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ABSTRACT

Compute-and-forward is a novel relaying paradigm in wireless communications

in which relays in a network directly compute or decode functions of signals trans-

mitted from multiple transmitters and forward them to a central destination. In this

dissertation, we study three problems related to compute-and-forward.

In the first problem, we consider the use of lattice codes for implementing a

compute-and-forward protocol in wireless networks when channel state information

is not available at the transmitter. We propose the use of lattice codes over Eisen-

stein integers and we prove the existence of a sequence of lattices over Eisenstein

integers which are good for quantization and achieve capacity over an additive white

Gaussian noise (AWGN) channel. Using this, we show that the information rates

achievable with nested lattice codebooks over Eisenstein integers are higher than

those achievable with nested lattice codebooks over integers considered by Nazer and

Gastpar in [6] in the average sense. We also propose a separation-based framework

for compute-and-forward that is based on the concatenation of a non-binary linear

code with a modulation scheme derived from the ring of Eisenstein integers, which

enables the coding gain and shaping gain to be separated, resulting in significantly

higher theoretically achievable computation rates.

In the second problem, we construct lattices based on spatially-coupled low-

density parity check (LDPC) codes and empirically show that such lattices can ap-

proach the Poltyrev limit very closely for the point-to-point unconstrained AWGN

channel. We then employ these lattices to implement a compute-and-forward proto-

col and empirically show that these lattices can approach the theoretically achievable

rates closely.
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In the third problem, we present a new coding scheme based on concatenating a

newly introduced class of lattice codes called convolutional lattice codes with LDPC

codes, which we refer to as concatenated convolutional lattice codes (CCLS) and

study their application to compute-and-forward (CF). The decoding algorithm for

CCLC is based on an appropriate combination of the stack decoder with a message

passing algorithm, and is computationally much more efficient than the conventional

decoding algorithm for convolutional lattice codes. Simulation results show that

CCLC can approach the point-to-point uniform input AWGN capacity very closely

with soft decision decoding. Also, we show that they possess the required algebraic

structure which makes them suitable for recovering linear combinations (over a fi-

nite field) of the transmitted signals in a multiple access channel. This facilitates

their use as a coding scheme for the compute-and-forward paradigm. Simulation re-

sults show that CCLC can approach theoretically achievable rates very closely when

implemented for the compute-and-forward.
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1. INTRODUCTION

Since Shannon’s signature paper, “A mathematical theory of communication”

was published in 1948, one of the main focuses of coding theory has been to design

coding schemes with reasonable encoding and decoding complexities that approach

the Shannon limit for the point-to-point additive white Gaussian noise (AWGN)

channel. After nearly six decades of hard work by many researchers, a variety of

error correcting codes such as Turbo codes, LDPC codes, and most recently Polar

codes, have been discovered which approach the Shannon limit for the point-to-point

AWGN channel.

In the last three decades, the widespread use of the internet and cell-phones,

particularly smart phones, has led to a substantial increase in the amount of data

exchanged over wireless networks. Unlike the point-to-point channel, the best achiev-

able rates for even the simplest wireless network setups, such as the two user inter-

ference channel, are not known. Moreover, it is not known whether the utilization of

coding schemes that are known to approach the Shannon limit for the point-to-point

channel would result in the highest achievable rates for wireless networks. These

open problems have motivated researchers to move beyond known paradigms for

the point-to-point channel and design information forwarding strategies and coding

schemes that take advantage of certain properties of the wireless medium, such as

superposition and the ability to broadcast in order to achieve higher exchange rates

and combat path loss.

In this dissertation, we will focus on a special case of wireless networks which

are referred to as wireless relay networks. A wireless relay network consists of a set

of transmitter nodes and a set of relays. Typically, direct communication between
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transmitter nodes are restricted and communication is facilitated through the relays.

One of the most commonly used system models for wireless relay networks is the

additive white Gaussian noise (AWGN) relay network. In the AWGN relay network,

there is also a final destination node which all relays transmit to. This destination

node’s goal is to determine the individual messages of the transmitter nodes. We

provide a detailed description of the AWGN relay network in section 2.3.

A variety of information forwarding strategies can be used in an AWGN relay net-

work. Amplify-and-forward is an information forwarding strategy where the relays

scale their observation in order to satisfy the power constraint and forward it to the

final destination node [40]. The main drawback of amplify-and-forward is the propa-

gation of noise throughout the network. Decode-and-forward is another information

forwarding strategy where the relays individually decode to the messages transmitted

from the transmitter nodes and re-encode them for collaborative transmission [41].

The main drawback of decode-and-forward is the limitation of the achievable rates

by interference.

In this dissertation, we will focus on compute-and-forward (CF), which is a more

recently introduced information forwarding paradigm in wireless networks [6]. In

compute-and-forward, relays directly decode to functions of transmitted messages

from the transmitter nodes. These functions are chosen carefully such that when the

central destination receives them, it is able to determine each transmitted message

individually. One way to choose these functions would be to decode to a linear

integer combination of transmitted messages. For this choice of functions, it is highly

desirable for a code to have an additive group property under real additions. Lattice

codes are a class of codes that have this property and therefore they are a perfect

candidate for implementing compute-and-forward.

A variety of open problems exist in the compute-and-forward framework for
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the AWGN relay network. One of these open problems is that the performance

of lattice codes with reasonable encoding and decoding complexities and how close

they approach theoretically achievable rates for this framework have not been well-

investigated. Another open problem is that it is not known whether it would be

possible to recover linear combinations that are different from integer linear combi-

nations that would result in higher achievable rates. A third open problem is that

it is not known whether it would be possible to design a more practically imple-

mentable framework for compute-and-forward with achievable rates comparable to

theoretically achievable rates.

In this dissertation, we thoroughly study these three problems. We show that

by choosing a different construction of lattices and choosing Eisentein integers for

obtaining linear combinations of transmitted signals, higher information rates can be

achieved than what was stated in [6]. Also, we propose a separation-based framework

for compute-and-forward where the demodulation and decoding is separated and

show that this framework can achieve higher computation rates. We then design

lattice codes with reasonable encoding and decoding complexities that approach the

achievable computation rates stated in [6] and [24].

1.1 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we specify

the notation that will be used throughout this dissertation and provide some back-

ground on lattices and the lattice-based compute-and-forward framework proposed

in [6] and [24]. In Chapter 3, we first show that there exist lattices over Eisenstein

integers that are simultaneously good for quantization and good for AWGN channel

coding and then we adapt Nazer and Gastpar’s framework in [6] to lattices over

Eisenstein integers, i.e., decoding to a linear Eisenstein integer combination. Sim-
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ulation results show that lattices over Eisenstein integers can achieve substantially

higher computation rates than lattices over integers for certain channel realizations

and in the average sense. We then introduce a separation-based coding scheme for

compute-and-forward based on lattice codes obtained from lattices over Eisenstein

integers built with Construction A, where the demodulation and decoding are im-

plemented separately. Simulation results show that this coding scheme can achieve

higher computation rates than Nazer and Gastpar’s coding scheme over Eisenstein

integers as the field size increases. In Chapter 4, we construct lattice codes from

Spatially-Coupled LDPC codes, which we refer to as SCLDA codes and show that

they approach the Poltyrev limit very closely. Motivated by this result, we imple-

ment SCLDA code for our separation-based coding scheme for compute-and-forward

and show that we can closely approach theoretically achievable rates. In Chapter 5,

we introduce a new class of lattice codes obtained from concatenating a newly intro-

duced class of lattice codes known as convolutional lattice codes [13], with interleaved

Low Density Parity Check (LDPC) codes, which we refer to as concatenated convo-

lutional lattice codes (CCLC). Simulation results show that CCLC can achieve good

error correcting performance with less complex decoders for the point-to-point chan-

nel and can be effectively implemented for compute-and-forward without an increase

in the complexity of the decoder. In Chapter 6, we discuss some of the potential

future work of our studies we mentioned in Chapters 3, 4, and 5.
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2. BACKGROUND

In this chapter, we first specify the notation that will be used throughout this dis-

sertation. We then provide some background on lattices and nested lattice codes and

some important properties of lattices that lay the foundation for our contributions.

Finally, we describe the AWGN relay network in detail and cover the lattice-based

framework for compute-and-forward proposed in [24] and [6].

2.1 Notational convention

Throughout this dissertation, we use R to denote the field of real numbers, C to

denote the field of complex numbers, and Fq to denote a finite field of size q. Z, Z[i],

and Z[ω] are used to denote the set of integers, Gaussian integers, and Eisenstein

integers, respectively. We use underlined variables to denote vectors and boldface

uppercase variables to denote matrices, e.g., x and X, respectively. We denote the

jth column of a matrix X as Xj, the i
th row of a matrix X as xi ,the element at

the ith row and jth column of a matrix X as xi,j, and the ith element of a vector x

as xi. We denote the vector that consists of all the elements between indices (i, j)

and (i, j + L) in a matrix X as xi,j+L
i,j . The distinction between a row or a column

vector can be understood from the context. Also, we use superscript T to denote

the transpose operation, e.g., xT and XT . We use superscript H to denote the

Hermitian operation, e.g., xH and XH . We denote addition and multiplication over

a finite field as ⊕ and ·, respectively. We denote the Euclidean metric as ∥ ∥, the

discrete convolution operation as ⋆, the cardinality of a set S as |S|, and a ball with

center x and radius r as B(x, r).. Also,. We define log+(x) , max(log(x), 0). We

denote the all zero vector in Rn as 0 and the n× n identity matrix as I. We denote

the volume of a bounded region E ∈ Rn as Vol (E) and denote the n-dimensional
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sphere of radius r centered at 0 as B(r) , {s : ∥s∥ ≤ r}. For a discrete set S, we

denote S ′ , S \ 0.

2.2 Lattices, nested lattice codes, and Construction A

Definition 1 (Lattice over Z). An n-dimensional lattice over natural integers, Λ(n),

is a discrete set of points in Rn such that Λ(n) is a discrete additive subgroup of Rn

with rank k where k ≤ n. Such a lattice can be generated via a full rank generator

matrix B ∈ Rn×k according to

Λ(n) =
{
λ = Be : e ∈ Zk

}
. (2.1)

In Fig. 2.1, we depict the hexagonal lattice, which is over R2 and has a generator

matrix B = [ 1 0 ; − 1/2
√
3/2 ].

For notational convenience, we shall drop the superscript in Λ(n) in this disserta-

tion and denote n-dimensional lattices as Λ. Also, we refer to lattices over integers

as Z-lattices throughout this dissertation.

