the 

labeled images with ground truth. 

In table 3.3(f), the noise of the input image is the main factor affecting the segmentation 

results. As indicated in the U-net result, the segmented image is not clear. The segmentation 

boundary is still blurry. A preprocessed image from principal component analysis (PCA) was 

added in the validation database to verify whether the segmentation effect will be better after 

denoising in the Res-U-net model training. From the results, it seems the performance has 

been improved to some extent and the test result of Resnet-U-net gave a better performance 

than the original U-net. 

Table 3.3 also shows the visualized results from 6 deep learning algorithms. Specifically, in 

sample (g), the defect feature from the sample indicated clearly, these deep learning methods 

show excellent defect detection capability. However, it is obvious that the comparison 

methods (semantic segmentation) have a substantial shortcoming. These method results are 

affected by the non-defect area in sample(g), whereas the Resnet-U-net can be conducted 

without false detection. Compared with Resnet-U-net, the original U-net are more sensitive 

to fix patterned- noise and non-uniform heating from thermography due to the higher false 

detection rates in the result of sample (g). Therefore, U-net cannot detect the specific thermal 
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data very well because U-net is too insensitive to defect information. Note that the introduced 

model Res-U-net can ensure correct detection while effectively prohibiting noise interference. 

In terms of sample(d)(Steel) and sample(e)(Plexiglass), it is still quite challenging to detect 

the defects and abnormal areas because the background and noisy information represent a 

high percentage around the defect information region in the sample. The result of sample (d) 

indicated that Faster-RCNN failed in detecting the less visible defects. For the model of 

Faster-RCNN, although it introduces a hierarchical structure of deep architecture to extract 

semantic information in the images, there is still failure to distinguish the boundary noise 

information from the Steel sample. On the other hand, YOLO-V3 is slightly more effective 

in comparison with Faster-RCNN based on the detected results on 8 evaluation samples 

(mAP =0.75 IOU metric). This further illustrates the introduced model YOLO-V3 leads to 

good identification accuracy as a single stage detector in comparison with the other state of 

the art methods.  

For the instance segmentation method, the segmented images (Center-Mask; Mask-RCNN) 

show some indistinguishable results from the ground truth. Several types of defects are 

detected which include the shapes of circle, square, rectangle. Table 3.4 shows the detection 

results of the defects by training using the instance segmentation model: Mask-RCNN 

/Center-Mask model. Particularly, since the training database is composed of regular shapes 

and permanent angles with circle and square shapes, the testing results in Table 4 show that 

the irregularly distributed defects with multiple angles are detected accurately, which 

indicated that the Mask-RCNN/Center-Mask spatial detection model can enhance detection 

performance based on instance segmentation of pixel to pixel alignment.  

As a result, it is not enough to only acknowledge the semantic information, but more 

impactful to know how to obtain the low semantic information from defects under the 

interference of objective noisy conditions. In contrast, for the instance segmentation models, 

not only did this illustrate a better segmentation performance for the Plexiglass samples, but 

also it has excellent detection capability for the Steel and CFRP sample. 
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               Table 3. 3 Results with semantic segmentation and object localization algorithms 

 Res-U-net U-net Faster-RCNN Yolo-v3 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

   

 

 
 

(c) 

   

 

 
 

(d) 
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Table 3. 4 Segmentation results with instance segmented algorithms; Absolute Thermal 

Contrast (ATC); Raw 
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To further evaluate the robustness of the learning model in comparison with the state of the 

art: ATC, samples (a) to (h) were further adapted to carry out a detailed analysis. For instance, 

in samples (a)-(e) of plexiglass and steel, in comparison with the introduced method from 

instance and semantic segmentation, the poorer detection of the comparison methods (ATC) 

is obvious since the semantic information is unclear and the segmented defects are not 

obvious. Then, for samples (f) to (h) from CFRP which were limited by the accuracy of IR 

camera, the detection results of Absolute thermal contrast (ATC) are still disappointing, 

whereas for the DL methods the results are far superior to ATC. Therefore, for the regular 

and irregular shaped specimens, the overall performance of the DL methods is significantly 

better than all the state-of-the-art methods (ATC and global threshold). 

3.9.5 Reliability assessment using probability of detection (POD) 

The reliability assessment metric of subsurface defects detection- Probability of detection 

[29] has been further assessed to quantify the performance of these six DL models in this 

task which can be expressed as a function of aspect ratio through a POD curve. Each curve 

has been plotted in Figure 3.20 with respect to the aspect ratio (𝑠𝑖𝑧𝑒/𝑑𝑒𝑝𝑡ℎ) to indicate the 

quantitative analysis for various sizes and depths of defects with deep learning models. The 

results of probability of detection (POD) are based on the defect regions detected from the 

deep neural network methods based on the referenced ground truth.  

Figure 3.20 (CTS = 0.75) indicates the final POD scores obtained from all the samples (a)-

(h)for each DL algorithm. The POD of the instance segmentation method Center-Mask based 

approach has a notable performance and the highest POD scores in comparison to other 

approaches which represent the highest detectability. Then the staged objective localization 

methods (YOLO-V3; Fast-RCNN) have a faster and medium detection accuracy. The 

semantic segmentation method (U-net; Res-U-net) obtained less accuracy due to the fixed 

pattern noise and non-uniform heating from the infrared thermal data. However, all of these 

six DL models surpass the state-of-the-art method (Absolute thermal contrast: ATC) and 

function automatically. 

The results from different samples for POD validation of methods are indicated in Table 

5(CTS = 0.75). The results are compared using the thermal frames acquired from the Pulsed 

thermography (PT) on each Plexiglass/CFRP/Steel sample in Section 2.3. In Table 3.5, the 

instance segmentation method (Center-Mask) still shows an acceptable segmented result for 

all samples provided. Since the instance segmentation method can capture feature differences 

over each pixel, the pretrained model (Center Mask; Mask-RCNN) has the intrinsic capability 

to segment defects from background information based on a learning and labeling process. 

For the semantic segmentation method, as discussed previously, the original U-net model 
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fails to defect the deeper defects region, such as some defect regions of sample (c), since the 

spatial features from the infrared sequences in defect regions are difficult to obtain due to the 

non-uniform heating and fixed pattern noise from the boundary region in this case. In contrast, 

it is worth noting that the introduced method from the instance segmentation model (Center-

Mask) obtained the best performance in sample (c) in comparison with the other methods. 

 

                
Figure 3. 20 Different detection methods with CFRP sample 

The results from samples (a)-(h) analysed by the POD evaluation metrics are indicated in 

Table 3.5. The performance is compared with thermal images and sequences collected from 

pulsed thermography experiments on each specimen. It is clear that on samples (a)–(d), the 

YOLO-V3 and Center-Mask show commensurable results, while the other four algorithms 

(U-net; Res-U-net; Mask-RCNN; Faster-RCNN; ATC) obtain less accurate performance. 

Due to the hierarchical structure of deep architecture in neural networks, each DL model has 

a strong capability to separate low-degree background information from raw thermal 

sequences (fix-pattern noise; non-uniform heating) and extract defects feature components. 

However, it is worth mentioning that the semantic method(U-net) model still fails to detect 

when it encounters a challenging situation (non-uniform heating), just like sample (e), while 

the instance segmentation (Center-Mask) maintains high performance in POD evaluation. 
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Table 3. 5 Different detection methods of results with individual sample 

Methods 

POD of different samples 

Sample(a) Sample(b) Sample(c) Sample(d) Sample(e) Sample(f) Sample(g) 

Sa

mpl

e(h) 

Mask-

RCNN 
0.89 0.91 0.87 0.84 0.74 0.89 0.95 1 

Center-

Mask 
1 0.94 0.92 0.84 0.82 0.91 0.90 1 

U-net 0.85 0.84 0.83 0.81 0.71 0.86 0.83 0.86 

Res-U-net 0.89 0.90 0.90 0.84 0.76 0.85 0.81 0.92 

Faster-

RCNN 
0.90 0.93 0.92 0.93 0.92 0.95 1 0.89 

YOLO-

V3 
0.92 0.94 0.94 0.95 0.95 0.96 0.92 0.89 

Absolute 

thermal 

contrast 

with 

global 

threshold 

0.65 0.71 0.73 0.78 0.81 0.73 0.67 0.65 

     

Furthermore, the results validated on the total databases from 8 representative samples (a)-

(h) are indicated in Table 3.6. These results in Table 3.6 indicated that the Center-Mask 

learning model achieves the best performance comparable to that of the other bench mark 

detection methods (semantic segmentation; defect localisation). This network may be able to 

obtain the relatively stable performance due to the fact that it involves a deep architecture to 

extract the features driven by the tasks and instance masks. 

Table 3.6 indicated the Precision, Recall and F-score analysis result from each algorithm 

(CTS = 0.75). The Pr represents the Precision value and the Re represents the Recall value. 

The F-score of comparison on specimen (a) to (c) is relatively high for each proposed DL 

model. However, specifically for sample(g), the F-score of Unet is 57.2%, which indicates 

that Unet only partially detects defects due to noise influences. Whereas the instance 

segmentation method (Mask-RCNN; Center-RCNN) can reach 76.5%, 83% in sample(g). 

From sample (h), the F-score of semantic segmentation (U-net, Res-Unet) can only achieve 
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71.8%, 77% in several, and the remaining two comparison methods give the following results: 

Center-Mask (86%) and Yolo-v3 (79%).  

Table 3. 6 Total detection results with different deep learning segmentation algorithms 

Sampl

es 
Evaluations 

Methods 

Mask-

RCNN 
U-net 

Res-

Unet 
Faster-RCNN 

Yolo-

v3 

Center

-Mask 
ATC 

A 

Precision 0.46 0.45 0.45 0.47 0.40 0.45 0.30 

Recall 1 0.81 0.89 0.90 1 1 0.75 

F-scores 80% 70% 74% 76% 76% 80% 57.6% 

B 

Precision 0.41 0.50 0.46 0.43 0.52 0.55 0.25 

Recall 0.91 0.84 0.87 0.88 0.92 0.94 0.69 

F-scores 73.2% 74% 73.8% 72% 80% 82% 51% 

C 

Precision 0.45 0.44 0.47 0.49 0.57 0.59 0.28 

Recall 0.87 0.85 0.83 0.84 0.91 0.92 0.63 

F-scores 83% 72% 71.9% 73% 81% 82% 50% 

D 

Precision 0.46 0.47 0.49 0.40 0.59 0.60 0.22 

Recall 0.84 0.81 0.83 0.83 0.90 0.94 0.78 

F-scores 73.3% 71.6% 72.8% 72% 81.4% 84.4% 52% 

E 

Precision 0.41 0.40 0.50 0.52 0.60 0.66 0.38 

Recall 0.80 0.75 0.79 0.80 0.82 0.82 0.66 

F-sores 67.2% 64% 70% 72% 76% 78% 57% 

F  

Precision 0.42 0.35 0.46 0.41 0.64 0.67 0.38 

Recall 0.91 0.80 0.85 0.85 0.82 0.91 0.61 

F-sores 73.7% 57.2% 74.9% 70% 78% 85% 54% 

G 

Precision 0.49 0.42 0.60 0.41 0.65 0.61 0.46 

Recall 0.89 0.63 0.79 0.90 0.94 0.92 0.69 

F-sores 76.5% 57.2% 74.9% 73% 87% 83% 62% 

H 

Precision 0.42 0.59 0.55 0.42 0.54 0.64 0.31 

Recall 0.87 0.76 0.85 0.89 0.89 0.95 0.75 

F-sores 71.64% 71.8% 77% 73% 79% 86% 58% 

Avera

ge  
F-scores 74.8% 67.25% 70.66% 72.62% 79.8% 

82.55

% 
55.2% 

 

* The precision and recall values always tend to be negatively correlated in the evaluation of DL 

models, in this project we placed more emphasis on the recall values and comprehensive F-scores to 

assess the number of defects which successfully detected and model performance. 
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The average F-scores for all eight specimens, involving the comparison methods from 6 

different DL algorithms (Faster-RCNN, YOLO-V3, U-net, Res-Unet, Mask-RCNN, Center-

Mask) provide 72.62%, 79.8%, 67.25%, 73.66%, 74.8% and 82.55% defect detection 

capability respectively. The instance segmentation method (Center-Mask) gives the highest 

capability for detection on average. As a result, the instance segmentation method is 

relatively better than the semantic segmentation methods in terms of detection ability due to 

noise influence from thermography in this circumstance. 

In this experiment, the samples from three types of materials are divided into different 

geometric distributions (regular and irregular shape defects). Due to the different geometric 

architecture of the regular and the irregular defects, this leads to inconsistent thermal 

diffusion. Correspondingly, this inconsistent thermal diffusion causes the data distribution to 

be quite different. It can be concluded based on the comparison of the algorithms that it can 

be difficult for a single DL model to detect all defects effectively. Thus, we adapt the 3 types 

of deep learning algorithms separately training for the different type of samples and also 

compare the results with other state of the art methods. 

3.9.6 Mean average precision (mAP)  

Average Precision (AP) [41] is also an indicator that is analysed for the relationship between 

the precision and recall values. In this section, the mean average precision (mAP) metric is 

introduced to further analyze the top 4 detection models ranking in POD analysis in Section 

6.5 (Center Mask; Mask-RCNN; YOLO-V3; Faster-RCNN).  

The average precision (AP) is calculated based on the indicated bounding boxes and the 

different confidence thresholding scores from the DL models in object localization and 

instance segmentation. The total AP and the precision-recall plots obtained when 4 different 

deep learning architectures are adapted are compared in Fig. 21(including all the confidence 

thresholding score values). The detection results show that the Center-Mask still displays the 

best performance. Taking the 1000 infrared images from the 8 eight representative specimens, 

defects can be detected and the Recall and Precision can be calculated by the confidence 

scores, as shown in Figure 3.21 below. The AP of all 1000 thermal images is 75.05%. For 

instance, in instance segmentation model, the AP is calculated as 75.33% and 81.06% 

respectively, for Mask-RCNN and Center-Mask (Fig. 21 (a) and (b)). Therefore, the detection 

performance is better in Center-Mask than in Mask-RCNN. For the object localisation model, 

the AP is calculated as 76.63% and 71.06%, for YOLO-V3 and Faster-RCNN respectively 

(Fig. 21 (c) and (d)). Therefore, the detection performance is better in YOLO-V3 than in 

Faster-RCNN. 
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                                           (a)                                                           (b)                                 

               
                                           (c)                                                          (d)                                

Figure 3. 21 The mean average precision curve from each deep segmentation model: (a) 

Mask-RCNN; (b)Center-Mask; (c) YOLO-V3; (d) Faster-RCNN 

3.9.7 Running time complexity  

Further, frames per second (fps) [36] was introduced as an idea to certify how many images 

can be processed in a unit (1s) time by each deep learning model in order to analyse the 

running time complexity for the model. In Figure 3.22, the running time complexity of each 

model has been indicated which illustrates the average time to detect or predict a defect in 

each frame(picture) from DL model: The higher the value in the graph, the faster speed the 

DL algorithm has. 

Based on the analysis of Figure 3.22, it can be seen that the objective localization approach 

significantly achieved the fastest speed among the models. For the instance segmentation 

detector, Center-Mask has increased the time per frame from the state-of-the-art method ATC: 

0.5 fps to 12 fps. Then Mask-RCNN also achieved a time per frame of 5fps which increased 
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the processing speed significantly in comparison with the regular thermal threshold 

segmentation method (ATC) in thermography. 

 
Figure 3. 22 Average frame per second for each deep learning model 

Moreover, we further analyzed the results in comparison with other state of the art networks 

and YOLO-V3 still obtained the fastest running time speed to process images due to the 

reason that it is a one-stage real-time detector and has a much faster speed than other detectors 

(such as Mask-RCNN; Faster-RCNN). The RCNN methods are relatively slow since these 

models are two-stage procedures (Region Proposal Network (RPN); ROI pooling). Whereas, 

as indicated previously the POD curves in Figure 3.20 (Section 6.5), Center-Mask still 

achieved the highest POD scores during the whole validation process based on the different 

aspect ratio values (size/depth). Therefore, in this work, Center-Mask is the most promising 

to obtain the highest accuracy but YOLO-V3 is the most efficient which has the faster time 

frame speed. 

3.10. Results analysis and discussion 

The deep segmentation models gave attractive results for the Plexiglass/CFRP/Steel 

materials defects identification evaluation. This project focused on building and fine-tuning 

on the training parameters for those particular defects. To improve the accuracy of the 

detection model, the manner in which the dataset is built has a significant impact. 

According to the results obtained, the following analyses and points of this experiment have 

been concluded below:  
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1. To implement a robust detection model, the databases must include enough samples. One 

way to effectively improve is to increase the size of the dataset by including the multiscale 

images. A database composed of images on different scales (larger or smaller), enables 

the training to be sensitive to those new dimensions. This would increase the robustness 

of the deep segmentation algorithms facing larger defects, as well as improve the results 

on blurry pictures. To help reduce false alarms in the algorithm results and be more 

convenient for the user, implementing different types of labels is necessary. In the case 

of this particular project, each section was labeled with a defect in the spatial 

segmentation training (Mask-RCNN; U-net; Res-U-net). The proposal is to add different 

classifications. For example, including the name of the shape of the defect: circle, triangle 

or some false positive cases (lighting spots, scratches) would be beneficial. This would 

allow the algorithm to not detect these shapes as a defect, and thus, reduce the number of 

false alarms. 

2. Another critical point in this experiment to be considered is the marking process. In 

comparison to other objective detection methods, Mask-RCNN/Center-Mask especially 

involves a pixel-based marking approach which could mark the defects accurately, as 

opposed to marking a considerable area around each defect. It can rapidly and easily 

annotate the object without the bounding boxes restrictions in most cases. In comparison 

with an instance segmentation method, U-net and Res-Unet are the auto-encoder format 

DL models that can be trained based on each pixel level to semantically segment defect 

pixels from sound pixels. However due to the burden of tackling massive temporal data 

of thermal frames, U-net and Res-Unet have less time efficiency and high time 

complexity on the thermal data in comparison to the instance segmentation model. 

Therefore, to build and create more diverse and representative training samples is the key 

point in the future work in this research. There are several ways in which the size of the 

dataset can be effectively increased. Through data augmentation involving rotation, 

horizon flipping, and vertical shifts, the deep neural network model could learn the 

transformations further. By having different scales of larger or smaller training images, 

the learning procedure will be more sensitive to those new dimensions. This would also 

enhance the robustness of the algorithm to train for the detection of large defects and 

improve the results of grayscale images. 

 

3. In addition, the specific training gave results for specific defects in the academic samples. 

In this work, training only involved using square, circle, and rectangle defects of 

Plexiglass, CFRP and Steel samples. The detection results indicate that similar defects 

could be detected on other types of training samples. But the results also show that if the 

learning model is tested on other defects that the model did not learn on, it would not be 
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an accurate system to rely on. Hence, to use the deep learning algorithm for training, we 

should clearly define the type of sample we are working on and enlarge the robustness of 

the system to learn this type of sample during the neural network training procedure. In 

addition, due to the time limitation, we simply labeled all the visible defects of each 

sample in this experiment. However, if we want to extract the feature map completely for 

each defect area, the positioning of less visible defects in infrared data will be a significant 

but challenging issue in further research.  

4. Another disadvantage is that the objective localization algorithms are being influenced 

by the labeling process. Although fast and efficient to use, the bounding boxes also led 

to some restrictions in most cases. As can be seen, when the circle is present in bounding 

box, this involves a defect which is totally bounded by the box. However, this shows that 

although the entire defect is contained, the bounding box also extracted the non-defect 

area which possibly introduces multiple errors and less accuracy in the results. The 

proposal is to make a pixel-based labeling in order to achieve integrity in the image 

segmentation which would only label the defects and not a considerable area around each 

defect. This proposition can be further clarified by segmentation methods. The results 

presented here lead to a more reliable defects characterization with Pulsed thermography 

(PT).  

5. A good defect characterisation is essential to not replace parts that could yet be used and 

to not leave critically damaged components without the needed repair. Therefore, these 

results are important, especially e.g. in the designing of autonomous diagnosis NDT 

systems, which can make decisions regarding the integrity of the inspected part by 

themselves.  

6. Future work includes: (a) tests that can be performed with the instance segmentation 

method and other NDT techniques based on images like stereography and holography; 

(b) the best technique, method instance segmentation method (Center-Mask), which can 

still be improved by tuning the network parameters; (c) since the CNN technique achieves 

excellent performance, other network architectures must be tested and compared in the 

future to specify the best intelligent tool for defect measurement with infrared images. 

3.11. Conclusions 

In this work, six spatial deep learning models, involving: instance segmentation (Mask R-

CNN; Center-mask). Autoencoder format semantic segmentation (U-net; Res-u-net), and the 

object localization model (YOLO-V3; Faster-RCNN) are applied for defect detection in 

infrared thermography. The evaluated results and analysis from different geometric 

specimens of Plexiglass, CFRP and Steel specimen with different aspect ratios (𝑠𝑖𝑧𝑒/𝑑𝑒𝑝𝑡ℎ) 
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are indicated in Section 6. Each POD curve is related to the particular defect sizes which 

assess the quality of the results to land smoothly in the case of catastrophic failure results. 

These Spatial deep learning models are separately and comparatively discussed in brief. 

Future work will focus on the detection of more complicated structured materials through the 

modification and combination of different spatial and transient deep learning models.  
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Part II. Synthetic Data for defect segmentation in deep learning 

The following one chapters will present one published paper concerning the application of 

infrared thermography for Non-Destructive Testing & Evaluation applied in procedure, 

which published in Journal of Big Data and Cognitive Computing: Automatic Defects 

Segmentation and Identification by Deep Learning Algorithm with Pulsed Thermography: 

Synthetic and Experimental Data 

General explanation: 

 

Deep learning’s Achilles heel is the training dataset. The training dataset must be accurate 

enough and contain enough images and exceptions (e.g., occlusions) so as to allow the 

algorithm to learn reliable features of interest. If the dataset does not contain enough images 

and cases of possible situations or if the data contain too much noise or artifacts, the algorithm 

may not be accurate enough or even may learn to identify the wrong features (in the cases of 

CM feature learning methods). 

However, during the reality inspection in Infrared NDT, the composite materials (CFRP; 

GFRP) maintain high costing expense for the real raw data collection. The flexible and 

alternative way for saving expensive costs meanwhile achieving the highest quality 

inspection would be introducing a synthetic data generation of thermal data for the training 

in order to benefit from automatic defect detection and identification from the deep learning 

models combining with infrared thermography. 

Therefore, in this study from the chapter, we will mainly focus on introducing and adapting 

inexpensive synthetic data merging with a certain amount of the experimental database for 

training the neural networks in order to achieve the compelling performance from a limited 

collection of the annotated experimental infrared data of a real-world practical thermography 

experiment.  
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Chapter 4 Automatic Defects Segmentation and Identification by 

Deep Learning Algorithm with Pulsed Thermography: Synthetic 

and Experimental Data 

The results of this study were published in special issue “Machine Learning and Data 

Analysis for Image Processing” in the Big Data and Cognitive Computing Journal in 

February, 2021, cited 1 times up to now. 

4.1 Résumé 

 Dans l'évaluation de la qualité (QE) du domaine de la production industrielle, la 

thermographie infrarouge (IRT) est l'une des techniques les plus cruciales utilisée pour 

évaluer les matériaux composites en raison de ses propriétés de faible coût, d'inspection 

rapide de grandes surfaces et de sécurité. L'application de réseaux neuronaux profonds tend 

à être une direction proéminente dans le contrôle non destructif (CND) de l'IRT. Pendant la 

formation du réseau neuronal, le talon d'Achille est la nécessité d'une grande base de données. 

La collecte d'énormes quantités de données de formation est une tâche très coûteuse. Dans le 

domaine des CND avec apprentissage profond, les données synthétiques contribuant à la 

formation en thermographie infrarouge restent relativement inexplorées. Dans cet article, des 

données synthétiques provenant des modèles d'éléments finis standard sont combinées avec 

des données expérimentales pour construire des référentiels avec des réseaux neuronaux 

convolutifs basés sur la région du masque (Mask-RCNN) pour renforcer le réseau neuronal, 

apprendre les caractéristiques essentielles des objets d'intérêt et réaliser une segmentation 

automatique des défauts. Ces résultats indiquent la possibilité d'adapter la fusion de données 

synthétiques peu coûteuses avec une certaine quantité de la base de données expérimentale 

pour l'entraînement des réseaux neuronaux afin d'obtenir des performances convaincantes à 

partir d'une collection limitée de données expérimentales annotées d'une expérience pratique 

de thermographie dans le monde réel. 
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Automatic Defects Segmentation and Identification by Deep 

Learning Algorithm with Pulsed Thermography: Synthetic and 
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Qiang Fang1 *, Clemente Ibarra‐Castanedo1 and Xavier Maldague 1* 
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Médecine, Québec, QC G1V 0A6, Canada; 
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4.2 Abstract 

In quality evaluation (QE) of the industrial production field, infrared thermography (IRT) is 

one of the most crucial techniques used for evaluating composite materials due to the 

properties of low cost, fast inspection of large surfaces, and safety. The application of deep 

neural networks tends to be a prominent direction in IRT Non-Destructive Testing (NDT). 

During the training of the neural network, the Achilles heel is the necessity of a large 

database. The collection of huge amounts of training data is the high expense task. In NDT 

with deep learning, synthetic data contributing to training in infrared thermography remains 

relatively unexplored. In this paper, synthetic data from the standard Finite Element Models 

are combined with experimental data to build repositories with Mask Region based 

Convolutional Neural Networks (Mask-RCNN) to strengthen the neural network, learning 

the essential features of objects of interest and achieving defect segmentation automatically. 

These results indicate the possibility of adapting inexpensive synthetic data merging with a 

certain amount of the experimental database for training the neural networks in order to 

achieve the compelling performance from a limited collection of the annotated experimental 

data of a real-world practical thermography experiment. 

