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Abstract: Wind energy, with an exponential growth in the last years, is nowadays one of the most 10 
important renewable energy sources. Modern wind turbines are bigger and complex to produce 11 
more energy. This industry requires to reduce its operating and maintenance costs and to increase 12 
its reliability, safety, maintainability and availability. Condition monitoring systems are beginning 13 
to be employed for this purpose. They must be reliable and cost-effective to reduce the long periods 14 
of downtimes and high maintenance costs, and to avoid catastrophic scenarios caused by 15 
undetected failures. This paper presents a survey about the most important and updated condition 16 
monitoring techniques based on non-destructive testing and methods applied to wind turbine 17 
blades. In addition, it analyses the future trends and challenges of structural health monitoring 18 
systems in wind turbine blades. 19 

Keywords: wind energy; wind turbine blade; condition monitoring system; non-destructive testing; 20 
structural health monitoring 21 
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1. Introduction 23 

The European Commission has set as priority to promote the growth of the wind energy 24 
industry as part of the plan for decarbonization in Europe in the coming decades (Decision Nº 25 
646/2000/EC of the European Parliament and of the Council of February 28, 2000 [1]). This caused a 26 
rise in wind energy use in the last years [2]. 27 

The total accumulated energy produced by wind turbines (WTs) has increased 11% in 2017, 28 
being the total investment of 107 b$ by that year [3]. This industry requires to increase the reliability, 29 
availability, maintainability and safety (RAMS) of the WTs [4].  30 

It has been demonstrated that 15-35% of the total cost are related to operation and maintenance 31 
(O&M) costs in offshore WTs [5], being 80% invested in unplanned failures. Therefore, it is important 32 
to prevent failures in WTs, where condition monitoring systems (CMS) are being employed on that 33 
[6]. CMS are based in a set of sensors and electronic devices to read the signals, together with an 34 
approach to study the state of the component.  35 

Igba et al. [7] justified the need of CMS of through-life engineering service (TES) for WT. The 36 
authors indicated that there are new research works, e.g. autonomous maintenance, to improve 37 
maintenance techniques applied to WT gearboxes. According to Junior et al. [8], the failures of 38 
offshore WT gearboxes appear in the first year of their life cycle.  39 

Many high sampling rate sensors are being used for electrical components, generating a large 40 
amount of data. There are new researches about novel methods and algorithms applied on that [9-41 
11]. For example, Wang et al. [12] developed algorithms that work with a reduced number of data 42 
and failures with a good accuracy. Romero et al. [13] demonstrated the need to improve the data 43 
processing due to the false alarms (the importance of false alarms in WT was presented by Marugán 44 
et al. in [14,15]), or other faults that are overlooked. The authors defined the normal operating limits 45 
for each WT according to the vibration signals. Finally, they merged CMS data (vibrations) with 46 
supervisory control and data acquisition (SCADA) parameters, mainly power and wind velocity, 47 
with good accuracy [16,17].  48 

The size of the WT blades (WTBs) has increased in recent years, leading to greater efficiency and 49 
energy production, but presenting higher failure probability [18,19]. Non-destructive testing (NDT) 50 
techniques have been developed and applied recently to WTBs [20,21]. NDT does not modify the 51 
physical, chemical, mechanical or dimensional properties of the WTB. This paper presents and 52 
general overview of the main NDT techniques used for WTBs, with a recent survey of the most recent 53 
research paper on each topic. 54 

2. Non-Destructive Testing in Wind Turbine Blades 55 

Marti-Puig et al. [22] found that approximately €2.2 billion are employed to repair WT failures, 56 
where an important amount is done on WTBs. There are numerous research studies based on NDT 57 
in WTBs [23,24]. NDTs can detect both surface and internal faults in WTBs, leading to improved 58 
quality, safety and failures prevention. The NDT are applied in structural health monitoring (SHM) 59 
systems for fault detection and diagnosis (FDD) [25-27]. According to Muñoz and García [27], the 60 
NDT techniques can reduce corrective and preventive maintenance tasks, and to avoid critical 61 
failures in WTBs, leading to extend the life cycle of the structure. Rubert et al. [28] analysed the 62 
levelized cost of energy (LCOE) of the WT, where NDT helped to reduce it. 63 

WTB fatigue reduces its life cycle, and Abraham et al. [29] stated that "the technological means 64 
to measure fatigue in civil structures are obsolete, imprecise and inappropriate". For this reason, the 65 
Innovation and Networking for Fatigue and Reliability Analysis of Structures- Training for 66 
Assessment of Risk (INFRASTAR) project is working on optimising the design of new structures, as 67 
well as improving crack dimensioning, the fatigue damage monitoring and predicting WTB service 68 
life [30].  69 

WTB are difficult to monitor because of their curved shape, and they are made of fiberglass 70 
plastics and other sandwich areas that are made of wood or plastic foam, i.e. they are very complex. 71 
In addition, WTBs are composed by different layers with a variable thickness and anisotropic 72 
materials. NDT are employed in WTBs during their manufacture and operation. A "post mortem" 73 
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study of a WTB was carried out by Chen [31] to find out the characteristics of macroscopic failure 74 
and microscopic fractographic morphologies by means of X-ray computed tomography.  75 

Gholizadeh [32] presented an exhaustive review of NDT methods of composite materials, where 76 
they were classified into two main categories: contact and non-contact NDT methods. Figure 1 shows 77 
the most common classification of the NDTs in WTB [33]. 78 

 79 

Figure 1. Classification of NDT in WTB. 80 

3. Structural Health Monitoring and WTB 81 

The WTBs are becoming bigger and more complex, and many sensors are being employed for 82 
CMS. This data is transmitted to a central monitoring system, where it is analysed. Yang et al. [33] 83 
did a survey study of NDT in WTB, analysing its advantages and limitations through comparative 84 
studies. Martinez-Luengo et al. [34] carried out a review of the statistical pattern recognition methods 85 
for SHM for offshore WTB [35]. They evaluated each stage that SHMS can contribute to the 86 
improvement of a condition-based maintenance (CBM) strategy. Optimizing each stage is intended 87 
to increase the efficiency of the strategy, reducing maintenance costs by preventing faults.  88 

Yu et al. [36] implemented a deep belief network (DBN) in FDD. DBN employed the signals 89 
without knowing the physical model. The simulation results show that the method is robust, 90 
although it should be tested on real WTBs. 91 

Cho et al. [37] employed a Kalman filter to fault detection and isolation (FDI). They calculated 92 
the angle of the WTB pitch and utilised an isolation algorithm that determines the type, location, 93 
magnitude and time of the fault. Finally, a fault-tolerant controller is able to avoid unexpected 94 
external loads. Experimental results have demonstrated its effectiveness and the ability to detect and 95 
isolate various faults at an early stage.  96 