Definition 2 (Quantizer). Given a Z-lattice Λ, a lattice quantizer with respect to Λ

is a mapping, QΛ : Rn → Λ, that maps a point s ∈ Rn, to the closest lattice point in

Euclidean distance:

QΛ(s) = argmin
λ∈Λ

∥s− λ∥. (2.2)

Definition 3 (Fundamental Voronoi Region). The fundamental Voronoi region of

a given Z-lattice Λ, denoted as VΛ, is the set of all points in Rn that are quantized

with respect to Λ to the all zero vector:

VΛ = {s : QΛ(s) = 0} . (2.3)
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Figure 2.1: A2 lattice

In Fig. 2.2, we depict the quantization operation and the Voronoi region of a set

of lattice points. The smaller hexagons are the Voronoi regions of the lattice points,

which are colored in green. Some point in R2 is colored in blue and as one might

expect, the blue point is quantized to the lattice point which has a Voronoi region

that contains it.

Definition 4 (Modulus). The modulus of a vector s ∈ Rn with respect to a given

Z-lattice Λ is the quantization error with respect to Λ, denoted as s mod Λ:

s mod Λ = s−QΛ(s). (2.4)

Definition 5 (Covering radius). The covering radius of a Z-lattice Λ, which we

7



Figure 2.2: Voronoi regions and quantization

denote as rcovΛ , is the smallest real number such that Rn ⊆ Λ + B (rcovΛ ).

Definition 6 (Effective radius). The effective radius of a Z-lattice Λ, which we

denote as reffΛ , is the real number that satisfies:

Vol(B
(
reffΛ

)
) = Vol(VΛ), (2.5)

where Vol(VΛ) is referred to as the fundamental volume of Λ.

We depict the covering radius and effective radius of a lattice in Fig. 2.3. In

this figure, the hexagon that contains the lattice point is the Voronoi region for this

lattice point. Therefore, in order to cover R2, the ball that has this lattice point in

the center is required to contain the Voronoi region of the lattice point. Hence, it

also follows that Λ, rcovΛ ≥ reffΛ .

Definition 7 (Second moment). The second moment of a Z-lattice Λ, which we

denote as σ2
Λ, is defined as the second moment per dimension of a uniform distribution

8
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Figure 2.3: Covering radius and effective radius of a lattice

over VΛ

σ2
Λ =

1

nVol (VΛ)

∫
VΛ

∥x∥2dx. (2.6)

Definition 8 (Normalized second moment). The normalized second moment of a

Z-lattice Λ, which we denote as G (Λ), is defined as:

G (Λ) =
σ2
Λ

(Vol (VΛ))
2/n

(2.7)

Definition 9 (Goodness for covering). A sequence of lattices Λ(n) is good for covering

if

lim
n→∞

rcovΛ

reffΛ
= 1 (2.8)

These lattices are also commonly referred to as Rogers good, since it was first

shown by Rogers that such lattices exist [19].

9



Definition 10 (Goodness for quantization). A sequence of lattices Λ(n) is good for

quantization if

lim
n→∞

G (Λ) =
1

2πe
(2.9)

In other words, the normalized second moment of Λ approaches to a sphere’s

normalized second moment as n→ ∞. Zamir et al., have shown that such a sequence

of lattices exist [11]. Erez et al. have also shown the existence of such a sequence of

lattices and proved that goodness for covering implies goodness for quantization [8].

Definition 11 (Lattices that achieve the Poltyrev limit). Let z be an n-dimensional

independent and identically distributed (i.i.d) Gaussian vector, z ∼ N
(
0, θ2zI

)
. The

effective radius of z, which we denote as rz, is defined as

rz =
√
nθ2z (2.10)

Consider a Z-lattice Λ and a lattice point λ ∈ Λ, which is transmitted across an

AWGN channel:

y = λ+ z (2.11)

The maximum likelihood decoder would decode to the lattice point nearest in Euclidean

distance to y. Therefore, an error would occur only if y leaves the Voronoi region of

λ. Due to lattice symmetry, this is equivalent to z leaving the fundamental Voronoi

region VΛ.

Pe (Λ, rz) = Pr {z ̸∈ VΛ} (2.12)
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where Pe (Λ, rz) denotes the probability of error.

A sequence of Z-lattices Λ(n) are good for AWGN channel coding if for any

rz < reffΛ , lim
n→∞

Pe (Λ, rz) = 0 and this decay may be bounded exponentially in n. Erez

et. al. have shown the existence of such a sequence of lattices in [8] and they have

referred to them as Poltyrev good. Nonetheless, in order to achieve the Poltyrev

capacity in the unconstrained AWGN channel, it is sufficient for lim Pe
n→∞

(Λ, rz) = 0

for any rz < reffΛ , i.e., Pe (Λ, rz) does not need to decay exponentially as n→ ∞. We

refer to such a sequence of lattices as lattices that achieve the Poltyrev limit in this

dissertation. Loeliger has shown the existence of such lattices in [15].

Definition 12 (Sublattice). A Z-lattice Λ is a sublattice of (nested in) another Z-

lattice Λf if Λ ⊆ Λf . Λ is referred to as the coarse lattice and Λf is referred to as

the fine lattice. The quotient group Λf/Λ is referred to as a lattice partition [17].

Definition 13 (Nesting ratio). Given a pair of n-dimensional nested lattices Λ ⊂ Λf ,

the nesting ratio ϑ is defined as,

ϑ =

(
Vol(VΛ)

Vol(VΛf
)

) 1
n

. (2.13)

Definition 14 (Nested Lattice Code). Given a fine Z-lattice Λf and a coarse Z-

lattice Λ, where Λ ⊆ Λf , a nested lattice code (Voronoi code), which we refer to as

L, is the set of all coset leaders in Λf that lie in the fundamental Voronoi region of

the coarse lattice Λ [32]:

L = VΛ ∩ Λf =
{
λf : QΛ

(
λf
)
= 0, λf ∈ Λf

}
. (2.14)

In other words, L is a set of coset representatives of the quotient group Λf/Λ.

11



The coding rate of a nested lattice code, denoted as R is defined as,

R = log ϑ. (2.15)

In Fig. 2.4, we depict a nested lattice code. The encircled points are the coarse

lattice points and the non-encircled points are the fine lattice points. The nested

lattice code would be the points that lie within the Voronoi region of the all-zero

coarse lattice point. Note that the nesting ratio would be ϑ =
√
7.
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Figure 2.4: Nested lattice code
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2.2.1 Construction A for Z-lattices

Throughout the years, various methods have been proposed to construct lattices

such as Construction A, Construction B, Construction D, Construction D’ [10]. In

this dissertation, we will mainly focus on lattices built with Consruction A [33].

Construction A can be described as follows:

Let q be a natural prime and k, n be integers such that k ≤ n. Then, letG ∈ Fn×k
q .

1. Define the discrete codebook C = {x = Gy : y ∈ Fk
q} where all operations are

over Fq. Thus, x ∈ Fn
q .

2. Generate the Z-lattice ΛC as ΛC , {λ ∈ Zn : λ mod q ∈ C}, where the mod

operation is applied to each component of λ.

3. Scale ΛC with q−1 to obtain Λ = q−1ΛC.

In Fig. 2.5 and Fig. 2.6, a linear code over F13 with a generator matrix G = [1 4]

and the resultant lattice built using Construction A is depicted, respectively. As one

might observe from these figures, Construction A may be summarized as the tiling

of a scaled linear code over Rn. Therefore, many of the underlying linear code’s

properties will translate to the lattice. We would also like to note that only the

first two steps that we have stated in Construction A is required to build a lattice,

since the third step simply scales the lattice. However when Erez et. al. prove the

existence of lattices built with Construction A that are good for covering in [8], they

keep reffΛ approximately constant as n→ ∞ and q → ∞, which is possible only if the

third step is used for scaling the lattice.

2.2.2 Nested Z-lattices obtained from Construction A [9]

Let Λ be an n-dimensional Z-lattice obtained through Construction-A with a

corresponding generator matrix B. For a given G ∈ Fn×k
q , denote Λ′ as the corre-

13
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Figure 2.5: Linear code over F13 with G = [1 4]

sponding Z-lattice obtained through Construction-A usingG as the generator matrix

of the underlying linear code. Generate the Z-lattice Λf as Λf = BΛ′. It can be

observed that Λ ⊂ Λf with a coding rate of k
n
log q.

Nested lattice codes built using Construction A play a fundamental role in the

lattice-based framework proposed in [24] and [6]. This is due to the fact that various

properties of lattices that are simultaneously good for AWGN channel coding and

good for quantization are required in order to achieve the computation rates stated

in [24], [6] and Construction A is the most commonly used method to construct such

lattices [8].
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Figure 2.6: Scaled and replicated linear code

2.3 AWGN relay network

In an AWGN relay network, L source nodes S1, S2, . . . , SL wish to transmit in-

formation to M relay nodes D1, D2, . . . , DM , where M ≥ L. It is assumed that relay

nodes can not collaborate with each other and are noiselessly connected to a final

destination interested in the individual messages sent from all the source nodes. The

objective of the relay nodes is to facilitate communication between the source nodes

and the final destination.

We denote the information vector at the source node Sl as wl ∈ Fk
q . Without

loss of generality, we assume that each transmitter l has the same information vector

length k. Each transmitter is equipped with an encoder El : Fk
q → Cn that maps wl

15
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Figure 2.7: AWGN relay network

to an n-dimensional complex codeword xl = El (wl). Each codeword is subject to the

power constraint

E||xl||2 ≤ nP. (2.16)

The message rate R of each transmitter is the length of its message in bits normalized

by the number of channel uses,

R =
k

n
log q. (2.17)

Due to the superposition nature of the wireless medium (assuming perfect synchro-

nization), each relay m observes

y
m
=

L∑
l=1

hmlxl + zm (2.18)

where hml ∈ C is the channel coefficient between Dm and Sl. Furthermore, zm is

an n-dimensional complex independent and identically distributed (i.i.d) Gaussian
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random variable, i.e. zm ∼ CN (0, I). Let hm = [hm1, · · · , hmL]
T denote the vector

of channel coefficients to relay m from all the source nodes. We assume that relay m

is only required to know the channel coefficient from each transmitter to itself, i.e.,

hm.