Keywords: automatic defect detection; infrared thermography; deep learning algorithms; 

Non-Destructive Evaluation (NDE); supervised learning; image processing; data 

augmentation; Finite Element Models (FEM) 

4.3 Introduction 

Quality evaluation is playing a fundamental role for modern industrial production and 

manufacturing processing. The demand for the inspection of materials with respect to the 

possible presence of defects, damage, and flaws has increased due to the wide use of 

composite materials and metals in industries such as aerospace. The method used to inspect 

defects via manual, visual evaluation involving humans can be hampered by the human 

fatigue and subjectivity. In order to meet the need of high-quality production and maintain 
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the stringent high-quality level, an advanced inspection system is becoming more and more 

essential for structural health monitoring and production lines application. Automated quality 

control [1] can be applied in the industrial field to facilitate the consistent and efficient 

inspection. The high inspection rate and the inspection procedure without human 

involvement are the main advantages of automated inspection systems [2]. 

Non-Destructive Testing (NDT) [3] encompasses a group of inspection techniques that are 

intended to assess the integrity of an object without causing any kind of modification or 

permanent damage. Infrared testing (IRT) is an NDT technique in which the differences in 

thermo-physical properties between the inspected object sound material and possible surface 

and/or subsurface defects are exploited through the use of an infrared camera. However, 

automatically identifying defects in materials via IRT still remains an ongoing and 

challenging task in the image processing domains.  

For the defect identification and detection, several state-of-the-art defect detection algorithms 

have been proposed in previous literature. These included Faster-Region based 

Convolutional Neural Networks (Faster-RCNN) [4], YOLO-V3 [5], Autoencoders structured 

neural network [6], and conditional monitoring (CM)-based feature learning methods [7,8]. 

Faster-RCNN and YOLO-V3 detectors were used to automatically localize flaws in a 

thermography diagnosis system. These methods show satisfied performance on the defect 

localization when multi-properties were contained in defect information. However, some 

issues still need to be improved for the whole marking process in these methods. For example, 

bounding boxes from YOLO-V3 and Faster-RCNN offer some restrictions in most cases, 

although they are fast and easy to localize. The area of non-defect always occupied a high 

percentage of area from bounding boxes, which may possibly introduce multiple errors 

during the whole training process. The Autoencoders structured neural network [6] was 

proposed as an unsupervised learning method to automatically extract features from 

intelligent faults. This method has made impressive research progress during the 

thermography data processing. However, the encoder–decoder format (Autoencoders 

structured) algorithm may have unavoidable limitations in faults extraction from 

thermographic data processing due to weakness signals, complex noise interference, data 

limitation, etc. The regular CM based-feature learning methods derived from the idea of 

Convolutional Neural Network (CNN) feature transformations and transfer learning [9], 

which have shown strong capability as a pattern to detect the flaws or defect location 

naturally and obtained an excellent performance. Due to the data limitation as well as high 

noise inference from the experimental infrared thermal databases, it is still quite complicated 

to train a model that has strong robustness to detect irregular and complex flaws in the CM 

defect diagnosis system.  
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Therefore, in this research, an automatic instance segmentation and identification algorithm 

in deep learning (Mask-RCNN) [10] is introduced for defect segmentation in an automatic 

infrared detection system. The defect detection procedure can be regarded as either an object 

detection task [11] or object segmentation task [12]. In the object detection task, the objective 

is to fit the bounding box localized around each defect in the image. In the object 

segmentation task, the objective is based on pixel-level classification to distinguish each pixel 

if it is detected. Compared with the earlier segmentation strategies [13] [14], the Instance 

segmentation associated each pixel of an image with an instance label [15]. It can predict a 

whole segmentation mask for each of those objects and predict accurately which pixel in the 

input image corresponds to each object instance. It also reduces the restriction concerning 

the position of defects rather than predicting a group of bounding boxes for the defects.  

Meanwhile, as discussed in the state-of-the-art approach [7,8], deep learning’s Achilles heel 

is the training dataset. The training dataset must be accurate enough and contain enough 

images and exceptions (e.g., occlusions) so as to allow the algorithm to learn reliable features 

of interest. If the dataset does not contain enough images and cases of possible situations or 

if the data contain too much noise or artifacts, the algorithm may not be accurate enough or 

even may learn to identify the wrong features (in the cases of CM feature learning methods). 

During recent years, the exploitation of synthetic data [16] during the training and validation 

of deep neural networks has emerged as a popular topic. In this work, synthetic data generated 

with Finite Element Models (FEM) is used during the training process to greatly reduce the 

high expenses involved in real experiments in infrared thermography. The synthetic data 

generated by the simulator are based on the same parameters with real specimens in non-

realistic ways, being able to force the neural network to learn the essential features of the 

object of interest [17]. The generated features from synthetic data can cover or overlap the 

amount of data distribution that are not sufficiently represented in the original experimental 

dataset [18]. The results also show the possibility of using inexpensive synthetic data for the 

deep neural network training but avoiding the necessity of collecting large amounts of hand-

annotated experimental data.  

In this research, a small amount of IRT experimental data together with FEM synthetically 

generated IRT data will be used to train a deep spatial characteristic model (Mask-RCNN) 

for the segmentation of defects. This proposed method can effectively achieve the defect 

identification and segmentation with the cases of data limitation. The contribution of this 

work can be illustrated in the following:  

1) By adapting a data augmentation strategy through the Synthetic Data Generation Pipeline 

(Finite Element Modeling), the proposed method effectively improves the performance 

of segmentation (capability for feature extraction as well as reducing the noise 

interference). 
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2) An instance segmentation is introduced for defects segmentation and identification for 

each object of defects with different specimens to predict each irregular shape of defects 

instance in the input images at the pixel’s level. 

The remainder of the paper is structured as follows: Section 2 provides the pulsed 

thermography and related experimental set-up. Section 3 gives a detailed explanation of the 

Mask-RCNN defects detection system and the synthetic data generation pipeline. Section 4 

describes the main features and dataset for evaluation. Section 5 provides the experimental 

results and implementation stages, including the comparison with states-of-the-art object 

detection algorithms (YOLO-V3; Faster-RCNN). Section 6 furtherly discusses and analyzes 

experimental results. Section 7 concludes this paper.  

4.4 Thermophysical Consideration 

In pulsed thermography (PT), the surface of the inspected specimen is exposed to a heat pulse 

using an energy source such as photographic flashes, as indicated in Figure 4.1. A heat pulse 

can be represented as the combination of several periodic waves having different frequencies 

and amplitudes. After the thermal front reaches the surface of the specimen, a thermal front 

travels from the surface through the specimen. As time elapses, the normal path of the thermal 

front changes due to the presence of the subsurface discontinuity, and leads to the thermal 

contrast at the specimen’s surface, which can be monitored with an infrared (IR) camera. The 

one-dimensional solution of the Fourier equation of conduction for a Dirac heat pulse 

propagating through a semi-infinite isotropic solid has the form [19]: 

𝑇(𝑧, 𝑡) = 𝑇0 +
𝑄

√𝑘𝑝𝑐𝑡
𝑒(−

𝑧2

4𝛼𝑡
) (4.1) 

where Q [J/m2] is the energy absorbed from the surface, and the initial temperature is T0[K]. 

p [kg/m3] is density. The specific heat at constant pressure is c[J/kgK]. K[W/mK] is the 

thermal conductivity that indicated the energy transformation rate by the materials. α[m2/s] 

is the thermal diffusivity to measure the material ability to conduct heat, and Z [mm] is the 

depth of the defect. At the surface (z = 0), the temperature evolution can be written as follows 

[20]: 

                                                        𝑇(0, 𝑡) = 𝑇0 +
𝑄

√𝑘𝑝𝑐𝑡
        (4.2) 
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Figure 4. 1 Pulsed thermography experimental setup optical excitation. 

From Equation (4.2), it can be concluded that the temperature evolution at the surface 

following a Dirac heat pulse follows a monotonous decrease with a slope of −1/2 for areas 

without defects, whilst areas with defects will diverge more or less from this behavior 

depending on their actual thermo-physical properties.  

4.5 Automatic Defect Segmentation Strategy 

As indicated in Figure 4.2, a detection system training with, for most intents and purposes, 

data generated by a computer simulation can be seen as synthetic data; experimental data has 

been proposed to segment and identify defects in thermal images. This design of this 

detection system is based on Mask R-CNN. The infrared thermal sequences are acquired by 

pulsed thermography (PT). Then, both the raw and synthetic sequences are preprocessed with 

the bilateral filtering and the thresholding technique. Therefore, two different characteristic 

datasets (raw data; synthetic data) are generated respectively, to be trained with Mask-RCNN 

in different combination cases. In the final step, delamination is identified through the deep 

region convolutional neural network and then visualized with the bounding box or instance 

segmentation map. 
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Figure 4. 2 Proposed segmentation strategy. 

4.5.1 Mask-RCNN 

Convolutional Neural Networks (CNN) are utilized as a supervised feature extractor to 

analyze the defect localization and segmentation from materials. The Region based-CNN (R-

CNN) [21] move toward the object bounding box detection method based on each region of 

interest (ROI). Faster-RCNN [11] have further advanced the network via learning the 

attention mechanism with a Region Proposal Network (RPN). Mask R-CNN [4] extends from 

Faster-RCNN through a mask branch construction. It is an instance segmentation algorithm, 

which recognizes object boundaries at the pixel level and designs pixel-wise segmentation 

with alignment of pixel-to-pixel among the input and output. Mask R-CNN adopts the same 

two-stage with Faster-RCNN architecture. During the first stages, the input images were 

scanned, and the proposals were generated via the Region Proposal Network (RPN). In the 

second stage of detection, it included two total branches. At the first branch (the blue line 

box at the top in the Figure 4.3), it predicted classification scores to tell what is the category 

corresponding to that region of proposal (whether or not it is background). Each of the 
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bounding box coordinates that regressed off the region proposal coordinates was indicated. 

At the second branch (the red line box at the bottom in the Figure 4.3), it added a binary mask 

regarding each ROI as a mini semantic segmentation network [22] to classify for each pixel 

in that input region proposal whether or not it is an object. Mask R-CNN is intended to 

address the instance segmentation task and aims at adjusting the plentiful hyper-parameters 

from the neural network. This model predicts a certain number of bounding boxes for the 

defects, while each defect region is segmented within the bounding boxes at the same time. 

The architecture is shown in Figure 4.3. The loss function of Mask-RCNN in Equation (4.3) 

consists of five different terms: 

1. RPN_class_loss: The performance of objects can be separated from background via RPN; 

2. RPN_bounding_box_loss: The performance of RPN to specify the objects;  

3. Mrcnn_bounding_box_loss: The performance of Mask R-CNN specifying objects; 

4. Mrcnn_class_loss: The performance of classifying each class of object via Mask R-CNN;  

5. Mrcnn_mask_loss: The performance of segmenting objects via Mask R-CNN.  

 

In these five terms, when the cost loss values are smaller, then performance improves. 

 𝐿𝑐𝑜𝑠𝑡 = 𝐿_(𝑟𝑝𝑛_𝑐𝑙𝑎𝑠𝑠) +  𝐿_(𝑟𝑝𝑛_𝑏𝑏𝑜𝑥) + 𝐿_(𝑚𝑟𝑐𝑛𝑛_𝑏𝑏𝑜𝑥) + 𝐿 _(𝑚𝑟𝑐𝑛𝑛_𝑐𝑙𝑎𝑠𝑠) + 𝐿_(𝑚𝑟𝑐𝑛𝑛_𝑚𝑎𝑠𝑘)    (4.3) 

 

Figure 4. 3 Mask-RCNN processing architecture [6]. 

4.5.2 Synthetic Data Generation Pipeline 

Synthetic data are computed information rather than data collected from real-word events 

[16]. The main application involves using synthetic data as a training dataset. The use of 

synthetic data provides several benefits; one of the most interesting is that it is possible to 
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generate large databases to train, modify, and create new variables and features on individual 

data cases. Another advantage is that labeling is quite straightforward and precise. 

Finite Element Modeling (FEM) has become a practical tool to evaluate the thermal response 

of pulsed thermography. It is also intended for predicting and simulating the results of 

Thermal NDT (Non-Destructive Testing) experiments and allows the solving of three-

dimensional heat conduction problems in samples containing surface and subsurface defects. 

This plexiglass sample (30 cm × 30 cm) was designed with 25 flat bottom holes (FBH), which 

are located at increasing depths in either circles or square shapes, as indicated in Figure 4a. 

Figure 4b shows the pulsed thermography result of a plexiglass synthetic sample from FEM 

simulation at t = 106.5 s after heating, which indicates defects more distinctly compared to 

the corresponding experimental frame at the same time shown in Figure 4.4 c. A good 

correspondence temperature of the region is observed, which verifies that synthetic modeling 

in FEM is in outstanding accordance with the real experiment [23]. The detailed 

implementation procedure for using deep neural networks with FEM is described in Figure 

5. The training of synthetic data generated by FEM provides clean and automated supervision 

data compared to the other numerical methods such as boundary element methods [24] and 

finite volume methods [25], where most other numerical computational methods are highly 

non-linear and have uncertainty issues with respect to quantification and simulation. In 

addition, the learning process can be abundantly simplified since both synthetic and 

experimental data are governed by the same heat transfer principles. Specific feature 

positioning and extraction for less visible defect regions can be referenced from the synthetic 

data. 

             

(a) (b) (c) 

 

Figure 4. 4 (a) Finite Element Modeling (FEM) 3D model; (b) Simulated thermogram at t = 

106.5 s; (c) Real experimental data t = 106.5 s. 
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Figure 4. 5 Proposed workflow to train with a deep learning model based on the data 

generation by Finite Element Modeling. 

4.5.3. Automatic Preprocessing Stage 

The main purposes of the preprocessing stage (Figure 4.6) are to make defects more 

distinguishable from the cluttered background of the thermal sequence and to normalize data. 

The bilateral filtering and thresholding techniques present in [26] were adapted for the 

preprocessed stage in this work so as to be the reference database. In step 1, the bilateral 

filtering removes noise from the thermal image while preserving feature edges. Secondly, 

two thermal criteria are applied in a thermal image sequence acquired from pulsed 

thermography: (1) 1st thermal criterion: automatically determine the instant just before the 

appearance of the first thermal footprint belonging to a defect (reference point); (2) 2nd 

thermal criterion: automatically find the intersection point between the overlap of each of the 

thermal image histograms after the reference point and the thermal image histogram 

corresponding to the reference point. In the end, the pixel values above the corresponding 

intersection point are equal to this value. Pixel values corresponding to the thermal images 

after the reference point are multiplied by a scale in Equation (4). The final result of this 

method is believed to be fitted with the convolutional neural network stage thereafter. 

 

𝑆𝑐𝑎𝑙𝑒 𝑉𝑎𝑙𝑢𝑒 =
(𝑀𝑎𝑥_𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒 −  𝑀𝑖𝑛_𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒)𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 ’𝑛’ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑎𝑓𝑡𝑒𝑟 𝑆𝑡𝑒𝑝1

(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 −  𝑀𝑖𝑛_𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒)𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 ’𝑛’ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑎𝑓𝑡𝑒𝑟 𝑆𝑡𝑒𝑝1
 (4.4) 



 

106 

 

 

 

 

 

 

Figure 4. 6 Scheme of preprocessing stage 

4.6 Dataset and Features 

The experimental samples and databases are acquired from two different materials: 

plexiglass and CFRP (carbon fiber-reinforced polymer). Two independent experimental 

groups were set up based on these materials. The whole database consisted of 500 images 

(446 × 446 pixels each). Six sub datasets were formed respectively from the two materials: 

plexiglass (A; B; E) and CFRP (C; D; F), which collected specific instants (5 s; 15 s; 25 s…) 

from 20 different thermal sequences during the temperature evolution in pulse thermography 

for both regarding training and validation data in order to avoid redundant information. 

Based on the two types of images, 200 synthetic thermal images were generated with 

COMSOL, and 200 raw thermal images were collected from pulsed thermography 

experiments. Four groups of training databases were created based on the images we 

collected in the previous steps: 

1. Database A, C: (Original database) 100 raw thermal images from thermal sequences with 

corresponding time; 

2. Database B, D: (Mixed database) 100 raw thermal images with 100 new synthetic images; 

both selected from the same corresponding time; 

 

             
 

Figure 4. 7 Labels for preprocessed sample image. 
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        All thermal images in the four training databases (A; B; C; and D) were preprocessed 

by the method in Section 4.5.3 in order to enhance the defect contrast. 

Two raw (without preprocessing) thermal databases (E; F) (each consisting of 50 images) 

were used to validate the trained model (Mask-RCNN). These sequences, which have 

different shapes and depths of defects, were compared with the sequences during training. 

For sake of consistency, the raw thermal plexiglass database E was validated on the learning 

model trained on plexiglass (A, B), whilst the raw thermal CFRP database F was used to 

validate the learning model trained on CFRP (C, D). The defect labels and instance are shown 

in Figure 4.7, which includes the following shapes: circle, multilateral; square, rectangle; 

multi-angle of defect instances. LabelMe Image Annotator [27] was employed to label each 

defect region on the images; this allowed giving a simple and standard manual annotation for 

all of the images. 

4.7 Experimental Results and Implantation Details  

4.7.1. Evaluation Metrics (Average Precision (AP) and Probability of Detection (POD)) 

Average precision (AP) [28] is introduced to evaluate the performance capability of the 

detection model, which is analyzed by Equations (4.5) and (4.6). 

Precision =
TP

TP + FP
 (4.5) 

Recall =
TP

TP + FN
 (4.5) 

where TP is the true positive rate. FP is the false positive rate, which indicated that defects 

are in the non-defects regions and are falsely detected as defects. FN is the false negative 

rate, representing a certain number of the defects that failed to be detected during this 

experiment. Precision represents the accuracy of the prediction from the performance of the 

model. Recall represents the performance of the model to find all the possible positive cases 

in top priorities predictions.  

In this work, a definition of Probability of Detection (POD) [29] (Equation (4.7)) also has 

been introduced to measure how reliable the non-destructive texting automatic inspector will 

be for a given case. POD is a specific metric especially for characterizing and quantifying 

defect analysis in NDT methods.  

 

                                            POD =
TP

TP+FN
 (Confidence score=0.75)                                (4.7) 
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The mathematical equation of POD keeps the same mathematical format as Recall in 

Equation 6, but they have different descriptions and explanations. In Equation (5.7) of POD, 

TP refers to true positive cases, which represent flaws in the system that the method can 

identify; FN refers to a false negative case, which indicates that the system has a flaw but the 

method cannot identify it. As a result, POD indicated how many flaws can truly be detected 

in a system from the whole amount of positive detected flaw cases. 

In addition, we also introduced a definition herein for the further discussion of POD and 

defect classification-confidence score [30]. The confidence score can illustrate to which 

degree it is possible that the actual region boundaries overlap with the predicted defect region 

boundaries. In this work, our confidence score is set up as 0.75, which was selected as an 

acceptance criterion to define the percentage of the ground truth boundaries overlap with the 

predicted defect region boundaries for segmentation. 

Therefore, the Probability of Detection (POD) assesses the performance of the Mask-RCNN 

(with synthetic data/without synthetic data) from the non-destructive evaluation-based 

inspection (NDE), which could determine the capability of the detection as a function of 

defect type. The probability of detection can form a core mathematical equation for 

examining and evaluating of the materials, which is also recognized as the quantitative 

evaluation tool involving the human factor and the various inspection parameters. 

4.7.2. Main Results Analysis and Discussion 

The operating system is set as Ubuntu 14.04; CPU: i7-5930k; Memory: 64GB. Each training 

processing was conducted on a GPU (NVIDIA GeForce GTX 1080Ti) and required 

approximately 30 min. Some main hyper-parameters and training parameters are set as 

below: (1) The Network training used Resnet101 as a backbone; (2) The learning momentum 

is 0.9 and learning rate is 0.0003; (3) The first 30 epochs were trained on network heads; 

then, all network layers were trained for 1030 epochs, the model weight (in h5 format) used 

was COCO (could be replaced with the original weight model file). This could be improved 

if a similar binary segmentation weight model was used; (4) The weight decay is 0.0001 and 

mini mask size is 56×56. 

4.7.3. Segmentation Results and Learning Curves 

As shown in Figure 4.8 below, the segmentation results of five examples Figure 8a–e from 

the Mask-RCNN model are indicated. The segmented results in the middle column were the 

validated results from the model trained on raw images after preprocessing (Database A, C). 

The segmented results in the right column were the validated results from the model trained 

on raw images merged with synthetic images after preprocessing (Database B, D). 

Meanwhile, in the first three rows, the results from plexiglass specimens (Validation 
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Database E) are shown. The last two rows show the results for CFRP specimens (Validation 

Database F). The segmented defects from obtained images clearly show the improvement 

when trained on raw images merged with synthetic images after preprocessing in Figure 5.8. 

Although each segmented region has different color, all the colorful regions in the images 

represent true positive detective cases. 

(a) (a) Example 1 from plexiglass specimen (left: ground truth; middle: training without synthetic data; right: 

training with synthetic data) 

   

 

 
 

 

(b) Example 2 from plexiglass specimen (left: ground truth; middle: training without synthetic data; 

right: training with synthetic data) 

  

 

 
 

 

(c) Example 3 from plexiglass specimen (left: ground truth; middle: training without synthetic data; 

right: training with synthetic data) 

 

   
   



 

110 

 

 

 

 

 

(d) Example 1 from CFRP specimen (left: ground truth; middle: training without synthetic data; right: 

training with synthetic data) 

 

   

 

 

(e) Example 2 from CFRP specimen (left: ground truth; middle: training without synthetic data; right: 

training with synthetic data) 

(f)  

   

   

Figure 4. 8 The best obtained validation results of Mask-RCNN segmentation on different 

training databases. From left to right: original images, training on the preprocessed raw 

images database, training on the mixed database (preprocessed data from synthetic and raw 

images). From the first three rows to the last two rows: plexiglass (a–c), carbon fiber-

reinforced polymer (CFRP) (d–e); 

In addition, we can see the segmented results from the last column in Figure 4.8. When the 

model is trained with raw images (in the middle column), then the model is able to detect 12 
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defects out of 25 defects in the whole specimen with limited raw images during the 

validation. Each detected defect is covered by a solid mask. It is notable that the model 

produces one false positive defect case by highlighting one non-existing defect on the image 

and 13 false negative defects (less visible defects, which are difficult to detect). Further, in 

the right column, when the training of the databases was increased with synthetic data, the 

trained model is able to detect 17 defects in total. However, four false positive and false 

negative cases still appear on the image.  

The learning loss indicated how well the learning model performed. In this experiment, 

Figure 4.9 a, b showed the acquired average loss curve of the training and validation on 

Database A, B. The loss has a certain range of oscillation during the first 800 epochs in both 

Figure 4.9 a, b; then, it decreases less rapidly after 800 epochs until it flattens out. The cost 

curve is decreasing as the batch number increases and converges approximately from 0.25. 

Correspondingly, Figure 4.9 c, b indicates the learning curve with training and validation on 

Database C, D. The learning curve of the training and validation for Database D became more 

stable compared with the curves in Figure 4.9 c. Although the validation loss from Figure 4.9 

c is instantly unstable around the point of the 380th epoch, the learning curves of training and 

validation (Database C, D) eventually converge around 0.2 around the 1000th epoch. 

Meanwhile, the model accuracy of the validation from Database A, B, C, D in this experiment 

is respectively 0.990, 0.996, 0.98738, and 0.98738. We obtained the model accuracy from 

four different training databases: B (0.996) > A (0.990) > C (0.987) = D (0.987). As a result, 

the obtained model accuracy from four groups of databases is impressive and shows the good 

performance during the training and validation when the Mask-RCNN model is used for 

defect segmentation of plexiglass and CFRP specimen in this project. 

                          (a) Learning loss from Database A                   (b) Learning loss from Database B 

            

                         (c) Learning loss from Database C                 (d) Learning loss from Database D 
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Figure 4. 9 The average learning loss for two types of specimens: plexiglass (a, b); CFRP 

(c, d). 

4.7.4. Precision–Recall Curves (PR Curves) 

Precision–recall curves [31] for the Mask-RCNN architectures trained on four different 

groups of databases are shown in Figure 4.10. This figure indicated two PR curves for 

training sets of plexiglass specimens (preprocessed raw images database (A); synthetic 

images merging with raw images database from preprocessing (B)); an independent pure raw 

images validation set without preprocessing (E)) and two PR curves for training sets of CFRP 

specimens (preprocessing raw images database (C); synthetic images merging with raw 

images database from preprocessing (D); an independent pure raw images validation set 

without preprocessing (F)). The mean average precision (mAP) values in databases A, B, C, 

and D respectively reach 68.66, 76.40, 70.29, and 72.68 as shown in Figure 10. 

During the training of Database (B, D), Mask-RCNN has seen limited preprocessed raw 

thermal images (100 images) merging with preprocessed synthetic data (beyond pretraining 

of the early layers on COCO [32]). The mAP values in the mixed database (B, D) are higher 

than those of Databases (A, C) (B (76.40) > A (68.66); D (72.68) > C (70.29)). From the plot 

of the PR curves, Database B achieves higher precision than Database A consistently for all 

of the recall values in the Mask-RCNN model. On the other hand, database D consistently 

obtained lower precision than database C between the recall values from 0.5 to 0.55. This 

helps explain that the plexiglass database obtained the higher mAP difference compared with 

CFRP between the training of raw images and the training from databases merging with 

synthetic data. 
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Figure 4. 10 Different detection results with four groups of datasets (two types of 

materials). 

In each region of interest (ROI), this experiment obtained better results with the performance 

metric of precision and recall values compared with another cited deep learning IRT project 

[5,33]. Especially, the plexiglass obtained a superior performance of mAP from Mask-RCNN 

when it was merged with synthetic data for training compared with the highest mAP value 

obtained from previous research. This compelling performance also illustrates the ability of 

synthetic data to bridge the reality gap and demonstrates that merging with synthetic data for 

training can improve the accuracy in both types of material (CFRP; plexiglass). As a result, 

the training model merged with synthetic images could be able to outperform databases with 

pure raw thermal databases in deep learning IRT projects.  

