218 research outputs found

    Multiplexer Technology in Utility Automation

    Get PDF
    In utility automation systems, data communication links have the essential role to convey real-time system between control centers and substations. Therefore, reliable and flexible communications are vital to run modern utility network in a safe and properly controlled way. In this thesis, possibilities of multiplexer technology in communications for utility automation systems are reviewed. At the beginning of this thesis, theory about multiplexing, especially SDH data transmission technology, and essential utility automation systems are discussed. Thereafter, the thesis concentrates on the characteristics and potential applications of the employer’s multiplexer device. Eventually, the performance requirements for the device are analyzed from the utility automation systems’ perspective and also some performance figures are measured with a build-up test system. Multiplexer technology was found to be well suitable for the underlying communications in utility automation systems. Especially the efficient protection schemes and network manageability makes SDH systems highly available and ensures quick reconfiguration in fault situations. Teleprotection that makes very fast operating times for power line protection possible, came up as the most important application.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Design of traffic shaper / scheduler for packet switches and DiffServ networks : algorithms and architectures

    Get PDF
    The convergence of communications, information, commerce and computing are creating a significant demand and opportunity for multimedia and multi-class communication services. In such environments, controlling the network behavior and guaranteeing the user\u27s quality of service is required. A flexible hierarchical sorting architecture which can function either as a traffic shaper or a scheduler according to the requirement of the traffic load is presented to meet the requirement. The core structure can be implemented as a hierarchical traffic shaper which can support a large number of connections with a wide variety of rates and burstiness without the loss of the granularity in cells\u27 conforming departure time. The hierarchical traffic shaper can implement the exact sorting scheme with a substantial reduced memory size by using two stages of timing queues, and with substantial reduction in complexity, without introducing any sorting inaccuracy. By setting a suitable threshold to the length of the departure queue and using a lookahead algorithm, the core structure can be converted to a hierarchical rateadaptive scheduler. Based on the traffic load, it can work as an exact sorting traffic shaper or a Generic Cell Rate Algorithm (GCRA) scheduler. Such a rate-adaptive scheduler can reduce the Cell Transfer Delay and the Maximum Memory Occupancy greatly while keeping the fairness in the bandwidth assignment which is the inherent characteristic of GCRA. By introducing a best-effort queue to accommodate besteffort traffic, the hierarchical sorting architecture can be changed to a near workconserving scheduler. It assigns remaining bandwidth to the best-effort traffic so that it improves the utilization, of the outlink while it guarantees the quality of service requirements of those services which require quality of service guarantees. The inherent flexibility of the hierarchical sorting architecture combined with intelligent algorithms determines its multiple functions. Its implementation not only can manage buffer and bandwidth resources effectively, but also does not require no more than off-the-shelf hardware technology. The correlation of the extra shaping delay and the rate of the connections is revealed, and an improved fair traffic shaping algorithm, Departure Event Driven plus Completing Service Time Resorting algorithm, is presented. The proposed algorithm introduces a resorting process into Departure Event Driven Traffic Shaping Algorithm to resolve the contention of multiple cells which are all eligible for transmission in the traffic shaper. By using the resorting process based on each connection\u27s rate, better fairness and flexibility in the bandwidth assignment for connections with wide range of rates can be given. A Dual Level Leaky Bucket Traffic Shaper(DLLBTS) architecture is proposed to be implemented at the edge nodes of Differentiated Services Networks in order to facilitate the quality of service management process. The proposed architecture can guarantee not only the class-based Service Level Agreement, but also the fair resource sharing among flows belonging to the same class. A simplified DLLBTS architecture is also given, which can achieve the goals of DLLBTS while maintain a very low implementation complexity so that it can be implemented with the current VLSI technology. In summary, the shaping and scheduling algorithms in the high speed packet switches and DiffServ networks are studied, and the intelligent implementation schemes are proposed for them

