174 research outputs found

    Distributed Soft Coding with a Soft Input Soft Output (SISO) Relay Encoder in Parallel Relay Channels

    Full text link
    In this paper, we propose a new distributed coding structure with a soft input soft output (SISO) relay encoder for error-prone parallel relay channels. We refer to it as the distributed soft coding (DISC). In the proposed scheme, each relay first uses the received noisy signals to calculate the soft bit estimate (SBE) of the source symbols. A simple SISO encoder is developed to encode the SBEs of source symbols based on a constituent code generator matrix. The SISO encoder outputs at different relays are then forwarded to the destination and form a distributed codeword. The performance of the proposed scheme is analyzed. It is shown that its performance is determined by the generator sequence weight (GSW) of the relay constituent codes, where the GSW of a constituent code is defined as the number of ones in its generator sequence. A new coding design criterion for optimally assigning the constituent codes to all the relays is proposed based on the analysis. Results show that the proposed DISC can effectively circumvent the error propagation due to the decoding errors in the conventional detect and forward (DF) with relay re-encoding and bring considerable coding gains, compared to the conventional soft information relaying.Comment: to appear on IEEE Transactions on Communication

    Efficient Transmission Techniques in Cooperative Networks: Forwarding Strategies and Distributed Coding Schemes

    Get PDF
    This dissertation focuses on transmission and estimation schemes in wireless relay network, which involves a set of source nodes, a set of destination nodes, and a set of nodes helps communication between source nodes and destination nodes, called relay nodes. It is noted that the overall performance of the wireless relay systems would be impacted by the relay methods adopted by relay nodes. In this dissertation, efficient forwarding strategies and channel coding involved relaying schemes in various relay network topology are studied.First we study a simple structure of relay systems, with one source, one destination and one relay node. By exploiting “analog codes” -- a special class of error correction codes that can directly encode and protect real-valued data, a soft forwarding strategy –“analog-encode-forward (AEF)”scheme is proposed. The relay node first soft-decodes the packet from the source, then re-encodes this soft decoder output (Log Likelihood Ratio) using an appropriate analog code, and forwards it to the destination. At the receiver, both a maximum-likelihood (ML) decoder and a maximum a posterior (MAP) decoder are specially designed for the AEF scheme.The work is then extended to parallel relay networks, which is consisted of one source, one destination and multiple relay nodes. The first question confronted with us is which kind of soft information to be relayed at the relay nodes. We analyze a set of prevailing soft information for relaying considered by researchers in this field. A truncated LLR is proved to be the best choice, we thus derive another soft forwarding strategy – “Z” forwarding strategy. The main parameter effecting the overall performance in this scheme is the threshold selected to cut the LLR information. We analyze the threshold selection at the relay nodes, and derive the exact ML estimation at the destination node. To circumvent the catastrophic error propagation in digital distributed coding scheme, a distributed soft coding scheme is proposed for the parallel relay networks. The key idea is the exploitation of a rate-1 soft convolutional encoder at each of the parallel relays, to collaboratively form a simple but powerful distributed analog coding scheme. Because of the linearity of the truncated LLR information, a nearly optimal ML decoder is derived for the distributed coding scheme. In the last part, a cooperative transmission scheme for a multi-source single-destination system through superposition modulation is investigated. The source nodes take turns to transmit, and each time, a source “overlays” its new data together with (some or all of) what it overhears from its partner(s), in a way similar to French-braiding the hair. We introduce two subclasses of braid coding, the nonregenerative and the regenerative cases, and, using the pairwise error probability (PEP) as a figure of merit, derive the optimal weight parameters for each one. By exploiting the structure relevance of braid codes with trellis codes, we propose a Viterbi maximum-likelihood (ML) decoding method of linear-complexity for the regenerative case. We also present a soft-iterative joint channel-network decoding. The overall decoding process is divided into the forward message passing and the backward message passing, which makes effective use of the available reliability information from all the received signals. We show that the proposed “braid coding” cooperative scheme benefits not only from the cooperative diversity but also from the bit error rate (BER) performance gain

    Cooperative diversity for the cellular uplink: Sharing strategies, performance analysis, and receiver design

    Get PDF
    In this thesis, we propose data sharing schemes for the cooperative diversity in a cellular uplink to exploit diversity and enhance throughput performance of the system. Particularly, we consider new two and three-or-more user decode and forward (DF) protocols using space time block codes. We discuss two-user and three-user amplify and forward (AF) protocols and evaluate the performance of the above mentioned data sharing protocols in terms of the bit error rate and the throughput in an asynchronous code division multiple access (CDMA) cellular uplink. We develop a linear receiver for joint space-time decoding and multiuser detection that provides full diversity and near maximum-likelihood performance.;We also focus on a practical situation where inter-user channel is noisy and cooperating users can not successfully estimate other user\u27s data. We further design our system model such that, users decide not to forward anything in case of symbol errors. Channel estimation plays an important role here, since cooperating users make random estimation errors and the base station can not have the knowledge of the errors or the inter-user channels. We consider a training-based approach for channel estimation. We provide an information outage probability analysis for the proposed multi-user sharing schemes. (Abstract shortened by UMI.)