4.7.5. Evaluation with Probability of Detection 

The Probability of Detection has been successfully applied for analyzing the detection 

capability of materials from Mask-RCNN. In this study, the POD was classified as a function 

of an aspect ratio r = diameter (D)/depth (d). Each POD point on the curve corresponds to a 

specific aspect ratio from a particular diameter (D) and depth (d). As indicated in Figure 

4.11a, the red POD curve (Database B) maintained the highest POD curve from the whole 

aspect ratio, which indicated that the Mask-RCNN with synthetic data detected the largest 

percentage of defects in plexiglass specimens. Simultaneously, the POD of Database B is 

better than the corresponding POD curves (Database A), confirming that synthetic data 

merged with raw data can contribute to achieve better performance as compared to the model 
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trained with raw data only. Based on these results, the POD of the databases that merged with 

synthetic data (B; C) has a better detection capability than any other database without 

synthetic data (A; D), revealing that merging the raw databases with synthetic data could be 

a reliable procedure for a deep learning model (Mask-RCNN), enhancing the capability of 

automatic defect segmentation and identification. The pink POD curve (C), which represents 

the CFRP database training with synthetic data, has an overall higher detection probability 

than the blue curve (D) (CFRP database training without synthetic data). However, in 

comparison with the POD curve (A; B), the POD curve (D) shows a lower detection 

performance than the POD curve B due to data diversity and data augmentation capability 

(different defect shapes and multiple angles, diverse formatted defects) that PLEXI databases 

have. As a result, PLEXI databases outperformed CFRP databases on the probability scores 

in this case.  

 

Figure 4. 11 Probability of distribution curve of different methods for processing on CFRP 

samples (a)/PLEXI samples (b) (confidence score = 0.75). 

4.7.6. Defect Classification Analyses 

As indicated in Table 4.1 below, the detection with defects in each training database (A, B, 

C, D) by the Mask-RCNN algorithm in pulse thermography has been investigated with the 

objective to measure the global accuracy in each database [34]. Four confusion matrixes from 

training databases A, B, C, and D have been indicated, where TP = True Positive, FP = False 

Positive, TN = True Negative, and FN = False Negative. Each column of the matrix stands 
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for the objectives in the actual class; simultaneously, each row of the matrix stands for the 

objectives in the predicted class.  

 

Table 4. 1 Class mark list—comprehensive results. 

Database A/E * B/E * 

 Actual Class 

Class Defect Non-defect Defect Non-defect 

Predicted Defect TP: 1785 FP: 229 TP: 2060 FP: 199 

Class Non-defect FN: 456 TN: 291 FN: 181 TN: 321 

Database C/F * D/F * 

 Actual Class 

Class Defect Non-defect Defect Non-defect 

Predicted Defect TP:1442 FP: 257 TP: 1610 FP: 225 

Class Non-defect FN: 358 TN: 296 FN: 190 TN: 328 

* Training database/Testing database. 

The results from detection have shown an excellent performance when the original database 

was merged with synthetic data based on the number of well-classified labels. The 

approximately average prediction of each database is shown in the Table 4.1. We set up the 

confidence score threshold as 75% of probability of detection to distinguish TP, FP, TN, and 

FN cases. 

As mentioned earlier, the objective in this research is to automatically extract and segment 

the features (i.e., defects) that could be found in each thermal frame. Each classification may 

either be a defect or a non-defect region in this task. In data science, an effective metric to 

validate the performance of a detection algorithm widely used in the deep learning 

applications is the confusion matrix [35]. In the confusion matrix, each matrix is set up 2 × 

2, where 2 is the number of classes in the dataset. The row elements of a confusion matrix 

represent the classes to which the features of the image belong, either to the feature region of 

a defect or a non-defect. Its columns, on the other hand, represent the classes given by the 

Mask-RCNN during the segmentation process. 

Generally, in this case, based on Table 4.1 (confidence score = 75%), the testing Database E 

with the training Database A, 1785 defects were segmented correctly, 456 were missed, 229 

non-defect regions were detected as defects, and 291 non-defect regions were correctly 

labeled as non-defects in this experiment. In the case of testing Database E with the training 

Database B, 2060 defects were detected correctly, 182 were missed, 199 non-defect regions 

were detected as defects, and 321 non-defect regions were correctly labeled as non-defect in 

this experiment. In the case of the testing Database F with the training Database C, 1442 
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defects were detected correctly, 358 were missed, 257 non-defect regions were detected as 

defects, and 296 non-defect regions were correctly labeled as non-defect in this experiment. 

In the case of the testing Database F with the training Database D, 1610 defects were detected 

correctly, 190 were missed, 225 non-defect regions were detected as defects, and 328 non-

defect regions were correctly labeled as non-defects in this experiment. Then, it can be 

concluded from the confusion matrix that after merging with synthetic data, Mask-RCNN 

leads to a superior performance in defects detection than the results obtained previously.  

In addition, the global accuracy Acc given in the corresponding training databases (A–D) 

and test databases (E, F) in Figure 4.12 is defined in Equation (8). The implementation of the 

deep leaning model (Mask-RCNN) used for the whole validation process is set according to 

the principle as follows: the specific testing Dataset (E) corresponding to the training data 

(A, B); the specific testing data (F) corresponding to the training data (C, D) respectively.  

 

  𝐴𝑐𝑐 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑟𝑒𝑔𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑙𝑢𝑎𝑡𝑒𝑑 𝑟𝑒𝑔𝑖𝑜𝑛𝑠
   (4.8) 

 

Figure 4. 12 The total performance of accuracy with Mask-RCNN on CFRP and PLEXI 

samples with/without synthetic data. 

4.7.7 The Comparisons with State-of-the-Art Deep Learning Detection Algorithms 

In this session, YOLO-V3 and Faster-RCNN have been selected as the state-of-the-art object 

detectors to compare with the performance of Mask-RCNN when it is merged with the 

synthetic data or without during the training. A CFRP specimen has to be validated on four 

different training situations from Database C, D in Section 4 for three types of object 



 

117 

 

 

 

 

 

detectors in Figure 4.13, which included (a) Mask-RCNN training with Database C; (b) 

Mask-RCNN training with Database D; (c) YOLO-V3 training with Database C; and (d) 

Faster-RCNN training with Database C. 

 

Figure 4. 13 Detection results on a reprehensive CFRP specimen provided by different 

objective detection algorithms or scenarios (a) Master-RCNN without synthetic data; (b) 

Master-RCNN with synthetic data; (c)YOLO-V3; (d) Faster-RCNN. 

It can be seen from the Figure 4.13 that when Mask-RCNN was only training with 

experimental data in Figure 5.13 a, it obtained similar accuracy based on comparing the 

results those of with YOLO-v3 in Figure 13c and Faster-RCNN in Figure 13d. However, 

after the training databases merged with synthetic data in Figure 13 b, the results from Mask-

RCNN outperformed the other three different situations.  

On the other hand, frames per second (fps) [36] has been introduced as a concept to verify 

how many pictures can be processed in a unit time (one second) by an objective detector in 

(a) without synthetic data (Master-RCNN) (b) with synthetic data (Master-RCNN) 

  
(c) YOLO-V3 (d) Faster-RCNN  

  



 

118 

 

 

 

 

 

order to evaluate the running time complexity for each detector. In Table 4.2, the time 

complexity of three deep learning algorithms have been illustrated. In this experiment, during 

the training processing being conducted on GPU (NVIDIA GeForce GTX 1080Ti YOLO-

V3, three deep learning detectors YOLO-V3, Mask-RCNN, Faster-RCNN running are 15 

fps, 5fps, and 1fps, respectively. As a result, comparing with Mask-RCNN and Faster-

RCNN, YOLO-V3 has the highest running time speed to process images due to the reason 

that YOLO-v3 is a one-stage real-time detector, and it has a much faster speed than other 

detectors (Mask-RCNN; Faster-RCNN), which are two-stage procedures (Region Proposal 

Network (RPN); ROI pooling). However, as indicated in Figure 4.14, Mask-RCNN still 

obtained higher POD scores during the whole validation process when it merged with 

synthetic data based on the different ratio values (size/depth).  

 

Figure 4. 14 Probability of distribution of different deep learning methods on CFRP databases 

(confidence score = 0.75). 

Table 4. 2 Running time complexity comparison with state-of-the-art methods. 

Running Time Complexity YOLO-V3 Mask-RCNN Faster-RCNN 

Frame per second (FPS) 15 5 1 

4.8.  Result Analysis and Discussion 

The main objective of synthetic data in this project is to enlarge the datasets when you only 

have limited raw experimental data. Synthetic data can more easily generate a dataset with a 

large amount of variety. Small raw training databases merging with synthetic data can help 
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detect most of the defects successfully while avoiding expensive experiments. As we can see 

from Section 4.7.4, Figure 4.10, which shows the performance of the definite and regularly 

used evaluation metric (precision and recall), higher average precision gives better results 

when trained on the data merging with synthetic data than when trained on the raw data only. 

Therefore, we are able to boost the model performance by feeding the synthetic data to merge 

or replace the actual one. 

This confirmed that in different situations, when the synthetic data merged with the sample, 

it can actually benefit the learning network, enabling it to learn and understand the pattern 

by (a) generating more significant samples than the original available data, which is limited; 

(b) providing more data of any specific minority cases (for example, the highly expensive 

thermal data of the CFRP samples, which is difficult to obtain) in order to avoid the 

underrepresentation or underperformance situation for automatic defects segmentation. 

Comparing with the up-to-date CNN defect detection work [4–8] in infrared thermography 

as mentioned in introduction, the Mask-RCNN model merging with synthetical data has 

become the most flexible method that has the capacity to obtain the improvable performance. 

Especially in pulsed thermography, too little data might be available and obtained in the 

realistic experiment. It is always too expensive and time-consuming to training with the 

additional thermal data during the training and defect detection by the deep learning 

algorithm. Therefore, the generated synthetic data show their ability to support this case. As 

indicated in Figure 4.11 of Section 4.7.5, the POD curve of Database D exceeds the POD 

curve of Database C from all aspect ratio values (size/depth), which illustrated that synthetic 

data have the potential to immensely improve performance in regard to defect detection for 

CFRP and plexiglass specimens. On the other hand, in the defect classification analysis in 

Figure 4.12 from Section 4.7.6, the global accuracy Acc increasing predominately from the 

testing results when the trained system performed with Database B and Database D, which 

further demonstrated that a trained system merged with synthetic data may beneficial for 

detecting and identifying defects. 

As shown in the results from different objective detectors indicated by the POD evaluations 

from Figure 4.14 (Section 4.7.7), it is obvious that YOLO-V3 obtained comparable accuracy 

with the Mask-RCNN method during the whole validation process, while the Faster-RCNN 

gave mediocre performance. However, after merging with synthetic data, our proposed 

method shows excellent performance because the data augmentation strategy has a strong 

effect on the capability of the Mask-RCNN model to capture less visible defects and separate 

low-rank non-defect information from the thermal data, after which the meaningful features 

remain. It is worth mentioning that the proposed method (Mask-RCNN) maintains the 

highest accuracy in POD evaluation when it encounters the challenging and lowest (0–5) 

aspect ratio value (size/depth). With all task-driven objective detectors based on the deep 
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learning architecture, the proposed method keeps the highest accuracy results over the other 

state-of-the-art algorithms. This excellent performance is thanks to the capability of the 

synthetic data generation pipeline’s data augmentation strategy to segment the defects from 

the multi feature distribution.  

Furthermore, as mentioned in Section 4.5.2, the COMSOL is capable of creating high-quality 

synthetic thermal data from scratch on specific data points and the same heat transfer 

principles setting from pulsed thermography. However, based on the results, there is still 

some room for improvement. The defects from synthetic data (COMSOL) may still have 

blurry boundaries and unclear shapes that influence the training results from learning. Mask-

R-CNN is robust to the limited size of synthetic data and is more likely to overfit unless the 

data increase the augmentation (rotating, flipping images, or random Gaussian noise). We 

applied the following data augmentation strategy: flip, rotation, scale, crop and adding the 

Gaussian noise to each individual synthetic and raw image. We stopped all the training during 

the time of the performance, nearly saturating with the overfitting. 

In additional, in this task, we used Resnet101[37] as a feature extractor with weights 

initialized from COCO in Mask-RCNN. Since the weights from COCO obtained the features 

trained by a group of datasets that contain basic lines and shapes of the objectives (circle, 

square, rectangle), it can be beneficial to the defect detection to a certain degree even without 

training with thermal images. So, the selection of beneficial initial weights from the 

pretrained models could be a key training strategy to apply for the future direction of research 

in deep learning IRT. 

In future work, the other available thermography methods in the literature will be 

implemented with Mask-RCNN and a synthetic data generation pipeline to further exploit its 

possibility to enhance its capability of defect detection. A modified version of the Mask-

RCNNN network will be introduced for enhancing its training performance. The further plan 

can be also illustrated as follows: (a) enhancing the training performance by adjusting the 

key parameters and structure in Mask-RCNN; (b) exploitation of variety software in Finite 

Element Modeling for generating synthetical data for defect detections for comparison with 

COMSOL; (c) Mask-RCNN with a synthetic data generation pipeline test with other NDT 

techniques to evaluate the performance of defect analysis. 

4.9. Conclusions 

In summary, we present a method where the deep learning architecture is combined with a 

small amount of synthetic thermal data for defect segmentation. The proposed architecture is 

based on a Mask-RCNN that has been applied in natural image segmentation. We collected 

our thermal database from the experimental results and synthetic data in the Finite Element 
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Model (COMSOL). The network yields a better performance when it is fused with synthetic 

data for training. Meanwhile, different types of composite materials (CFRP; plexiglass) with 

defects have been validated via the proposed method to reveal the performance of detection. 

The proposed algorithm, Mask-RCNN without modification, is in line with the main 

objective in this work, which is to assess whether synthetic data can improve the detection 

accuracy of defects on the CFRP or plexiglass composite samples. Further quantitative 

analysis of the diameter/depth ratio with POD evaluation in defect detection with a modified 

structured Mask-RCNN network will be carried out in future work. 
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Part III. Defects visibility enhancement and analysis by deep 

learning algorithms in Infrared thermography 
 

The following chapter will present one submitted article concerning the exploration of deep 

learning approach in infrared thermography applied in Non-Destructive Testing & 

Evaluation. The results of this study were accepted by the Journal of Nondestructive 

Evaluation in August, 2021. 

 

General explanation: 

Due to experimental noise and non-uniform heating in regular inspection from industry, the 

defective pixels are always difficult to observe through the original thermal sequence based 

on experimental conditions and the properties of materials. As a result, the data processing 

and feature extraction method haven played an important role in IRT defect detection and 

identification which influences the accuracy and detection results.   

In the study of this chapter, we will mainly concentrate on further reduce the noise influences 

and enhanced the objectives in the IR images by a deep learning extraction model. Data 

augmentation (GANs network) can be able to enlarge the diversity of data and extract 

features from a small dataset of IR data to improve the performance of the detection model. 

The technique will interpret how deep learning algorithms extract more information from IR 

thermography for Nondestructive testing which enables to detection of deeper subsurface 

defects for which IR signals are limited, etc.  
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Chapter 5 Defect detection and visibility enhancement analysis 

using Partial Least Square-Generative Adversarial Networks 

(PLS-GANs) in Pulsed Thermography 

The results of this study were accepted by the Journal of Nondestructive Evaluation in 

August, 2021. 

5.1 Résumé 

Avec les récents développements en intelligence artificielle, l'apprentissage profond (réseaux 

de neurones convolutifs) a été étudié pour la gestion de la qualité des matériaux par 

thermographie infrarouge (IRT). Dans ce travail, nous présentons une approche pour traiter 

efficacement les données thermiques afin d'améliorer la performance de détection des défauts 

de l'IRT. Un algorithme d'amélioration des défauts basé sur des réseaux adversariaux 

génératifs (GAN) a été conçu et mis en œuvre pour analyser qualitativement et améliorer la 

visibilité des défauts en se basant sur l'augmentation des données à partir d'une approche 

d'apprentissage profond. Nous avons mis en œuvre une méthode de réduction de la dimension 

des données basée sur la thermographie des moindres carrés partiels (PLST) fusionnée avec 

les réseaux GAN (PLS-GAN) pour obtenir une extraction et une visualisation interprétables 

des caractéristiques, et nous avons comparé les résultats avec les données thermiques de la 

thermographie pulsée (PT) afin d'évaluer l'efficacité de l'algorithme proposé. En appliquant 

les PLS-GAN, un petit ensemble de données thermiques peut être capable d'élargir la 

diversité des données afin d'améliorer la performance du modèle de détection. Les résultats 

expérimentaux ont été illustrés empiriquement sur les spécimens de référence : Polymères 

renforcés de fibres de carbone (CFRP). En conséquence, les résultats expérimentaux de 

détection sur les CFRP ont démontré la faisabilité de la méthode PLST-GANs.   

Contributing authors: 

Qiang Fang (Ph.D. Candidate): the experiment planning, data collection, data analysis, 

designing and implementing the algorithm. Moreover, testing their accuracy and robustness 

throughout the process and writing the manuscript. 

Clemente. Ibarra. Castanedo: the experiment planning, revision and correction of the 

manuscript. 
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5.2 Abstract 

 With the recent developments in artificial intelligence, deep learning (convolutional neural 

networks) has been investigated for the quality management of materials by infrared 

thermography (IRT). In this work, we present an approach to efficiently process thermal data in 

order to improve the defect detection performance of IRT. A defect-enhanced algorithm based 

on Generative Adversarial Networks (GANs) has been designed and implemented qualitatively 

analysis and improve defects visibility based on data augmentation from a deep learning 

approach. We implemented a data dimension reduction method based on Partial Least Square 

Thermography (PLST) merged with GAN Networks (PLS-GANs) to achieve interpretable 

feature extraction and visualization, and compare result with thermal data of Pulsed 

Thermography (PT) in order to evaluate the efficacy of the proposed algorithm. By applying 

PLS-GANs, a small dataset of thermal data can be able to enlarge the diversity of data in order 

to improve the performance of the detection model. The experimental results were empirically 

illustrated over the benchmark specimens: Carbon Fiber Reinforced Polymers (CFRPs). 

Consequently, the experimental detection results on the CFRPs demonstrated its feasibility of 

the PLST-GANs method.   

Keywords: Non-Destructive Testing Methods; Deep learning; Pulsed thermography; Defect enhancement; 

Generative Adversarial Networks (GANs); Partial Least Square Thermography (PLST); Thermal images noise 

reduction; Data augmentation and generation;  

5.3 Introduction 

Non-destructive evaluation (NDE) [1] consists of a group of methods used for quality 

assessment of materials in industrial fields such as aerospace due to its non-destructive and 

comprehensive approach. Infrared thermography (IRT) [2] has been widely used to evaluate 
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subsurface defects and hidden structures for the quality control of materials due to its rapidity 

of inspection, the relatively low cost and straightforward operation of these NDT techniques. 

However, due to experimental noise and non-uniform heating [3], the defective pixels are more 

difficult to observe through the original thermal sequence based on experimental conditions and 

the properties of materials. As a result, the data processing and feature extraction method [4] 

has played an important role in IRT defect detection and identification which influences the 

accuracy and detection results.  

Previously, several signal processing techniques have been successfully applied to IRT for 

reducing the noise and improving defect visibility. For example, the classical principal 

component thermography (PCT) [5] is to project the raw inspection data onto a series of 

orthogonal bases. Through this method, noise and redundant information in the raw inspection 

data can be effectively reduced. The first few empirical orthogonal functions (EOFs) highly 

correlate to the presence of defects and can indicate defects more clearly. Pulsed phase 

thermography (PPT) [6] is another effective technique to improve defect visibility, where the 

raw inspection data is transformed from the time domain to the frequency domain. In the 

frequency domain, information of sinusoidal functions is used to construct new images, some 

of which indicate defects more distinctly than the raw thermograms. In thermographic signal 

reconstruction (TSR) [7], the new images are constructed using the first or the second-order 

time derivatives of the fitting data. In these new images, defects are usually indicated more 

clearly. Note that although many dimension reduction methods are available, all of the 

approaches have different advantages and disadvantages, and no method outperforms the others 

in all aspects. In addition, there are always few training samples obtained from these methods 

due to the limitation of the thermal imager. As a result, the evaluation effects from the thermal 

thermography have always been less accurate at the same time. 

 Nowadays, owing to their feature extraction ability, deep learning methods [8] have been 

increasingly applied to manufacturing processes. As the deep learning methods were adopted 

widely in the Non-destructive evaluation (NDE) research field recently, the convolutional neural 

network (CNN) [9] [10] [11] has the most significant influence on feature extraction for the 

research applied on the industrial applications. The CNN network has a strongly feature 

extraction capability to process the data from the manufacturing inspection, where one can 

fundamentally transfer the raw inspected data into the high level extracted features.  

 In the computer vision field, the generative adversarial network (GAN) [12]is one of the 

innovative CNN models to deal with the complex non-linear modeling issues with unsupervised 

learning. The ingenious training between the two main networks of GAN (Generator Network) 

and (Discriminator Network) can be compared to playing like a mini-max game [13]. Besides, 

the presence of sufficient accurate images, including exceptions (e.g. occlusion) could allow the 
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deep learning algorithm to effectively learn reliable features of interest. If the dataset does not 

contain enough images or contains too much noise, the learning algorithm may not be accurate 

enough or may even identify the wrong features. Therefore, in order to acquire enough dataset 

to train the network, identifying defects, the Generative Adversarial Network can be used to 

generate enough simulated thermal images to reveal defects variations [14]and enrich training 

data in unsupervised learning. To some extent, the generative data from GAN could be 

indistinguishable from the real data when the dataset is provided.  

The main work focuses on a deep learning/image augmentation method that is beneficial for 

enhancing the visibility of defects and enlarging the diversity of the original set of images from 

IRT data analysis methods. Simultaneously, a Partial least square thermography (PLST) [15] is 

taken as a dimension reduction method to reduce the noise and extract the features. In optical 

pulsed thermography [16], limited thermal images were recorded in each experiment, while only 

containing a certain amount of feature information of defects. GAN is a powerful method for 

generating new data with a similar distribution of the original features. 

As a result, a Convolutional based Generative Adversarial Network (GAN) for thermographic 

data analysis for defect detection in polymer composites has been proposed, where data 

augmentation can be applied for generating a diverse dataset from the original images. A series 

type of a Convolutional based GANs (WGAN [17]; DCGAN [18]) merged with the feature 

extraction method PLST in order to enhance each defect’s visibility with respect to the signal-

noise ratio (SNR) [19]. Specifically, this generative Partial least square thermography (GPLST) 

method enhances the defect visibility of composite polymer materials. A GAN network can be 

a model to generate simulated data in unsupervised learning for generating diverse images based 

on the raw databases. Although only a few studies have employed infrared thermography from 

the GAN network of composite materials, this innovative deep learning defect visibility 

enhancement algorithm can enhance the visibility of defects in sequential thermographic 

images.   

In this work, A PLS-GANs data augmentation thermography model is introduced. GPLST is 

integrated with an unsupervised encoder-decoder structure based Generative Adversarial 

Network (DCGAN/WGAN) to transform raw data into higher-level features using nonlinear 

models. By employing this GAN-data augmentation strategy [20], more informative images are 

generated to enlarge the diversity of the original set of images. By applying deep convolution 

GAN [21] to extract useful features to eliminate noise, this strategy can enlarge the diversity 

and informative data of interpretable features. Consequently, the defect detection results can be 

visualized using a number of interpretable features. The defect detection performance and 

thermographic data visibility of thermographic data analysis can also be enhanced to some 

extent.     



 

131 

 

 

 

 

 

The remainder of this paper is structured as follows. Some preliminary principles are mentioned 

in Section 5.4. Section 5.5 proposes the PLS-GANs based image augmentation method for 

thermographic data analysis. The detailed analysis, metrics and training parameters are 

introduced in Section 5.6. In Section 5.7, the effective results generated from the series of GANs 

network (WGAN; DCGAN) and the results being processed by the PLS-GANs network is 

provided. Section 5.8 introduces a series of results, discussion and analysis. Finally, the 

conclusion is outlined in Section 5.9. 

5.4 Preliminaries 

5.4.1. Pulsed thermography and thermographic data 

Figure 1 shows the basic principles of pulsed thermography [22]. The inspection by PT is 

based on the application – via radiation heat transfer – of a short and high-power thermal 

pulse to the specimen surface (input signal). The amount of thermal energy being absorbed 

by the surface of the sample will create a thermal front that propagates within the material 

until it reaches internal defects, which alter the heat diffusion flux. This interaction between 

the heat flux and internal anomalies - regions with different thermal properties in relation to 

their surroundings - produces dissimilar behaviors in terms of the temperature decay during 

the cooling process, which can be observed with an infrared camera (output signal). The 

deployment of this approach is carried out in a transient regime – in contrast to pulsed 

thermography, which is carried out under steady-state conditions – thereby allowing fast and 

straightforward data acquisition [23]. 

The thermal data obtained in the IRT experiment can be recognized as a three-dimensional 

(3-D) matrix 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑡. Figure.2 shows that 𝑛𝑡 frames of thermal sequences are obtained 

during the cooling period, where each frame is the size of 𝑛𝑥 × 𝑛𝑦 pixels. Every pixel has a 

temperature decline curve measuring at a corresponding time instant. The temperature 

difference value between the regions of the defect and the non-defect provides detailed 

thermographic information for defect detection.  

       

5.4.2. Materials 

To evaluate the robustness and performance of the proposed algorithm, the detailed 

information of experimental specimens has been conducted as follows: 

Three specimens(a)-(c) from Carbon Fiber-Reinforced Polymer (CFRP) were adapted in this 

work. Table 2 gives comprehensive descriptions of these samples. Each specimen has its own 

specific geometric graph with the Teflon square insertions of defects at different depths 

(Sample(a); Sample(b); Sample(c)). Specimens are square-shaped plates with the size of 

30cm×30cm×2cm (10 ply carbon-fiber-reinforced polymer). These samples are all CFRP 
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specimens with natural artificial defects. Note that, each specimen has the same defect 

geometric distribution, however, these specimens are each a plane with a different trait 

(Sample(a): flat; Sample(b): curved; Sample(c): Flap) which influences the light illumination 

and thermal experimental response. 