    Investigation of delay jitter of heterogeneous traffic in broadband networks

    Get PDF
    Scope and Methodology of Study: A critical challenge for both wired and wireless networking vendors and carrier companies is to be able to accurately estimate the quality of service (QoS) that will be provided based on the network architecture, router/switch topology, and protocol applied. As a result, this thesis focuses on the theoretical analysis of QoS parameters in term of inter-arrival jitter in differentiated services networks by deploying analytic/mathematical modeling technique and queueing theory, where the analytic model is expressed in terms of a set of equations that can be solved to yield the desired delay jitter parameter. In wireless networks with homogeneous traffic, the effects on the delay jitter in reference to the priority control scheme of the ARQ traffic for the two cases of: 1) the ARQ traffic has a priority over the original transmission traffic; and 2) the ARQ traffic has no priority over the original transmission traffic are evaluated. In wired broadband networks with heterogeneous traffic, the jitter analysis is conducted and the algorithm to control its effect is also developed.Findings and Conclusions: First, the results show that high priority packets always maintain the minimum inter-arrival jitter, which will not be affected even in heavy load situation. Second, the Gaussian traffic modeling is applied using the MVA approach to conduct the queue length analysis, and then the jitter analysis in heterogeneous broadband networks is investigated. While for wireless networks with homogeneous traffic, binomial distribution is used to conduct the queue length analysis, which is sufficient and relatively easy compared to heterogeneous traffic. Third, develop a service discipline called the tagged stream adaptive distortion-reducing peak output-rate enforcing to control and avoid the delay jitter increases without bound in heterogeneous broadband networks. Finally, through the analysis provided, the differential services, was proved not only viable, but also effective to control delay jitter. The analytic models that serve as guidelines to assist network system designers in controlling the QoS requested by customer in term of delay jitter

    Long Term Evolution-Advanced and Future Machine-to-Machine Communication

    Get PDF
    Long Term Evolution (LTE) has adopted Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SC-FDMA) as the downlink and uplink transmission schemes respectively. Quality of Service (QoS) provisioning is one of the primary objectives of wireless network operators. In LTE-Advanced (LTE-A), several additional new features such as Carrier Aggregation (CA) and Relay Nodes (RNs) have been introduced by the 3rd Generation Partnership Project (3GPP). These features have been designed to deal with the ever increasing demands for higher data rates and spectral efficiency. The RN is a low power and low cost device designed for extending the coverage and enhancing spectral efficiency, especially at the cell edge. Wireless networks are facing a new challenge emerging on the horizon, the expected surge of the Machine-to-Machine (M2M) traffic in cellular and mobile networks. The costs and sizes of the M2M devices with integrated sensors, network interfaces and enhanced power capabilities have decreased significantly in recent years. Therefore, it is anticipated that M2M devices might outnumber conventional mobile devices in the near future. 3GPP standards like LTE-A have primarily been developed for broadband data services with mobility support. However, M2M applications are mostly based on narrowband traffic. These standards may not achieve overall spectrum and cost efficiency if they are utilized for serving the M2M applications. The main goal of this thesis is to take the advantage of the low cost, low power and small size of RNs for integrating M2M traffic into LTE-A networks. A new RN design is presented for aggregating and multiplexing M2M traffic at the RN before transmission over the air interface (Un interface) to the base station called eNodeB. The data packets of the M2M devices are sent to the RN over the Uu interface. Packets from different devices are aggregated at the Packet Data Convergence Protocol (PDCP) layer of the Donor eNodeB (DeNB) into a single large IP packet instead of several small IP packets. Therefore, the amount of overhead data can be significantly reduced. The proposed concept has been developed in the LTE-A network simulator to illustrate the benefits and advantages of the M2M traffic aggregation and multiplexing at the RN. The potential gains of RNs such as coverage enhancement, multiplexing gain, end-to-end delay performance etc. are illustrated with help of simulation results. The results indicate that the proposed concept improves the performance of the LTE-A network with M2M traffic. The adverse impact of M2M traffic on regular LTE-A traffic such as voice and file transfer is minimized. Furthermore, the cell edge throughput and QoS performance are enhanced. Moreover, the results are validated with the help of an analytical model