Each relay attempts to recover the linear combination f
m
(over Fq)

f
m
=

L⊕
l=1

(bmlwl) (2.19)

where bml ∈ Fq and let bm = [bm1, . . . , bmL]
T . Typically bmls are chosen based on

the network structure and/or the channel coefficients. It is desirable for the matrix

[b1, . . . , bM ] to be full-rank which enables each wl to be recovered at the final desti-

nation. For each Dm, we define the decoder Gm : Cn → Fk
q , where f̂m

= Gm(ym) is an

estimate of f
m
. The relays then forward f̂

m
’s to a central destination node, denoted

as DM+1 in Fig. 2.7, which attempts to determine the individual messages wl.

Definition 15 (Probability of error). Equations with coefficient vectors a1, a2, . . . am ∈

Z[i]L are decoded with probability of error ϵ if

Pr

(
M∪

m=1

{
f̂
m
̸= f

m

})
< ϵ (2.20)

Definition 16 (Computation rate of relay m). For a given channel coefficient vector

hm and equation coefficient vector am ∈ Zk, the computation rate R (hm, am) is

achievable at relay m if for any ϵ > 0 and n large enough, there exist encoders

E1, . . . , EL and there exists a decoder Gm such that relay m can recover its desired

17



equation with probability of error ϵ as long as the underlying message rate R satisfies

R < R (hm, am) . (2.21)

Due to the fact that the relays can not collaborate, each relay picks an integer

vector am such that R (hm, am) is maximized.

Definition 17 (Computation rate of AWGN network). Given H = [h1, . . . , hm] and

A = [a1, . . . , am], the achievable computation rate of an AWGN network is defined

as

R (H,A) = min
m:aml ̸=0

R (hm, am) , (2.22)

where the corresponding B = [b1, . . . , bM ] is full rank. If B is not full rank, R (H,A) =

0.

2.4 Nazer and Gastpar’s lattice-based CF framework

In [6], Nazer and Gastpar use nested lattice codes to implement the compute-

and-forward paradigm for the AWGN relay network. Since lattices are closed under

integer combinations, the relays attempt to decode to a linear combination of code-

words with integer coefficients. This can then be shown to correspond to decoding

linear combinations over the finite field. We briefly discuss how lattice codes are

constructed to implement the compute-and-forward paradigm in [6].

A fine Z-lattice Λf and a coarse Z-lattice Λ nested in Λf , is constructed as

mentioned in Section 2.2.2 with a coding rate R = k
n
log q. If Λ is simultaneously

good for covering and good AWGN channel coding, it follows that Λf is good for

AWGN channel coding [9]. Both Λ and Λf are scaled such that σ2
Λ = P/2. Following

this, the lattice codebook Λf ∩ VΛ is constructed.
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Source node l partitions its information vector wl ∈ F2k
q into wR

l , w
I
l ∈ Fk

q , and

maps them to lattice codewords tRl , t
I
l ∈ Λf ∩V , respectively, via a bijective mapping

ψ̃,

ψ̃(w) =
[
Bq−1g(Gw)

]
, (2.23)

where w ∈ Fk
q , and g is the trivial bijective mapping between {0, 1, · · · , q−1} and Fq.

Hence, tRl = ψ̃
(
wR

l

)
, tIl = ψ̃

(
wI

l

)
. It then constructs dither vectors dRl , d

I
l , which are

uniformly distributed within V and subtracts these dither vectors from the lattice

codewords tRl , t
I
l , respectively, and transmits the following:

xl =
([
tRl − dRl

]
mod Λ

)
+ j

([
tIl − dIl

]
mod Λ

)
. (2.24)

Recall that given a channel coefficient vector hm ∈ CL, relay m observes

y
m
=

L∑
l=1

hmlxl + zm. (2.25)

The relay approximates hm, in some sense, by a Gaussian integer vector am ∈ Z[i]L

and its goal will be to recover the following:

vRm =

[
L∑
l=1

ℜ (aml) t
R
l −ℑ (aml) t

I
l

]
mod Λ (2.26)

vIm =

[
L∑
l=1

ℑ (aml) t
R
l + ℜ (aml) t

I
l

]
mod Λ (2.27)

It proceeds by removing the dithers and scaling the observation with αm and there-
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fore,

ỹR
m
= ℜ

(
αmym

)
+

L∑
l=1

ℜ (aml) d
R
l −ℑ (aml) d

I
l

= vRm + zReq,m (2.28)

and

ỹI
m
= ℑ

(
αmym

)
+

L∑
l=1

ℑ (aml) d
R
l + ℜ (aml) d

I
l

= vIm + zIeq,m (2.29)

where αm is the MMSE scaling coefficient that minimizes the variance of zReq,m+jz
I
eq,m.

The relay quantizes ỹI
m
, ỹR

m
to the closest lattice points in the fine lattice Λf modulo

the coarse lattice Λ and estimates the following:

v̂Rm =
[
Q
(
ỹR
m

)]
mod Λ (2.30)

v̂Im =
[
Q
(
ỹI
m

)]
mod Λ (2.31)

where Q denotes the quantization with respect to Λf . Finally, the relay maps v̂Rm

and v̂Im to f̂
R

m
and f̂

I

m
, respectively, via ψ̃−1,

ψ̃−1(v) =
(
GTG

)−1
GTg−1

(
q
([
B−1v mod Λ

]))
(2.32)
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where v ∈ Fn
q . Hence,

ψ̃−1
(
v̂Rm
)
= f̂

R

m
=

L⊕
l=1

(
bRmlŵ

R
l ⊕

(
−bIml

)
ŵI

l

)
(2.33)

ψ̃−1
(
v̂Im
)
= f̂

I

m
=

L⊕
l=1

(
bImlŵ

R
l ⊕

(
bRml

)
ŵI

l

)
(2.34)

where

bRml = ℜ (aml) mod q (2.35)

bIml = ℑ (aml) mod q. (2.36)

Note that both [bR1 , . . . , b
R
M ] and [bI1, . . . , b

I
M ] are required to be full rank so that

decoding each wR
l , w

I
l at the final destination is feasible.

In [6], Nazer and Gastpar show the following theorem using the coding scheme

we have described in this section.

Theorem 18 (Nazer and Gastpar). At relay m, given hm ∈ CL and am ∈ Z[i]L, a

computation rate of

R(hm, am) = log+

((
∥am∥2 −

P |hHmam|2

1 + P∥hm∥2

)−1
)
, (2.37)

is achievable.

Given H and assuming that the relays do not cooperate with each other, each

relay would attempt to pick an integer vector am that maximizes its individual com-

putation rate, i.e. am = argmax
a∈Z[i]L

R(hm, am) in order to maximize R (H,A).
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3. LATTICES OVER EISENSTEIN INTEGERS FOR CF∗

In this chapter, we propose the use of lattice codes over Eisenstein integers for

implementing a compute-and-forward protocol in wireless networks when channel

state information is not available at the transmitter. We extend the compute-and-

forward paradigm of Nazer and Gastpar to decoding Eisenstein integer combinations

of transmitted messages at relays by proving the existence of a sequence of nested

lattices over Eisenstein integers in which the coarse lattice is good for covering and

the fine lattice can achieve the Poltyrev limit. Using this result, we show that the

outage performance of nested lattice codebooks over Eisenstein integers surpasses

the outage performance of lattice codebooks over integers considered by Nazer and

Gastpar with no additional computational complexity. We then propose a separation

based compute-and-forward (SBCF) scheme based on the concatenation of a non-

binary linear code with a modulation scheme derived from the ring of Eisenstein

integers, which can equivalently be thought of as a lattice code which is a subset of a

lattice built from Construction A. The SBCF scheme enables the demodulation and

decoding to be separated and results in theoretically achievable computation rates

that locally surpass Nazer and Gastpar’s scheme.

3.1 Introduction

Lattice codes have been shown to be optimal for several problems in communica-

tions including coding for the point-to-point additive white Gaussian noise (AWGN)

channel and coding with side information problems such as the dirty paper coding

problem and Wyner-Ziv problem [9], [29]. The construction of optimal lattice codes

∗Reprinted with permission from “Lattices over Eisenstein Integers for Compute-and-Forward”
by N. E. Tunali, K. R. Narayanan, J. J. Boutros, and Y. C. Huang, 2012. Proceedings 50th Annual
Allerton Conference, pp. 33-40, copyright [2012] by IEEE.
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for these problems requires a lattice that is good for channel coding. Since a lattice

has unconstrained power, goodness for channel coding is measured using Poltyrev’s

idea of the unconstrained AWGN channel. In [18], Poltyrev derives the maximum

noise variance that a lattice can tolerate while maintaining reliable communication

over the unconstrained point-to-point AWGN channel, which is referred to as the

Poltyrev limit in literature. Loeliger showed the existence of lattices that achieve the

Poltyrev limit by means of Construction A in [15]. Then, Erez et al., showed that

there exists lattices which are simultaneously good for quantization and can achieve

the Poltyrev limit in [8] which made it possible to construct nested lattice codes

that were able to achieve a rate of 1
2
log (1 + SNR) over the point-to-point AWGN

channel. There has also been great interest in constructing lattice codes with rea-

sonable encoding and decoding complexities such as Signal Codes and Low Density

Lattice Codes [13], [12]. However, one of the main drawbacks of these codes is the

computational complexity of their decoding algorithms.

In a bidirectional relay network with unit channel gains, the relay can decode to

the sum of the transmitted signals, which is a special case of compute-and-forward.

For this system model, it was shown that an exchange rate of 1
2
log
(
1
2
+ SNR

)
can be

achieved using nested lattice codes at the transmitters, which is optimal for asymp-

totically large signal-to-noise ratios and provides substantial gains over other relaying

paradigms such as amplify-and-forward and decode-and-forward [24], [25]. In [37], a

novel compute-and-forward implementation is proposed for the K × K AWGN in-

terference network where channel state information is available at the transmitters,

which achieves the full K degrees of freedom.

In this chapter, we consider the case when channel state information is not avail-

able at the transmitters. In this case, an effective way to implement a compute-

and-forward scheme is to allow the relay to adaptively choose the integer coefficients
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depending on the channel coefficients. Nazer and Gastpar have introduced and ana-

lyzed such a scheme which uses lattices over integers and they have derived achievable

information rates in [6]. In [7], Feng, Silva and Kschischang have introduced an al-

gebraic framework for designing good lattice codes which allow the recovery of linear

combinations of transmitted signals over a finite field. They also show that Nazer

and Gastpar’s scheme in [6] can be seen as a special case of the general framework

in [7].