 

 

 

Figure 5. 1 Pulsed thermographic testing using optical excitation system and its three-

dimensional thermographic data structure. 
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Numbe

r 
     Geometrics Specimen           

 

 

 

Cross 

Section 

Dimension of 

Specimen(cm) 

     Defect 

diameters(cm) 

(a) 

  

  

 

30cm*30cm 

Five different lateral 

sizes: 

(3mm, 5mm, 7mm, 

10mm, 15mm) 

with five different 

depths (0.2mm; 0.4 

mm; 0.6mm; 

0.8mm; 1.0mm) 

(b) 

  

 

 

 

 

 

 

 
   

 

 

 

 

 

30cm*30cm 

 

 

Different angle of 

defects 

(0°;7.6°; 15°) with 

different equivalent 

diameters 

(3.4mm,5.6mm,7.9

mm,11.3mm,16.9m

m) and 

corresponding 

depths (1.0mm,15°), 

(0.6mm,7.6° 

),(0.2mm,0°), 

(0.4mm,7.6°), 

(0.8mm,15°) 
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Table 5. 1 The geometrics and parameters distribution of three CFRP specimens 

5.4.3. Partial least squares regression (PLSR)& Partial least squares thermography (PLST) 

Partial least squares (PLS) [24] is a dimension reduction algorithm to enable predictable 

modeling for the data. This algorithm also enables multivariate regression (MLR) [25] [26] 

[27] which is also correlating the information from one data matrix (W) to another matrix 

(H). As shown in Figure 2, the fundamental principle of the PLS algorithm and its difference 

with other linear regression methods [28] have been described.   

Compared with most regression methods for dimension reduction which takes all 

independently x-values to form a linear combination of the feature, the PLS only combines 

a few linear components from the original x-values, and only these linear combinations will 

be considered in the whole regression procedure. Therefore, the irrelevant noise and 

information can be reduced and discarded, only the most relevant and key information will 

remain and be used for the regression. All variables can be projected down to a limited linear 

combination and the collinearity issue can be solved in order to obtain a more stable 

regression. 

(c)             

 

 

 

 

 

 

30cm*30cm 

 

 

 

Five equivalent 

diameters 

(3.4mm,5.6mm,7.9

mm,11.3mm,16.9m

m) 

with defects at five 

different depths 

(1.0mm;0.6mm;0.2

mm;0.4mm;0.8mm) 

The plate has two 

folds and at 30 

degrees to the 

horizontal level 
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The PLS regression method could decompose the thermographic PT data sequence obtained 

during the cooling regime. During dimension reduction, the predictor matrices W (𝑛 𝑥 𝑁) 

and predicted H (𝑛 𝑥 𝑀) are decomposed into latent structures (a combination of loadings, 

scores, and residuals) during an iterative process. The latent structure corresponding to the 

variation matrix H is extracted and explained by the latent structure from T and U. The 

underlying model can be described as shown below [26]: 

 

                                          𝑊 = 𝑇𝑃𝑇 + 𝐺                                                           (5.1) 

 

                                             𝐻 = 𝑈𝑄𝑇 + 𝐾                                                                      (5.2) 

                                

Figure 5. 2 Conceptual illustration of PLS and its comparison with classical linear 

regression methods 

In Equation (5.1) and (5.2), T (𝑛 𝑥 𝑎) and 𝑈 (𝑛 𝑥 𝑎) is defined as the score matrix, and its 

elements are denoted by 𝑡𝑎 (𝑎 = 1,2, … , 𝐴). The scores can be considered as a small set of 

underlying or latent variables responsible for the systematic variations in W. The matrices 

P(𝑁 𝑥 𝑎) and Q (𝑀 𝑥 𝑎) are called loadings (or coefficients) matrices and they describe how 

the variables in T relate to the original data matrices W and H. Finally, the matrices G (𝑛 𝑥 𝑁) 

and K(𝑛 𝑥 𝑀)  are named as residuals matrices which represent the noise or irrelevant 

information from 𝑊 and 𝐻 respectively. The feature extraction and components analysis are 

carried out through the decompositions between 𝑊 and 𝐻 so as to maximize the covariance 

between 𝑇 and 𝑈. 
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In NDT, the Partial least squares thermography (PLST) is defined as the same format of 

PLSR to decompose the raw data into a series of extracted feature components. Unlike PCT 

(Principal Component Thermography), the latent variables are extracted by a compromised 

method between the amount of variance summarized by the scores and the degree in PLST 

to which those scores are correlated with. Due to the co-focus on prediction from PLST, con-

founding of the targeted objective with other sources of variation in the data is usually more 

convenient in PLST than in PCT. Therefore, the PLST scores arise as a better predictor of 

the response than PCT scores.  

 

5.4.4 Generative Adversarial Network (GAN)   

a. Basic principle of GAN  

    Generative Adversarial Network (GAN) is proposed by (Goodfellow et al) [12] to be used 

as a model to generate high-quality synthetic data in deep learning. To some extent, the 

generative data from GAN could be indistinguishable from the real data when the dataset is 

provided. As a deep structured generation neural network, GANs play a crucial role in 

machine learning due to the unique implementation step for confrontation training. 

On the other hand, for data generation, the presence of sufficient accurate images, including 

exceptions (e.g. occlusion) could allow the deep learning algorithm to effectively learn 

reliable features of interest. If the dataset does not contain enough images, or contains too 

much noise, the learning algorithms may not be accurate enough or may even identify the 

wrong features. Therefore, in order to acquire enough dataset to train the network, identifying 

defects, the Generative Adversarial Network can be used to generate enough synthetic 

thermal images to reveal defects by enriching training data. 

Based on the mathematical description, the adversarial training of GAN [29] [30] [31] can 

be described as shown in the equation (5.3) in the below. The GAN network consisted of a 

generator G and a discriminator D. During the first step of training, a vector z is sampled 

from the prior Gaussian distribution 𝑃(𝑧), then a generator network G is designed to learn 

the feature from the distribution 𝑃(𝑧) through the vector z randomly. This generated network 

projects a new output data 𝐺(𝑧). Another network, which is defined as discriminator D has 

the responsibility to distinguish the true data (from training distribution) and fake input (from 

the generator G). V(D, G) is a loss function for GAN to achieve the min-max game. 

In addition, x represents the real thermal data. D(x) represents the probability x to be 

discriminated by Discriminator D as the real data; 𝐷(𝐺(𝑧)) represents the probability of the 

D network to discriminate the generated data from the G network to see how similar it is with 

the real data. 𝑃𝑧(𝑍) is the distribution of noise vector 𝑧 and E represents the Expectation value. 

What the G network can do is to generate real data as much as possible to deceive the 
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judgment of the D network. In contrast, the D network is to improve its ability to distinguish 

between the real and generated data. Once the D(x) and D(G(z)) values are equal to 0.5, these 

two networks (G; D) achieve equilibrium [12]. 

 

       
𝑚𝑖𝑛

𝐺
 𝑚𝑎𝑥

𝐷
 𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎

 [𝑙𝑜𝑔 𝐷(𝑥)] + 𝐸𝑧~𝑃𝑧(𝑍)
[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))]         (5.3) 

 

In additional, the whole procedure of the GAN thermal image generation strategy is an 

unsupervised learning procedure which can be summarized from the Figure 5.5(a)-(c) in the 

below. 

As shown in Figure 5.5 (a) the main GAN image generation strategy, a random D-

dimensional noise vector was fed into the Generator Network G (affine transformation), then 

a series of fake thermograms are generated. In this case, the discriminator D can be treated 

as a binary classifier to predict corresponding labels for the fake images generated from 

random noise vectors in the G network and realistic images obtained from experimental 

pulsed thermography. 

In the beginning of each training iteration, the initialization of the generator G and 

discriminator D has been activated. Then, during the training of the Discriminator network 

(Figure 5.5(b)), the generation G will be fixed while the discriminator D is updated in order 

to strengthen its distinguishing capability. The discriminator starts to learn to distribute the 

different scores to real objects and generate objects. On the other hand, during the training of 

the Generator (Figure 5.5(c)), the discriminator D will be fixed while updating the generator 

G (update the parameters of Gradient Ascent), the generator G enhances its capability to 

generate images similar to real images in order to obtain enough scores judged from the 

discriminator. During the training of the Generator, the Generator G and discriminator D can 

be treated as an integrally neural network (first several layers for the Generator; last several 

layers for the Discriminator; in the middle of hidden layers to be able to obtain generated 

images). 

Therefore, one can make an analogy and compare the relationship between the main networks 

of GAN to a a mini-max game as indicated in Figure 5.3 (c) which is played between G (the 

Generator Network) and D (the Discriminator Network) [32]: 

 

• During the training of the discriminator network, the discriminator learns to assign high 

scores to real objects and low scores to generate objects; 
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• During the training of the Generator network, the Generator is optimized to create 

realistically data to “fool” the discriminator. The Discriminator also evolves in its ability to 

precisely distinguish true and fake data. 

      

 

(a) The main GAN Images generation strategy 

 

 

(b) Training of the Discriminator network 
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(c) Training of the Generator network 

Figure 5. 3The implementation steps for GAN network (a)-(c) 

5.5 Proposed Methodology 

5.5.1 Deep Convolutional Generative Adversarial Network (DCGAN) & Wasserstein 

Generative Adversarial Network (WGAN) 

 In this work, two types of modified versions of GAN networks (DCGAN; WGAN) have 

been introduced to discuss their capability of defect visibility enhancement when merged 

with the PLST algorithm for thermal data analysis. 

 

A. Deep Convolutional GAN(DCGAN) 

 A Deep convolutional generative adversarial network (DCGAN) [33] is an extended version 

of GAN network (an unsupervised learning method). Due to its own capability of feature 

extraction, DCGAN utilized as a thermographic data augmentation modeling for enhancing 

the visibility of defects during the detection in composites polymer (CFRP; GFRP), which 

also has the capability to learn the multi-hierarchy representative feature extracted from the 

thermography sequences by the Discriminator D and Generator G of in the DCGAN network.   

Compared with the original GAN, the detailed structure of the Generator (a) and the 

Discriminator (b) from the DCGAN as indicated in Figure 5.4, all the max-pooling layer has 

been replaced with convolutional strides. DCGAN adapted the transposed convolutional for 

upsampling and eliminated fully connected layers. It uses batch normalization in each layer 

(except the discriminator’s input layer and the generator’s output layer). In addition, a Leaky-

ReLU has been adopted from the discriminator. The generator produces the images based on 

a random 100-dimensional vector. Its structure contains four convolutional layers in total 

which could be able to generate a series of synthetic thermograms. The discriminator 
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maintains the symmetrical structure with the generator but its output is a number X between 

0 to 1 by the sigmoid function for the possibility to discriminate between the real or fake 

images.  

      
(a) Generator                                                 (b) Discriminator 

Figure 5. 4 The architecture of DCGAN 

B. Wasserstein -GAN(WGAN) 

As shown in the research literature, the training process of GAN is quite challenging. 

Specially, the DCGAN may not easily converge and the mode may collapse (the generator 

tends to produce a high similarity of the samples) as well.  

In this work, an unsupervised generation model (Wasserstein GAN) [34] has been introduced 

for the comparison with DCGAN especially for feature extraction and data augmentation of 

defect visibility enhancement. 

The WGAN is a new type of GAN which has the capability to overcome the training 

difficulty from the regular GAN network and to overcome the potential issue of mode 

collapse. In addition, the Earth Mover (EM) distance [35] optimum function of WGAN can 

be defined as follows:  

 

                    𝑊(𝑃𝑑𝑎𝑡𝑎, 𝑃𝐺) = {𝐸𝑥~𝑃𝑑𝑎𝑡𝑎
[𝐷(𝑥)] − 𝐸𝑥~𝑃𝐺

[𝐷(𝑥)]}
𝐷∈1−𝑙𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧

𝑀𝑎𝑥
               (5.4) 

 

The 𝑊(𝑃𝑑𝑎𝑡𝑎 , 𝑃𝐺) in equation (5.4) represents the evaluation of Wasserstein distance [36] 

between the real data distribution 𝑃𝑑𝑎𝑡𝑎 and the generated data distribution 𝑃𝐺 . Meanwhile, 

the learning procedure of WGAN can be regarded as a regression task. In equation (5.4), 

based on its mathematical expression, the discriminator obtains a larger output values when 

its sample arises from a real data distribution. In contrast, the discriminator obtains a smaller 
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value when its sample arises from the generated data distribution. In equation (5.4), the 1-

lipschitz term [37] is a constraint term to control the discriminator at a certain range of 

infimum in order to keep it converge (keep the discriminator “smoother” without intractable 

infimum). Therefore, the distribution x value should belong to the region from the 1-Lipschitz 

term function as shown below: 

 

                                              ‖𝑓(𝑥1) − 𝑓(𝑥2)‖ ≤ ‖𝑥1 − 𝑥2‖                                                (5.5) 

 

 where in equation (5.5), the 𝑥1 and 𝑥2 represent two different inputs, and 𝑓(𝑥1) and 𝑓(𝑥2) 

represent two different outputs. So ‖𝑥1 − 𝑥2‖ and ‖𝑓(𝑥1) − 𝑓(𝑥2)‖ represent the absolute 

change of the input and output. Therefore, the equation (5.5) means the output change must 

smaller or equal to the input change for the discriminator training in the WGAN (to keep the 

discriminator smooth enough). 

Based on the structure as shown in Figure 5.5, the WGAN has a similar structure to that of 

the DCGAN. First, the discriminator, with a 376 × 376-pixels image samples (raw or 

generated images) as the input, then projected feature will go through a certain number of 

convolutional layers; batch normalization; leaky rectified linear unit (LRelu). The generator 

has a nearly symmetrical structure with the discriminator (autoencoder format), which first 

inputs a certain dimension of the noise vector from a normal distribution, then generates the 

feature vector feeding it through certain deconvolutional layers to restructure itself to be the 

original size (376×376 pixels). 

The overall training workflow of the regular GAN and WGAN networks is illustrated in 

Figure 5.6 (a) and Figure 5.6 (b), respectively. The main reason for introducing WGAN is to 

reduce the training difficulty and potential issue of model collapse. As the regular GAN in 

Figure 5.6 (a) indicated, the loss function is a binary classification (judge), but in Figure 5.6 

(b), the loss function is an EM distance, which is a regression task rather than a classification 

problem during the training process. 

The WGAN modifying strategies can effectively improve the GAN to obtain higher efficient 

performance during the training. As a result, WGAN can successfully overcome the issues 

caused by the unstable training due to an imbalance between the discriminator and generator. 

In addition, the WGAN has a reasonable and effective way to estimate the distance of the 

Earth-Mover (EM), which means the minimum cost of the transporting plan to convert the 

data distribution q to the data distribution p. In other words, during the data generation 

procedure of synthetic thermogram, WGAN has the capability of furtherly improving the 

training and then providing a high quality of generated thermal images [38]. 
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Figure 5. 5 WGAN generator architecture 

            

(a) The training path of regular GAN(DCGAN) network; (b) The training path of regular WGAN network; 

Figure 5. 6 The training procedure flowchart of WGAN 
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5.5.2 The general GAN-thermographic implementation steps  

After the deployment of the two types of GAN network: DCGAN and WGAN, our basic 

training, implementation steps can be described as the following procedure (Part A, B, C). 

During this procedure, 𝐷(𝑥′
𝑖)  is defined as a sigmoid function (0,1), 𝛽 as a gradient ascent, 

𝑃𝑝𝑖𝑜𝑟(𝑧)  as the distribution, Initialize Parameter 𝜃𝑑  of Discriminator 𝐷(𝑥)  and 𝜃𝑔 of 

Generator 𝐺(𝑥), 

Part A. In each training iteration (learning Discriminator): 

Step 1: Sample m examples {𝑋1,𝑋2,...,𝑋𝑛} from data Distribution 𝑃𝑑𝑎𝑡𝑎(𝑥); 

                          Step 2: Sample m noise samples {𝑍1,𝑍2,..., 𝑍𝑛} from the prior 𝑃𝑝𝑖𝑜𝑟(𝑥); 

Step 3: Obtaining generated data {𝑋′1,𝑋′2,..., 𝑋′𝑛}, 𝐺(𝑋′𝑖) = 𝐺(𝑍𝑖); 

Step 4: Update discriminator parameter 𝜃𝑑 to maximiz 

     𝑉′ =
1

𝑚
∑ log 𝐷(𝑥𝑖) +

1

𝑚
∑ log (1 − 𝐷(𝑥′

𝑖))𝑚
𝑖=1

𝑚
𝑖=1 ;                                        (5.6) 

    𝜃𝑑 ← 𝜃𝑑 + 𝛽𝛻V′(𝜃𝑑);                                                                 (5.7)                                                  

Part B. In each training iteration (learning Generator): 

Step 1:  Sample another m noise samples {𝑍1,𝑍2,..., 𝑍𝑚} from the prior 𝑃𝑝𝑖𝑜𝑟(𝑧); 

Step 2:  Update generator parameter 𝜃𝑔 to maximize;  

    V′ =
1

𝑚
∑ log (𝐷 (𝐺(𝑧𝑖)))𝑚

𝑖=1 ;                                                      (5.8) 

    𝜃𝑔 ← 𝜃𝑔 + 𝛽𝛻𝑉′(𝜃𝑔);                                                            (5.9) 

Part C. loop operation of Part A (Step 1-Step 3) and Part B (Step 1-Step 3) until the D(x) and 

D(G(z)) values are equal to 0.5, then the two networks achieve equilibrium, and the whole 

training process is completed. 

Note that the Wasserstein GAN has several points on its implementation steps from the 

algorithm which are different from regular GAN network implementation steps (DCGAN) 

as described below: 

 1. The discriminator of WGAN removed the sigmoid function in its last layer;  
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 2. A new cost function equation (5.10) and equation (5.11) from WGAN corresponding 

to equation (5.6) in Part A (Step 4) and Part B (Step 2) equation (5.8) does not take 𝑙𝑜𝑔 in its 

loss function. 

 

𝑉′ =
1

𝑚
∑ 𝐷(𝑥𝑖) − 

1

𝑚
∑ 𝐷(𝑥′

𝑖))𝑚
𝑖=1

𝑚
𝑖=1 ;                                            (5.10) 

 

V′ = −
1

m
∑  D (G(zi))m

i=1 ;                                                  (5.11) 

3. The absolute values of the discriminator parameters being truncated no more than a 

fixed constant c after each update (weight clip) [39].  

 

5.5.3 PLST-GANs Thermographic Framework 

The PLS-GANs thermography framework consists of the PLST thermography data analysis 

algorithm and WGAN/DCGAN-based data augmentation method. In this work, we chose the 

state-of-the-art data analysis method PLST [40] for comparison of the performance with 

PLST-GAN data augmentation method.  

In addition, the overall PLST-GAN-based thermography framework is described in Figure 

5.7. A series of fake thermography are generated from the GAN, then merged with raw 

experimental data from the pulsed thermography. The restructuring thermal sequences 

combined from the fake thermograph and raw data being normalized by standard deviation 

data preprocessing. Then, the restructuring thermography is analyzed by the PLST algorithm. 

The final comprehensive feature is visualized in the real thermal images from the extraction. 

Further, to automatically detect the defects and achieve the defect visibility enhancement, the 

detailed implementation steps (data merging; data normalization; data visualization) of 

PLST-GAN can be illustrated in the steps below: 
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Figure 5. 7 Defect enhancement strategy with GAN model 

A. Data merging 

In this step, the thermal images outputted from the GAN network (WGAN/DCGAN) are 

merged with the original raw thermal images from the experimental pulsed thermography. In 

more detail, the original thermogram is inserted in front of the generated thermogram, then 

restructured into a new 3D matrix. Therefore, the pixels of the restructured thermograph 

temporal transient response and information have no specific physical meaning. The only 

key information is the spatial feature for identifying the defect regions. On the other hand, 

the PLST-GAN data analysis algorithm processes with spatial information only and does not 

consider temporal information. Although merging with different sequences takes place 

(generated GAN images; experimental thermal sequences) and changing the order of the data 

matrix, this will not influence the results from defect detection. 

In pulsed thermography (PT), the use of PLSR to PT data is achieved by decomposing the 

raw thermal data into multi-independent components of PLS. The dataset obtained during 

the PT inspection from the IRT is arranged as a 3d data matrix as indicated in Figure 5.8 

(𝑛𝑥 × 𝑛𝑦 × 𝑛𝑇). 𝑛𝑇  is the total thermal frame obtained from the cooling process of PT, 

where each frame is represented as 𝑛𝑥  (𝑥 − 𝑎𝑥𝑖𝑠) × 𝑛𝑦 (𝑦 − 𝑎𝑖𝑥) pixels. The value of each 

pixel represents the surface temperature at the corresponding position and also corresponds 

to a point of the temperature decay variation curve at a specific time instant. Therefore, the 

meaningful feature can be extracted based on the temperature decay difference between the 

defect and non-defect region. 
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Therefore, in order to perform thermal data under PLSR algorithms to decompose these data 

into PLS components, the whole 3D matrix (experimental thermograph) is reshaped into a 

two-dimensional matrix with (𝑛𝑥 × 𝑛𝑦 ,𝑛𝑔 ), referred to as the folding process as shown in 

Figure 5.8. Simultaneously, the generated GAN images reshape into another two-

dimensional matrix with ( 𝑛𝑥 × 𝑛𝑦 ,𝑛𝑡 + 𝑛𝑔 ), which has the same data structures with 

experimental thermograph. The two 3D matrixes reconstructed as a new 2-D unfolded matrix 

X with a size of (𝑛𝑥 × 𝑛𝑦 ,𝑛𝑡 + 𝑛𝑔 ), where the 𝑛𝑡  is the frame number of the experimental 

thermograph, and the 𝑛𝑔  is the frame number of the generated thermograph.  

This 2D matrix may produce a high level of representative feature of thermal contrast to 

analysis the defect structure in composites and also improve the capability of defect visibility 

enhancement compared to other regular thermography procedures. In addition, in this 

algorithm, the predicted matrix H from session 5.4.3 is a column vector (𝑛𝑡 ,1) based on time 

series for the implementation of PLSR for Pulsed thermography. 

 

B. Data normalization& Dimensionality reduction procedure 

In order to further analysis, a merging matrix 𝑿 = [𝑋1, 𝑋2, . . , 𝑋𝐾] 𝑇 has been created, where 

the temperature response of a single thermogram is represented by the row vector from X, 

while the temporal temperature evaluation of a single pixel represented by the column vector. 

A standard deviation normalization method is applied to the merging matrix X as the pre-

processing method to reduce the influence of the uneven heating and noise background which 

would be beneficial for the extraction of meaningful features of the defect information. The 

normalization is based on each column, which focuses on the information of each pixel to 

subtract the mean value and divided by the standard deviation. 

After the matrix X is normalized by the standard deviation, the PLST data analysis method 

will be applied to the matrices. Through the GAN-PLS model, the feature of defects will be 

extracted and analysed. The predicted matrix H obtained from the covariance matrix of X 

will contain the information for the visualization of defects and the visibility of enhancement 

for detects. 
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Figure 5. 8 Schematic representation of the transformation of the 3D thermal data into a 2D 

raster-like matrix. 

C. Data visualization 

As mentioned in section 5.4.3, in PLST feature extraction equation (1)-(2), the PLS algorithm 

will find the compromised components: 

 

• The value of dot product 𝑇𝑃𝑇 must illustrate the unfolding matrix 𝑊 well; 

 

• The score vector 𝑇 should be related with the predicted matrix 𝐻; 

 

Statistically, unfolding matrix scores T will be the highest possible covariance with the 

predicted matrix H through the score vector U. Therefore, in order to analysis the results 

obtained from pulsed thermography (PT), the merged 2D matrix (raw data; generated data) 

is applied to the PLST through decomposition. Then the 2D unfolding matrix 𝑊 will be 

converted into a series of PLS component combination 𝑃(predictor loading matrix) as shown 

in Figure 5.9. 
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Figure 5. 9 Graphical representation and decomposition of pulsed thermography by PLST 

Simultaneously, the whole procedure can be described as the PLS algorithm implementation 

is described below: 

The data are adopted to apply PLS is a 3D matrix (thermal sequence) obtained from PT 

inspection of the carbon-fiber-reinforced-polymer (CFRP). This 3D sequence (𝑛𝑥 , 𝑛𝑦, 𝑛𝑇) is 

normalized and converted into the W (𝑛𝑇, 𝑛𝑥 × 𝑛𝑦 ).(as mentioned in section B (3.3)); 

The decomposition of the predictor W is implemented by the nonlinear iterative partial least 

squares (NIPALS) [41]; 

The number of components from PLS is extracted based on the application of RMSE (root 

mean square error) [42] in the equation (5.12), where n is the number of samples, Hi  is 

defined as the predictive value, the Hi,ref is the reference value. 

 

                                                        𝑅𝑀𝑆𝐸 = √
∑ (𝐻𝑖−𝐻𝑖,𝑟𝑒𝑓)2𝑛

𝑖=1

𝑛
                                      (5.12) 

 

After the application of the PLS algorithm, the matrix H is generated as a column vector 

(𝑛𝑇, 1) based on the time series. The predictor loading matrix P (see Fig. 5.9) is transformed 

into a 3D matrix, composed of (𝑛𝑥 , 𝑛y , 𝑛loading vector).  
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In order to analyse the PLS-GANs results for the defect visibility enhancement, we selected 

and visualized certain corresponding PLS component images (2D images) based on this 3D 

converted matrix for the visualization. The obtained PLS loading vectors from the predictor 

loading matrix P need to be reconstructed into the thermal images in order to identify the 

defects. The PLS-GANs generate many PLS component images. But not every single image 

contains useful information and may still include noise. 

In Figure 5.10, the overall PLS-GANs framework is illustrated. As shown in the right side of 

Figure 5.10, the DCGAN structure has been indicated which is an auto-encoder model [43] 

to achieve dimension reduction. There are two pathways in total to extract the features in this 

structure. The contract path extracts the input images into a lower dimension feature map 

(reducing the length and width of the original images). In contrast, an expansive path 

reconstructed the lower dimension features back into the larger size. Specially, DCGAN has 

three convolutional layers reducing the size of images to half compared to the previous layer 

(corresponding to the discriminator). Simultaneously three deconvolutional layers expand 

the size of feature maps twice compared with previous layers (corresponding to the 

generator). Besides, as it is discussed in section 3.1 (in Figure 5.5), the WGAN has a similar 

structure to that of DCGAN, but updates its unique loss function to keep its high feature 

extraction performance.  