FDD has been done and automated by Koitz et al. [38]. However, the location of the fault is 97 
generally done manually according to the experience of the workers. SHM techniques are being 98 
employed to support the workers, considering the life cycle, adverse weather conditions, 99 
manufacturing faults, etc. Turnbull and Omenzetter [39,40] employed fuzzy finite element model 100 
updating (FFEMU) to analyze the damage of a small-scale WTB. This method was able to accurately 101 
predict the magnitude and location of the WTB faults. They also employed a new SHM methodology 102 
using two optimization algorithms for fuzzy finite element model, both the severity of the fault and 103 
its location were experimentally simulated in the WTB [40].  104 

The analysis of cointegration residues is used for monitoring of the WT in operation and fault 105 
detection. Dao et al. [41] designed a quality control chart method based on residual values. The results 106 
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shown that their method was robust and reliable. Nielsen and Sørensen [42] proposed a method 107 
based on a Markov deterioration model to optimize the maintenance of WTs. Data from previous 108 
inspections is needed and obtained by means of Bayesian dynamic networks in order to apply this 109 
method. 110 

The main techniques presented are focused on advances models based on statistical approaches 111 
applied in signal processing and pattern recognition. The current research, therefore, focuses on 112 
complex signals and analysing large amount and variety of data. The methods are also being 113 
designed and developed to study the condition of the component in real time. There a lot of studies 114 
based on artificial intelligence, and it will the trend in the next few years according to the researches 115 
trend. 116 

3.1. Visual Testing 117 

Visual inspection is a technique commonly used as a non-destructive testing (NDT) method to 118 
find faults in WTB as discontinuities and cracks. WTs are regularly found in isolated and complex 119 
environments with difficult access. To reduce maintenance costs and extend the life of the WTB, UAV 120 
inspections employ photogrammetric or cameras to provide a visual reconstruction of the WTB. In 121 
the future, the use of UAVs will be common for visual testing, as well as the artificial intelligence 122 
methods for detecting faults on the WTB surface and prognosis on-line of the SHM of WTBs. 123 

Maintenance tasks are based mainly on visual testing (VT) in WTBs, or visual inspection (VI) 124 
(see Figure 2). Stutzmann et al. [43] used a conditional probability model to analyse the inspections 125 
with numerical simulations about cracks due to fatigue. They tried to reduce the uncertainty to 126 
estimate the useful life of WT structures due to fatigue. VT is also used for welding analysis. 127 
However, it depends on the experience of the workers and it is subjective.  128 

Kim el al.[44] proposed a simple and essential NDT for WTBs. The damage detection system is 129 
based on pan-tilt zoom camera system. This system is used for the fault location in WTBs. It is able 130 
to detect 2 cm width crack to a distance of 200 m. 131 

The variety of faults in WTB and the lack of images of these faults cause that the fault diagnosis 132 
to be difficult. Yu et al.[45] proposed a method for fault diagnosis in WTB based on semantic 133 
characteristics of faults by a transfer characteristics extractor. It emulates the behaviour of human 134 
vision. 135 

Poozesh et al. [46] analysed the performance of conventional 3D digital image correlation (3D 136 
DIC) and 3D point tracking (3DPT) approaches, and proposed a multi-camera measurement system 137 
for WTB maintenance tasks. Their approaches can inspect large areas of the WTB, where no complex 138 
data acquisition systems are required.  139 

Unmanned aerial vehicles (UAVs) are being used to analyse superficial faults on the WTB, e.g. 140 
cracks [47]. Khadka et al. [48] employed a digital image correlation (DIC) system embedded in an 141 
UAV to study the dynamic characteristics of WTB. This system allows the remote condition 142 
monitoring of WTBs, both in offshore and onshore wind farms. Wang and Zhang [49] employed a 143 
cascade classifier trained to detect cracks. The method was validated for identifying and locating 144 
cracks in WTBs. They utilised a visual test that combine images from UAV together with a 145 
photogrammetric payload to perform the visual reconstruction of the WTB and its condition. They 146 
employed a photogrammetric software to process the images and to generate a 3D profile of the WTB. 147 
It was due by using a waypoint guidance algorithm that captures images at a constant distance from 148 
the WTB.  149 
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 150 

Figure 2. Temperature sensor on the WTBs. 151 

Table 1 shows the main strengths and weaknesses of the methods analysed in this section. 152 

Table 1. Main methods based on visual testing in WTB: Strengths and Weaknesses. 153 

Ref. Method Strengths Weaknesses 

[43] A conditional probability 

model to analyse results 

from inspections together 

with numerical 

simulations of fatigue 

cracks 

Reduction of uncertainty 

in the estimation of the 

remaining life of monopile 

substructures of WTs, e.g. 

WTBs 

It should need the 

integration of these results 

with a decision model for the 

study of the life cycle of WTs. 

[44] Visual Testing system 

based on pan-tilt zoom 

camera system. 

It is able to detect 2 cm 

width crack located at 200 

m distance. 

This method can only detect 

external surface damage 

[45] Fault semantic features 

with transfer feature 

extractor 

High learning capacity, 

immediate fault 

inspection, it is easy to 

implement and its cost is 

low. 

Unknown 

[46] A multi-camera 

measurement system 

using dynamic spatial data 

stitching 

The elimination of time-

consuming wiring and 

expensive sensors. The full 

field measurement over a 

large area and the need for 

large channel data 

acquisition systems. 

A full surface of a WTB is not 

inspected. It requires to set 

the accuracy of the method 

with more than two pairs of 

cameras. 

[48] Non-contact vibration 

monitoring of rotating 

WTs using a semi-

autonomous UAV with a 

digital image correlation 

system 

Monitoring of the WTBs in 

operation under real 

conditions 

Wind conditions can affect 

the correct operation of the 

AUV.  

The vision flight mode must 

be programmed for each 

specific turbine. 

[49] Automatic detection of 

WTB surface cracks by 

UAV 

Better performance than 

other classifiers based on 

similar feature sets. The 

effectiveness of the WTB 

crack detection method 

was demonstrated. 

The method needs to be 

verified in real WTB. 
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[50] Images from UAV together 

with a photogrammetric 

payload to perform the 

visual reconstruction of the 

WTB and its condition 

It was validated for 

identifying and locating 

cracks in WTBs 

To increase the accuracy. 