In this chapter, we show that the results in [6] can be extended to lattices over

Eisenstein integers and we show that this results in improved outage performance

compared to using lattices over integers. We proceed by proving the existence of a

sequence of nested lattices over Eisenstein integers in which the coarse lattice is good

for covering and the fine lattice achieves the Poltyrev limit. Using this result, we ex-

tend the framework in [6] to lattices over Eisenstein integers. The main improvement

in outage performance is a result of the fact that the use of lattices over Eisenstein in-

tegers permits the relay to decode to a linear combination of the transmitted signals

where the coefficients are Eisenstein integers, which quantize channel coefficients

better than Gaussian integers. We also propose a separation based compute-and-

forward (SBCF) scheme which employs lattice codes constructed from linear codes

over a prime-sized field that are mapped to modulation alphabets selected from the

ring of Eisenstein integers according to a ring homomorphism. Hence, these lattice

codes are essentially obtained from lattices built with Contruction A. However the

main difference of the SBCF scheme from the framework in [6] is instead of approxi-

mating the channel by an integer integer vector and decoding to the closest point in

the lattice, we perform soft-output demodulation based on the channel itself and the

chosen function. Therefore, no additional noise from quantizing the channel exists in

the SBCF scheme. We then forward the posterior probabilities to a practically imple-
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mentable decoder. Through Monte-Carlo simulations, the SBCF scheme is shown to

locally achieve higher rates than the coding scheme in [6] extended to Eisenstein in-

tegers with practical encoding and decoding complexities. Our proposed scheme also

belongs to the general framework introduced by Feng et. al.; however, the specific

scheme not been analyzed in detail in the literature.

The structure of this chapter is as follows. In Section 3.2, we discuss how lattices

over Eisenstein integers can be used for compute-and-forward in Nazer and Gastpar’s

framework and what properties of these lattices are required in order to achieve

computation rates formulated similarly to those in [6]. In Section 3.3, we introduce

the SBCF scheme and in Section 3.4, we present simulation results of the SBCF

scheme.

3.2 Compute-and-forward with lattices over Eisenstein integers

The main result in this section is that for some channel realizations, higher infor-

mation rates than those in Theorem 18 are achievable. The improved information

rate is obtained by considering nested lattices over Eisenstein integers which allow the

mth relay to decode a linear combination of the form
∑L

l=1 amltl, where aml ∈ Z[ω].

This result is made precise in Theorem 23.

One of the key challenges in proving this achievability result is to show the ex-

istence of nested lattices over Eisenstein integers, which we refer to as Z[ω]-lattices,

where the coarse lattice is good for covering and the fine lattice can achieve the

Poltyrev limit. We would like to note that, we do not prove the existence of Z[ω]-

lattices that are good for AWGN channel coding, i.e. the error probability can be

bounded exponentially in n, in this chapter. Furthermore, we do not require the

coarse lattice in the sequence of nested lattices to be simultaneously good for AWGN

channel coding and good for covering. In order to state our main theorem, it suffices

25



to show the existence of nested Z[ω]-lattices where the coarse lattice is good for cov-

ering and the fine lattice can achieve the Poltyrev limit. A similar result is obtained

in [36], where the coarse lattice is chosen to be good only for covering and the fine

lattice to be good for AWGN channel coding in order to achieve 1
2
log(1 + SNR)

using lattice codes for the point-to-point AWGN channel.

In what follows, we first provide some preliminaries about Eisenstein integers and

summarize Construction A for Z[ω]-lattices. Afterwards, we show that nested Z[ω]-

lattices where the coarse lattice is good for quantization and the fine lattice achieves

the Poltyrev limit can be obtained through Construction A. The existence result can

then be used to prove Theorem 23, which is the main result of this chapter. Since

Z[ω] quantizes C better than Z[i], on the average (over the channel realizations),

higher information rates are achievable by using Z[ω]-lattices compared to using

Z-lattices. In Section 3.2.4, we provide numerical results in order to compare the

performance of lattices over natural integers and lattices over Eisenstein integers in

compute-and-forward.

3.2.1 Preliminaries: Eisenstein integers

An Eisenstein integer is a complex number of the form a+ bω where a, b ∈ Z and

ω = −1
2
+ j

√
3
2
. The ring of Eisenstein integers Z[ω] is a principal ideal domain, i.e,

a commutative ring without zero divisors where every ideal can be generated by a

single element. Other well-known principal ideal domains are Z and Z[i]. A unit in

Z[ω] is one of the following:{±1,±ω,±ω2}. An Eisenstein integer ϱ is an Eisenstein

prime if either one of the following mutually exclusive conditions hold [16]:

1. ϱ is equal to the product of a unit and any natural prime congruent to 2 mod 3.

2. |ϱ|2 = 3 or |ϱ|2 is any natural prime congruent to 1 mod 3.
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An n-dimensional Z[ω]-lattice can be written in terms of a complex lattice generator

matrix B ∈ Cn×k:

Λ = {λ = Be : e ∈ Z[ω]k} (3.1)

3.2.2 Construction A for Z[ω]-lattices

Let ϱ be an Eisenstein prime with |ϱ|2 = q. Then ϱZ[ω] is a sublattice of Z[ω]

and together, they form the quotient ring Z[ω]/ϱZ[ω]. Note that the quotient ring

has a finite order of |Z[ω]/ϱZ[ω]| = Vol
(
VϱZ[ω]

)
/Vol

(
VZ[ω]

)
= |ϱ|2 = q and Z[ω] is

the union of q cosets of ϱZ[ω]

Z[ω] = ∪
s∈S

(ϱZ[ω] + s) (3.2)

where S represents the set of q coset leaders of ϱZ[ω] in Z[ω]. Note that one can

define a canonical homomorphism mod ϱΛ : Z[ω] → Z[ω]/ϱZ[ω] and a ring iso-

morphism σ : Z[ω]/ϱZ[ω] ↔ Fq. Composing mod ϱΛ and σ, one can obtain the

ring homomorphism σ̃ , σ ◦ mod ϱΛ : Z[ω] → Fq [34, page 118]. Note that σ̃

can be extended to vectors in a straightforward manner by mapping the elements

of the vector componentwise to another vector [10, page 197]. We can now define

Construction A for Z[ω]-lattices.

Let ϱ be an Eisenstein prime and q = |ϱ|2. Note that q is either a natural prime

or the square of a natural prime. Also let k, n be integers such that k ≤ n and let

G ∈ Fn×k
q . Similar to a Z-lattice, a Z[ω]-lattice can be obtained by Construction A

[10].

1. Define the discrete codebook C = {x = Gy : y ∈ Fk
q} where all operations are

over Fq. Thus, x ∈ Fn
q .
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2. Generate the n-dimensional Z[ω]-lattice ΛC as ΛC , {λ ∈ Z[ω]n : σ̃(λ) ∈ C}.

3. Scale ΛC with ϱ−1 to obtain Λ = ϱ−1ΛC.

Once again, we would like to note that only the first two steps that we have stated

in Construction A is required to build a Z[ω]-lattice. However due to the fact that

we will prove the existence of Z[ω]-lattices that are good for covering in this chapter

using similar proof techniques in [8], we also require the third step which scales the

lattice. An example of such a construction with k = 1, n = 1,G = [1], ϱ = 2−
√
3j

and q = 7 is shown in Fig. 3.1 and Fig. 3.2. The labeling of points in ΛC with

elements from F7 is also shown in Fig. 3.2. It can be verified that this labeling, i.e.,

σ̃ is indeed a ring homomorphism. Note that the mod q operation in Construction

A for Z-lattices also provides a ring homomorphism. We would like to note that the

lattice in Fig. 3.1 is trivially Z[ω], or in other words the A2 lattice, and the lattice

in Fig. 3.2 is a scaled A2 lattice. Unfortunately, we were not able to provide a less

trivial figure with a larger dimensional Z[ω]-lattice. This is due to the fact that even

a two-dimensional Z[ω]-lattice requires four real dimensions to be drawn, which is

not feasible.

Given n, k, q, we define an (n, k, q,Z[ω]) ensemble as the set of Z[ω]-lattices ob-

tained through Construction-A where for each of these lattices, Gij are i.i.d with a

uniform distribution over Fq.

Theorem 19. A lattice Λ drawn from an (n, k, q,Z[ω]) ensemble, where k < n but

grows faster than log2 n, q is a natural prime congruent to 1 mod 3, and where k, q
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Figure 3.1: ΛC with G = [1] and the corresponding ring homomorphism

satisfy

qk =

(√
3
2

)n
VB

(
reffΛ

) =

(√
3
2

)n
Γ (n+ 1)

πn
(
reffΛ

)2n
≈

√
2nπ

(√
3

2

)n
 2n

2 exp(1)
(
reffΛ

)2


n

(3.3)
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Figure 3.2: ϱ−1ΛC with G = [1], ϱ = 2− j
√
3 and the ring homomorphism

and

rmin < reffΛ < 2rmin (3.4)

where 0 < rmin <
1
4
, is good for covering, i.e,

rΛcov

reffΛ
→ 1 (3.5)

in probability as n→ ∞.

Proof. We first give some definitions and preliminaries that will be very useful for

this proof. In [10, p. 54], it is stated that an n-dimensional complex lattice can be
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equivalently thought of as a 2n-dimensional real lattice by the following mapping

[λ(1) · · ·λ(n)]T → [ℜ(λ(1)) ℑ(λ(1)) · · · ℜ(λ(n)) ℑ(λ(n))]T

(3.6)

where the left hand side is an n-dimensional complex lattice point and the right hand

side is its 2n-dimensional real representation. Thus we shall consider n-dimensional

Eisentein lattices as 2n-dimensional real lattices and use Cn and R2n interchangeably.

We shall now introduce the notation that will be used in this section.

• V : Fundamental Voronoi region of the lattice Z[ω]n.

• GRID: The lattice ϱ−1Z[ω]n, where ϱ is an Eisenstein prime.

• x∗ = x mod V = x mod Z[ω]n = x−QZ[ω]n (x) where x ∈ Cn.

• A∗ = A mod V , where A is any set in Cn and the mod V operation is done

element-wise.

• A′ , A \ {0} where A ⊂ Rn, A ⊂ Cn or A ⊂ Fn
q

• Λ: An n-dimensional Z[ω]-lattice nested in GRID, i.e., Λ ⊂ GRID .

• Vol(·): Volume of a closed set in Cn, or equivalently volume of a closed set in

R2n.

• GRID∗: GRID ∩ V

• B(r):A complex n-dimensional, or equivalently real 2n-dimensional, closed set

of points inside a sphere of radius r centered at the origin.
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• Λ∗: The lattice constellation, i.e. Λ∗ = Λ ∩ V . Note that Λ∗ can generate Λ as

follows:

Λ = Λ∗ + Z[ω]n (3.7)

• M = |Λ∗|: Cardinality of the lattice constellation.