      

 

Figure 5. 10 feature extractor of encoder and decoder format convolutional neural network 

Therefore, the structure of DCGAN\WGAN is a type of neural network designed to replicate 

the input feature(images) to the reconstructed feature. (DCGAN\WGAN) are implemented 

by compressing the input images into a latent-space representation [44] and then 

reconstructing to the output based on this representation feature. Such networks regularly 

both consist of two-part network as shown in Figure 5.10: 1. an encoder network: the input 

being compressed into a latent-space representation; 2. a decoder network: aiming to 

reconstruct the input from the hidden-space representation (latent-space representation) for 

feature extraction.  
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In detail, the encoder and decoder format network are fully represented by the convolutional 

layers from the WGAN/DCGAN structure. During the learning stage of the GANs network, 

assuming a noisy image is fed into the input of the GANs network through the training, then 

a generated image could be able to be outputted from the GANs model. If the output image 

is noisy, then GAN will be” punished” by its own loss function. As a result, during this whole 

process, the GANs model gradually and eventually learns to remove the noise and 

reconstructs less-noise images from the training. 

Once the feature is obtained, the generated images will be merged with original data (data 

merging), then be normalized and processed by dimension reduction method (PLST) to 

generate final enhanced images as indicated in Figure 5.11 in the PLS-GANs framework.  

 
 

Figure 5. 11 Overall PLS-GANs framework 

5.5.4 Evaluation metric and implementation details for defect visibility enhancement  

a. GANs Training  

The procedure for the GANs model training was set according to the following principles: 1 

For parameter adjustment, it’s based on the Pytorch deep learning framework; 2. The training 
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processing was conducted on a GeForce GTX2080TI for about 60 min; 3. The operating 

system is set as Ubuntu 16.04; 4. The framework of the learning model is set as Darknet. 

CPU: i9-9900k. Memory: 64GB, GPU: NVIDIA Ge-Force GTX1080TI. 

The training process consists of a simultaneous Stochastic gradient descent (SGD); The learning 

rate is 0.002; The number of training epochs is 1000.  

The optimization method of the WGAN network being adopted in this work is RMSProp. The 

optimization method of the DCGAN network being adapted is the Adam optimization with the 

parameter beta2=0.999. 

In the DGAN/WGAN learning process, the whole process was trained with mini-batch 

stochastic gradient descent (SGD) with the size of 64 mini-batches/128 mini-batches. 

b.  Analysis metrics  

In this section, the PLS-GANs model is investigated with three different geometric distribution 

CFRP specimens for the detect visibility enhancement. The evaluation metrics that are adopted 

here are the common Signal-Noise-Ratio (SNR) [45] and the Peak Signal-to-Noise Ratio 

(PSNR) [46] which can be expressed as follows: 

(1) Signal-to-Noise ratio (SNR) 

 

                                                  𝑆𝑁𝑅 =
𝑀𝑑𝑒𝑓−𝑀𝑖𝑛

𝜎𝑖𝑛
                                                    (5.13) 

SNR can effectively reflect the thermal contrast and defect feature based on the difference 

between the defect regions and non-defect regions. The higher SNR values indicate that the 

image contains more defect information and indicate a better performance of the learning model 

for the defect visibility enhancement. In equation (5.13), 𝑀𝑑𝑒𝑓 represents the average pixel of 

the defect’ regions and the 𝑀𝑖𝑛  represents the average pixel of the boundary non-defect 

regions. 𝜎𝑖𝑛 represents the standard deviation of the pixel value in the non-defect regions. 

(2) Peak Signal-to-Noise Ratio (PSNR) 

In order to discuss the SNR at maximum signal contrast, the PSNR is also defined through the 

mean square error(MSE) (equation(14)),assuming that the image has the size of (𝑚 × 𝑛) from 

the denoising image 𝐼 (output images from PLS-GANs) and the noise image 𝑘 (input images 

from PLS-GANs) as follows: (the coordinate value in each image is noted by 𝑖, 𝑗  in these 

images) 

                                         𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ [𝐼(𝑖, 𝑗) − 𝑘(𝑖, 𝑗)]2𝑛−1

0
𝑚−1
𝑖=0                                (5.14)        
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The PSNR (in dB) is defined as: 

           

                     𝑃𝑆𝑁𝑅 =  10 ∙ 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)                                                   (5.15)      

              

The 𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the image (this is 255 when pixels using 

8 bits represent the sample). 

c. Research results and analysis- Learning curves and training procedure  

               

(a) Discriminator loss of WGAN                    (b) Generator loss of WGAN 

Figure 5. 12 The learning loss from Discriminator (a) and Generator (b) 

 

                 Epoch=0                                     (b) Epoch=155                            (c) Epoch=500 

Figure 5. 13 The generated images 64*64 from different epoch (a) epoch=0; 

(b)epoch=155;(c) epoch=500 
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The learning loss of the generator and the learning loss of the discriminator remain relatively 

balance as shown in Figure 5.12. The loss from the Discriminator increase during oscillation, 

then becomes stable at a value of around 0.5. The loss from the Generator oscillates at the 

beginning during the training, then stabilizes its value around 3.5. It is furtherly indicated the 

stable performance during the whole training procedure. 

As shown in Figure 5.13, the generator generates 64*64 images by random noise z at epoch = 

0 (a); at epoch =155 (b); at epoch=500 (c). As the epochs increasing, the clearer thermal images 

are gradually generated. The key aspect of this algorithm is that after DCGAN achieves defect 

enhancement, the generated fake data is superimposed on the original image in order to suppress 

the noise. If the WGAN defect enhancement fails, then all subsequent analysis methods will 

fail. Therefore, after normalizing, by superimposing the WGAN-generated image on the 

original image at epoch=1000, the following image is generated in Figure 5.14, where one notes 

that the defect is indicated and enhanced from the images to some extent. 

                                                                      

Figure 5. 14 The generated images at epoch=1000 (64*64) 

 d. Feature extraction and defect enhancement from GANs 

Notice that the DCGAN generates the defective feature graph by learning from the noise vector 

z. The images are generated do not have a temporal relationship as stated in experimental 

infrared thermography, where it is theoretically impossible to obtain a temporal connection. 

Even if it is a temporal association in the data, the final training is a graph-by-graph training and 

generation. Therefore, there is no temporal relationship. 

As shown in Figure 5.9 and Figure 5.10, we displayed generated thermograms- the size of 

64*64 (during the initial stage of training). This indicated that the extracted thermal images 

from GAN contain less noise to some extent. After the GAN generation procedure, the 

DCGAN-generated thermal images (on the right side of Figure 5.9) and the WGAN-

generated thermal images (on the right side of Figure 5.10) can be visualized. The defect 

information in both generated images is clearly highlighted, facilitating further defect 

recognition. In the specific frames from 17th – 48th, the generated thermal sequences have a 

more obvious clarity due to the training of DCGAN in Figure 5.15 and WGAN in Figure 

5.16, compared with the raw thermal sequences. Simultaneously, the generated thermograms 
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from WGAN are slightly clearer and lighter than the thermograms from DCGANs especially 

between the 17th – 48th frames there are 64 frames in total).   

      

Figure 5. 15 Raw CFRP-A (left side) and Generated CFRP-A (right side) sequence thermal 

images from DCGAN 

      

Figure 5. 16 Raw CFRP-A (left side) and Generated CFRP-A (right side) sequence thermal 

images from WGAN 

  



 

155 

 

 

 

 

 

  e. Visual explanations from GANs training  

The deep models from Convolutional neural networks (including GANs) can be regarded as 

the” black box” which may involve a lack understanding of the internal functioning of the 

learning procedure. As a result, previous researchers introduced a proposed method referred 

to as Grad-CAM++ [47] to investigate the training process to provide an improvement of the 

visual explanations for the deep convolutional network. Specifically, the Grad-CAM++ 

adapted a weighted combination regarding specific scores from the positive partial 

derivatives in the feature map of the last convolutional layer of the GAN network to 

reconstruct a visual explanation for specific class labels. 

 

(a) Pure noise                              (b) Visible defect 

                                    

 (c) The Grad-CAM result from noise after GAN training; (d) The Grad-CAM result defect 

after GAN training 

                                   

Figure 5. 17 Gradient-weighted Class Activation Mapping; without defect (a)(c); with 

defect (b)(d) 
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Generally, the main goal of using the Global Average Pooling [48] is to visualize what the 

GAN is “looking for” and how GAN shifts its attention over time. The Grad-CAM++ can be 

used as the generalized method to visualize the output feature map of CNN and evaluate the 

generator from the GAN to confirm that the Convolutional neural networks (CNN) whether 

it take the defect regions as the key learning feature to generate with or not. 

As shown in Figure 5.17, two parts of the databases (one labeled as 1; another labeled as 0) 

have been prepared in order to train a binary classified GAN. With Grad CAM++, the heat 

map of the original image is visualized through the classification results to see which parts 

of the image are important for the features(defects). As indicated from the pure noise image 

in Figure 5.17(a), due to the region of the image activated by random noise (picture on the 

top left side), the CNN classifies the characteristics of the region, which has a greater gray 

value (assuming the possibility of defect = 0.99) as the actual defect in the Grad-CAM result 

(picture on the bottom left side). In Figure 5.17(b)(d) on the right side, based on the heat map 

generated, the most important identification of features that have been classified (red region 

in Figure 5.17(d)) does not include the boundaries of region at the right and left boundaries 

(containing a lot of noise). Therefore, it could further be confirmed that the GANs encoding 

process is to remove non-critical information (i.e. on both sides) and generate meaningful 

information to reconstruct the original maps.  

                      
 

(a)                                                       (b) 

Figure 5. 18 Descriptions of the analysed defect regions for visibiliy in the CFRP specimen 

geography(a); The labelling coordinate values of each defect region matrix (b) 

     g. Defects analysis and enhancement in PLS-GANs 

Once the merged thermal sequence (raw data; generative data) has been processed by PLS, a 

new set of thermal images which contain less noise and redundant information are generated. 

Specific defects ( nine representative locations) are selected on the specimens for further 
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analysis of defect visibility from SNR values. The detailed information of the location and 

sizes of defects has been illustrated in Figure 5.18(a). In Figure 5.18(b), a labeling coordinate 

graph for the GANs netowork training has been indicated for each defect region in the image 

matrix. 

Nine defects of rectangular shapes, located at specific positions which ranged from large to 

small, have been selected. These defects represent different depths and distributions of 

detects from the three CFRP specimens in section 5.4.2 in order to evaluate the ability of the 

model to detect and provide quantitative analysis.  

A total of 64 informative raw images from each thermal sequence in the specimen (a)-(c) 

with the region of interest (376*376) were selected during the cooling period from the pulsed 

thermography experiment (less than 2s). The PLS model directly processed the raw thermal 

database (3*64 = 192 thermal images) from thermal sequence (Specimen(a)-(c)). 

Simultaneously, the PLS-GANs model adapted the 64 informative raw images from each 

sequence as the real data generating a series of fake thermograms (64 generated thermal 

images) in each sequence from the specimen (a)-(c). As shown in (a)(b) from Figure 5.19- 

Figure 5.21, the representative original thermogram at different specific time frames has been 

revealed. The (c)(d) from Figure 5.19 - Figure 5.21 described the loading images from the 

regular PLS model. The (e)(f) and (g)(h) from Figure 5.19 - Figure 5.21 are the processed 

results from the DCGAN-PLS model and WGAN-PLS model respectively. Note that the 

components from Figure 5.19-Figure 5.21 are not based on the time order but selected by the 

feature indication (the most representative defects frames). As shown in Figure 5.19-Figure 

5.21 (e)-(h), the PLS-GANs (PLS-WGAN; PLS-DCGAN) noise images contain less noise 

and enhanced defects.  

 

                 
          (a)frame1                       (b) frame2                  (c) loading 1               (d)loading 
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             (e)  Component1      (f) Component2            (g) Component1        (h) Component2 

 

Figure 5. 19 Enhanced thermal images from Specimen 1 (376*376): 64 raw representative 

thermal images (a)-(b); PLST(c)-(d); PLST-DCGAN(e)-(f); PLST-WGAN (g)-(h) (with 

limited 64 raw representative thermal images merging) 

 

        
(a) frame1                        (b) frame2                       (c) loading1               (d) loading2  

 

     
      (e) Component1              (f) Component2           (g) Component1        (h) Component2 

Figure 5. 20 Enhanced thermal images from Specimen 2 (376*376): 64 representative 
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thermal raw images (a)-(b); PLST(c)-(d); PLST-DCGAN(e)-(f); PLST-WGAN (g)-(h) (with 

limited 64 representative raw thermal images merging) 

       
           (a) frame1              (b) frame2                      (c) loading 1                    (d) loading 2 

           
(e) Component1              (f) Component2               (g) Component1         (h) Component2 

Figure 5. 21 Enhanced thermal images from Specimen 3 (376*376): 64 representative 

thermal raw images (a)-(b); PLST(c)-(d); PLST-DCGAN(e)-(f); PLST-WGAN (g)-(h) (with 

limited 64 representative raw thermal images merging) 

As shown in Figure 5.19-Figure 5.21, among the results from the PLS ((c)(d)) and PLS-

GANs (DGAN:(e) (f); WGAN:(g) (h)), the PLS results (c)(d) obtained two notable loading 

components after the visualization. In comparison to the original raw thermogram, the related 

defect information has been highlighted. In addition, the contrast between defect-region and 

sound-region has become more significant. However, only the first two loading components 

of the experiment that extracted the most useful defect features, the rest of the components 

extracted less defect features and contain much noise making it more difficult to recognize 

defects. 

It can be noticed in Figure 5.19(a),that the 1st component from the raw image indicated the 

most clearly detected defects at a depth level of 0.2mm. In contrast, the results from the PLS-

GANs model are somehow different and indicated more defective features compared with 
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the regular PLS model, which clearly indicated the defects at a deeper depth level at 1mm. 

Therefore, the PLS-GANs model indicated the more high quality defects features basing on 

the extracted images. 

For signal-to-noise analysis(SNR), the following principle could be applied to the grayscale 

thermal images: the pixel value of the brightest defective region is closer to 1. In contrast, 

the pixel value of the darkest non-defective part is closer to 0. Assuming that the noise from 

the thermal images is removed, then the prediction could be indicated as follows: the value 

of the numerator in the formula for SNR should become larger; the value of the denominator 

of SNR should become smaller; eventually, the signal-to-noise ratio will become larger. 

Therefore, in table 1, an indication of SNR values from a different number of generated 

images merging with the original thermograms has been illustrated. The SNR values 

increased gradually when the different number of generated thermograms was added on the 

original thermograms(64 frames). For example on Specimen(a), for the DCGAN model, as 

the generated thermal images (different number) were stacked on the raw thermograms, the 

SNR values obtained a significant increase from 0.78 (0 generative thermograms) to 1.23 (64 

generative thermograms). However, after 40 generative thermograms were stacked on the 

original thermograms, the SNR keeps similar values regardless of how many images were 

adding on the databases after that.  

In contrast, for the WGAN model, as the generated thermal images (different number) were 

stacked on the raw thermogram, the SNR values obtained a significant increase from 0.78 (0 

generative thermal images) to 1.35 (64 generative thermal images). After 48 generative 

images were stacked on the original thermogram, the SNR keeps similar values regardless of 

how many images were added on the databases after that. Based on the experimental results, 

it further proven that the WGANs network obtained the highest SNR values when it is merged 

with the raw thermogram in this experiment. Similarly, SNR values in the generated image 

by DCGAN and WGAN from Specimen (b)-(c) have a similar scenarios as indicated in Table 

2. 
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Table 5. 2 SNR values indication with different numbers of generated thermal images 

integrations 

Raw 

thermograms 

that merging 

Generate 

thermograms 

that from 

GANs 

The Total 

thermograms  
SNR of all defects  

The number of the thermograms 

Specimen a Specimen b Specimen c 

DCGA

N 
WGAN 

DCGA

N 
WGAN 

DCGA

N 

WG

AN 

64 

0 64 0.78 0.78 0.81 0.81 0.77 0.77 

8 72 0.86 0.88 0.82 0.85 0.79 0.81 

16 80 0.95 0.99 0.94 0.96 0.92 0.94 

24 88 1.01 1.04 0.98 0.99 0.98 0.99 

32 96 1.19 1.22 1.06 1.09 1.04 1.08 

40 104 1.25 1.26 1.09 1.12 1.07 1.09 

48 112 1.23 1.35 1.07 1.08 1.10 1.09 

56 120 1.21 1.31 1.06 1.09 1.08 1.12 

64 128 1.23 1.34 1.09 1.11 1.10 1.12 

 

In order to specifically evaluate noise reduction performance from different feature extraction 

methods, the SNR values from representative defects (9 positions on the specimen) on three 

different specimens (a)-(c) from four methods have been listed in Table 2 to describe the 

SNR value comparison. As shown in table 2, it indicated that the SNR values of thermal 

images obtained from different dimension reduction methods: PLS+DCGAN (64 generated 

images + 64 raw images); PLS+WGAN (64 generated images+ 64 raw images); PLS (64 raw 

images); 64 Raw limited images. The SNR values obtained from the PLS+WGAN became 

the largest SNR values observed from nine specific representative locations of defects, 

compared with the other three methods (PLS+DCGAN; PLS; Raw). The average SNR values 

of defects from PLS+WGAN and PLS-DCGAN from three specimens are both larger than 

the regular PLS method and raw data. In total, the SNR values rate of the PLS+WGAN 

increased 20 % compared with the PLS extracted thermal images. As a result, the 

PLS+WGAN models are the effective method for the defect enhancement in the Non-

destructive testing (NDT) for CFRP specimen’ evaluation. 
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Table 5. 3 The comparison of SNR values from CFRP specimens with 9 selected 

representative defects 

        Signal Noise Ratio (SNR)  

Feature 

extraction 

methods 

 Far left Middle left Middle   Middle right    Far right 
   All 25 

defects 

   1 2   3  4    5 6    7    8 9 average 

Raw 

a 0.54 0.71 0.77 0.68 1.76 1.61 1.57 1.12 0.79 0.91 

b 0.55 0.78 0.64 0.69 1.67 1.47 1.38 1.12 0.65 0.90 

c 0.52 0.69 0.78 0.86 1.62 1.32 1.26 1.15 0.54 0.88 

PLS 

a 0.71 0.92 0.98 1.01 1.57 1.39 1.27 1.01 0.72 1.07 

b 0.67 0.82 0.88 0.97 1.68 1.41 1.36 1.02 0.73 1.03 

c 0.62 0.81 0.72 1.19 1.72 1.20 1.39 1.05 0.76 1.015 

PLS+DC

GAN 

a 0.71 0.91 1.06 1.71 2.12 2.01 1.62 1.27 0.85 1.23 

b 0.73 0.87 1.08 1.74 2.01 1.92 1.51 1.16 0.72 1.19 

c 0.74 0.85 1.03 1.76 2.04 1.91 1.49 1.08 0.71 1.098 

PLS+WG

AN 

a 0.81 0.95 1.08 1.87 2.15 2.06 1.67 1.29 0.93 1.32 

b 0.73 0.93 1.10 1.76 2.02 1.93 1.51 1.15 0.69 1.24 

c 0.84 0.92 1.08 1.88   2.07 2.24 1.52 1.09 0.79 1.23 

 

           
(a) Average PSNR values in Specimen (a)               (b) Average PSNR values in Specimen (b) 
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                                           (c) Average PSNR values in Specimen (c) 

Figure 5. 22 Gaussian denoising results from two specific GAN models (WGAN; DCGAN) 

from Specimen (a)-(c) 

 

                      
Figure 5. 23 Comparison of signal-to-noise ratio at maximum signal contrast (PSNR) for 

raw data; PLS; PLS-WGAN; PLS-DCGAN(three specimens(a)(b)(c) in total caculation) 

with 64 raw thermal images being processed 
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(a) Perplexity=50, iteration=500 in Specimen(a);   
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 (b) Perplexity=50, iteration=500 in Specimen(b); 

                
                                          (c) Perplexity=50, iteration=500 in Specimen(c) 

Figure 5. 24 t-SNE visualization of raw images and DCGAN/WGAN-generated images 

from Specimens (a)(b)(c) 

 

Simultaneously, to evaluate the pixel values based on the coordinate of defect locations from 

the raw image and the generated images by GANs network (DCGAN/WGAN), the average 

resolution values for the whole thermogram (from three specimens) have been obtained in 

the following: for the raw image, 1. the mean pixel value of the defective part of the 

generative map is calculated as 0.778; 2 the mean pixel value of the non-defective part is 

0.466; 3.the variance is 0.153; 4.the standard deviation is 0.391. As a result, the average 

signal-to-noise ratio for the entire raw image dataset is 0.796. 

For the WGAN generated image, 1. The mean pixel value of the defective part of the 

generative map is calculated as 1.012; 2. The mean pixel value of the non-defective part is 

0.382; 3. The variance is 0.299; 4. The standard deviation is 0.547. In contrast, for the 

DCGAN generated image, 1. The mean pixel value of the defective part of the generative 

map is calculated as 1.008; 2. The mean pixel value of the non-defective part is 0.399; 3. The 

variance is 0.364; 4. The standard deviation is 0.603. The average signal-to-noise ratio of the 

generated images in WGAN and DCGAN are 1.14 and 1.01 respectively. Therefore, the 
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WGAN network obtained the highest signal-to-noise value further testifying to its efficient 

noise reduction capability. 

Figure 5.22 (a)-(c), it shows the performance of the noise removal from the generated thermal 

images in the WGAN and DCGAN based on the specimen(a)-(c) during the training. Two 

generated thermal image databases(64*3=192 images) generated from the WGAN and 

DCGAN model for the specimen (a)-(c) being evaluated during the epochs increasing of 

training respectively. The average PSNR values were obtained during the entire training 

process. Although each graph has a certain degree of variation in the PSNR values curve 

from WGAN and DCGAN, it can be seen in Figure 5.22 (a)-(c) that the performance of 

WGAN is better than DCGAN for image denoising. The average PSNR values from DCGAN 

are slightly lower than WGAN’s value on the average regardless of the graph in Figure 5.22 

for the three thermogram databases of the specimen (a)-(c) during the 1000 epochs training. 

This further proves that WGAN has a more stable capability for thermal data generation and 

noise reduction in this experiment in comparision to DCGAN. 

In Figure 5.23, it is shown that the PSNR values improved after the processing using the 

models of PLS-WGAN, PLS- DCGAN, PLST in comparison with original raw thermal 

sequences (64 thermal image processing). The PSNR was classified as a function of an aspect 

ratio r = diameter (D)/depth (d) in the Figure. The detection capability relies on the size and 

depth of defects. The PSNR values based on the average pixels of defect regions and sound 

regions which are calculated at the maximum thermal contrast signal. 

As shown in Figure 5.23, four polylines were computed respectively for different types of 

data: the unprocessed raw data(red-polyline); the preprocessed data from PLST(green-

polyline); the preprocesed data from the PLS-WGAN (blue-polyline); the preprocessed data 

from the PLS-DCGAN(yellow-polyline). As shown, the blue polyline from PLS-WGAN 

obtained the highest values in the PSNR compared with the three other polylines (PLS-

DCGAN; PLST; Raw) during the entire aspect radio (diameter D/depth d). 

More specifically, with the significant improvement based on the PSNR values from raw data 

to three feature extraction methods: regular PLST method, PLS-DCGAN, and PLS-WGAN, 

the average Peak SNR values increase based on each defect specifically from 53% (40/75) 

in the raw images, to 77% (58/75) in PLST, 85% (63/75) in PLS-DCGAN, 90% (68/75) in 

PLS-WGAN of all the defects (75 defects) in three different specimens (a)-(c) in total. The 

PLS-WGAN obtained the highest SNR values, in comparision with the PLS-DCGAN, the 

PLST, the raw data based on Figure 5.23. The total performance of SNR values has been 

improved from WGAN/DCGAN due to its noise reduction of the functional feature 

extraction structure (autoencoder structural format).   
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In Figure 5.24 (a)-(c), the t-distributed stochastic neighbor embedding (t-SNE) [49] plot in 

three specimens (a)-(c) has been indicated with 2 dimensional embedding feature points from 

3 types of thermograms: the raw thermogram (black forks), the WGAN thermogram(red 

points), the DCGAN thermogram (blue points). The frame order for the time sequence of the 

original image is being marked based on the feature points in the Figures. In this case, the t-

SNE finds a way to project thermal data into low dimensional space (in this case, the 2d plane 

dimension) so that the clustering in the high dimensional space (original thermal data) is 

preserved. Besides, the dissimilar feature points will be modeled as far apart as possible in 

the t-SNE visualized figure.  

Due to the noise reduction from the GANs network (autoencoder format), as indicated in 

Figure 5.24, the generated image (WGAN; DCGAN) thermograms (64 images from each 

model) keep a similar pattern and features with the middle parts of raw images but have a 

wider scattering. The most informative and featuring part of the original sequence is from 

the middle part of the sequence (17th – 48th), simultaneously the GANs (WGAN; DCGAN) 

network tends to focus on analysing the feature from this part and highlight the useful 

information from it (17th – 48th). Based on the results, the points from the generated images 

in the DCGAN have the widest distribution in three specimen cases (Specimen (a) - 

Specimen (c)) rather than the generated images from WGAN, but feature points from WGAN 

keep the close neighborhood connections with the informative feature points from the 17th – 

48th frames in the original thermal sequence to mimic its patterns .  

5.6 Results discussion and experimental analysis  

With the results obtained as discussed above, the following points could be concluded: 

1. For the DCGAN model, the principle is that the generator produces a defective graph of 

noise vector z to fool the discriminator. Once it has failed, the discrimnator is punished, then 

the training continues until two networks achieve equilibrium. That is once, the graph 

generated after training is very close to the original graph with the raw data.. However, if the 

original graph contains a lot of noise, the generator learned it also so that it produces a graph 

containing noise along with defect enhancement.. As a result, the discriminator should be 

given the thermal images contain heavily feature of defects with less noise (Figure 5.15; 

Figure 5.16) so that what the generator learned by training during this procedure generates 

less noisy thermal images.The model does not work well when noisy information from the 

input images are being processed. This affects the model's performance. Based on the results, 

when the input images are noisy and each image features large, the model may will not be 

able to learn a uniform data distribution to generate enhanced image as shown in Section 

5.5.4 (part c). 
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2. The noise from thermogram influences the generation of the GANs network. When 

original thermogram contains noise and present uneven heating background (in Figure 5.24), 

this influences the GANs and prevents it from learning features from the raw data to generate 

suitable thermal images. Particularly, the initial frames of original thermogram always 

contain a significant amounntof noise and less meaning features related to defect indication. 