 154 

3.2. Ultrasonic Testing 155 

Ultrasonic testing is used to detect internal and external faults in WTBs, e.g. delamination, 156 
cracks, etc. [51,52]. The propagation of ultrasonic waves along the WTB leads to determine its 157 
condition [53,54]. Figure 3 shows an example of ultrasonic sensors located in WTBs and WT 158 
foundation. 159 

 160 

 161 

Figure 3. Wind turbine condition monitoring for WTB and tower. 162 

 163 
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Guided waves can travel long distances along the thickness of the WTB. These types of waves 164 
require signal analysis to identify and characterize faults. They involve dispersive and scatter guided 165 
wave modes. Tiwari and Raisutis [55] combined a transducer composed of macro fiber and air-166 
coupled transducers to transmit and receive ultrasound-guided waves. Subsequently, signal 167 
processing techniques were applied for the analysis and characterization of the faults. Yang et al.[56] 168 
compared non-linear acoustics and guided wave techniques. The first one was insensitive to WTB 169 
faults. The guided wave method was able to detect and locate the faults by using the network of 170 
novelty detectors methodology.  171 

Liu et al. [57] utilised an automatic positioning system in real time to measure the coordinates 172 
in working conditions. The system had an ADNS-3080 optoelectronic chip, a power conversion 173 
module and an USB transmission module. The results had a good accuracy. Li et al. [58] considered 174 
the adhesive quality inspection of wind rotor blades using thermography.  175 

Park et al. [59] proposed a two-level scanning system to minimise the time to inspect WTB: first 176 
level, a basic scan with low resolution is employed to locate the delamination, and; second level, if 177 
the delamination is detected and locate, a high resolution scan is done where the delamination was 178 
found. Moll et al. [60] used radar sensors permanently installed in the WT tower for WTB remote 179 
condition monitoring. The experiments were done in the laboratory, detecting faults with good 180 
accuracy.   181 

WTBs may also present wrinkles on their surfaces. Larrañaga et al. [61] studied 3 different 182 
ultrasound techniques to study this phenomenon: full matrix capture (FMC) together with the total 183 
focus method (TFM); a commercial phased-array ultrasound instrument, and; a single element 184 
immersion test. The results showed that the best results are obtained with the FMC/TFM method. 185 

Arnold [60] demonstrated experimentally that a bistatic frequency-modulated continuous wave 186 
(FMCW) radar can detect a 30 mm cut-off in the fiberglass composite structure. It was also located an 187 
accumulation of water.  188 

Although ultrasonic NDT are used effectively, the different layers of the WTB cause noise in the 189 
signals, making it difficult to detect and locate faults. Nowadays, there are different techniques for 190 
automatic processing of ultrasonic signals to increase the reliability and accuracy of these tests. Tiwari 191 
et al. [62] considered three techniques: wavelet transform, cross-correlation methods and Hilbert-192 
Huang transform. It is concluded that a hybrid system of these methods obtains the better solutions 193 
than the use the technique individually. In 2018, they employed a low-frequency ultrasonic system 194 
to detect and analyse faults in WTB [63]. Discrete wave transformation, variational mode 195 
decomposition and Hilbert transformation were also applied for ultrasonic signal processing. A new 196 
hybrid signal processing technique is applied by Tiwari et al. in [64]. Cross-correlation and wavelet 197 
transformation techniques are combined to determine the size and location of the faults. The results 198 
show that the fault is independent of the scattering characteristics of the guided waves.  199 

The fault detection method depends on the size of the faults, the distance between the 200 
transducers and the excitation frequency. Arcos et al. [65,66] utilised advanced signal processing and 201 
machine learning to calculate the thickness of dirt and mud on a WTB. They demonstrated that the 202 
combination of the k-nearest neighbours (KNN) with the principal component analysis (PCA) was 203 
the best approach for mud detection and diagnosis.  204 

Brett et al. [67] proposed an ultrasound technique with a frequency lower than 100kHz. It led to 205 
map the resonances of the structure and the possible failure conditions in WT foundations. The 206 
experimental results, together with mathematical models, demonstrated the viability of the technique 207 
to be employed also in WTB. 208 

Hermosa et al. [68] employed Macro-Fiber Composite transducers for FDD by means of 209 
ultrasound signals processing. They employed wavelet transforms, where the energy was used for 210 
pattern recognition. 211 

Lamarre [69] used a phased ultrasonic system for WTB inspections with low frequency sensors. 212 
Faults could be detected and set the size of faults such as wrinkles, delamination and adhesive 213 
thickness. This technique allowed a fast inspection, small resolution and full coverage of the 214 
inspected area. Li et al. [70] studied the quantitative relationship between millimeter-scale disunion 215 
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faults and ultrasonic parameters. Table 2 summarises the main strengths and weaknesses of the 216 
methods based on ultrasonic testing. 217 

 218 

Table 2. Ultrasonic Testing methods applied to WTB: Strengths and Weaknesses. 219 

Ref. Method Strengths Weaknesses 

[51] Wavelet transforms and pattern 

recognition on ultrasonic 

guides waves 

The method can 

detect ice on WTB 

with a low 

computational cost 

The method needs to be 

applied in real cases.  

[52] SHM for delamination 

detection and location 

employing guided waves 

The methodology 

employed is capable 

of detecting WTB 

faults at an early 

stage. 

A study is needed to 

implement a network of 

sensors arranged in a 

strategic way for the 

detection of faults, cracks or 

disbonds. 

[53] Guided wave signal processing 

and pattern recognition 

through automatic learning 

The method can 

detect and diagnose 

delamination in WTB, 

with a good accuracy. 

Unknown 

[55] Refinement of fault detection 

using guided waves 

The guided waves 

cover long distance 

along the thickness of 

the structure 

The guided waves can be 

dispersive, superimposed 

and scattered. Signal 

processing techniques are 

necessary 

[56] Guided wave SHM techniques 

by network of novelty detectors 

Possibility to create a 

network of low 

numbers of sensors 

and actuators for 

WTB-SHM. 

There are problems with the 

power supply to the 

transducers. 

[71] Automatic positioning system 

of ultrasonic testing 
Automatic 

positioning system to 

determine the 

coordinates and 

distance of the target 

in real time 

Need of components such 

as LEDs, lenses, 

microprocessor, optical 

sensors, etc. 

[61,64] Adaptive time-of-flight 

analysis of noncontact laser 

ultrasonic signals 

It detects 

delamination in WTB 

quickly. 

Two levels of scanning are 

needed for the 

implementation of the 

method. 

[60] Radar-based SHM of WTB The efficiency of the 

radar methodology 

for the WTB SHM was 

demonstrated.  