• Λ∗
i : A point in Λ∗, i ∈ {0, · · · ,M − 1}.

Note that by our construction, the lattices chosen from the (n, k, q,Z[ω])-lattice

ensemble are periodic modulo the region V . Thus we can restate all the proper-

ties of our lattice in terms of the lattice constellation Λ∗ that lies within V . The

(n, k, q,Z[ω])-lattice ensemble has the following properties:

1. Λ∗
0 = 0 deterministically.

Proof. 0 is always a valid lattice point due to the definition of a lattice and

0∗ = 0. Thus the result holds.

2. Λ∗
i is distributed uniformly over GRID∗ for i ∈ {1, · · · ,M − 1} where M = qk.

Proof. Each element of G is chosen uniformly over Fq, therefore each codeword

of the underlying linear code is distributed uniformly over Fn
q . Due to last step

in Construction A in Section 3.2.2 where the lattice is scaled with ϱ−1 and the

ring homomorphism σ̃, the result holds.

3. The difference (Λ∗
i − Λ∗

l )
∗ is uniformly distributed over GRID∗ for all i ̸= j.

Proof. This result holds due to the previous property and the definition of the

∗ operation.
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4. |Λ∗| = qk with high probability if n− k → ∞

Proof.

Pr{rank(G) < k} ≤
∑
c̸=0

Pr

{
k∑

i=1

ciGi = 0

}

= q−n(qk − 1) (3.8)

where ci would be elements of a k × 1 coefficient vector c.

We shall refer to B(r)∗ = B(r) mod V as a V-ball. Under the assumption that

r < 1
2
, we say that (Λ∗ + B(r))∗ is a V-covering if

V ⊆
∪
λ∈Λ∗

(λ+ B(r))∗ . (3.9)

Note that Λ + B(r) is a covering if and only if (Λ∗ + B(r))∗is a V-covering

In our lattice ensemble, we will constrain k < βn for some 0 < β < 1. Therefore

Pr{rank(G) ̸= k} goes to zero at least exponentially. If G is full rank, there are

M = qk many codewords that lie in V . Also, an n-dimensional V is known to have

a volume of
(√

3
2

)n
. Then the volume of the Voronoi region of our lattice is equal to(√

3
2

)n
q−k. In our analysis very similar to [8], we will hold the effective radius of the

Voronoi region of Λ, denoted as reffΛ approximately constant as n→ ∞. This implies
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the following:

qk =

(√
3
2

)n
VB
(
reffΛ
) =

(√
3
2

)n
Γ (n+ 1)

πn
(
reffΛ
)2n

=
√
2nπ

( √
3

2
(
reffΛ
)2
)n (n

e

)n(
1 +O

(
1

n

))
(3.10)

Note that q can either be a natural prime congruent to 1 mod 3 or the square of a

natural prime congruent to 2 mod 3, nonetheless we shall restrict q to be a natural

prime congruent to 1 mod 3 for the sake of simplicity. We would like to note that

it is not possible to keep reffΛ constant as n grows since q has to be a natural prime

congruent to 1 mod 3 and k has to be an integer. Therefore, we will relax this

condition to

rmin < reffΛ < 2rmin (3.11)

as n grows, where 0 < rmin < 1
4
. Although we have restricted q to be a natural

prime congruent to 1 mod 3 , with the assumption of k ≤ βn for β < 1, (3.11) can

be satisfied for any large enough n due to the following. Let q∗ be the real number

that satisfies (3.10) for a radius of 2rmin. Then, q
∗k = 1

VB(
√

2√
3
2rmin)

and from (3.11),

q must satisfy

q∗ < q < 22n/kq∗. (3.12)

Finally, to show that for each n > 4 in our sequence a corresponding q exists that

satisfies (3.12), we use the following lemma.

Lemma 20 ([14]). There always exists a natural prime congruent to 1 mod 3 be-
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tween integers m and 2m where m > 4.

We would also like to note that from (3.10), the growth of q is O(n
1
β ). Thus,

lim
n→∞

n/q = 0 (3.13)

The proof of this theorem is divided into two parts. In the first part, sufficient

conditions are obtained such that most Eisenstein lattices in the ensemble are “almost

complete” V-coverings. In the second part, stricter conditions are imposed such that

most of the Eisentein lattices in the ensemble are complete V-coverings and thus

complete coverings .

Part I: Almost complete covering

Denote d to be half of the largest distance between any two points that lie within

the Voronoi region of an element in GRID.

d =

√
n

3q
(3.14)

Note that by (3.12), d→ 0 as n→ ∞.

Consider the lattice constellation Λ∗ of the ensemble and define k1, k2 such that

k1 + k2 = k. We shall denote the Eisenstein lattice constellation obtained from the

first k1 columns of G by Λ∗[k1] and let Λ∗[k1+ j], j = 1, · · · , k2 denote the Eisenstein

lattice constellation obtained from the first k1+j columns ofG. Let x be an arbitrary

point such that x ∈ V . Let S1(x) denote the set of GRID points within a modulo

distance r − d from x where d was defined in (3.14).

S1(x) = GRID∗ ∩ (x+ B(r − d))∗ (3.15)
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Furthermore, denote S2(x) to be the set of GRID points such that their Voronoi

regions intersect a sphere of radius r − 2d centered at x.

S2(x) =
{
y ∈ GRID∗ :

(
y + ϱ−1V

)
∩ (x+ B(r − 2d))∗

}
(3.16)

It can be observed that S2(x) ⊂ S1(x). Thus, the cardinality of S1(x) can be bounded

as:

|S1(x)| ≥ |S2(x)| ≥
⌈
VB(r − 2d)/Vol(ϱ−1V)

⌉
=
⌈
qn(

√
3/2)−nVB(r − 2d)

⌉
(3.17)

By the second property of the ensemble, the probability that x is covered by a sphere

of radius (r − d) centered at any point of Λ∗[k1] satisfies

Pr {x ∈ (Λ∗
i [k1] + B(r − d))∗} =

|S1(x)|/qn ≥ (
√
3/2)−nVB(r − 2d)

(3.18)

for i = 1, · · · ,M1 − 1 where M1 = qk1 and Λ∗
i is the ith point of Λ∗. The indicator

random variable ηi for i = 1, · · · ,M1 − 1 is defined as

ηi = ηi(x)


1, if x ∈ (Λ∗

i [k1] + B(r − d))∗

0, otherwise

Note that i = 0 is not considered since Λ∗
0[k1] = 0 deterministically. Thus, ηi is
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statistically independent of both i and x. Define X = X (x) as follows:

X =

M1−1∑
i=1

ηi (3.19)

Hence, X is equal to the number of nonzero codewords (r−d)-covering x. Computing

the expectation of X and using the lower bound from (3.18),

E(X ) =

M1−1∑
i=1

E(ηi)

≥ (M1 − 1) (
√
3/2)−nVB(r − 2d) (3.20)

Since the ηi’s are pairwise independent and thus uncorrelated, similar to [8] one has

Var(X ) ≤ E(X ) (3.21)

Using (3.21), by Chebyshev’s inequality, for any ν > 0

Pr
{
|X − E(X )| > 2ν

√
E(X )

}
<

Var(X )

22νE(X )
≤ 2−2ν (3.22)

Define

µ(ν) = E(X )− 2ν
√
E(X ) (3.23)

Then from (3.22),

Pr{X < µ(ν)} < 2−2ν (3.24)

If µ(ν) ≥ 1, Pr{X < 1} is upper-bounded by 2−2ν as well.

A point x ∈ V will be referred as remote from a discrete set of points A if it is

not r − d-covered by (A+ B(r − d))∗, i.e. if x does not belong to an (r − d)- sphere
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centered at any point of A. Therefore, X (x) < 1 implies that “x is remote from

Λ∗[k1]”. Define Q (A) to be the set of (continuous) points which are remote from the

discrete set A. Denote Qi = Q (Λ∗[k1 + i]) , i = 0, 1, · · · , k2 and define

qi = |Qi|/Vol (V) (3.25)

to be the fraction of (continuous) points in V which are remote from Λ∗[k1+i]. Then,

|Q0| =
∫
V
1 (X (x) < 1) dx (3.26)

≤
∫
V
1 (X (x) < µ(ν)) dx (3.27)

under the condition that µ(ν) > 1. Then, from (3.24) we have

E(q0) < 2−2ν . (3.28)

Applying Markov’s inequality we get

Pr{q0 > 2νE(q0)} < 2−ν . (3.29)

Using (3.28),

Pr{q0 > 2−ν} < 2−ν . (3.30)

Therefore, by taking ν → ∞ and keeping µ(ν) ≥ 1, this probability can be made

arbitrarily small as n → ∞. In order to satisfy these constraints it is sufficient to

take ν = o(log n) and E(X ) > nλ for some λ > 0. By (3.20) this would be satisfied
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if we choose a radius r such that

qk1 − 1 =
nλ

VB(r − 2d)

(√
3/2
)n
. (3.31)

Hence, we conclude that for these choice of parameters, for most lattices chosen from

the (n, k, q,Z[ω]) ensemble, almost all points are covered by spheres of radius r− d.

Part II: Complete covering

We would like to obtain an ensemble of Z[ω]-lattices such that most of its members

are able to cover all the points in V . Q(A) is redefined to be the set of GRID∗ points,

i.e., x ∈ GRID∗ which are remote from A and qi is redefined to be the fraction of

GRID∗ points that are remote from Λ∗[k1 + i]. Therefore, an (r − d)-covering of all

GRID points implies an r-covering of all points in V .

By augmenting the generator matrix G with an additional small number of

columns k2(k2 ≪ k1), the fraction of uncovered GRID∗ points can be made smaller

than 1/| GRID∗| which implies that all GRID points are r− d-covered. We proceed

as follows.