    GLOBAL SERVICE PROVIDER STRATEGIES AND NETWORKING ALTERNATIVES

    Get PDF

    On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    Get PDF
    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices

    Buffer management and cell switching management in wireless packet communications

    Get PDF
    The buffer management and the cell switching (e.g., packet handoff) management using buffer management scheme are studied in Wireless Packet Communications. First, a throughput improvement method for multi-class services is proposed in Wireless Packet System. Efficient traffic management schemes should be developed to provide seamless access to the wireless network. Specially, it is proposed to regulate the buffer by the Selective- Delay Push-In (SDPI) scheme, which is applicable to scheduling delay-tolerant non-real time traffic and delay-sensitive real time traffic. Simulation results show that the performance observed by real time traffics are improved as compared to existing buffer priority scheme in term of packet loss probability. Second, the performance of the proposed SDPI scheme is analyzed in a single CBR server. The arrival process is derived from the superposition of two types of traffics, each in turn results from the superposition of homogeneous ON-OFF sources that can be approximated by means of a two-state Markov Modulated Poisson Process (MMPP). The buffer mechanism enables the ATM layer to adapt the quality of the cell transfer to the QoS requirements and to improve the utilization of network resources. This is achieved by selective-delaying and pushing-in cells according to the class they belong to. Analytical expressions for various performance parameters and numerical results are obtained. Simulation results in term of cell loss probability conform with our numerical analysis. Finally, a novel cell-switching scheme based on TDMA protocol is proposed to support QoS guarantee for the downlink. The new packets and handoff packets for each type of traffic are defined and a new cutoff prioritization scheme is devised at the buffer of the base station. A procedure to find the optimal thresholds satisfying the QoS requirements is presented. Using the ON-OFF approximation for aggregate traffic, the packet loss probability and the average packet delay are computed. The performance of the proposed scheme is evaluated by simulation and numerical analysis in terms of packet loss probability and average packet delay

    Some aspects of traffic control and performance evaluation of ATM networks

    Get PDF
    The emerging high-speed Asynchronous Transfer Mode (ATM) networks are expected to integrate through statistical multiplexing large numbers of traffic sources having a broad range of statistical characteristics and different Quality of Service (QOS) requirements. To achieve high utilisation of network resources while maintaining the QOS, efficient traffic management strategies have to be developed. This thesis considers the problem of traffic control for ATM networks. The thesis studies the application of neural networks to various ATM traffic control issues such as feedback congestion control, traffic characterization, bandwidth estimation, and Call Admission Control (CAC). A novel adaptive congestion control approach based on a neural network that uses reinforcement learning is developed. It is shown that the neural controller is very effective in providing general QOS control. A Finite Impulse Response (FIR) neural network is proposed to adaptively predict the traffic arrival process by learning the relationship between the past and future traffic variations. On the basis of this prediction, a feedback flow control scheme at input access nodes of the network is presented. Simulation results demonstrate significant performance improvement over conventional control mechanisms. In addition, an accurate yet computationally efficient approach to effective bandwidth estimation for multiplexed connections is investigated. In this method, a feed forward neural network is employed to model the nonlinear relationship between the effective bandwidth and the traffic situations and a QOS measure. Applications of this approach to admission control, bandwidth allocation and dynamic routing are also discussed. A detailed investigation has indicated that CAC schemes based on effective bandwidth approximation can be very conservative and prevent optimal use of network resources. A modified effective bandwidth CAC approach is therefore proposed to overcome the drawback of conventional methods. Considering statistical multiplexing between traffic sources, we directly calculate the effective bandwidth of the aggregate traffic which is modelled by a two-state Markov modulated Poisson process via matching four important statistics. We use the theory of large deviations to provide a unified description of effective bandwidths for various traffic sources and the associated ATM multiplexer queueing performance approximations, illustrating their strengths and limitations. In addition, a more accurate estimation method for ATM QOS parameters based on the Bahadur-Rao theorem is proposed, which is a refinement of the original effective bandwidth approximation and can lead to higher link utilisation
    • …
    corecore