Similarly, thermogram at the end of each sequence has the exhibit much noise as well as 

shown on the t-SNE visualized in Figure 5.23 (a)-(c). 

3.GAN network training complexity issues: GANs training difficulty problem. Athough 

GAN itself has been shown to be effective , it has been found that changing the batch 

normalization for some layers or changing the activation function during the training 

experiment can result in noisy images. When reproducing a GAN network, it is important to 

consider not only the network structure is correct, but also whether the loss function 

optimization process is correct(such as: WGAN). Therefore, it is better to build a simple 

network and use small size images at the beginning to test the correctness of the loss function 

optimization process, and then change the network structure to implement the function of 

generating large size images like the learning section we described in Section 5.5.4 (part a 

and part c). 

4. The non-uniform heating influence the results from raw images and the PLS model. 

Therefore, the amount of noise still apprears on the processed images from the PLS model. 

After the PLS-GANs model generates the noise-reduction images, the quality of the 

processed images improves and contains less noise The generation of PLS-GANs is similar 

to the process from non-uniform heating noise removal from the regular method as shown in 

the (e)-(h) from Figure 5.19-Figure 5.21 due to its noise reduction performance of the 

autoencoder structure.  

5. Data augumentation for feature enhancement: the most functional point that GANs achieve 

is based on data augmentation to generate useful defect features for dimensional reduction 

methods such as PLST (partial least-square thermography), the PCT (principal component 

thermography), TSR (thermographic signal reconstruction) further enhance and extract 

defect features. Therefore, the generative data from GANs network could be a useful 

alternative for feature enhancement and extraction in the scenario where data is noisy and 

limited (Table 5.2). 

6. The synthetic data (sequences) generated from GANs could be beneficial for feature 

extraction and defect enhancement. As shown in Figure 5.17-5.19 (a)-(d), the raw thermal 

sequence (which includes 64 frames) clearly indicates the defects. After merging with an 

amount of synthetic images generated from GANs (DCGAN; WGAN) network, the detection 

results have been significantly improved based on the original PLS model. Therefore, by 
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using synthetic data from GANs network, it could deal with the situation when only limited 

data is obtained from the experimental thermography acquisition procedure in order to 

increase the features lacking due to the data limitation.  

7. The increasing expansion of the limited thermal dataset could be the subject of further 

discussion and research. Note that, only limited representative 64 raw images are taken due 

to time and training complexity from the multiple GANs network in this experiment. After 

the expansion of informatic thermal images being fed into the network, the results might lead 

to further significant improvement. 

5.7 Conclusions 

This study introduced the deep learning algorithm into the field of thermographic-data 

analysis and developed the GANs-based data-augmentation thermography model named PLS 

-GANs (PLS-WGAN; PLS-DCGAN). Compared with the classical feature extraction model 

(PLS), the proposed deep-learning thermography model utilizes the data-augmentation 

strategy to improve the accuracy and reliability of the defect detection results in composite 

materials. Generally, the GAN-based data augmentation thermography modeling process 

includes data generation, data merging, data preprocessing, data analysis, data visualization, 

and result evaluation. Using the unified framework, other thermography methods available 

in the literature will also be combined with the GANs-based data augmentation approaches 

to further enhance their defect detection performance and reduce image noise. Other 

composite materials available in the literature will be also combined with the GANs-based 

data augmentation approaches to further enhance their results with defect detection 

performance. The modified structured- convolutional neural networks will be utilized and be 

proposed to enhance the defect visibility as well. 
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Part IV. Defect Depth Estimation for Simulated Infrared 

Thermography Data with Deep Learning 

This following one chapter will present one article published on Applied science Journal 

2020 – a method of defect depth estimation for simulated infrared thermography data with 

deep learning which concerning the exploration of deep learning approach in infrared 

thermography specifically for Quantitative analysis involved in Non-Destructive Testing & 

Evaluation.  

 

Generation explanation: 

Quantitative analysis is playing an important role in the modern industrial field of non-

destructive testing (NDT). Defect characterization is one of the current topics of interest in 

quantitative data analysis of active thermography. 

The traditional approach in defect characterization is usually taking regular thermal contrast-

based techniques used for the quantitative analysis which is based on obtaining thermal 

contrast values at a specific time involving mathematical calculation and definitions. 

In this study, we mainly focused on a defect characterization issue by using simulated IR data 

combining with the deep learning algorithm to achieve automatic defect characterization. 

The recurrent neural network (Gated Recurrent Units) trained the simulated infrared data can 

automatic outputted the specific depth quantification for composite material samples via a 

supervised regression learning task based on the training and evaluation. 
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Chapter 6 Defect Depth Estimation for Simulated Infrared 

Thermography Data with Deep Learning methods 

The results of this study were firstly presented at 2020 Structural Health Monitoring 

&Nondestructive Testing conference, then it was published published on-line in the Applied 

Sciences Journal, in September 2020. Cited 7 times up to now. 

6.1 Résumé 

La thermographie infrarouge s'est déjà révélée être une méthode importante dans l'évaluation 

non destructive, car elle fournit des informations de manière immédiate, rapide et à faible 

coût. Cependant, le problème le plus épineux pour une application plus large de l'IRT est la 

quantification. Dans ce travail, nous avons proposé une technique spécifique de 

quantification de la profondeur en utilisant les unités récurrentes à grille (GRU) dans des 

échantillons de matériaux composites par thermographie pulsée (PT). La modélisation par la 

méthode des éléments finis (FEM) permet l'examen économique de la réponse de la 

thermographie pulsée. Dans ce travail, des échantillons de polymères renforcés de fibres de 

carbone (CFRP) incorporés avec des trous à fond plat sont stimulés par une modélisation 

FEM (COMSOL) avec une profondeur et une géométrie des défauts contrôlées avec 

précision. Le modèle GRU a quantifié automatiquement la profondeur des défauts présentés 

dans le matériau CFRP stimulé. La méthode proposée a évalué la précision et la performance 

des données synthétiques de PRFC provenant de la FEM pour les prédictions de la 

profondeur des défauts. 

Contributing authors: 

Qiang Fang (Ph.D. Candidate): a part of the experiment planning, data collection, data 

analysis, designing and implementing the algorithm. Moreover, testing their accuracy and 

robustness throughout the process and writing the manuscript. 

Xavier Maldague (The research director): supervision, revision and correction of the 

manuscript. 

 

Other contributors: 

Farima Abdolahi. Mamoudan: COMSOL thermogram simulation  

Annette Schwerdtfeger (research officer): manuscript preparation. 
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6.2 Abstract 

Infrared thermography has already been proven to be a significant method in non-destructive 

evaluation since it gives information with immediacy, rapidity, and low cost. However, the thorniest 

issue for the wider application of IRT is quantification. In this work, we proposed a specific depth 

quantifying technique by employing the Gated Recurrent Units (GRUs) in composite material 

samples via pulsed thermography (PT). Finite Element Method (FEM) modeling provides the 

economic examination of the response pulsed thermography. In this work, Carbon Fiber Reinforced 

Polymer (CFRP) specimens embedded with flat bottom holes are stimulated by a FEM modeling 

(COMSOL) with precisely controlled depth and geometrics of the defects. The GRU model 

automatically quantified the depth of defects presented in the stimulated CFRP material. The 

proposed method evaluated the accuracy and performance of synthetic CFRP data from FEM for 

defect depth predictions. 

Keywords: NDT Methods; Defects depth estimation; Pulsed thermography; Gated Recurrent Units 

6.3 Introduction 

Non-destructive evaluation (NDE) has emerged as an important method for the evaluation of 

the properties of components or systems without damaging their structure. Several state of 

the arts methodologies such as Pulsed Phase Thermography (PPT) [1], Principal Component 

Thermography (PCT) [2], Differential of Absolute Contrast (DAC) [3], Thermographic 

Signal Reconstruction (TSR) [4], as well as Candid Covariance Free Incremental Principal 

Component Thermography [5], have been implemented to process thermographic sequences 

and improve the defect visibility. These techniques can be beneficial for qualitative analysis 

of composite materials. However, to introduce a method for conducting quantitative study 

(defect depth estimation) with deep learning is a novel topic to be explored. 

Quantitative analysis is playing an important role in the modern industrial field of non-

destructive testing (NDT). Defect characterization is one of the current topics of interest in 

quantitative data analysis of active thermography. In this topic, thermographic information 

involves extracting quantitative subsurface properties from defects such as defect depth, 

lateral size, thermal resistivity, from an experimental Thermal Non-destructive Testing 



 

178 

 

 

 

 

 

(TNDT) dataset utilized to characterize defects. Several approaches have already been 

proposed to analyze the depth in the region of defects in pulsed thermography. In general, 

these approaches evaluate the defects depth by using the maximum thermal contrast C_max, 

the instant of maximum thermal contrast Tc_max or artificial neural networks to analyze the 

depth of defects based on mathematical equations. The Peak Temperature Contrast Method 

[6] estimated the depth based on the characteristic time from peak contrast. The peak contrast 

corresponding to the maximum contrast has a proportional correlation with the square of the 

defect depth. Daribi et al. [7] proposed neural networks for defect characterization of defect 

depth. The results demonstrated that the networks should be trained by representative and 

non-redundant data in order to obtain a high degree of classification accuracy. 

In this work, there is an attempt to detect the depth of defects in Carbon Fiber Reinforced 

Polymer (CFRP) via Gated Recurrent Units (GRUs) [8]. GRU is an updated recurrent neural 

network (RNN) particularly designed for time series prediction. GRU can be considered as a 

variation of Long Short-Term Memory (LSTM) [9]. Compared with the LSTM and RNN 

temporal model, the GRU has adapted a few learning parameters which could save 

computational expenses for training and obtained an excellent performance. According to 

our knowledge, this is the first time that the thermal temporal characteristic model (GRU; 

RNN; LSTM etc.) is used to qualify the depth of defects. 

We modeled a 3D version of CFRP specimen stimulation from COMSOL. Then, it was 

further tested on the systemic data by the GRU model to validate its accuracy. The remainder 

of this paper is structured as follows: Section 2 provides the pulsed thermography theory and 

conception indication, as well as the detailed characteristics of FEM simulations. Section 3 

proposed a GRU model-based defects depth estimation strategy and introduces the GRU deep 

learning model architectures. Section 4 provides the experimental results analysis. Section 5 

concludes this paper. 

6.4 Thermal Consideration and FEM Stimulation 

6.4.1. Pulsed Thermography 

In pulsed thermography (PT), a high-power exponential heating impulse is applied to the 

samples, and a thermal response is measured during a period of time. Due to the heat 

conduction, a surface region which has an internal defect underneath the surface perturbs the 

thermal waves propagation on the surface of specimens in comparison to the sound (non-

defective) region. We can then see the changes of the temperature variation, since the internal 

defects possess different thermo-physical (conductivity, density and heat capacity) that have 

an impact on heat flow. These thermal differences can be observed as surface features and 

recorded with an infrared camera as indicated in Figure 6.1 [10]. 
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Figure 6. 1 Pulsed thermographic testing using optical excitation. 

Temporal evolutions can be observed from the defective regions and subsurface sound 

regions. A thermal contrast is acquired as a feature vector which is obtained distinctly via the 

thermal value from the defective region subtracted from the corresponding value from the 

surrounding sound region [11] as indicated in Equation (6.1), where Td(t) is the temperature 

value on the pixel point of the defect area. The temperature value on the reference point of 

the sound area is 𝑇𝑠(𝑡) Then the ∆T(t) is the absolute thermal contrast extracted from the 

defect and sound region. The thermal contrast is an excellent technique to distinguish the 

temperature difference to learn the depth of the defects, as shown in Figure 6.1. 

 

                                                   ∆T (𝑡)= 𝑇𝑑(𝑡) − 𝑇𝑠(𝑡)                                                      (6.1) 

  

6.4.2. Finite Element Modeling with Transient Heat Transfer 

Finite Element Modelling (FEM: COMSOL, etc.) [12] has become an important and 

economical platform to evaluate the thermal response of pulsed thermography, which builds 

up models for the platform of components that allow us to flexibly examine all specific 

physical aspects of thermal data such as geometries and properties of materials. Simulated 

thermograms matched well with experimental data. 

In this work, COMSOL will be utilized as a 3D based simulation to build up models for the 

synthetic data to provide for depth estimation of artificial defects. A Carbon Fiber Reinforced 

Polymer (CFRP) structure-based specimen containing artificial defects of different shapes 

(flat-bottom holes) is modeled as shown in Figure 6.2. A high thermal pulse is projected on 
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the surface of specimens. Due to the existence of the temperature gradients in the sample, a 

thermal front propagates from the high temperature region on the surface to the region 

underneath. A delamination or discontinuities create a lower thermal diffusion rate to the heat 

flow and then reflect the unnormal thermal patterns on the surface. The COMSOL software 

is utilized as the heat transfer simulation model for obtaining the temperature evaluations of 

the surface of each sample, as indicated below [13]: 

𝜌𝐶𝑃(
𝜕𝑇

𝜕𝑡
) −  𝛻 ∙ (𝑘𝛻𝑇)=0 (6.2) 

𝜕

𝜕𝑥
(𝑤𝑥

𝜕𝑇

𝜕𝑥
)+ 

𝜕

𝜕𝑦
(𝑤𝑦

𝜕𝑇

𝜕𝑦
)+ 

𝜕

𝜕𝑧
(𝑤𝑧

𝜕𝑇

𝜕𝑧
)=𝜌𝐶𝑃

𝜕𝑇

𝜕𝑡
 (6.3) 

𝑛 ∙ (𝑤 ∙ 𝛻𝑇) = ℎ𝑐𝑜𝑛𝑣(𝑇𝑎𝑚𝑏 − 𝑇) + 𝜎𝑇𝑐휀(𝑇𝑎𝑚𝑏
4 − 𝑇4) 

      

(6.4) 

where in Equations (6.2)–(6.4), the density is 𝜌(
𝑘𝑔

𝑚3), constant specific heat is 𝑐𝜌(
𝐽

𝑘𝑔.𝑚
), and 

the absolute temperature is T(K). Time variable is set as t(s). A rectangular coordinate system 

(x, y, z) as in Equation (3) in anisotropic media can lead to numerous possible solutions. 

w,  𝑤𝑥 ,  𝑤𝑦 ,  𝑤𝑧  (
𝑤

𝑚
. 𝐾)  are the main conductivity rates and conductivity rates which 

respectively for three coordinates (x, y, z) in 3D thermal modeling. The convection heat 

transfer is given by ℎ𝑐𝑜𝑛𝑣 (
𝑤

𝑚2𝑘
). In Equation (4), a boundary condition that regarding to the 

thermal heat transfer from radiation and convection between the all the specimen surfaces 

and the ambient temperature has been indicated, where 𝑇𝑎𝑚𝑏  is an initial environment 

temperature which consider all the external environment as the same temperature; 𝜎𝑇𝑐(
𝑤

𝑚2𝑘4) 

is the Stefan–Boltzmann physical constant which links the temperature with energy; ε 

represents surface emissivity. 

COMSOL’s heat transfer module are adapted in this work which uses the 3D transient heat 

equation and provides the specimen temperature distribution, to simulate the specimen’s 

thermal response after a heat pulse is applied to the specimen surface. A Gaussian power 

density distribution was employed to model the heat source, which closely approximates a 

real heat pulse from two flashes, i.e., a slightly larger heat accumulation at the center of the 

specimen. The heat pulse is applied as a radiative source that is partly absorbed by the 

specimen surface and transferred inside the specimen by heat conduction. 

Table 6.1 briefly illustrates the physical properties of CFRP specimens and pulsed 

thermography parameters involved in the COMSOL simulation in this experiment. All 

properties and parameters in Table 6.1 are cited from the literature [14]. In this table, 𝑇𝑖 is 

the initial temperature of an experimental specimen that was texted by PT. 𝑡𝑒𝑛𝑑 means the 

whole cooling processing to observe the temperature evaluation after the heating pulse 
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application, also means the process time to finish computations. The time step is 0.0063 (the 

framerate: 158 frame/second). In this FEM stimulation, three types of heat flux 

transformation (radiation; convention; conduction) occurring during the thermal excitation 

period and cooling process are illustrated in Figure 6.2. 

Table 6.2 and Table 6.3 provide the description of defect characteristics including the depth, 

size, shape of each defects, which characterized respectively two different group samples for 

training and testing. The training group has six CFRP samples (30 cm × 30 cm). Each sample 

has a different geometric distribution, depth, and size of defects.  

Each row in every CFRP samples has the same depth of defect, which included 22 different 

constant values from 0.5 mm to 2.2 mm to be set from the first row in training sample 1 to 

the last row in training sample 6. We extracted five vectors from each defect region for GRU 

model training with depth estimation. The testing group has four CFRP samples (30 cm × 30 

cm). 

In order to differ from the training samples, the testing group consists of samples A, B, C, D. 

The depth of defects in the test samples ranges from [0.5 mm, 2.2 mm] but has a size that 

differs from that of the training samples. The CFRP geometrics of the structure of training 

sample 1 is indicated in Figure 6.3. 

 

Figure 6. 2 Heat transfer during the thermal excitation and cooling process during FEM 

stimulation. 
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Table 6. 1  Physical properties and parameters of stimulation. 

Sign Parameters in Experimental Simulation Real Value 

𝜌 Material density 1500
𝑘𝑔

𝑚3 

ε Emissivity 0.90 

CP Constant specific heating 1000
𝐽

𝑘𝑔.𝑚
 

L Specimen length 300 mm 

W Specimen with 300 mm 

H Specimen height 5 mm 

𝑡𝑒𝑛𝑑 Processing time to finish computations 9 s 

𝑇𝑖 The temperature from initialization 293.15 k 

𝑇𝑎𝑚𝑏 The temperature from ambient 293.15 k 

𝑊𝑠𝑜𝑢𝑟𝑐𝑒 Heat source wattage 600 Watts 

𝐻𝑐𝑒𝑛𝑡𝑒𝑟 Heat source center (15 cm, 15 cm) 

P Heat pulse density 100,000 
𝑊

𝑚.𝑚
 

h The distance between the lamp and specimen 80 cm 

S Time step 0.0063 s 

𝑡𝑝𝑢𝑙𝑠𝑒 Heating time 0.0126 s 

Table 6. 2   Defect characteristics of training samples. 

Sample Row Depth(mm) Shape Defect Size (mm) 

1 

1 0.5 mm Quadrangle Size = 10; 15; 18 

2 0.6 mm Round Diameter = 18; 15; 5 

3 0.7 mm Quadrangle Size = 5; 10; 18 

2 

1 0.8 mm Quadrangle Size = 5; 10; 15 

2 0.9 mm Round Diameter = 18; 15; 10 

3 1.0 mm Quadrangle Size = 5; 15; 18 

3 

1 1.1 mm Quadrangle Size = 5; 10; 18 

2 1.2 mm Round Diameter = 15; 10; 5 

3 1.3 mm Quadrangle Size = 10; 15; 18 

4 

1 1.4 mm Round Size = 5; 15; 18 

2 1.5 mm Quadrangle Diameter = 18;10; 5 

3 1.6 mm Round Size = 5; 10; 15 

5 

1 1.7 mm Round Diameter = 10; 15; 18 

2 1.8 mm Quadrangle Size = 18; 15; 5 

3 1.9 mm Round Diameter = 5; 10; 18 

6 

1 2.0 mm Round Diameter = 5; 10 ;15 

2 2.1 mm Quadrangle Size = 18; 15;10 

3 2.2 mm Round Diameter = 5 ;15 ;18 
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Table 6. 3 Defect characteristics of testing samples 

Sample row# 
Depth (Left; Middle; 

Right) 
Shape 

Defect Size (Left; 

Middle; Right) (mm) 

A 

1 Depth = 0.5; 0.8; 1.1 Quadrangle Size = 3 ;16 ;13 

2 Depth = 0.6; 0.9; 1.2 Round Diameter = 8; 3; 16 

3 Depth = 0.7; 1.0; 1.3 Quadrangle Size = 13; 8; 16 

B 

1 Depth = 1.4; 1.7; 2.0 Quadrangle Size = 8; 3; 16 

2 Depth = 1.5; 1.8; 2.1 Round Diameter = 13; 8; 3 

3 Depth = 1.6; 1.9; 2.2 Quadrangle Size = 16; 13; 8 

C 

1 Depth = 0.5; 0.8; 1.1 Round Size = 4; 17; 14 

2 Depth = 0.6; 0.9; 1.2 Quadrangle Diameter = 9; 4; 17 

3 Depth = 0.7; 1.0; 1.3 Round Size = 14; 9; 4 

D 

1 Depth = 1.4; 1.7; 2.0 Round Size = 9; 4; 17 

2 Depth = 1.5; 1.8; 2.1 Quadrangle Diameter = 14;9;4 

3 Depth = 1.6; 1.9; 2.2 Round Size = 17; 14; 9 

 

Figure 6. 3 Representative CFRP training sample 1 configuration. 

6.5 Temperature and Thermal Contrast Curves 

In transient thermography, previous researchers [6] concluded that the time 𝑡 𝑐  that 

corresponds to the maximum temperature contrast ∆T has an approximately proportional 

relationship with the square of the depth of the defect ( 𝑑2 ). Simultaneously, the 

proportionality coefficient of this relationship rested with the lateral size of the depth: the 

smaller the defects, the lower the maximum contrast ∆T and earlier peak time. As indicated 

in Figure 6.4, an interesting case is highlighted. We observed the temperature evaluation of 

three defects of the same size (18 mm × 18 mm) but different depth such as (0.5 mm, 1.0 
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mm, 1.5 mm). Although the three defects have the same shape, it can be demonstrated that 

the shallower the defect, the higher the peak temperature value which can be obtained. 

In this work, five contrast vectors have been extracted above each defect region on the surface 

from the different points in the defects to reduce the inaccurate influences caused by the small 

temperature variation. In Figure 6.5d as indicated in the below, in each defect region, the red 

cube is a defect point which localized on the corner of the upper left (C1); upper right (C2); 

center (C3); lower left (C4); lower right (C5). The blue cube is the reference point with 

respect to each defect point that we extracted. In Figure 6.5a–c, the data distribution of the 

thermal contrast curves is illustrated. C1-C5 are thermal contrasts that extracted from each 

defect point (in Figure 6.5d) based on the temperature difference between the defect point 

and reference sound point. 

Notice that each training sequence to be processed in this work are extracted from the three 

quarters frames in the total frames of the one thermal sequence which already include the 

information of peak thermal contrast ∆𝑇𝑚𝑎𝑥 and corresponding 𝑡_𝑚𝑎𝑥. As a result, the last 

quarter frames of thermal curves were not extracted in this work which would show a 

dramatic decrease of the thermal contrasts in the graphs. To be notice that, all the thermal 

sequence stimulated from the COMSOL software based on the parameters as indicated on 

Table 6.2. All the extraction work was implemented in a program in MATLAB software. 

This partial extraction in thermal data could save the computational expense for the training 

in GRU to some extent. 

A corresponding synthetic thermogram frame for training sample 2 in t = 3 s generated from 

COMSOL is indicated at in Figure 6.6 a; nine artificial flat bottom Figure 6.6 b hole defects 

were embedded with different depths in the shapes of either circles or squares. 

 

Figure 6. 4 Temperature contrast evaluation for defects located at different depths with the 

same size (0.5 mm, 1.0 mm, 1.5 mm) in training samples (the framerate: 158 frame/second) 
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(a) (b) 

            

                                      (c)                                                                  (d) 

Figure 6. 5 Data distribution of temperature contrast evaluation for different depths in 

training samples (a) 0.5 mm; (b) 1.0 mm; (c) 1.5 mm (the framerate: 158 frame/second); (d) 

five defective point with corresponding reference point on a defect region 
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(a) 

 

(b) 

Figure 6. 6 (a) 3D printed defects geometrics are highlighted in training samples; (b) the 

corresponding synthetic colorful thermograms in t = 3 s. 

6.6 Proposed Strategy for Defect Depth Estimation 

In this section, a defect depth estimation strategy has been proposed to detect and identify 

the depth of each defect in thermal images as indicated in Figure 6.7. This design of detection 

system originated from the GRU neural network. The infrared thermal module and 

simulations are provided by COMSOL (FEM simulation) to examine the depth of defects in 

pulsed thermography (PT). First, the synthetic thermal sequences are acquired from FEM 

(COMSOL) based on the heat transfer modeling in FEM. Then, several thermal contrast 

feature vectors are extracted from each defect region to feed into the input of GRU. The 

output of GRU consists of a unique node which estimated the depth during the training. The 

mean absolute error is chosen as the loss function with the GRU model in the equation as 

below Equation (5). In the end, the predicted depth output from the GRU is based on the 

feature extraction of thermal contrast vectors. 

𝐿𝑐𝑜𝑠𝑡 =
∑ (𝑦 − �̂�)2𝑚

𝑖=1

𝑚
 (6.5) 
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The GRU takes each vector at a time point in the input. This learning model was trained for 

2500 epochs of each process. The training loss converged to the optimistic value and then 

flattened. In addition, the number of training curves (batch size) is set m. 𝑦, �̂� are the ground 

truth and estimated depth respectively. 

 

6.6.1. Gated Recurrent Unit Model with Depth Estimator 

Due to the time continuity of the thermal sequence, each frame collected from the experiment 

is related to the recent historical frame, therefore the time series memory deep learning model 

can be applied to the thermography data based on this feature. The GRU model is originally 

from RNN which is a time series model that can handle the continuous information such as 

thermal sequences [15]. During the cooling period of the thermal data, the temperature 

evaluation curves over time are acquired from the given infrared frames. The learned GRU 

model is able to distinguish whether the pixel is from a defective region or a sound region 

due to the training period. Therefore, the multiple units of GRU could be applied to extract 

the features of the temperature evaluations from the samples based on physical properties. 