The presence of water 

on the WTB was 

successfully detected. 

No changing 

environmental conditions 

or variable operating 

conditions were 

considered. 

[61] Wrinkle measurement in glass-

carbon hybrid laminates 

The method of full-

matrix capture and 

the total focusing 

Not all techniques allow the 

characterisation of off-
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comparing ultrasonic 

techniques 

method provided 

better results. 

plane waviness in hybrid 

glass-carbon laminates. 

[62] Signal processing methods to 

improve the signal-to-noise 

ratio 

A hybrid signal 

processing method is 

proposed to improve 

fault detection. 

Cross-correlation is not 

efficient in reducing noise. 

The Hilbert Haung 

transformation is limited by 

intrinsic mode selection. 

[63] Post-processing of ultrasonic 

signals for the analysis of faults 

using guided waves 

Signal processing 

techniques are 

suitable for 

improving fault 

analysis. 

Only one side of the WTB 

segment was accessed. 

[64] Hybrid signal processing 

technique to improve the fault 

detection 

The wavelet 

transforms and cross-

correlation techniques 

are combined in order 

to extract the size and 

location of the faults 

and time delays 

Only one side of the sample 

was accessed 

[65] Fault diagnosis employing 

guided waves and supervised 

learning classifiers to detect dirt 

and mud on a WTB 

The proposed 

methodology can 

detect and classify the 

levels of mud 

considered in the 

experiment. 

Two scenarios have been 

studied; the best classifier is 

different for each case. 

Therefore, the classifiers 

should be evaluated for 

each specific case. 

[66] Detection and classification of 

ice thickness based on pattern 

recognition through guided 

ultrasonic waves and automatic 

learning 

The methodology 

used obtains ice 

detection results with 

excellent predictive 

accuracy. Twenty 

linear and non-linear 

classifiers of Machine 

Learning were used. 

Needs (?) To be applied in 

real cases. 

[68] Fault detection and diagnosis 

method based on the wavelet 

transform to detect faults  

The method provides 

an accurate position 

of the early fault and 

allows excellent 

preventive and 

predictive 

maintenance 

planning. 

It can lose information by 

filtering and post-

processing. 

[69] Accessible advanced ultrasonic 

phased 

array technology  

The small resolution, 

fast inspection speed, 

and full coverage of 

the inspected area. 

Expensive hardware is 

required. Only the 

Olympus brand has been 

analysed. 

[70] Quantitative research into 

millimetre-scale debonding 

faults by using ultrasonic 

inspection.  

Ultrasonic testing is 

effective in detecting 

faults in the bonding 

of composite 

materials. 

The method was applied by 

simulation and it can serve 

as a reference for future 

experiments. 

 220 
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The NDT ultrasound technique has been demonstrated to be able to detect external and internal 221 
faults in the WTB surfaces. This technique requires new research for the continuous monitoring of 222 
faults. It is also needed to continue researching in robust and efficiency algorithms, mainly based in 223 
artificial intelligence, due the amount and complexity of the data.  224 

3.3. Thermography Testing  225 

Thermography presents some problems to be used in WTB, e.g. misinterpretation of 226 
thermograms caused by reflections, dirt, etc. Doroshtnasir et al, [72] employed a method to minimize 227 
the disturbing influences analysing the WTB photographic images together with thermogram 228 
difference images. This technique can detect possible subsurface faults from the ground, aircraft or 229 
ships. 230 

Infrared analysis is an NDT that can inspect large surfaces in a short time. It was employed by 231 
Ramirez et al. [73] considering different scenarios over the WTB surface (see Figure 4). Avdelidis et 232 
al. [74] shown the advantages and limitations of the infrared thermography technique, they studied 233 
its use in the inspection and evaluation of WTBs. 234 

Worzewski et al. [75] employed several thermographic experiments on a glass fibre reinforced 235 
plastic (GFRP) stepped wedge and on a defective rotor WTB segment. The results showed that GFRP 236 
thicknesses of 3 cm can be detected only by solar heating. The experimental results were studied 237 
together with finite element method (FEM). 238 

Lizaranzu et al. [76] studied a set of patterns in several materials by active thermography and 239 
patterns recognitions. They concluded that thermography is a technique of easy configuration, 240 
without the need of contact, the inspection times are shorts and it allows large areas to be inspected. 241 
The results depend on the resolution of the thermographic camera, the minimum size/accuracy ratio 242 
of faults and the heat sources. 243 

WTB have also been studied in working conditions. Hwang et al. [77] analysed the WTB fault 244 
detection under rotating condition. They used a continuous line laser thermography system together 245 
with an algorithm to analyse faults. Although the sensor based ultrasonic technique generated noise 246 
on the signals, the noise was filtered, and false alarms were not found. Reference [78] proposed a 247 
continuous line laser scanning thermography system and a visualization algorithm for remote 248 
inspection of internal delamination in WTB. The results showed that the WTB can be quickly 249 
inspected and the internal delamination can be visualised without contact and autonomously. The 250 
visualization algorithm extracts the delamination without any false alarm.  251 

Dollinger et al. [79] studied the measurement uncertainty with three algorithms in sunny and 252 
cloudy environmental conditions. The results showed that the measurement uncertainty is limited to 253 
the flow characteristics of the boundary layer. The accuracy of the location depended on the 254 
temperature difference between the flow regimen and the width of the transition region.  255 

The aerodynamic performance of WTBs depends on the condition of the leading edge. 256 
Thermographic measurements allow a characterization of the leading edge condition. Dollinger et al. 257 
[80] demonstrated that post processed thermographic flow visualization measurements together with 258 
image processing algorithms allow the non-invasive localization of the laminar-to-turbulent 259 
transition position. 260 

Martin et al. [81] utilised infrared thermography, inverse terahertz synthetic opening radars and 261 
X-ray imaging. The research was done in the WTB manufacture, showing the advantages, 262 
disadvantages and future challenges for each technique.  263 

The glue structure is under more stress due to the WTBs being bigger and, therefore, its quality 264 
must be studied. The glue employed in WTB was studied by means of transmission thermography 265 
in reference [58]. Three different glue thicknesses were considered. The approaches provided results 266 
with good accuracy.  267 

Table 3 presents the main strengths and weaknesses of the methods based on thermography 268 
testing. 269 

  270 
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Table 3. Main methods based on thermographic testing in WTB: Strengths and Weaknesses. 271 

Ref. Method Strengths Weaknesses 

[72] On‐site inspection with 

thermography  

The method detects 

possible WTB subsurface 

faults from greater 

distances than others. 