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Soft information based protocols in network coded relay networks

    Get PDF
    Future wireless networks aim at providing higher quality of service (QoS) to mobile users. The emergence of relay technologies has shed light on new methodologies through which the system capacity can be dramatically increased with low deployment cost. In this thesis, novel relay technologies have been proposed in two practical scenarios: wireless sensor networks (WSN) and cellular networks. In practical WSN designs, energy conservation is the single most important requirement. This thesis draws attention to a multiple access relay channels model in the WSN. The network coded symbol for the received signals from correlated sources has been derived; the network coded symbol vector is then converted into a sparse vector, after which a compressive sensing (CS) technique is applied over the sparse signals. A theoretical proof analysis is derived regarding the reliability of the network coded symbol formed in the proposed protocol. The proposed protocol results in a better bit error rate (BER) performance in comparison to the direct implementation of CS on the EF protocol. Simulation results validate our analyses. Another hot topic is the application of relay technologies to the cellular networks. In this thesis, a practical two-way transmission scheme is proposed based on the EF protocol and the network coding technique. A trellis coded quantization/modulation (TCQ/M) scheme is used in the network coding process. The soft network coded symbols are quantized into only one bit thus requiring the same transmission bandwidth as the simplest decode-and-forward protocol. The probability density function of the network coded symbol is derived to help to form the quantization codebook for the TCQ. Simulations show that the proposed soft forwarding protocol can achieve full diversity with only a transmission rate of 1, and its BER performance is equivalent to that of an unquantized EF protocol

    Soft information based protocols in network coded relay networks

    Get PDF
    Future wireless networks aim at providing higher quality of service (QoS) to mobile users. The emergence of relay technologies has shed light on new methodologies through which the system capacity can be dramatically increased with low deployment cost. In this thesis, novel relay technologies have been proposed in two practical scenarios: wireless sensor networks (WSN) and cellular networks. In practical WSN designs, energy conservation is the single most important requirement. This thesis draws attention to a multiple access relay channels model in the WSN. The network coded symbol for the received signals from correlated sources has been derived; the network coded symbol vector is then converted into a sparse vector, after which a compressive sensing (CS) technique is applied over the sparse signals. A theoretical proof analysis is derived regarding the reliability of the network coded symbol formed in the proposed protocol. The proposed protocol results in a better bit error rate (BER) performance in comparison to the direct implementation of CS on the EF protocol. Simulation results validate our analyses. Another hot topic is the application of relay technologies to the cellular networks. In this thesis, a practical two-way transmission scheme is proposed based on the EF protocol and the network coding technique. A trellis coded quantization/modulation (TCQ/M) scheme is used in the network coding process. The soft network coded symbols are quantized into only one bit thus requiring the same transmission bandwidth as the simplest decode-and-forward protocol. The probability density function of the network coded symbol is derived to help to form the quantization codebook for the TCQ. Simulations show that the proposed soft forwarding protocol can achieve full diversity with only a transmission rate of 1, and its BER performance is equivalent to that of an unquantized EF protocol

    Closed-Form Error Probability of Network-Coded Cooperative Wireless Networks with Channel-Aware Detectors

    No full text
    International audienceIn this paper, we propose a simple analytical methodology to study the performance of multi-source multi-relay cooperative wireless networks with network coding at the relay nodes and Maximum-Likelihood (ML-) optimum channel-aware detectors at the destination. Channel-aware detectors are a broad class of receivers that account for possible decoding errors at the relays, and, thus, are inherently designed to mitigate the effect of erroneous forwarded and network-coded data. In spite of the analytical complexity of the problem at hand, the proposed framework turns out to be simple enough yet accurate and insightful to understand the behavior of the system, and, in particular, to capture advantages and disadvantages of various network codes and the impact of error propagation on their performance. It is shown that, with the help of cooperation, some network codes are inherently more robust to decoding errors at the relays, while others better exploit the inherent spatial diversity and redundancy provided by cooperative networking. Finally, theory and simulation highlight that the relative advantage of a network code with respect to the others might be different with and without decoding errors at the relays