 

Figure 6. 7 GRU model-based defects depth estimation strategy. 
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The GRU neural network in Figure 6.8 are structured as follows [16]. In Equations (6.6)– 

(6.9), 𝑅𝑡 ,𝑍𝑡  represent the update, reset gate units respectively. 𝑆(𝑧), 𝑆(𝑟), 𝑆 are the weight 

factors for each gate unit. 𝑥𝑡 is the current input. ℎ𝑡−1 is the input from the previous time step 

in the hidden state. ℎ𝑡
,
 is the input of current memory from the hidden state.𝑈(𝑧), 𝑈(𝑟), 𝑈𝑜 are 

the weight factors for previous time informationℎ𝑡−1.𝜎(. ) represents the sigmoid function.° 

is denoted as the Hadamard product [17]. 

 

𝑍𝑡 = 𝜎 (𝑆(𝑧)(𝑥𝑡) + 𝑈(𝑧)(ℎ𝑡−1)) (6.6) 

𝑅𝑡 = 𝜎 (𝑆(𝑟)(𝑥𝑡) + 𝑈(𝑟)(ℎ𝑡−1)) (6.7) 

ℎ𝑡
, = 𝑡𝑎𝑛ℎ(𝑆(𝑧𝑡) + 𝑅𝑡°𝑈𝑜(ℎ𝑡−1)) (6.8) 

                                          ℎ𝑡 = 𝑍𝑡°𝑡𝑎𝑛ℎ + (1 − 𝑍𝑡)° ℎ𝑡
,
 (6.9) 

 

Figure 6. 8 Gated Recurrent Unit. 

As shown in Figure 6.9, in this work, the original thermal sequences were reshaped into 

vectors. The particular thermal contrast vectors are directly fed into the input of the GRU 

network structure. Each thermal contrast vector in the defect region is decoded with the depth 

value of corresponding defect at the output of GRU based on the thermal properties from the 

training sequences. In order to select the points for the simulated thermal sequences to extract 

temperature curves vectors, 5 different locations inside each defect surface in these defective 

areas were selected. Since the temperature of the defect region is not even, these selected 

points accounted for small temperature variations and change above each defect surface 

region. Each thermal contrast vector is vectorized with the same length in the time of the 

thermal sequence. Therefore, the input values of GRU are fed into the particular thermal 

contrast vectors. The output from the decode section (to be connected with the fully 

connected layer) are set with the corresponding defect depth of each vector. The estimated 



 

189 

 

 

 

 

 

depth values in the defect region output from GRU are based on the thermal properties from 

the training sequences. 

6.7. Experimental Validation and Results 

6.7.1. Inference and Training 

In this research, the training processing on GPU (NVIDIA GeForce GTX 1080Ti) took about 

30 min. The operating system was set as: Ubuntu 14. 04. CPU: i7-5930k. Memory: 64 GB. 

Adam was introduced as optimizer. 

The whole training process was also conducted using the Adam optimization. Some main 

hyper parameters and training parameters are set as below: weight decay 0.0001, the learning 

rate 0.001 and learning momentum 0.9. In this work, the temperature variety and contrast 

reflect on each vector. Therefore, the LSTM time step was set to 1429 (1429 frames as a time 

step as input). 

 

Figure 6. 9 The process of Gated Recurrent Unit (GRU) depth estimation. 

6.7.2. Data Processing 

To reduce the overfitting issue, the cross-validation verification method is proposed in this 

study. First, we collected 270 thermal contrast curves from the simulation data (5 thermal 

contrast curves extracted from each defect averagely). Then, we shuffled all of the data and 
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spilt 80% of the data to train with the GRU model, while 20% were utilized to validate the 

performance of the GRU. 

All obtained training data (the thermal contrast evaluation curves) were normalized and 

truncated as a fixed length of duration. Simultaneously, the input data were normalized by 

subtracting from the mean value of the thermal curves (𝜇𝑇𝑐
) and dividing by the standard 

deviation of thermal contrast (𝜎𝑇𝑐
) using Equation (10). 

 

𝑇𝑐,𝑛
�̂� (𝑡) =

𝑇�̂�(𝑡) − 𝜇𝑇𝑐

𝜎𝑇𝑐

 (6.10) 

6.8 Depth Estimation Results and Validation 

6.8.1. Result Analysis—Mean Absolute Error (MAE) 

In statistics, the mean absolute error (MAE) [18] is one of the metrics to evaluate how close 

the forecasts are to the eventual outcomes. In the machine learning field, it can indirectly 

reflect the accuracy and performance of the machine learning model (GRU). In this work, we 

adapted the MAE to assess the performance of the GRU for depth estimation with infrared 

thermography. As we can see from Figure 10a, we trained the GRU to estimate the data from 

testing before the data normalization. The obtained training loss was 0.055. The MAE 

converged to 0.0165 mm. The error between the predictive value and actual value was within 

the range of [−0.17 𝑚𝑚, 0.17 𝑚𝑚]. After the standard deviation normalization for all the 

distributed data in Figure 10b, the predictive value tended to approach the actual depth for 

the defect. The MAE error shrank to the range of [−0.11𝑚𝑚, 0.11𝑚𝑚] and the training loss 

converged to 0.0295. This showed an acceptable performance with an improved estimate of 

the depth by the GRU model with standard deviation normalization. 

In Table 6.4, the estimated output 1 and the MAE 1 were obtained from raw data without 

normalization (average values over the two estimated outputs from CFRP specimen groups: 

(A, C); (B, D)). Then, the estimated output 2 and the MAE 2 resulted from raw data of the 

same procedure but with normalization. 

Based on Table 6.2, the calculated accuracy in the GRU model for the depth estimation 

reached 90% before data normalization (standard deviation). After normalization, the results 

provided an accuracy greater than 95%. This performance demonstrated that the GRU 

enabled a high performance for accurate depth estimation. This estimation is attributed to the 

ideal environment without experimental issues (noise; defective pixels). As shown in the 

Figure 6.11 below, the thermal data distribution from training (before; after) normalization 

has been indicated. In the data distribution (a), each group of color data curves (yellow; red; 
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green) represents a different specific depth from defects. The thermal data were normalized 

by Equation (6.10) in Figure 6.10 b. The distinguishable features of difference between the 

depths were recognized by the following principle: shallow defects had greater maximum 

thermal contrasts that occur earlier than deep defects. These results outperformed the 

previous works obtained from [7] for depth estimation in automated infrared thermography 

with regular neural networks. 

 

Table 6. 4 The results of depth estimation of defects located in the designated specimen. 

Sample 
Expected 

Output (mm) 

Estimated 

Output 1 (mm) 

MAE1 * 

(mm) 

Estimated 

Output 2 

(mm) 

MAE2* 

(mm) 

A C 0.5 0.522 0.022 0.507 0.007 

A C 0.6 0.604 0.004 0.603 0.003 

A C 0.7 0.708 0.008 0.706 0.006 

A C 0.8 0.814 0.014 0.807 0.007 

A C 0.9 0.912 0.012 0.913 0.013 

A C 1.0 1.041 0.041 1.025 0.025 

A C 1.1 1.109 0.009 1.011 0.011 

A C 1.2 1.222 0.022 1.218 0.018 

A C 1.3 1.318 0.018 1.314 0.014 

B D 1.4 1.420 0.020 1.418 0.018 

B D 1.5 1.514 0.014 1.509 0.009 

B D 1.6 1.630 0.030 1.619 0.019 

B D 1.7 1.718 0.018 1.715 0.015 

B D 1.8 1.820 0.020 1.817 0.017 

B D 1.9 1.918 0.018 1.920 0.020 

B D 2.0 2.013 0.013 2.005 0.005 

B D 2.1 2.112 0.012 2.010 0.010 

B D 2.2 2.225 0.025 2.222 0.022 

* MAE means mean square error. An average over sample for absolute different between actual 

and predicted observation. 
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(a) (b) 

Figure 6. 10 The mean absolute error and the training loss with GRU before (a) and after 

(b) standard deviation normalization. 

6.9. Conclusions 

This work elaborated the complicated and non-linear issues of evaluating defect depths in 

composite materials via infrared thermography with a GRU learning model. The 

methodology proposed here employed a GRU model combined with pulsed thermography to 

analyze the depth of defects. The simulated samples provide an economical platform for 

GRU training and depth estimation. Quantitative analysis of defect depth (subsurface 

features) has been evaluated by a GRU based statistical method through developed neural 

network modeling and cross validation experimental verification. It has been proven that the 

GRU modeling can produce an advanced depth detection. For future work, the experimental 

data have to be evaluated for the robustness of the GRU model. Further, other types of deep 

learning models and modified versions of the GRU model have to be applied to increase the 

depth estimation ability in this topic. 
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(a) (b) 

Figure 6. 11 The data distribution before (a) and after (b) standard deviation normalization 

from all the selected locations for training (the framerate: 158frame/second). 
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General conclusions & perspectives 

General conclusion 

The objective of the present thesis was implementing an automatic defect detection system 

via the deep learning algorithms. The main chapters in this thesis elaborated the routine of 

using deep learning approaches to achieve the goals of defect detection which include defect 

visibility enhancement, automatic defect detection and segmentation, defect depth estimation 

in infrared thermography.  

Overall, the proposal and implementation of deep learning with Infrared non-destructive 

testing was developed a more intelligent and automated for defect detection and analysis 

system. In this thesis, we systematically introduced the principle, the methodology, the 

experimental set up, the research results, discussion, summaries and fully exploit the 

capability of each proposed deep learning models’ methods for infrared thermography of 

defect detection.    

The methods proposed during this Ph.D. project illustrated several innovative points and 

contributions for detection principles: 

To improve the visibility of defects in pulsed thermography by introducing Generative 

adversarial network. We proposed the GANs method to reconstruct conspicuous images 

through the underlying features extraction in temperature evolutions of Pulse Thermography. 

Due to the reduced feature dimension, the deep autoencoder architecture from the GANs 

network (DCGANs; WGANs) combined with the original Partial Least Square 

Thermography has further reduced the noise from the original infrared data and enhanced the 

accuracy of defect visibility. The deep learning algorithm was combined with the dimension 

reduction method in the field of thermographic-defect detection developed the GANs-based 

data-augmentation strategy model named PLS-GANs (PLS-WGAN; PLS-DCGAN) to 

further upgrade their results with defect enhancement analysis and detection performance.  

In order to acquire enough training data for identifying defects, we adapted a synthetic data 

generation pipeline to generate a series of simulated thermal data. We used transfer learning 

strategy to extract meaningful features, and fine-tuned the features with specific thermal 

sequences for the purpose of offsetting limited thermal data and acquiring enough training 

data for identifying defect. This gave a rise to a method where the deep learning architecture 

is combined with a small amount of synthetic thermal data for defect segmentation. The 

proposed architecture is based on a Mask-RCNN that has been applied in natural image 

segmentation. We collected our thermal database from the experimental results and synthetic 

data in the Finite Element Model (COMSOL). In the end, the network yields a better 

performance when it is fused with synthetic data for training.  
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We provided three types of deep learning detection models (instance segmentation; objective 

detection; semantic segmentation) to attempt to perform automatic detection and 

segmentation applications in infrared thermography due to data augmentation with elastic 

deformations. Six spatial deep learning models: instance segmentation (Mask R-CNN; 

Center-mask); the autoencoder format semantic segmentation (U-net; Res-u-net); the object 

localization model (YOLO-V3; Faster-RCNN) are applied for defect detection in infrared 

thermography. The key evaluation metrics are analyzed based on the detection results from 

DL models: Probability of Detection (POD); Mean-average Precision(mAP); Time speeding 

complexity. The results also show that DL models have the reliability of automatic defect 

detection assessment. Comparing the experimental results among these methods, the Center-

Mask is the most promising method for accuracy whereas YOLO-V3 has the faster time 

frame speed based on the infrared testing database evaluation. 

The methodology proposed here employed a GRU model combined with pulsed 

thermography to analyze the depth of defects. An algorithm based on the recurrent neural 

network has been proposed in order to estimate the defect depth of testing samples from the 

active thermography data. We explicitly illustrated the architecture of the fully Gated 

Recurrent Units (GRUs) spatial and temporal sequence model for thermography data to be 

trained end to end. A cross-validation routine was introduced to improve the efficacy of the 

algorithm in the case of over-fit.  The regression training from GRUs elaborated the 

complicated and non-linear issues of evaluating defect depths in composite materials via 

infrared thermography with a GRU learning model. Based on the analyses of the predicted 

results from the GRUs model for depth estimation. The predictive value tended to precisely 

approach the actual depth for each defect. The MAE error shrank to the absolute value of 

0.11mm with a normalization process. It further indicated the acceptable performance with 

the estimation of depth from Recurrent neural network (RNN)-GRU model. 

Moreover, the scientific challenge of the successful application in the projects discussed in 

the introduction section has been solved to a certain degree in this project: 

1. The limited training data of thermography for deep learning. Due to issues such as the 

presence of noise, limited resolution, and probing of depths in TINDE, it is more difficult to 

precisely and fully extract defect information. We introduced the generation pipeline from 

the synthetic data and the GANs network which could further compensate for the databases 

limitation and enhance the capability of defect detection. 

2. For the defect characterization issue, it is complex to combine the information of thermal 

contrast and pixels of images with the depth in each pixel of defect to train the neural network. 

We introduced the Gated recurrent Units (GRUs) which was trained with thermal contrast 
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curves from different detect depths to extract different thermal behavior and output the depth 

of defects automatically.  

3. In order to analyze the cases of samples which contained noise and non-uniform heating, 

weak detection signal, limited IR data; etc, we introduced the defects enhancement methods: 

Partial least square-GANs network (PLS-GANs) , which allow us to remove the noise and 

obtain the defect feature based on the autoencoder architecture (feature extraction 

mechanism) and dimension reduction strategy from GANs (to further decompose the original 

thermal data into meaningful feature components) for defect detection and improve the 

performance in comparision to the orginal PLST methods. 

Future Perspectives 

For the future work in this project, more detailed experimental results and discussion could 

demonstrate that deep learning algorithms could be effective for defect detection in infrared 

thermography.  

a) New spatial- temporal combination modeling   

In this project, we have already proposed and implemented diverse types of spatial and 

temporal deep learning modelling respectively for the analysis of the features of infrared 

databases for defect detection tasks. It would be more efficient in the future to deal with 

complex conditions. This could lead to the use of the proposed methods to design new spatial- 

temporal combination modeling which would be more flexible and compatible with the 

characteristics of infrared thermal sequences.  

b) Application of more advanced data fusion methods.  

Data fusion involves integrating multiple types of databases to extract the meaningful, 

consistent, accurate resource and features, directly obtain from each individual database 

resource. This can help the deep learning algorithms to further train the objective feature 

without high training costs from the original databases. 

c) Transfer learning Strategy  

Transfer learning is a technology focused on obtaining knowledge while solving a problem 

by applying one to another issue. It can be used for defect representation in thermal images 

through a pre-trained network and learning framework. Using a transfer learning strategy 

with a pre-trained Convolutional Neural Network Res-net as an unsupervised feature 

extractor for analyzing defects in specimens and fine-tuning with specific thermal sequences 

could further improve training and evaluation.  A pre-trained CNN could be used for the 

extraction of the vectorized features along with prediction scores from the output of models 
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for defects, then a deep residual learning framework (Resnet) could be used to segment each 

defect at each region and depth of defects correspondingly  

d) Possible modification of loss function of deep Learning model 

The loss function could be a crucial factor that influences the training capability of training 

models from deep learning. This could directly indicate the difference between the predicted 

values and objective values. Different types of loss functions could be optimized based on 

the problem that we target. Due to the limitation and low visibility (semantic) information 

from the infrared databases, it might be difficult to obtain convergence or obtain a satisfactory 

performance from the results when the inner defects or the complex and irregular surface is 

evaluated from the algorithms. Therefore, to modify the loss function from the deep learning 

model may benefit and overcome the challenge when the defects are mixed with complex 

samples and significantly noises.    

e) Experimental conditions for the feature acquisition  

As we predicted, the background noises from defect pixels or non-uniform emissivity 

influence the possibility to acquire suitable results during the infrared thermography 

experiment. This influences the model that we introduced from deep learning to learn and 

extract the features based on this foundation. 

Meanwhile, the experimental setup for the acquisition procedure from infrared thermography 

involved an infrared camera, heating source, macro lens. The optimized physical 

experimental conditions are a significant part of the system attempting to obtain pure samples 

for the post- images processing especially for real world applications. 

An important factor to be considered in future efforts is to create a setup that has optimized 

experimental conditions to further eliminate the physical factors interfering in order to clearly 

obtain the features in different thermal evaluation experiments for deeper subsurface defect 

detections. It would not only dramatically benefit the acquisitions of the training database for 

the model in the process but also reduce (or even eliminate) the learning difficulty and 

improve the quality of training and accuracy of predictions from deep learning. 
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Appendix B Programming codes and Implementations 

This appendix summarized the PYTHON and MATLAB codes which used for 

implementation of the proposed algorithms. The documentation of these codes is based on 

presented chapters and articles. For partial chapters the relevant code mentioned a long with 

a link corresponds to the code that can be downloaded online. 

 

B.1 Automatic defect detection from deep learning models (Chapter4) 

 

B.1.1 YOLO-V3 for defect localization 

 
importtkinter as tk 

from tkinter import * 

import datetime 

from tkinter.filedialog import askdirectory, askopenfilename 

from tkinter.messagebox import showinfo 

import cv2 

from PIL import Image, ImageTk 

import threading 

import numpy as np 

import os 

import matplotlib.pyplot as plt 

 

class goods_counting_gui: 

    def __init__(self): 

        super().__init__() 

        self.create_gui() 

    def create_gui(self): 

        self.window = tk.Tk() 

        self.window.title(' Defect detection and identification system ') 

        self.label = tk.Label(self.window, text='Current time：', bg='green', font=30)   

        self.label.grid(row=0, column=0) 

        self.cur_time = tk.Label(self.window, 

text='%s%d'%(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S:'), 

                                                          datetime.datetime.now().microsecond//100000), font=30) 

        self.cur_time.grid(row=0, column=1) 

        self.window.after(100, self.update_time) 

 

        self.img_path = StringVar() 

        self.label_yolo_obj = tk.Label(self.window, text='choose image: ') 

        self.label_yolo_obj.grid(row=1, column=0, pady=6) 

        self.entry1 = tk.Entry(self.window, textvariable=self.img_path, width=50) 

Indication of the predication 

results on the screen 
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        self.entry1.grid(row=1, column=1, padx=5, pady=6) 

 

        self.button_yolo_obj = tk.Button(self.window, text='path of image', bg='pink', relief=tk.RAISED, 

width=14, height=1, 

                                         command=self.get_img_path1) 

        self.button_yolo_obj.grid(row=1, column=2, padx=10, pady=6) 

 

        self.multi_image = StringVar() 

        self.multi_image_label = tk.Label(self.window, text='choose directory: ') 

        self.multi_image_label.grid(row=2, column=0, pady=6) 

        self.entry2 = tk.Entry(self.window, textvariable=self.multi_image, width=50) 

        self.entry2.grid(row=2, column=1, padx=5, pady=6) 

 

        self.multi_image_button = tk.Button(self.window, text='path of image', bg='pink', relief=tk.RAISED, 

width=14, 

                                        height=1, command=self.get_img_path2) 

        self.multi_image_button .grid(row=2, column=2, padx=10, pady=6) 

 

        self.button_start = tk.Button(self.window, text='start recognition', bg='orange', relief=tk.RAISED, 

                                      width=13, height=1, command=self.start) 

        self.button_start.grid(row=1, column=3, padx=10, pady=6) 

 

        self.button_get_result = tk.Button(self.window, text='start recognition', bg='orange', 

relief=tk.RAISED,  
                                      width=13, height=1, command=self.test_all) 

        self.button_get_result.grid(row=2, column=3, padx=10, pady=6) 

 

        self.button_start = tk.Button(self.window, text='clear output', bg='red', relief=tk.RAISED, width=13, 

height=1, 

                                      command=self.stop) 

        self.button_start.grid(row=3, column=2, padx=10, pady=10) 

 

        self.frm_ = tk.Frame() 

        self.frm_.grid(row=3, column=1, padx=5) 

 

        self.result_show = tk.Label(self.frm_) 

        self.result_show.grid(row=4, column=1, padx=5) 

 

        # self.output = tk.Label(self.window, text='output display', font=50) 

        # self.output.grid(row=3, column=2, padx=5, pady=5, sticky=tk.NW) 

 

        self.text = tk.Text(self.window, width=24, height=10) 

        self.text.grid(row=3, column=3, pady=5, sticky=tk.NW) 

 

    def get_img_path1(self): 

Define the type of images: 

PIL. Image. 
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        # self.path1 = askdirectory() 

        self.path1 = askopenfilename() 

        self.img_path.set(self.path1) 

        frame = cv2.imread(self.path1) 

        B, G, R = cv2.split(frame) 

        frame = cv2.merge([R, G, B]) 

        img = Image.fromarray(frame)  

        img = self.resize(img) 

        imgtk = ImageTk.PhotoImage(img) 

        self.result_show.config(image=imgtk)  

        self.result_show.img = imgtk 

 

    def get_img_path2(self): 

        self.path2 = askdirectory() 

        self.multi_image.set(self.path2) 

 

    def test_all(self): 

        images = os.listdir(self.path2)  
        f = open(self.path2 + '/' + '../location.txt', 'r+')  
        for img in images: 

            weightsPath = "material.weights" 

            configPath = "material.cfg" 

            labelsPath = "material.names" 

            self.LABELS = open(labelsPath).read().strip().split("\n")   

            COLORS = np.random.randint(0, 255, size=(len(self.LABELS), 3), dtype="uint8")   

            boxes = [] 

            confidences = [] 

            self.classIDs = [] 

            net = cv2.dnn.readNetFromDarknet(configPath, weightsPath) 

            if not os.path.exists(self.path2 + '/' + '../result'): 

                os.makedirs(self.path2 + '/' + '../result') 

 

            image = cv2.imread(self.path2 + '/' + img) 

            # print(self.path1) 

            (H, W) = image.shape[:2] 

 

 

            ln = net.getLayerNames() 

            ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] 

 

 

 

            blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False) 

            net.setInput(blob) 

            layerOutputs = net.forward(ln) 

giving us the bounding 

box and associated 

probabilities with the 

loaded model 

1. Classification of objective; 

1. Define of Colors 

To obtain and connect the 

output later from YOLO  
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            for output in layerOutputs: 

 

                for detection in output: 

                    scores = detection[5:] 

                    classID = np.argmax(scores) 

                    confidence = scores[classID] 

                     

                    if confidence > 0.5: 

 

box = detection[0:4] * np.array([W, H, W, H]) 

                        (centerX, centerY, width, height) = box.astype("int") 

                         

                        x = int(centerX - (width / 2)) 

                        y = int(centerY - (height / 2)) 

                        boxes.append([x, y, int(width), int(height)]) 

 

                        confidences.append(float(confidence)) 

self.classIDs.append(classID) 

                        idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.2, 0.3) 

 

B.1.2 Res-U-net for defect semantic segmentation  

import time 

import torch 

import torch.optim as optim 

import torch.backends.cudnn as cudnn 

import torchvision.models as models 

import numpy as np  

from tqdm import tqdm 

from torchvision import models 

from torch.autograd import Variable 

from PIL import Image 

from torch import nn 

from nets.unt import Unet 

from nets.unet_training import CE_Loss,Dice_loss 

from utils.metrics import f_score 

from torch.utils.data import DataLoader 

from dataloader import unetDataset, unet_dataset_collate 

 

def get_lr(optimizer): 

    for param_group in optimizer.param_groups: 

        return param_group['lr'] 

 

Non-Maximum 

Suppression 
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def fit_one_epoch(net,epoch,epoch_size,epoch_size_val,gen,genval,Epoch,cuda,aux_branch): 

    net = net.train() 

    total_loss = 0 

    total_f_score = 0 

 

    val_toal_loss = 0 

    val_total_f_score = 0 

    start_time = time.time() 

    with tqdm(total=epoch_size,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar: 

        for iteration, batch in enumerate(gen): 

            if iteration >= epoch_size:  

                break 

            imgs, pngs, labels = batch 

 

            with torch.no_grad(): 

                imgs = Variable(torch.from_numpy(imgs).type(torch.FloatTensor)) 

                pngs = Variable(torch.from_numpy(pngs).type(torch.FloatTensor)).long() 

                labels = Variable(torch.from_numpy(labels).type(torch.FloatTensor)) 

                if cuda: 

                    imgs = imgs.cuda() 

                    pngs = pngs.cuda() 

                    labels = labels.cuda() 

 

            optimizer.zero_grad() 

            if aux_branch: 

                aux_outputs, outputs = net(imgs) 

                aux_loss  = CE_Loss(aux_outputs, pngs, num_classes = NUM_CLASSES) 

                main_loss = CE_Loss(outputs, pngs, num_classes = NUM_CLASSES) 

                loss      = aux_loss + main_loss 

                if dice_loss: 

                    aux_dice  = Dice_loss(aux_outputs, labels) 

                    main_dice = Dice_loss(outputs, labels) 

                    loss      = loss + aux_dice + main_dice 

 

            else: 

                outputs = net(imgs) 

                loss    = CE_Loss(outputs, pngs, num_classes = NUM_CLASSES) 

                if dice_loss: 

                    main_dice = Dice_loss(outputs, labels) 

                    loss      = loss + main_dice 

 

            with torch.no_grad(): 

 

                _f_score = f_score(outputs, labels) 

Calculation F-score 

Determine if a 

secondary branch is 

used and pass it back 
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            loss.backward() 

            optimizer.step() 

 

            total_loss += loss.item() 

            total_f_score += _f_score.item() 

             

            waste_time = time.time() - start_time 

            pbar.set_postfix(**{'total_loss': total_loss / (iteration + 1),  

                                'f_score'   : total_f_score / (iteration + 1), 

                                's/step'    : waste_time, 

                                'lr'        : get_lr(optimizer)}) 

            pbar.update(1) 

 

            start_time = time.time() 

 

    print('Start Validation') 

    with tqdm(total=epoch_size_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as 

pbar: 

        for iteration, batch in enumerate(genval): 

            if iteration >= epoch_size_val: 

                break 

            imgs, pngs, labels = batch 

            with torch.no_grad(): 

                imgs = Variable(torch.from_numpy(imgs).type(torch.FloatTensor)) 

                pngs = Variable(torch.from_numpy(pngs).type(torch.FloatTensor)).long() 

                labels = Variable(torch.from_numpy(labels).type(torch.FloatTensor)) 

                if cuda: 

                    imgs = imgs.cuda() 

                    pngs = pngs.cuda() 

                    labels = labels.cuda() 

 

                if aux_branch: 

                   aux_outputs, outputs = net(imgs)      

                    aux_loss  = CE_Loss(aux_outputs, pngs, num_classes = NUM_CLASSES) 

                    main_loss = CE_Loss(outputs, pngs, num_classes = NUM_CLASSES) 

                    val_loss  = aux_loss + main_loss 

                    if dice_loss: 

                        aux_dice  = Dice_loss(aux_outputs, labels) 

                        main_dice = Dice_loss(outputs, labels) 

                        val_loss  = val_loss + aux_dice + main_dice 

 

                else: 

                    outputs  = net(imgs) 
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                    val_loss = CE_Loss(outputs, pngs, num_classes = NUM_CLASSES) 

                    if dice_loss:  
                        main_dice = Dice_loss(outputs, labels) 

                        val_loss  = val_loss + main_dice 

 

                _f_score = f_score(outputs, labels) 

 

                val_toal_loss += val_loss.item() 

                val_total_f_score += _f_score.item() 

             

            pbar.set_postfix(**{'total_loss': val_toal_loss / (iteration + 1), 

                                'f_score'   : val_total_f_score / (iteration + 1), 

                                'lr'        : get_lr(optimizer)}) 

            pbar.update(1) 

             

    print('Finish Validation') 

    print('Epoch:'+ str(epoch+1) + '/' + str(Epoch)) 

    print('Total Loss: %.4f || Val Loss: %.4f ' % 

(total_loss/(epoch_size+1),val_toal_loss/(epoch_size_val+1))) 

    totalBig_loss = ('%.4f' % (total_loss/(epoch_size+1))) 

    val_loss1232= ('%.4f' % (val_toal_loss/(epoch_size_val+1))) 

    score = ('%.4f' % (val_total_f_score / (iteration + 1))) 

    file_handle2=open('train_loss.csv',mode='a+') 

   

    file_handle2.write(totalBig_loss+','+val_loss1232+'\n') 

    file_handle2.close() 

    file_handle3=open('score.csv',mode='a+') 

   

    file_handle3.write(score+'\n') 

    file_handle3.close() 

    print('Saving state, iter:', str(epoch+1)) 

    torch.save(model.state_dict(), 'logs/Epoch%d-Total_Loss%.4f 

Val_Loss%.4f.pth'%((epoch+1),total_loss/(epoch_size+1),val_toal_loss/(epoch_size_val+1))) 

if __name__ == "__main__": 

    inputs_size = [256,256,3]  

    log_dir = "logs/"    

  

Calculation of F-

scores 
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B.2 Mask-RCNN for defect instance segmentation in infrared 

thermography with synthetic data (Chapter 5)  
 

import os 

import random 

import datetime 

import re 

import math 

import logging 

from collections import OrderedDict 

import multiprocessing 

import numpy as np 

import tensorflow as tf 

import keras 

import keras.backend as K 

import keras.layers as KL 

import keras.engine as KE 

import keras.models as KM 

from keras import metrics 

 

from mrcnn import utils 

 

# Requires TensorFlow 1.3+ and Keras 2.0.8+. 

from distutils.version import LooseVersion 

assert LooseVersion(tf.__version__) >= LooseVersion("1.3") 

assert LooseVersion(keras.__version__) >= LooseVersion('2.0.8') 

 

############################################################ 

#  Utility Functions 

############################################################ 

 

def log(text, array=None): 

    """Prints a text message. And, optionally, if a Numpy array is provided it 

    prints it's shape, min, and max values. 