The method uses particular 

WTB thermograms. In the 

future it is recommended 

that WTB be recorded 

automatically, therefore, 

thermograms can be in the 

correct angular position. 

[75,82] Thermographic inspection 

of a WTB utilizing natural 

conditions as excitation 

source 

It demonstrates that the 

sun is an enough heat 

source to apply 

thermography on GFRP 

FEM simulations have a 

sensitive variability 

regarding physical and 

environmental properties, 

that affect the 

thermographic images. 

[76] Analysis by transient 

active thermography of a 

set of inspection patterns. 

Thermography is an 

efficient method for fault 

detection in composite 

materials. It is easy to set 

up, is a non-contact 

technique, and inspection 

times are short. 

This technique is limited by 

the depth, dimensions and 

nature of the faults. It 

involves a distortion of the 

heat flow of the test piece. 

[77] Continuous line laser 

thermography for damage 

imaging of rotating WTB 

The proposed method 

achieves fast and in-situ 

non-contact failure 

images, automatically and 

in a rotating condition. 

It is proposed to improve 

inspection speed and 

damage depth estimation 

[78] Continuous line laser 

scanning thermography 

for remote internal 

delamination inspection at 

WTB 

The performance of the 

technique was validated 

experimentally and with a 

large-scale test (3 MW 

WT). 

The detection range can be 

improved by further 

adjusting the laser beam 

intensity and the viewing 

angle of the infrared camera 

[58] Adhesive quality 

inspection 

The results showed that 

transmission 

thermography is effective 

in determining the quality 

of the adhesive. 

Only applied to laboratory 

experiments. 

[79] IR thermographic flow 

visualization 

measurements for 

transition detection on WT 

in operation 

Measurements are 

possible at a working 

distance of several 

hundred meters. The 

proposed algorithm 

allows the location of the 

transition with sub-pixel 

precision. 

The location accuracy 

depends on the temperature 

difference between the flow 

regimes and the width of the 

transition region. 

[80] Quantification of 

boundary layer flow 

disturbances due to the 

leading-edge condition 

The measurement method 

can be used during 

operation and allows a 

characterization of the 

leading-edge condition. 

A long-term measurement 

campaign to measure the 

seasonal impact of 

boundary layer 

disturbances is 

recommended as future 

work. 
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The main thermography techniques are: instantaneous thermography; pulsed thermography; 272 
pulse phase thermography; ultrasonic blockade thermography, and; modulated thermography. Each 273 
of these types depends on the specific input of the system. Thermography is increasing as an NDT 274 
technique for composite materials. This class of technique can detect delamination faults with an 275 
accuracy comparable to other techniques [81]. The results show that they can detect adhesive faults, 276 
delamination and mechanical loading. 277 

 278 

Figure 4. Scheme of the experimental set up for ice detection by thermal infrared radiation [73]. 279 

3.4. Radiographic Testing 280 

Radiographic testing is an efficient NDT method to detect internal faults in polymer foam core 281 
sandwich panels [83]. Computed tomography (CT) use has increased in the last decade, due to 282 
improvements in spatial resolution, increased availability of X-rays and reduced acquisition time 283 
[84]. X-ray CT systems allow experimentation and capture processes in-situ and in real time (up to 284 
20 tomograms per second). Chen [85] proposed to examine the fractographic characteristics by optical 285 
miscroscopy and X-ray CM. Fractographic analysis identifies failure modes by studying sandwich 286 
panels with slotted spiral cores. The results show that the fiber rupture occurs in the bleaching region, 287 
although it cannot be visually appreciated. Radiography has been also employed in bearings. Reid et 288 
al. [86] have proposed the images from the Neutron Bragg edge to obtain two-dimensional mapping 289 
to detect the plastic deformation. The results showed that there is a strong correlation between the 290 
load and the width of the Bragg rim.  291 

Fiber orientation in WTB materials is essential because the compressive strength of the 292 
composite is directly related to the fiber orientation. Emerson et al.[87] proposed a segmentation 293 
method to accurately extract individual fibers by X-ray tomography. 294 

Fantidis et al. [88] employed a transportable radiography testing system to analyze WTBs. A 295 
transportable neutron radiography system, incorporating an Sb–Be source, was considered using the 296 
MCNPX code with a wide range of radiography parameters. 297 

Jasinien et al. [89] adapted ultrasonic and radiographic techniques. The novelty of the study is 298 
based on the combination of immersion techniques using a moving water container and contact 299 
pulse-echo. The approach could detect shape and size of faults. They employ pattern recognition to 300 
both ultrasonic and radiographic techniques, where the faults could be found. 301 

X-ray laminography is designed to provide 3D information of the WTB. Mikkelsen [90] used an 302 
X-ray detector to improve the amount of information obtained from the laminogram reconstruction. 303 
Then, a material decomposition algorithm was applied to the data. 304 

Table 4 shows the main radiographic testing methods applied to WTB, considering the strengths 305 
and weaknesses. 306 

 307 
 308 



 13 of 28 

 

Table 4. Main radiographic testing methods applied to WTB: Strengths and Weaknesses. 309 

Ref. Method Strengths Weaknesses 

 

[84] 

X-ray computed 

tomography of polymer 

composites 

Reduced acquisition time 

and improved spatial 

resolution. 

Low resolution 

[85] Fractographic analysis 

of WTB using optical 

microscopy and X-ray 

computed tomography 

The fractographic 

characteristics allow the 

identification of the failure 

process and the causes of 

future WTB failure. 

The sandwich structures of 

the WTBs must be studied for 

manufacturing induced faults 

that are unavoidable. 

[87] The method is able to 

extract individual fibres 

to calculate their 

orientation 

It obtains accurate results 

regardless of image quality. 

Sometimes it is not possible to 

obtain high quality images 

due to long scanning times. 

[88] Transportable 

radiography system 

Transportable X-ray is able 

to detect faults in WTB and 

reduce the cost of 

inspection. 

Unkown 

[89] Adapted ultrasonic and 

radiographic techniques 

for WTB 

The radiographic 

techniques efficiently detect 

structural faults within 

WTB. 

Better results are achieved 

with the combination of 

radiographic and ultrasonic 

techniques. 

[90] X-ray computer 

tomography 

X-ray CT is able to detect the 

fault evolution due to the 

stiffness properties of 

composite materials. 

The evolution of fatigue 

damage depends on the type 

of load and the architecture of 

the fiber reinforcement. 