Choose k1 and q such that k1 grows faster than log2 n and (3.10) and (3.11) are

satisfied. Define the set

S = Λ∗[k1] ∪
(
Λ∗[k1] +

{
σ−1(Gk1+1) ∩ V

})
(3.32)

where σ is the ring isomorphism defined in section 3.2.2. Also note that,

Λ∗[k1 + 1] =

q−1∪
m=0

(
Λ∗[k1] + σ−1 ([m · (Gk1+1)] mod q)

)
(3.33)
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Hence, S ⊂ Λ∗[k1+1] and q1 is upper-bounded by Q(S)
|GRID|∗ . Since Λ

∗[k1]+{σ−1(Gk1+1) ∩ V}

is an independent shift of Λ∗[k1], conditioned on Λ∗[k1], the event that x is remote

from Λ∗[k1]+{σ−1(Gk1+1) ∩ V} is independent from whether x is remote from Λ∗[k1]

and the probability of such an event is q0. Then,

E

{
|Q(S)|
|GRID∗|

∣∣∣q0} = q20 (3.34)

Due to the fact that S ⊂ Λ∗[k1+1], we have E {q1|q0} ≤ q20. By Markov’s inequality,

Pr
{
q1 > 2γE(q1|q0)

∣∣∣q0} (3.35)

Therefore,

Pr
{
q1 ≤ 2γ−2ν

∣∣∣q0 ≤ 2−ν
}
≥ 1− 2−γ (3.36)

From Bayes’ rule and (3.30),

Pr
{
q1 ≤ 2γ−2ν

}
≥ Pr

{
q1 < 2γ−2ν , q0 ≤ 2−ν

}
(3.37)

≥
(
1− 2−γ

) (
1− 2−ν

)
(3.38)

Repeating this procedure for l = 0, 1, . . . , k2 − 1, we obtain

ql+1 ≤ 2γE(ql+1|ql) (3.39)

≤ 2γq2l (3.40)

with probability at least 1 − 2−γ. Hence, the intersection of all these k2 events and

40



the event that q0 < 2−ν has the probability (1− 2−ν) (1− 2−γ)
k2 , which implies

qk2 ≤ 22
k2 (γ−ν)−γ (3.41)

We would like to choose k2 such that

qk2 < q−n = 2−n log q. (3.42)

The interpretation of (3.42) is qk2 = 0 since there are qn points in GRID∗. Therefore,

choosing γ = ν − 1 and

k2 = ⌈log n+ log log q⌉ (3.43)

or faster suffices. Due to the fact that k = k1+k2, we conclude that with probability

at least (
1− 2−ν

) (
1− 2−ν+1

)(logn+log log q)
(3.44)

Λ∗[k] satisfies qk2 < q−n, in other words every x ∈ GRID∗ is covered by at least one

sphere of radius (r − d). We would like to impose a condition on ν such that both

ν → ∞ and the probability in (3.44) goes to 1 as n→ ∞. It suffices to choose

ν = 2 log (log n+ log log q) . (3.45)

Note that as µ(ν) ≥ 1, the probability that there remains a point x ∈ GRID∗ that

is not (r − d)-covered is arbitrarily small as n → ∞. If every point of GRID∗ is

(r − d)-covered, then V is r-covered. Thus, the probability of a complete covering
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with spheres of radius r goes to 1 where r satisfies(see (3.31))

M = qk1+k2 =
nλ

VB(r − 2d)

(√
3/2
)n
qk2 (3.46)

≤ nλ

VB(r − 2d)

(√
3/2
)n
q(logn+log log q)+1 (3.47)

=
nλ

VB(r − 2d)

(√
3/2
)n

2log q[(logn+log log q)+1] (3.48)

From (3.46) and (3.48),

r

reffΛ
= 2n

√
VB(r)

VB(r − 2d)
nλqk2 (3.49)

≤
(

r

r − 2d

)
· nλ/2n · 2(log q logn+log q log log q+log q)/2n (3.50)

For ρcov → 1, the left-hand side of (3.49) should go to 1. Hence, we require each of

the three terms on the right-hand side of (3.50) goes to 1. From (3.13) and (3.14),

it follows that d→ 0 as n→ ∞ provided that k ≤ βn and β < 1. Therefore,

lim
n→∞

(
r

r − 2d

)
= 1 (3.51)

For any fixed λ > 0, we have limn→∞ nλ/2n = 1. Also, since k grows faster than

log2 n, by (3.10) we have log p grows slower than o log(n/ log n). Then,

lim
n→∞

2(log q logn+log q log log q+log q)/2n = 1 (3.52)

Thus, we have that
rcovΛ

reffΛ
→ 1 in probability as n→ ∞ which completes the proof.

We would like to note that a variant of Theorem 19 can also be proven for q
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congruent to 2 mod 3, which in this case Λ would be built from linear codes over

Fq2 .

Corollary 21. A lattice Λ drawn from an (n, k, q,Z[ω]) ensemble, where k < n but

grows faster than log2 n and where k, q satisfy (3.3) and (3.4) is good for quantization,

i.e.,

G (Λ) → 1

2πe
(3.53)

in probability as n→ ∞.

Proof. It was shown in [11] that a lattice ensemble which is good for covering is

necessarily good for quantization. Thus from Theorem 19, the result follows.

3.2.3 Nested Z[ω]-lattices obtained from Construction A

Nested Z[ω]-lattices can be obtained from Construction-A very similar to Z-

lattices as mentioned in Section 2.2.2. The coarse lattice Λ is obtained through

Construction-A as mentioned in Section 3.2.2 with a corresponding generator matrix

B. For a given G ∈ Fn×k
q , denote Λ′ as the corresponding Z[ω]-lattice obtained

through Contruction-A using G as the generator matrix of the underlying linear

code. Generate the Z[ω]-lattice Λf as Λf = BΛ′. It can be observed that Λ ⊂ Λf

with a coding rate of k
2n

log q. Given n, k, q and Λ where Λ is a Z[ω]-lattice obtained

from Construction-A, we define the (n, k, q,Λ,Z[ω]) ensemble as the set of lattices

obtained from Λ and Construction-A as previously mentioned where for each of these

lattices, the elements of the generator matrix of the underlying linear code Gij is

i.i.d with a uniformly distribution over Fq.

Theorem 22. There exists of a pair of nested Z[ω]-lattices where the coarse lattice

is good for covering and the fine lattice achieves the Poltyrev limit.
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Proof. For this proof, we build nested Z[ω]-lattices as mentioned above. Using our

result from Theorem 19, we pick a coarse lattice Λ which is good for covering. We

then pick Λf from the (n, k, q,Λ,Z[ω]) ensemble as described in Section 3.2.3 and

show that the Minkowski-Hlawka theorem can be proven for this ensemble [15]. In

the detailed proof provided in Appendix A.1, it can be observed that a lattice Λf

picked from the (n, k, q,Λ,Z[ω]) ensemble achieves the Poltyrev limit as long as the

generator matrix B of Λ is full rank. We would like to note that this result is a

more generalized version of what was stated in [15] where B was assumed to be an

identity matrix. One of the consequences of picking an arbitrary full rank matrix B

would be that VΛ might stretch out in some dimensions while shrinking in others.

Nonetheless as long as the growth of q ensures that exactly one element in the kernel

of σ̃ is contained in the bounded region, the result holds.

Now, we are ready to state the main theorem in this chapter.

Theorem 23. At relay m, given hm and am, a computation rate of

R(hm, am) = log+

((
∥am∥2 −

P |hHmam|2

1 + P∥hm∥2

)−1
)
, (3.54)

where aml ∈ Z[ω], is achievable.

Proof. Using the result from Theorem 22, a fine Z[ω]-lattice Λf and a coarse Z[ω]-

lattice Λ, which is nested in Λf with a corresponding coding rate R
2
= k

2n
log q, is

chosen such that Λf achieves the Poltyrev limit and Λ is good for covering. Both Λ

and Λf are scaled such that σ2
Λ = P . Following this, the lattice codebook Λf ∩VΛ is

constructed.

Source node l maps its information vector wl ∈ Fk
q , where q = |ϱ|2 and ϱ is an
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Eisenstein prime, to a lattice codeword tl ∈ Λf ∩ VΛ, respectively, via a bijective

mapping ψ,

tl = ψ(w) =
[
Bϱ−1σ−1(Gw)

]
, (3.55)

where σ was defined in Section 3.2.2. It then constructs a dither vector dl, which

is uniformly distributed within VΛ and subtracts this dither vector from the lattice

codeword tl and transmits the following:

xl = [tl − dl] mod Λ. (3.56)

Given a channel coefficient vector hm ∈ CL, relay m observes

y
m
=

L∑
l=1

hmlxl + zm. (3.57)

The relay approximates hm, in some sense, by an Eisenstein integer vector am ∈ Z[ω]L

and its goal will be to recover the following:

vm =

[
L∑
l=1

(amltl)

]
mod Λ (3.58)

It proceeds by removing the dithers and scaling the observation with αm, and there-

fore,

ỹ
m
= αmym +

L∑
l=1

amldl (3.59)

where αm is the MMSE coefficient.

Then ỹ
m
is quantized to the closest lattice point in the fine lattice Λf modulo the
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coarse lattice Λ and estimates the following:

v̂m =
[
Q
(
ỹ
m

)]
mod Λ (3.60)

where Q denotes the quantization with respect to Λf .

Note that

[
QΛf

(
ỹ
m

)]
mod Λ =

[
QΛf

([
ỹ
m

mod Λ
])]

mod Λ. (3.61)

Furthermore,

[
ỹ
m

]
mod Λ

=

[
L∑
l=1

(αmhmlxl + amldl) + αmzm

]
mod Λ (3.62)

=

[
L∑
l=1

(aml [tl − dl] mod Λ + dl)

+
L∑
l=1

[(αmhml − aml)xl + αmzm]

]
mod Λ (3.63)

=

[
vm +

L∑
l=1

(αmhml − aml) xl + αmzm

]
mod Λ (3.64)

=
[
vm + zeq

]
mod Λ (3.65)

As seen in (3.64), self interference occurs as a result of approximating hm by am. Note

that due to dithering, zeq,m in (3.65) is uncorrelated with the xl’s. Furthermore since

Λ is good for covering and the dithers are uniformly distributed in VΛ, the probability

density function of zeq,m is upper-bounded by a zero-mean Gaussian with a variance

that approaches |αm|2 + P ||αmhm − am||2 multiplied by a constant as n → ∞ ([6,
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Lemma 8]). Finally, the relay maps v̂m to f̂
m
via ψ−1, where

ψ−1 (v̂m) = f̂
m
=
(
GTG

)−1
GTσ

(
ϱ
([
B−1v̂m mod Λ

]))
=

L⊕
l=1

bmlŵl, (3.66)

and bml = σ (aml). The remaining steps of the proof would then be identical to

the steps in the proof of Theorem 5 in [6]. We would like to note that the error

probability Pr
(
zeq ̸∈ VΛf

)
goes to zero as n → ∞, however this decay is not neces-

sarily exponential in n, since we have only proven the existence of Z[ω]-lattices which

achieve the Poltyrev limit and this result does not provide information about the er-

ror exponents of such lattices. Nonetheless, it is sufficient to achieve the computation

rate in (3.54).