    """ 

    if array is not None: 

        text = text.ljust(25) 

        text += ("shape: {:20}  ".format(str(array.shape))) 

        if array.size: 

            text += ("min: {:10.5f}  max: {:10.5f}".format(array.min(),array.max())) 

        else: 

            text += ("min: {:10}  max: {:10}".format("","")) 

        text += "  {}".format(array.dtype) 

    print(text) 
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class BatchNorm(KL.BatchNormalization): 

 

    def call(self, inputs, training=None): 

 

        return super(self.__class__, self).call(inputs, training=training)  

 

def compute_backbone_shapes(config, image_shape): 

    """Computes the width and height of each stage of the backbone network. 

 

    Returns: 

        [N, (height, width)]. Where N is the number of stages 

    """ 

    if callable(config.BACKBONE): 

        return config.COMPUTE_BACKBONE_SHAPE(image_shape) 

 

    # Currently supports ResNet only 

    assert config.BACKBONE in ["resnet50", "resnet101"] 

    return np.array( 

        [[int(math.ceil(image_shape[0] / stride)), 

            int(math.ceil(image_shape[1] / stride))] 

            for stride in config.BACKBONE_STRIDES])  

 

############################################################ 

#  Resnet Graph 

############################################################ 

 

# Code adopted from: 

# https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py 

 

def identity_block(input_tensor, kernel_size, filters, stage, block, 

                   use_bias=True, train_bn=True): 

    """The identity_block is the block that has no conv layer at shortcut 

    # Arguments 

        input_tensor: input tensor 

        kernel_size: default 3, the kernel size of middle conv layer at main path 

 

    conv_name_base = 'res' + str(stage) + block + '_branch' 

    bn_name_base = 'bn' + str(stage) + block + '_branch' 

 

    x = KL.Conv2D(nb_filter1, (1, 1), strides=strides, 

                  name=conv_name_base + '2a', use_bias=use_bias)(input_tensor) 

    x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn) 

    x = KL.Activation('relu')(x) 

 

Batch 

normalization has 

a negative effect 

on training if 

batches are small 

    so this layer is 

often frozen (via 

setting in Config 

class) and 

functions 

    as linear layer. 
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    x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same', 

                  name=conv_name_base + '2b', use_bias=use_bias)(x) 

    x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn) 

    x = KL.Activation('relu')(x) 

 

    x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + 

                  '2c', use_bias=use_bias)(x) 

    x = BatchNorm(name=bn_name_base + '2c')(x, training=train_bn) 

 

    shortcut = KL.Conv2D(nb_filter3, (1, 1), strides=strides, 

                         name=conv_name_base + '1', use_bias=use_bias)(input_tensor) 

    shortcut = BatchNorm(name=bn_name_base + '1')(shortcut, training=train_bn) 

 

    x = KL.Add()([x, shortcut]) 

    x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x)  

    return x 

 

def resnet_graph(input_image, architecture, stage5=False, train_bn=True): 

 

    assert architecture in ["resnet50", "resnet101"] 

    # Stage 1 

    x = KL.ZeroPadding2D((3, 3))(input_image) 

    x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x) 

    x = BatchNorm(name='bn_conv1')(x, training=train_bn) 

    x = KL.Activation('relu')(x) 

    C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x) 

    # Stage 2 

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), train_bn=train_bn) 

    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', train_bn=train_bn) 

 

  Build a ResNet graph architecture: Can be resnet50 or 

resnet101 

      

stage: Boolean. If False, stage of the network is not 

created 

 

 train_bn: Boolean. Train or freeze Batch Norm layers 
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B.3. PLS-GANs algorithms for defect enhancement (chapter 6)  

 

This section shows the Python and MATLAB codes correspond to applying GANs 

network (DCGAN; WGAN) and Partial least square thermography to build as the PLS-GANs 

network.  

In order to apply these techniques, an OpenCV image analysis toolbox and MATLAB 

(R2019a) were used. 

 

B.3.1 Deep convolutional GANs 

 

from __future__ import print_function 

import argparse 

import os 

import random 

import torch 

import torch.nn as nn 

import torch.nn.parallel 

import torch.backends.cudnn as cudnn 

import torch.optim as optim 

import torch.utils.data 

import torchvision.datasets as dset 

import torchvision.transforms as transforms 

import torchvision.utils as vutils 

import torchvision 

from skimage import io 

 

 

parser = argparse.ArgumentParser() 

parser.add_argument('--dataset', default='mydata', help='cifar10 | lsun | imagenet | folder | lfw | fake') 

parser.add_argument('--dataroot', default='data/', help='path to dataset') 

parser.add_argument('--workers', type=int, help='number of data loading workers', default=2) 

parser.add_argument('--batchSize', type=int, default=64, help='input batch size') 

parser.add_argument('--imageSize', type=int, default=64, help='the height / width of the input image to 

network') 

parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector') 

parser.add_argument('--ngf', type=int, default=64) 

parser.add_argument('--ndf', type=int, default=64) 

parser.add_argument('--niter', type=int, default=1000, help='number of epochs to train for') 

parser.add_argument('--lr', type=float, default=0.002, help='learning rate, default=0.0002') 

parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5') 

parser.add_argument('--cuda', default='True', action='store_true', help='enables cuda') 

parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use') 

parser.add_argument('--netG', default='', help="path to netG (to continue training)") 

DCGAN 

parameter 

configuration that 

can generate 

64×64 images  
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parser.add_argument('--netD', default='', help="path to netD (to continue training)") 

parser.add_argument('--outf', default='imgs/', help='folder to output images and model checkpoints') 

parser.add_argument('--manualSeed', type=int, help='manual seed') 

 

opt = parser.parse_args() 

print(opt) 

 

try: 

    os.makedirs(opt.outf) 

except OSError: 

    pass 

 

if opt.manualSeed is None: 

    opt.manualSeed = random.randint(1, 10000) 

print("Random Seed: ", opt.manualSeed) 

random.seed(opt.manualSeed) 

torch.manual_seed(opt.manualSeed) 

 

cudnn.benchmark = True 

 

if torch.cuda.is_available() and not opt.cuda: 

    print("WARNING: You have a CUDA device, so you should probably run with --cuda") 

 

if opt.dataset in ['imagenet', 'folder', 'lfw']: 

    # folder dataset 

    dataset = dset.ImageFolder(root=opt.dataroot, 

                               transform=transforms.Compose([ 

                                   transforms.Resize(opt.imageSize), 

                                   transforms.CenterCrop(opt.imageSize), 

                                   transforms.ToTensor(), 

                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), 

                               ])) 

elif opt.dataset == 'lsun': 

    dataset = dset.LSUN(root=opt.dataroot, classes=['bedroom_train'], 

                        transform=transforms.Compose([ 

                            transforms.Resize(opt.imageSize), 

                            transforms.CenterCrop(opt.imageSize), 

                            transforms.ToTensor(), 

                            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), 

                        ])) 

elif opt.dataset == 'cifar10': 

    dataset = dset.CIFAR10(root=opt.dataroot, download=True, 

                           transform=transforms.Compose([ 

                               transforms.Resize(opt.imageSize), 

                               transforms.ToTensor(), 

Normalize 

grayscale images 
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                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), 

                           ])) 

elif opt.dataset == 'fake': 

    dataset = dset.FakeData(image_size=(3, opt.imageSize, opt.imageSize), 

                            transform=transforms.ToTensor()) 

elif opt.dataset == 'mydata': 

    transforms = torchvision.transforms.Compose([ 

        torchvision.transforms.ToPILImage(), 

        torchvision.transforms.Resize((64, 64)), 

        transforms.ToTensor(), 

        transforms.Normalize([0.5], [0.5])])   

 

    dataset = torchvision.datasets.ImageFolder(opt.dataroot, transform=transforms, loader=io.imread) 

 

assert dataset 

 

dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, 

                                         shuffle=True, num_workers=int(opt.workers)) 

 

device = torch.device("cuda:0" if opt.cuda else "cpu") 

ngpu = int(opt.ngpu) 

nz = int(opt.nz) 

ngf = int(opt.ngf) 

ndf = int(opt.ndf) 

nc = 1 

 

# custom weights initialization called on netG and netD 

def weights_init(m): 

    classname = m.__class__.__name__ 

    if classname.find('Conv') != -1: 

        m.weight.data.normal_(0.0, 0.02) 

    elif classname.find('BatchNorm') != -1: 

        m.weight.data.normal_(1.0, 0.02) 

        m.bias.data.fill_(0) 

 

class Generator(nn.Module): 

    def __init__(self, ngpu): 

        super(Generator, self).__init__() 

        self.ngpu = ngpu 

        self.main = nn.Sequential( 

            # input is Z, going into a convolution 

            nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), 

            nn.BatchNorm2d(ngf * 8), 

            nn.ReLU(True), 

            # state size. (ngf*8) x 4 x 4 
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            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), 

            nn.BatchNorm2d(ngf * 4), 

            nn.ReLU(True), 

            # state size. (ngf*4) x 8 x 8 

            nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), 

            nn.BatchNorm2d(ngf * 2), 

            nn.ReLU(True), 

            # state size. (ngf*2) x 16 x 16 

            nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), 

            nn.BatchNorm2d(ngf), 

            nn.ReLU(True), 

            # state size. (ngf) x 32 x 32 

            nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), 

            nn.Tanh() 

            # state size. (nc) x 64 x 64 

        ) 

 

    def forward(self, input): 

        if input.is_cuda and self.ngpu > 1: 

            output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) 

        else: 

            output = self.main(input) 

        return output 

 

netG = Generator(ngpu).to(device) 

netG.apply(weights_init)     

 

if opt.netG != '': 

    netG.load_state_dict(torch.load(opt.netG)) 

print(netG) 

 

class Discriminator(nn.Module): 

    def __init__(self, ngpu): 

        super(Discriminator, self).__init__() 

        self.ngpu = ngpu 

        self.main = nn.Sequential( 

            # input is (nc) x 64 x 64 

            nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), 

            nn.LeakyReLU(0.2, inplace=True), 

            # state size. (ndf) x 32 x 32 

            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), 

            nn.BatchNorm2d(ndf * 2), 

            nn.LeakyReLU(0.2, inplace=True), 

            # state size. (ndf*2) x 16 x 16 

            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), 
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            nn.BatchNorm2d(ndf * 4), 

            nn.LeakyReLU(0.2, inplace=True), 

            # state size. (ndf*4) x 8 x 8 

            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), 

            nn.BatchNorm2d(ndf * 8), 

            nn.LeakyReLU(0.2, inplace=True), 

            # state size. (ndf*8) x 4 x 4 

            nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), 

            nn.Sigmoid() 

        ) 

 

    def forward(self, input): 

        if input.is_cuda and self.ngpu > 1: 

            output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) 

        else: 

            output = self.main(input) 

 

        return output.view(-1, 1).squeeze(1) 

 

netD = Discriminator(ngpu).to(device) 

netD.apply(weights_init) 

if opt.netD != '': 

    netD.load_state_dict(torch.load(opt.netD)) 

print(netD) 

 

criterion = nn.BCELoss() 

 

fixed_noise = torch.randn(opt.batchSize, nz, 1, 1, device=device) 

real_label = 1 

fake_label = 0 

 

# setup optimizer 

optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) 

optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) 

 

for epoch in range(opt.niter): 

    for i, data in enumerate(dataloader, 0): 

         

        netD.zero_grad() 

        real_cpu = data[0].to(device) 

        batch_size = real_cpu.size(0) 

        label = torch.full((batch_size,), real_label, device=device) 

 

        output = netD(real_cpu)  

Update D 

network: 

maximize 

log(D(x)) + log (1 

- D(G(z)))  

and train with real 

sample 
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    errD_real = criterion(output, label) 

    errD_real.backward() 

    D_x = output.mean().item() 

 

    # train with fake 

    noise = torch.randn(batch_size, nz, 1, 1, device=device) 

    fake = netG(noise) 

    label.fill_(fake_label) 

    output = netD(fake.detach()) 

    errD_fake = criterion(output, label) 

    errD_fake.backward() 

    D_G_z1 = output.mean().item() 

    errD = errD_real + errD_fake 

    optimizerD.step() 

 

    netG.zero_grad() 

    label.fill_(real_label)  # fake labels are real for generator cost 

    output = netD(fake) 

    errG = criterion(output, label) 

    errG.backward() 

    D_G_z2 = output.mean().item() 

    optimizerG.step() 

 

    print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f' 

          % (epoch, opt.niter, i, len(dataloader), 

             errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) 

    if i % 100 == 0: 

        vutils.save_image(real_cpu, 

                '%s/real_samples.png' % opt.outf, 

                normalize=True) 

        fake = netG(fixed_noise) 

        vutils.save_image(fake.detach(), 

                '%s/fake_samples_epoch_%03d.png' % (opt.outf, epoch),                                             

normalize=True) 

torch.save(netG.state_dict(), '%s/netG_epoch_%d.pth' % (opt.outf, epoch)) 

torch.save(netD.state_dict(), '%s/netD_epoch_%d.pth' % (opt.outf, epoch))  

Update G 

network: 

maximize 

log(D(G(z))) 

do checkpointing 
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B.3.2 Wasserstein GAN  

 

import torch.nn as nn 

 

 

class NetG(nn.Module): 

    def __init__(self, ngf, nz): 

        super(NetG, self).__init__() 

 

        self.layer1 = nn.Sequential( 

            nn.ConvTranspose2d(nz, ngf * 8, kernel_size=3, stride=2, padding=1, bias=False), 

            nn.BatchNorm2d(ngf * 8), 

            nn.ReLU(inplace=True) 

        ) 

 

        self.layer2 = nn.Sequential( 

            nn.ConvTranspose2d(ngf * 8, ngf * 4, 3, 2, 0, bias=False), 

            nn.BatchNorm2d(ngf * 4), 

            nn.ReLU(inplace=True) 

        ) 

 

        self.layer3 = nn.Sequential( 

            nn.ConvTranspose2d(ngf * 4, ngf * 2, 5, 2, 1, bias=False),  

            nn.BatchNorm2d(ngf * 2), 

            nn.ReLU(inplace=True) 

        ) 

 

        self.layer4 = nn.Sequential( 

            nn.ConvTranspose2d(ngf * 2, ngf, 3, 3, 1, bias=False), 

            nn.BatchNorm2d(ngf), 

            nn.ReLU(inplace=True) 

        ) 

 

        self.layer5 = nn.Sequential( 

            nn.ConvTranspose2d(ngf, 3, 4, 2, 0, bias=False), 

            nn.Tanh() 

        ) 

    def forward(self, x): 

        out = self.layer1(x) 

        out = self.layer2(out) 

        out = self.layer3(out) 

        out = self.layer4(out) 

        out = self.layer5(out) 

        return out 

 

Define the 

Generator 

network G and 

the parameters on 

each layer of G; 

randomly noise 

input 

Defining the forward 

propagation of 

Discriminator D 
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class NetD(nn.Module): 

    def __init__(self, ndf): 

        super(NetD, self).__init__() 

 

        self.layer1 = nn.Sequential( 

            nn.Conv2d(3, ndf, kernel_size=3, stride=3, padding=1, bias=False), 

            nn.BatchNorm2d(ndf), 

            nn.LeakyReLU(0.2, inplace=True) 

        ) 

 

        self.layer2 = nn.Sequential( 

            nn.Conv2d(ndf, ndf * 2, 3, 3, 0, bias=False), 

            nn.BatchNorm2d(ndf * 2), 

            nn.LeakyReLU(0.2, inplace=True) 

        ) 

         

        self.layer3 = nn.Sequential( 

            nn.Conv2d(ndf * 2, ndf * 4, 3, 3, 0, bias=False), 

            nn.BatchNorm2d(ndf * 4), 

            nn.LeakyReLU(0.2, inplace=True) 

        ) 

 

        self.layer4 = nn.Sequential( 

            nn.Conv2d(ndf * 4, ndf * 8, 5, 3, 0, bias=False), 

            nn.BatchNorm2d(ndf * 8), 

            nn.LeakyReLU(0.2, inplace=True) 

        ) 

 

        self.layer5 = nn.Sequential( 

            nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), 

            nn.Sigmoid() 

        )  

 

 

    def forward(self, x):  
        out = self.layer1(x)  
        out = self.layer2(out)  
        out = self.layer3(out) 

        out = self.layer4(out) 

        out = self.layer5(out) 

        return out 

  

Define the 

discriminator 

network D and 

the parameters 

on each layer 

of D  

Defining the forward 

propagation of 

Discriminator D 
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B.3.3 Partial least square thermography   

% Sampling frequency 
fs = 88; 
ts = (1/fs); 

  

ncomp=10; 
[a,b,t] = size(T);  
X=reshape(T,(a*b),t); 
X=X'; 
[n,m] = size(X); 
time=ts:ts:(ts*t); 
Y=time'; 
[XL,YL,XS,YS,BETA,PLSPctVar,PLSmsep,stats] = plsregress(X,Y,ncomp); 
yfitPLS = [ones(n,1) X]*BETA; 

  

%% Analysis 
% 3D Loading Matrix 
XLoading=reshape(XL,a,b,ncomp); 

  

% 3D Weight Matrix 
W=reshape(stats.W,a,b,ncomp); 

  

% Decompossed Temperature Matrix 
Xnew= XL*XS'; 
XfitPLS=reshape(Xnew,a,b,t); 

  

 

%% ThermalMap Comp. 1 
Xnew1=XL(:,1)*XS(:,1)'; 
% X_reg1=reshape(Xnew1,a,b,t); 
%% ThermalMap Comp. 2 
Xnew2=XL(:,2)*XS(:,2)'; 
X_reg2=reshape(Xnew2,a,b,t); 
%% ThermalMap Comp. 3 
Xnew3=XL(:,3)*XS(:,3)'; 
X_reg3=reshape(Xnew3,a,b,t); 
% % ThermalMap Comp. 4 
 Xnew4=XL(:,4)*XS(:,4)'; 
 X_reg4=reshape(Xnew4,a,b,t); 

% % ThermalMap Comp. 5 
 ThermalMap Comp. 5 
 Xnew5=XL(:,5)*XS(:,5)'; 
 X_reg5=reshape(Xnew5,a,b,t); 

 

Loading, 

transform and 

decomposed the 

temperature 

matrix; 
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% % ThermalMap Comp. 6 
 ThermalMap Comp. 6 
 Xnew6=XL(:,6)*XS(:,6)'; 
 X_reg6=reshape(Xnew6,a,b,t);  

  

plot(1:ncomp,cumsum(100*PLSPctVar(2,:)),'-bo'); 
xlabel('Number of PLS components'); 
ylabel('Percent Variance Cumulative in X'); 

 

hold on; 

  

plot(0:ncomp,PLSmsep(2,:),'b-o'); 
xlabel('Number of components'); 
ylabel('Estimated Mean Squared Prediction Error'); 

  

for t=1:n;  
   Xmean(t)=mean(X(t,:)); 
end 

  

for t=1:n; 
   T_reg(:,t)=Xnew(:,t)+Xmean(t); 
end 
T_reg_new=reshape(T_reg,a,b,t); 
 

for t=1:n; 
   C1(:,t)=Xnew(:,t)-Xnew1(:,t); 
end 
C1_new=reshape(C1,a,b,t); 

  

for t=1:n; 
   C1mean(t)=mean(C1(t,:)); 
end 

    

for t=1:n; 
   C1_reg(:,t)=C1(:,t)+C1mean(t); 
end 
 

plot(1:ncomp,cumsum(100*PLSPctVar(2,:)),'-bo'); 
xlabel('Number of PLS components'); 
ylabel('Percent Variance Cumulative in X'); 
hold on; 
plot(0:ncomp,PLSmsep(2,:),'b-o'); 
xlabel('Number of components'); 
ylabel('Estimated Mean Squared Prediction Error'); 

 

 Selecting Group of 

Components 

 2nd and 3rd two components 

  Reconstructed Nom-

centered Thermal Map  

 

Cross-Validation 

 

Reconstructed 

Nom-centered 

Enhanced Images 
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B.4 Gated Recurrent Units (GRUs) for defect depth estimation (Chapter7)  

 

B.4.1 Model training 

  

import numpy as np 

import tensorflow as tf 

from tensorflow import keras 

import matplotlib.pyplot as plt 

 

train_data = np.load('./train_data/train0.6_1.9.npy') 

 

 

label1 = np.array([0.6]*20) 

label2 = np.array([0.9]*20) 

label3 = np.array([1.3]*19) 

label4 = np.array([1.7]*20) 

label5 = np.array([1.9]*20) 

 

label = np.concatenate([label1, label2, label3, label4, label5]) 

label = np.reshape(label, (len(label),1)) 

 

x_train = train_data 

 

 

x_train = tf.reshape(x_train, (-1, 1429, 1)) 

y_train = tf.reshape(label, (-1, 1)) 

 

 

model = keras.models.Sequential([ 

    keras.layers.GRU(512, return_sequences=False, input_shape=[None, 1]), 

    keras.layers.Dense(256, activation='relu'), 

    keras.layers.Dense(64, activation='relu'), 

    keras.layers.Dense(1) 

]) 

model.compile(loss=keras.losses.mean_squared_error, 

              optimizer=keras.optimizers.Adam(lr=0.001), 

              metrics=['mae']) 

 

history = model.fit(x_train, y_train, 

                    epochs=2500, 

                    batch_size=32, 

                    verbose=2)  
model.save('best0.6_1.9.h5') 

 

Building the 

GRU model 

Train the model  

 

Retrieve data 

 

 Adjust the 

dimensionality 
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score_mse, score_mae = model.evaluate(x_train, y_train) 

print(score_mse) 

print(score_mae) 

 

mae = history.history['mae'] 

loss = history.history['loss'] 

epochs = range(1, len(loss)+1)  
plt.figure() 

plt.plot(epochs, loss, 'b', label='Training loss') 

plt.plot(epochs, mae, 'r', label='mae') 

plt.legend() 

plt.show() 

 

B.4.2 Validation and Reading the results 

 

import numpy as np 

import tensorflow as tf 

from tensorflow import keras 

import matplotlib.pyplot as plt 

 

test_model = tf.keras.models.load_model('best0.6_1.9.h5') 

#test_model.summary() 

 

test_data = np.load('./test_data/test_data1.9.npy') 

 

label = np.array([1.0]*20) 

 

x_test = tf.reshape(test_data, (-1, 1429, 1)) 

y_test = tf.reshape(label, (-1, 1)) 

 

res = test_model.predict(x_test) 

res = np.reshape(res, (-1, len(res[0]))) 

print("The test results are：" + str(res[:,-1])) 

res1 = abs(res[:,-1]-1.9) 

print("The test results of MAE："+str(res1))  

mean1 = res1.mean(axis=0)  

print("The average of test results MAE："+str(mean1)) 

 

 

Load the trained 

model to test the 

data 