    Lattice-Based Coding Schemes for Wireless Relay Networks

    Get PDF
    Compute-and-forward is a novel relaying paradigm in wireless communications in which relays in a network directly compute or decode functions of signals transmitted from multiple transmitters and forward them to a central destination. In this dissertation, we study three problems related to compute-and-forward. In the first problem, we consider the use of lattice codes for implementing a compute-and-forward protocol in wireless networks when channel state information is not available at the transmitter. We propose the use of lattice codes over Eisenstein integers and we prove the existence of a sequence of lattices over Eisenstein integers which are good for quantization and achieve capacity over an additive white Gaussian noise (AWGN) channel. Using this, we show that the information rates achievable with nested lattice codebooks over Eisenstein integers are higher than those achievable with nested lattice codebooks over integers considered by Nazer and Gastpar in [6] in the average sense. We also propose a separation-based framework for compute-and-forward that is based on the concatenation of a non-binary linear code with a modulation scheme derived from the ring of Eisenstein integers, which enables the coding gain and shaping gain to be separated, resulting in significantly higher theoretically achievable computation rates. In the second problem, we construct lattices based on spatially-coupled low-density parity check (LDPC) codes and empirically show that such lattices can approach the Poltyrev limit very closely for the point-to-point unconstrained AWGN channel. We then employ these lattices to implement a compute-and-forward protocol and empirically show that these lattices can approach the theoretically achievable rates closely. In the third problem, we present a new coding scheme based on concatenating a newly introduced class of lattice codes called convolutional lattice codes with LDPC codes, which we refer to as concatenated convolutional lattice codes (CCLS) and study their application to compute-and-forward (CF). The decoding algorithm for CCLC is based on an appropriate combination of the stack decoder with a message passing algorithm, and is computationally much more efficient than the conventional decoding algorithm for convolutional lattice codes. Simulation results show that CCLC can approach the point-to-point uniform input AWGN capacity very closely with soft decision decoding. Also, we show that they possess the required algebraic structure which makes them suitable for recovering linear combinations (over a finite field) of the transmitted signals in a multiple access channel. This facilitates their use as a coding scheme for the compute-and-forward paradigm. Simulation results show that CCLC can approach theoretically achievable rates very closely when implemented for the compute-and-forward

    Distributed Cooperative Spatial Multiplexing System

    Get PDF
    Multiple-Input-Multiple-Output (MIMO) spatial multiplexing systems can increase the spectral efficiency manyfold, without extra bandwidth or transmit power, however these advantages are based on the assumption that channels between different transmit antenna and receive antenna are independent which requires the elements in antenna array be separated by several wavelengths. For small mobile devices, the requirement is difficult to implement in practice. Cooperative spatial multiplexing (C-SM) system provides a solution: it organizes antennas on distributed mobile stations to form a virtual antenna array (VAA) to support spatial multiplexing. In this thesis, we propose a novel C-SM system design which includes a transmitter with two antennas, a single antenna receiver and a relay group with two single antenna relays. In this design, we assume that the transmitter tries to transmit two coded independent messages to the receiver simultaneously but the transmitter-receiver link is too weak to support the transmission. Thus a relay group is introduced to help with the transmission. After relays receive the messages from the transmitter via a 2×22\times 2 MIMO link, they first detect and quantize the received messages, then compress them independently according to the Slepian and Wolf theorem, the compressed messages are sent to the receiver simultaneously where de-compression and de-quantization are performed on the received messages. After that the resulting messages are combined to estimate the original coded messages. The estimated coded messages are decoded to produce the original messages. The basic system structure is studied and an analytical bit error rate expression is derived. Several transmission protocols are also introduced to enhance the system BER performance. The merit of this design is focus on the relay destination link. Because the Slepian and Wolf theorem is applied on the relay-destination link, messages at the relays can be compressed independently and de-compressed jointly at the receiver with arbitrarily small error probability but still achieve the same compression rate as a joint compression scheme does. The Slepian and Wolf theorem is implemented by a joint source-channel code in this thesis. Several schemes are introduced and tested, the testing results and performance analysis are given in this thesis. According to the chief executive officer (CEO) problem in the network information theory, we discover an error floor in this design. An analytical expression for this error floor is derived. A feedback link is also introduced from the receiver to the relays to allow the relays to cooperatively adapt their compression rates to the qualities of the received messages. Two combination schemes at the receiver are introduced, their performances are examined from the information theory point of view, the results and performance analysis are given in this thesis. As we assume that the relay destination link is a multiple access channel (MAC) suffers from block Rayleigh fading and white Gaussian noise, the relationship between the MAC channel capacity and the Slepian and Wolf compression rate region is studied to analyse the system performance
    corecore