3.2.4 Numerical results

In this section, we present some numerical results on the achievable computation

rates with Z[ω]-lattices and compare them to the maximum achievable rates with

Z-lattices. We consider the case of L = 2 transmitters and there is M = 1 relay.

For a given channel coefficient vector h, let RE(h) and RG(h), denote the maximum

achievable rate using Z[ω]-lattices and Z-lattices, respectively, i.e.,

RE(h, P ) = max
a∈Z[ω]2

log+

((
∥a∥2 − P |hHa|2

1 + P∥h∥2

)−1
)

(3.67)

and

RG(h, P ) = max
ã∈Z[i]2

log+

((
∥ã∥2 − P |hH ã|2

1 + P∥h∥2

)−1
)
. (3.68)

In Fig. 3.3, we fix the channel realization to be h = [1.4193 + j0.2916; 0.1978 +

j1.5877] and compare RE(h, P ), RG(h, P ) for different SNRs. For this particular h,
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Figure 3.3: RE(h, P ) vs RG(h, P ) for a fixed h

it can be observed that Z[ω]-lattices can achieve substantially higher rates than Z-

lattices in the medium SNR regime. We would like to note that this is not necessarily

the case for every channel realization, nonetheless it is a perfect example of how

channel realizations affect the performance of Z[ω]-lattices and Z-lattices. Therefore,

a larger number of channel realizations should be considered in order to make a fair

comparison of their performance in the average sense.

In Fig. 3.4, we fix h1 = 1 and choose h2 such that ℜ(h2),ℑ(h2) ∈ [−4, 4] and

choose the SNR to be 10 dB. We would also like to note that we do not impose a

probability distribution on h2. For each pair (h1 = 1, h2), we plot the region where

RG(h) > RE(h), RG(h) < RE(h) or RG(h) = RE(h). For the total number of
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Figure 3.4: RE(h, P ) vs RG(h, P ) for a range of h

realizations considered, RE > RG, RE < RG. and RE = RG for 22.6%, 15.9%, and

61.5% of the realizations, respectively. One might expect that Z[ω]-lattices would

attain a greater maximum achievable rate when h2 is closer to an Eisenstein integer,

Z-lattices would attain a greater maximum achievable rate when h2 is closer to a

Gaussian integer and both lattices would achieve the same maximum achievable rate

when h2 is closer to a natural integer. However as seen from Fig. 3.4, other factors

also contribute to the maximum achievable rate. For example when ∥h2∥ ≫ ∥h1∥ or

∥h2∥ ≪ ∥h1∥, the relay chooses a1 = 0, ∥a2∥ = 1 or ∥a1∥ = 1, ∥a2∥ = 0, respectively

since treating the other transmitted signal as noise (decode-and-forward) results
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in maximum achievable rate. Also, the MMSE scaling coefficient α plays a very

important role as seen in (2.28), (2.29) and (3.59). Note that (3.67) and (3.68) can

be written as

RE(h, P ) = max
a∈Z[ω]2

log+

(
1 + P∥h∥2

∥a∥2 + P
(
∥a∥2|h∥2 − |hHa|2

))

(3.69)

50



and

RG(h, P ) = max
ã∈Z[ω]2

log+

(
1 + P∥h∥2

∥ã∥2 + P
(
∥ã∥2|h∥2 − |hH ã|2

)) ,
(3.70)

respectively.

As one can see from the denominators in (3.69) and (3.70), it is desirable to align a

(ã) with h as much as possible in order to minimize the second term. However, when

h ̸∈ Z2,h ̸∈ Z[ω]2, or the elements of h can not be written as the ratio of Gaussian

integers or Eisenstein integers, or h is not a rotated version of a Gaussian integer

vector or Eisenstein integer vector, ∥a∥ → ∞ (∥ã∥ → ∞) for perfect alignment.

Unfortunately, this results in the first term of the denominator to grow and hence

there is a tradeoff. Therefore even though h2 might be closer to an Eisenstein integer

(Gaussian integer), i.e. h is aligned better with a vector in Z[ω]2 (Z2), the magnitude

of this vector might be too large and thus a larger computation rate may be achieved

by choosing a ∈ Z2 (ã ∈ Z[ω]2)

Given a target rate RT and a probability distribution P on h, i.e. h ∼ P , we define

the outage event of using Z-lattices and Z[ω]-lattices as RG(h) < RT and RE(h) <

RT , respectively. In Fig. 3.5, we plot the outage probability with Z[ω]-lattices and Z-

lattices as a function of SNR (P ) where ℜ (h1) ,ℑ (h1) ,ℜ (h2) ,ℑ (h2) ∼ N (0, 1/2).

As in Fig. 3.3, SNR = 10 log10(P ). We average over 10000 realizations of h at each

SNR and choose the target rate to be RT = 1.4 bits/symbol/Hz. As seen in Fig.

3.5, there is a 0.4 dB gain from using Z[ω]-lattices instead of Z-lattices in terms of

outage performance. We would like to note that this gain comes with no additional

computational complexity.
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3.3 Separation-based coding scheme for compute-and-forward

In this section, we propose a separation based compute-and-forward (SBCF)

scheme that has an encoding and decoding complexity comparable to widely used

error-correcting codes for practical implementations. In the SBCF scheme, we em-

ploy lattice codes constructed from linear codes over a prime-sized field Fq that are

mapped to constellations obtained from lattice partitions over Z[ω]. This mapping

is chosen such that a ring homomorphism is satisfied between the lattice partition

and Fq. Hence, these lattice codes are essentially finite subsets of lattices built with

Construction A. In order to decode a function of transmitted messages at the relay,

we perform soft-output demodulation based on the channel itself and the chosen

function and then forward the posterior probabilities to a practically implementable

decoder. Therefore, the two main differences of the SBCF scheme from the frame-

work in [6] are the absence of additional noise from approximating the channel by

an integer vector and the utilization of a decoder much more practical than lattice

decoding. A schematic of the proposed encoder and decoder for two transmitters and

one relay is shown in Fig. 3.6. For the remainder of this chapter, we shall assume

that there are two transmitters and one relay.

3.3.1 An algorithm for constructing and labeling M

For large values of q it is not a trivial task to determine the ring isomorphism σ.

Therefore in this section, we provide a simple algorithm to assign elements in M to

elements in Fq.

1. Given a natural prime q congruent to 1 mod 3 and the corresponding Eisen-

stein prime ϱ, Z[ω]/ϱZ[ω]

2. Initialize an empty set M̄.

52



S1

S2

D1+

z
h1

h2

y
1

σ−1

x
1
∈ [Z[ω]/̺Z[ω]]n

Fn
q

C

F k
q

w
1 c

1

E1

Fn
q

C

F k
q

w
2 c

2

E2

Soft output

demodulator C−1

u
1

G2

u
1
= b1w1

⊕ b2w2σ−1

x
2
∈ [Z[ω]/̺Z[ω]]n

MAP

Decoder

Figure 3.6: Encoder and decoder for proposed scheme

3. Set 0 as the first element in M̄ and label it as 0 ∈ Fq, i.e., M̄[1] = 0 where

M̄[i] denotes the ith element of M̄.

4. Set 1 as the second element in M̄ and label it as 1 ∈ Fq, i.e., M̄[2] = 1.

5. for i = 2 : q − 1

M̄[i+ 1] = M̄[i] + 1 mod ϱZ[ω]

end

Note that at the end of the algorithm, the labeling of each element in M̄ is simply

determined by its index. Finally, each element in M̄ is scaled by γ (3.71) in order

to satisfy the power constraint.

3.3.2 Encoder for the SBCF scheme

A schematic of the encoder and decoder for the SBCF scheme is shown in Fig. 3.6.

Suppose that u1, u2 ∈ Fk
q where q = |ϱ|2 is a natural prime congruent to 1 mod 3

and ϱ is an Eisenstein prime. Each source node uses a (n, k) linear code C over Fq

which encodes u1, u2 to c1, c2, respectively. We denote M̄ as the coset leaders of
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Z[ω]/ϱZ[ω] with minimum Euclidean metric and scale it by

γ =
P

E (∥x∥2)
, (3.71)

which results in M = γM̄ so that the power constraint is satisfied. Note that

Fq
∼= Z[ω]/ϱZ[ω] and there is a bijective mapping σ : M̄ → Fq, which is a ring

isomorphism. Then, the transmitters map their codeword components c
(i)
1 , c

(i)
2 to

the corresponding constellation points x
(i)
1 = σ−1(c

(i)
1 ), x

(i)
2 = σ−1(c

(i)
2 ), respectively,

and transmit x1, x2 ∈ Cn. We would like to note that M was constructed based on

Z[ω]/ϱZ[ω] for better shaping gain.

3.3.3 Decoder for the SBCF scheme

The relay observes

y
1
= h1x1 + h2x2 + z. (3.72)

Suppose that the relay chooses equation coefficients b1, b2 ∈ Fq and decodes to the

function f(u1, u2) = b1u1 ⊕ b2u2.

Given b1, b2 and the variance of z, namely θ2 = 1, the relay implements an optimal

soft-output demodulator which computes the a posteriori probabilities given by

p
(
ĉ(i) = c

∣∣y(i)
1

)
=∑

(c′1,c
′
2):b1c

′
1⊕b2c′2=c

e
−
∥∥∥h1σ−1(c′1)+h2σ−1(c′2)−y

(i)
1

∥∥∥2

∑
(c′1,c

′
2)∈F2

q

e
−
∥∥∥h1σ−1(c′1)+h2σ−1(c′2)−y

(i)
1

∥∥∥2 (3.73)
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for all c ∈ Fq and for each codeword dimension i. Then, the relay decodes to

argmax
ĉ∈C

n∏
i=1

p
(
ĉ(i)
∣∣y(i)

1

)
. (3.74)

We would like to point out that the relay does not take into account that c1 and

c2 are valid codewords. Instead, it attempts directly to decode to a valid codeword

ĉ which is an estimate of b1c1 ⊕ b1c2.

3.3.4 Achievable computation rate

In this subsection, we will discuss what the achievable information rates are for

the SBCF scheme. Given b1, b2 ∈ Fq, the computation rate I(Y ; b1C1 ⊕ b2C2) is

achievable. Obtaining a closed form solution of this achievable rate is not an easy

task since it involves computing the entropy of Gaussian mixtures , nonetheless it

can be evaluated quite accurately using Monte-Carlo methods. Finally given P , q

and h, we denote RL(h, P, q) as

RL(h, P, q) = max
b1,b2∈Fq

I(Y ; b1C1 ⊕ b2C2). (3.75)

3.3.5 The SBCF scheme with LDPC codes

In order to approach RL(h, P ) arbitrarily closely for a given channel coefficient

vector h and power constraint P , C can be chosen as a (n, k) LDPC code over Fq

where n → ∞. A message passing algorithm can be used for decoding as follows.