 310 
X-ray test is commonly used as NDT method. Delamination can be seen in radiographic testing 311 

if the orientation is not perpendicular to the x-ray beam. There are many types of X-rays. Gamma-ray 312 
radiography is used for thicker parts because it has shorter wavelengths. X-ray tomography is a 313 
technique that is increasing in use, leading to study interior characteristics of the material. The new 314 
digital tomography systems allow 3-D visualization. There are many research studies that are 315 
appearing applied to WTB, and it is expected to continue the growth.  316 

3.5. Electromagnetic Testing (ET) 317 

Electromagnetic waves are used in NDT and SHM applications with microwave and millimeter 318 
wave frequency range [91]. Li et al. [92]  proposed a microwave scanning method to detect 319 
delamination in WTB. The reflected electromagnetic signal shows changes in the composite cross-320 
section, using an open-ended waveguide sensor. The results demonstrate that it can be an efficient 321 
technique to monitor the WTB for the manufacturing process. However, it is difficult to implement 322 
this technique due to the height of the WTB. 323 

Electromagnetic technology is sensitive to changes in conductivity and is non-invasive. Zhao et 324 
al. [93] proposed an NDT based on the electromagnetic measurement technology of carbon fiber 325 
reinforced polymer. This type of polymer is an advanced non-metallic composite material 326 
constructed from a carbon fiber reinforced polymer resin, which is used in the WTB for its high 327 
potential strength, anti-corrosion, light weight and good fatigue resistance. The results obtained 328 
demonstrated the effectiveness for the detection of WTB surface cracks. 329 

Im et al. [94] employed the characterization and inspection techniques at the edges of WTBs by 330 
TeraHertz (THz) waves. These signals, in the time domain spectroscopy mode, have some similarities 331 
to ultrasound waves, with the disadvantage that a THz pulse cannot penetrate a material with 332 



 14 of 28 

 

conductivity. However, the images have higher resolution, being an emerging NDT technique in 333 
WTB [95]. 334 

Moll et al. [96] applied a radar imaging system to WTBs. It is based on two continuous wave and 335 
frequency modulated radar (FMCW) sensors to monitor the WTBs in real time. They proposed to test 336 
with a transmitter and nine receivers for studying delamination, cracks, etc., in operating WTBs.  337 

Similar approaches can be also employed in other WT components, for example: there is an 338 
intrinsic electromagnetic vibration caused by an alternating magnetic field on a low rigidity stator, 339 
which modulates the vibration signals of the generator and makes it difficult to remove the cause of 340 
bearing failure. It can appear when there is a fault in a bearing. Teng et al. [97] deduced that 341 
electromagnetic vibration can be a disturbance source which makes difficult to achieve the 342 
characteristics of the fault. Esmaeili et al. [98] investigated the interference of Doppler echoes caused 343 
by WTs, as it affects meteorological radar stations. They presented a bistatic FMCW radar with a 344 
flexible and economical design together with the IQ-mix method. They are approaches to be consider 345 
in WTBs.  346 

Table 5 summarises the main electromagnetic testing methods applied to WTB, considering the 347 
strengths and weaknesses. 348 

 349 
Table 5. Main methods based on electromagnetic testing in WTB: Strengths and Weaknesses. 350 

Ref. Method Strengths Weaknesses 

[91] Electromagnetic 

waveguides for faults 

detection by numerical 

and experimental 

analysis  

Faults, e.g. cracks, can be 

detected. 

A perpendicularly oriented 

crack is more detectable than 

a coaxially aligned crack to 

the direction of wave 

propagation.  

[93] Measurement of CFRP 

surface by 

electromagnetic 

measuring 

The method shows 

results with good 

accuracy. 

More information about 

crack condition is necessary. 

[94] Characterization and 

inspection techniques of 

trailing edges in WTB 

using THz waves 

This method can 

measure the refractive 

index using THz-waves 

for WTB inspection. 

THz-waves are limited by 

the axial direction of the 

material. 

[95] A review about THz 

NDT 

 

THz images have higher 

resolution than 

ultrasound images. 

THz waves have less 

penetration than other 

methods. 

[96] Radar imaging system 

for in-service WTB 

inspection 

Radar systems are 

capable to monitor WTBs 

in real time. 

Other types of fault, such as 

delamination and cracks, 

should be tested in the 

future. 

 351 
The THz-NDT technique allows a high-resolution for cross-sectional images. The THz has high 352 

sensitivity and resolution, and the tests are performed without the need of contact. The disadvantage 353 
is the high cost of the CMS, but the new technologies are leading to reduce it. 354 

3.6. Acoustic Emission Testing  355 

Acoustic emission is a technique employed for early damage detection [99]. It can analyze cases 356 
such as friction, rolling contacts formation and propagation of cracks, mainly in the frequency 357 
domain [100]. 358 

Acoustic emission tests are a good technique for monitoring glass fiber reinforced plastics, a 359 
common material in WTB. However, general acoustic emission sensors have certain limitations for 360 
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these materials due to the low acoustic impedances. Kim et al. [101] compared various high sensitivity 361 
acoustic emission sensors for glass reinforced plastic to achieve a broadband frequency spectrum. 362 

Tang et al.[102] did an experimental study of the acoustic emission technique for monitoring the 363 
service state of WTB. A signal processing algorithm was applied considering high noise level during 364 
the fatigue test for the location of the acoustic emission source. The results showed that the cracks 365 
were successfully detected, and also early warnings. 366 

Saeedifar et al. [103] have used a combination of acoustic emission technique and the dispersion 367 
reduction method to determine the position of the delamination in WTBs. 368 

Gómez et al. [104] employed a heuristic method for detecting and locating faults with acoustic 369 
transducers. It was done in real WTBs. The sensors employed were the electromagnetic acoustic 370 
transducers type. They filtered the signal noise by wavelet transforms. Finally, they did multi-371 
parametric analysis for fault classification, and analysing the attenuation of the curves for fault 372 
localisation. 373 

Several piezoelectric acoustic emission sensors are employed to monitor WTBs components that 374 
support the load of the structure, generating a large amount of data. This data must be processed 375 
automatically for fault detection. Angelopoulos et al. [105] showed several algorithms that were 376 
useful for unsupervised collection of acoustic emission data. Tang et al. [106] utilised the acoustic 377 
emission by piezoelectric sensors. The signals were analysed by a K-mean clustering algorithm and 378 
pattern recognition method. The failure modes were classified accurately. 379 

Xu et al. [107] developed a robust fault mode identification of adhesive composite joints for WTB 380 
using acoustic emission and machine learning. The clustering method was based on fast search, that 381 
could find density peaks. It was applied as pattern recognition of acoustic emission signals. A similar 382 
research work was done by Liu et al. [108] under accelerated fatigue loads in WTBs. 383 

The foreign object impact was detected by acoustic emission and radical basis function neural 384 
network by Wang et al. [109]. The study was done in time and frequency domain analysis. 385 

Statistical parameters, as root mean square and experimental modal parameters, were employed 386 
for fault detection in WTB by Doliński et al. [110]. The rotor displacements of WTB rotors 387 
perpendicular to the rotor plane was studied by the ten first mode shapes of bending vibrations. 388 

Liu et al. [111] studied a WTB bearing with low speed by acoustic emission analysis. Fuentes et 389 
al.[112] proposed a method using acoustic emissions and probabilistic modelling for the detection of 390 
subsurface damage in WTB bearings.  391 

Marks et al. [113] studied experimentally the use of Lamb waves to monitor the SHM of a WTB. 392 
They used a Laser vibrometer of 3D scanning to study Lamb waves. They also applied different signal 393 
processing methods to locate accurately the fault. It was concluded that acoustic and ultrasonic 394 
techniques are robust, effective and reliable for SHM of WTBs. 395 

Wilkinson et al. [114] applied a low frequency acoustic and ultrasonic wave technique for SHM 396 
in aerial and aquatic environments. The results have shown that the acoustic system needs 397 
approximately 90-100dB, however the ultrasound system only requires about 40dB to obtain accuracy 398 
results.  399 

Cracks are being detected in WTB by using a single microphone, or a set of microphones. 400 
Poozesh et al. [115] employed an audio microphone inside the WTB and they monitor the sound. 401 
They could detect cracks in WTB with accuracy.  402 

 403 
Table 6 presents the main acoustic emission testing methods applied to WTB, considering the 404 

strengths and weaknesses. 405 

  406 
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Table 6. Main methods based on acoustic emission and ultrasonic testing in WTB: Strengths and 407 
Weaknesses. 408 

Ref. Method Strengths Weaknesses 

[102] CMS of WTB fatigue. The AE signals correlated 

with the growth of 

delamination. 

An optimal sound threshold 

should be selected to 

avoid/reduce false alarms. 

[103] Prediction and 

propagation of 

delamination by AE 

analysis and 

implementation of bi-

linear and tri-linear 

cohesive zone models. 

The combination of AE 

and tri-linear cohesive 

zone modelling, predicts 

the initiation and 

propagation of 

delamination in laminated 

composite materials. 

The bi-linear cohesive zone 

modelling cannot predict the 

initiation and propagation of 

delamination. 

[104] Signal processing for 

fault identification, 

detection and sizing 

with electromagnetic 

acoustic transducers. 

The results present good 

accuracy. 

It should be tested in real case 

studies. 

[106] A pattern recognition 

approach to study the 

WTB fatigue. 

AE signals characterize 

failure modes in composite 

materials. 

To improve the accuracy. 

[107] AE analysis by 

clustering analysis by 

machine learning. 

Robust identification for 

different faults by pattern 

recognition and AE signal 

analysis. 

The classification results 

depend on the cut-off rate. 

Adhesive layer shear failure is 

the least sensitive failure 

mode. 

[108] Identification of WTB 

fault mode under 

accelerated fatigue 

loading using AE and 

automatic learning 

Sources of local AE faults 

are successfully detected. 

WTBs in service require more 

AE sensors. 

[109] Identification of 

foreign objects based 

on AE, domain 

analysis, time domain 

analysis, frequency 

and radical base 

function neural 

network 

The method is validated, 

and present good 

accuracy. 

Requires to be tested in a real 

case study. 

[110] Damage detection in 

WTB using root mean 

square and 

experimental modal 

parameters 

Modal parameter 

monitoring is able to 

determine the technical 

condition of the structure. 

The method is effective for 

fault detection using 

vibration modes. 

The modal parameters are 

analysed only experimentally. 

The research was carried out 

in a small-scale WTB. 

 

[112] Detecting sub-surface 

damage using AE 

measurements and 

Gaussian mixture 

models  

Fault detection below the 

surface of a planetary 

gearbox bearing. The 

detection was made under 

AE measurements depend on 

load, temperature and 

lubrication. 
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changing operational and 

environmental conditions. 

[111] Fault diagnosis of WTB 

bearing using AE 

analysis 

The method is validated 

and offers a solution for 

wind farm applications. 

The fault signals are weak and 

are masked by large noise 

disturbances. 

[101] Comparison of AE 

sensors for glass fiber 

reinforced plastics 

Good accuracy in short 

distances. 

General AE sensors have 

limitations in monitoring 

composite materials due to 

low acoustic impedances. 

 409 

AE technique is a passive NDT technique, where elastic wave sources are emitted by the material 410 
under study and not by an excitation source [116]. These waves indicate microstructural changes of 411 
WTBs such as fiber breakage, cracking, disunion, crack initiation, and delamination. The use of 412 
guided waves for SHM is increasing. Most of the researches require to be implemented in real cases. 413 
Figure 5 shows an example of piezoelectric sensors located in a WTB section for acoustic emission 414 
testing and fault detection and location by triangulation.  415 

 416 

 417 

Figure 5. Wave front propagation from the acoustic emission source. 418 

 419 

3.7. Shearography Testing  420 

Shearography is used to visualize variations in surface deformation by interfering with laser 421 
point patterns. It is a robust technique against external vibrations for an interferometric system [117]. 422 
Shearography includes digital shearography, with high sensitivity that can be combined with 423 
different optical configurations, and studied by phase change algorithms and other techniques [118]. 424 
Macedo et al. [119] employed a novel shearography system with radial sensitivity to analyse the 425 
internal surfaces of the flanged joints of composite materials. Experimental results show that this 426 
technique can detect faults due to adhesion in flanged joints. Ye et al. [120] used an automated 427 
shearography system with thermal excitation. Their method allowed automatic inspection of the 428 
heatproof outer coating attached to the component. 429 

Shearography obtains high precision in short time, and it is also full-field and non-contact 430 
imaging [121]. Therefore, it is suitable for fast and reliable inspections of WTB [122]. This technique 431 
has a limited sensitivity to delamination faults in the thicker parts. Another drawback is expensive 432 
and complex equipment needed [123]. 433 
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Table 7 shows the main shearography testing methods applied to WTB, taking into account the 434 
strengths and weaknesses. 435 

 436 
Table 7. Main methods based on shearography testing in WTB: Strengths and Weaknesses. 437 

Ref. Method Strengths Weaknesses 

[119] Shearography with radial 

sensitivity 

It detects adhesion 

faults on internal 

surfaces. 

The radial displacement is 

not adjustable. 

[120] An automated shearography 

system for cylindrical surface 

inspection 

It can identify 

bonding faults on the 

cylindrical surface. 

Automated 

inspection is more 

efficient and accurate 

than manual 

inspection. 

A comprehensive training 

package is necessary to 

improve automatic 

recognition. 

[121] Internal fault detection 

method for composite 

insulators 

High-speed, non-

contact, full-field and 

high-precision 

imaging 

It was only tested in 

laboratory. 

[122] Method applied to composite 

materials with impact 

damage. 

The damage can be 

located with good 

accuracy. 

The loading time has a 

robust influence on the 

result. 

[123] Delamination detection in 

WTB 

The vacuum load is 

correct for 

delamination 

detection 

The vacuum pressure 

depends on the type of 

material and the properties 

of the fault.  

The load parameters must 

be defined for each type. 

[118]  Digital shearography  Simple configuration 

and low sensitivity to 

environmental 

disturbances. 

It offers a phase map with a 

lot of noise that reduce the 

fault detection accuracy. 

 438 
Shearography is applied to measure the deformation gradient, detecting faults better than other 439 

NDT techniques because of the stress concentration done by the fault. Shearography can measure in 440 
real time and full field. This technique has a simple configuration and offers direct measurement of 441 
stress. It is insensitive to the environment. Shearography is not able to detect faults far from the 442 
surface. Shearography is not a mature technique yet and requires future research.  443 

3.9. Other NDT Testing 444 

Mikkelsen [124] analysed fibre failures in WTB by X-ray technique and cross-sectional scanning. 445 
It was applied for fault detection in cases where the unidirectional fibre bundles are in contact with 446 
reinforcement fibre bundles. 447 

The VITCEA European project utilises shearography, thermography and ultrasounds for 448 
studying the carbon and glass fibers condition [125]. Delamination and flat bottom orifice of carbon 449 
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textile (CFRP) and Glass textile (GFRP) fiber reinforced polymer (FRP) materials with unidirectional 450 
fiber and quasi-isotropic were considered. Experimental data was studied by pattern recognition 451 
with both analytical and numerical models. It was based on data analysis by thermal contrasts 452 
together with phase evaluation techniques. Strugała et al. [126] introduced a new NDT method for 453 
low energy impact damage in CFRP. It is based on the thermo-optic effect employing a laminated 454 
film of thermochromic liquid crystal (TLC). The results are validated with other techniques such as 455 
computerized radiography and active thermography.  456 

Hyperspectal imaging, also called image spectroscopy, is considered as an NDT. This technique 457 
is fast in remote sensing, and it is used for fault detection and diagnosis. Rizk et al. [127] used this 458 
method for fault and ice detection. The results showed that hyper-surface imaging can detect fault in 459 
surface and subsurface, and also early ice formation.  460 

Baqersad et al. [128] presented a survey in photogrammetry and optical methods in structural 461 
dynamics. The authors concluded that these technologies should be work in real time. 462 

Iliopoulos et al. [129] utilised ultrasonic pulse velocity (UPV) and X-rays for SHM The data were 463 
studied by signals correlations.  464 
 465 

4. Outlook of the technology 466 

Offshore wind industry has a high percentage of the O&M total costs, being most of them invested 467 

in unplanned failures. To reach a competitive industry, new approaches in maintenance are required, 468 

e.g. CMS to TES. It is extended to WTB, where the size has increased in recent years, leading higher 469 

failure probability, i.e. costs and downtimes to the industry. 470 

This manuscript has presented and analysed the state of the art of NDT on WTB. It can be concluded 471 

that there are a large number of NTD techniques employed and developed in this field.  472 

Macroscopic failure and microscopic fractographic morphologies by mean of X-ray computed 473 

tomography and radiography are being employed, but they require new advances because they are 474 

costly and require a long time to inspect the WTBs. There are also new techniques that are beginning 475 

to be employed, e.g., electromagnetic testing, shearography, photogrammetry, spectroscopy, radar 476 

imaging system, etc. 477 

Ultrasonic testing and acoustic emission have been and will be the most employed technique to 478 

inspect WTD on, in and into the surface, but generate a signal that requires complex analytics. 479 

Most of the mentioned NDT techniques require to stop the WT. The new advances are going to 480 

employ they online, without any stop of the WT, and considering different techniques together to 481 

increase their accuracy. NDT systems embedded in UAVs are being to be designed and developed 482 

for this purpose employing, for example, images, thermography, photogrammetric, etc. 483 

Finally, CMS will use new sensors, that will generate variety a large amount of data, that will need 484 

of advanced analytics and to be studied together with SCADA data [130]. The survey shows that the 485 

new approaches are mainly focused on artificial intelligence and architecture of algorithms.  486 

 487 
 488 

6. Conclusions 489 

Any fault in wind turbine blades generates important downtimes, costs and energy production 490 
loss. Nowadays, new condition monitoring systems are appearing for Non-Destructive Testing 491 
applied to wind turbines blades. This paper has summarised and analysed the most important 492 
advances done in this field in the last few years. They are mainly based on visual, ultrasonic, 493 
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thermography, radiography, electromagnetic, acoustic emission, acoustic- ultrasonic, shearography 494 
and other non-destructive techniques. 495 

Visual inspection presents low accuracy regarding to other non-destructive techniques. Visual 496 
inspections of wind turbine blades are not easy because of the high height of them. Visual inspection 497 
does not detect internal faults. Cameras with big zoom or digital cameras with long range lenses are 498 
used for visual inspection, together with devices embedded in unmanned aerial vehicles. 499 

Ultrasonic techniques are the most employed in wind turbine blades. They have demonstrated 500 
robustness and accuracy for fault detection and diagnosis, both internal and external faults to the 501 
surface. 502 

Passive thermography can monitor wind turbine blades from the ground in wind turbine 503 
operation. Heat flows caused by periodic loading and faulty areas can be analysed with this 504 
technique. Active thermography needs thermal excitation. 505 

X-ray testing transmits ionizing radiation into a material and its attenuation is measured for fault 506 
detection. The X-ray allows the detection of internal faults such as cracks, thickness variations, 507 
corrosion, etc. It can be used in 2D or with 3D mode tomography. 508 

Electromagnetic testing is a non-contact technique with high resolution. It has great impact as a 509 
non-destructive technique for detection in metal components. 510 

Acoustic emission allows to detect and identify damages in wind turbine blades. A large number 511 
of studies have shown the efficiency of this method.  512 

Shearography is able to detect surface deformation. The efficiency depends on the size and 513 
location of the faults. The technique is being employed due to the technological advances done in 514 
cameras, laser sensors and hardware. 515 

 516 
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