The algorithm is initialized at the variable nodes by computing the q dimensional

posterior probability vector p(ĉ(i) = c
∣∣y(i)

1
) for all c ∈ Fq, where p(ĉ

(i) = c
∣∣y(i)

1
) is the

same as (3.73), for each variable node (i) and sent to the check nodes. Once the
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initialization is completed, the remaining steps would be identical to the message

passing algorithm for decoding any (n, k) non-binary LDPC code over Fq [35], Ch.7.

The main advantage of using our proposed scheme is that the demodulation and

decoding is completely separated. The coding gain is related entirely with the per-

formance of the linear code that we use and the shaping gain is determined by the

constellation M which each codeword component is mapped to. Unlike in (3.64),

h1, h2 is not approximated by a1, a2 ∈ Z[ω]. Instead, an optimal soft-output demodu-

lator is used which does not introduce additional self interference. Hence, SBCF has

the potential to achieve higher computation rates than Nazer and Gastpar’s scheme

in [6].

3.4 Simulation results

In this section, we first computeRE (h, P ) andRL (h, P, q) for q ∈ {7, 19, 37, 241}

with
{
ϱ ∈ 2− j

√
3, 4− j

√
3, 5− j2

√
3, 7− j8

√
3
}
, respectively, as a function of

SNR (P ) for a given channel realization h.

As seen in Fig. 3.7 for a given h = [1.4193 + j0.2916; 0.1978 + j1.5877] and P ,

RL (h, P, q) was able to surpass RE (h, P ) locally in the vicinity of 25 dB as q was

increased. Note that Z[ω]-lattices are employed in order to construct both coding

schemes. Unlike the results in Fig. 3.3, the higher achievable rate for the SBCF

scheme can not be attributed to h being better approximated by an Eisenstein integer

vector. Therefore, we believe that higher rates were achievable in the SBCF scheme

due to the fact that the decoder implements a soft output demodulator which does

not introduce additional noise from approximating the channel by an integer vector.

3.5 Conclusion

In this chapter, we have shown the existence of lattices over Eisenstein integers

that are simultaneously good for quantization and are Poltyrev achieving. These
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Figure 3.7: Theoretically achievable rates for a given h

lattices were then used to generate lattice codes over Eisenstein integers for compute-

and-forward. These lattice codes enable the relays to decode to linear combinations of

lattice points with Eisenstein integer coefficients. Numerical results suggest that on

average, lattice codes over Eisenstein integers can achieve higher computation rates

than lattice codes over integers. We have also proposed practically implementable

separation-based coding scheme where a linear code is used for channel coding and

a constellation generated from Z[ω]-lattice partitions (with a small dimension) is

adopted for modulation. This separation has allowed us to keep the constellation

size small so that optimal demodulation is feasible. Therefore, since the separation-

based coding scheme does not introduce additional noise from approximating the

channel by an integer vector, we were able to achieve higher computation rates than

the framework in [6].
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4. SCLDA LATTICE CODES BASED ON CONSTRUCTION A∗

In this chapter, motivated by the fact that binary spatially-coupled LDPC codes

can achieve capacity under message passing for many channels [23], we construct

low-density Construction A (LDA) lattices over integers and Eisenstein integers by

choosing the underlying linear code to be a non-binary spatially-coupled LDPC code.

We refer to these lattices as spatially-coupled LDA (SCLDA) lattices. We empirically

show that the message-passing decoding thresholds for these lattices is close very close

to the Polytrev limit. Specifically, Monte Carlo simulations show that spatially-

coupled LDA lattices over Eisenstein integers can approach the Poltyrev limit as

closely as 0.08 dB ignoring the rate loss due to termination (or 0.19 dB including

the rate loss) for a codeword length of 1.29 × 106. Encouraged by these results,

we construct spatially-coupled lattice codes over Eisenstein integers for the compute-

and-forward problem. For a specific channel realization, simulation results show that

the message-passing decoding threshold for this code ensemble is within 0.28 dB from

the theoretically achievable computation rate and is within 1.06 dB from Nazer and

Gastpar’s achievable computation rate over Eisenstein integers.

4.1 Related work

Lattice codes have been shown to be optimal for many problems in communica-

tions including the point-to-point additive white Gaussian noise (AWGN) channel

and coding with side information problems such as the Wyner-Ziv problem or dirty

paper coding problem [9], [29]. The construction of optimal lattice codes for these

problems often requires a lattice (infinite set of points) that is good for channel

∗Reprinted with permission from “Spatially-Coupled Low Density Lattices based on Construc-
tion A with Applications to Compute-and-Forward” by N. E. Tunali, K. R. Narayanan, and H. D.
Pfister, 2013. Information Theory Workshop, pp. 1-5, copyright [2013] by IEEE.
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coding. This is often measured using Poltyrev’s idea of the unconstrained AWGN

channel. Specifically, the maximum noise variance that a lattice can tolerate while

maintaining reliable communication over the point-to-point channel is called the

Poltyrev limit [18] and lattices which can achieve the Poltyrev limit are referred to

as Poltyrev good in the literature. Loeliger showed the existence of lattices that are

Poltyrev good by means of Construction A in [15].

Compute-and-forward is a novel relaying paradigm in wireless networks where

relays decode functions of signals transmitted from multiple transmissions and for-

ward them to a central destination [24], [6]. Since lattices are closed under inte-

ger addition, they are an ideal candidate to build coding schemes to implement a

compute-and-forward scheme and the decoding functions can be chosen to be integer

combinations. When channel state information is not available at the transmitters,

an effective way to implement a compute-and-forward scheme is to allow the relays

to adaptively choose the integer coefficients depending on the channel coefficients.

Nazer and Gastpar have analyzed such a scheme which uses lattices over integers

and derived achievable information rates in [6]. In [7], Feng, Silva and Kschischang

have introduced an algebraic framework for designing good lattice codes which allow

the recovery of linear combinations of transmitted signals over a finite field. In [28],

Nazer and Gastpar’s scheme was extended to lattices over Eisenstein integers and in

some cases, improved information rates were shown to be achievable.

Poltyrev-good lattices obtained from Construction A play a crucial role in con-

structing coding schemes that can achieve high computation rates in compute-and-

forward. In [26], lattices based on Construction A were built using low density parity

check (LDPC) codes and such lattices were referred to as LDA lattices. Pietro et. al.

proved that LDA lattices can achieve the Poltyrev limit under maximum-likelihood

(ML) decoding in [27]. While this result is interesting, the question of whether the
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Polytrev limit can be achieved using message passing decoding is still open. Prior

simulation results by Pietro et. al. in [26] show that a symbol error rate of 10−6 can

be achieved using LDA lattices in 10000 dimensions with message passing decoding

at a gap of 0.7 dB from the Poltyrev limit. In [28], the performance of LDA lattice

codes for the compute-and-forward problem was empirically shown to be 0.8 dB away

from the corresponding information-theoretic limit. In this chapter, we propose a

lattice construction that provides improved performance over the results in [26] and

[28].

4.2 Background

4.2.1 Poltyrev limit

Let z be an n-dimensional independent and identically distributed (i.i.d) Gaussian

vector, z ∼ N
(
0, σ2

zI
)
. Suppose that a lattice point λ ∈ Λ is transmitted across an

AWGN channel and let y be the received signal given by:

y = λ+ z. (4.1)

The ML decoder decodes to the lattice point nearest in Euclidean distance to y,

which results in the following probability of decoding error:

Pe (Λ, z) = Pr {z ̸∈ VΛ} . (4.2)

Definition 24 (Poltyrev limit [18]). It was shown in [18] that there exists a Λ in

a sufficiently large dimension n such that λ can be decoded with arbitrarily small

decoding error Pe (Λ, z) if and only if the noise variance σ2 satisfies σ2 < σ2
max. The
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maximum noise variance, σ2
max is called the Poltyrev limit and is given by

σ2
max ,

Vol (VΛ)
2
n

2πe
(4.3)

4.2.2 Poltyrev limit of Construction A lattices

We define the (n, k, q,Z) ((n, k, q,Z[ω])) ensemble as the set of Z (Z[ω])-lattices

obtained through Construction A where for each of these lattices, Gij are i.i.d with

a uniform distribution over Fq. The Poltyrev limit of a lattice chosen from the

(n, k, q,Z) ensemble is given by σ2
max = 1

2πe
q2(1−R) and the corresponding limit for

the (n, k, q,Z[ω]) ensemble is σ2
max =

√
3

4πe
q(1−R), where R = k

n
.

4.2.3 LDA lattices

Definition 25 (LDA lattice [26]). A Z (Z[ω])-lattice Λ belongs to the family of

LDA lattices over integers (Eisenstein integers), which we refer as LDA Z (Z[ω])-

lattices, if Λ is chosen from the (n, k, q,Z) ((n, k, q,Z[ω])) and the underlying discrete

codebook C has an (n− k)× n sparse parity-check matrix H, in other words C is an

LDPC code. We shall denote the ensemble of such lattices as the (n, k, q,Z) LDA

ensemble or the (n, k, q,Z[ω]) LDA ensemble.

4.3 Spatially-coupled LDA lattices

Motivated by the fact that spatially coupled LDPC codes have been shown to

achieve capacity universally under message passing with the assumption that the

receiver knows the underlying channel [23], we propose to use spatially-coupled non-

binary LDPC codes to build LDA lattices, which we refer to as spatially-coupled LDA

(SCLDA) lattices.

61



4.3.1 Construction of spatially-coupled LDA lattices

For constructing spatially-coupled LDA lattices, we choose the underlying LDPC

codes over some Fq from the (dl, dr, L) ensemble introduced in [22] Section II-A. This

results in a code rate of

R =
k − 1

k
− dl − 1

k(2L+ 1)
. (4.4)

0 1 2 3-1-2-3 b L-L b bb b b

Figure 4.1: Coupled chain of (3,6) protographs

Fig. 4.1 represents a protograph which consists of a coupled chain of (dl = 3, dr =

6) protographs. The circles represent the variable nodes and the squares represent

the check nodes. In order to build H, M copies are made of this protograph and

the edges in Fig. 4.1 impose the connectivity constraint for interconnecting the M

copies.

The weights of the edges, are chosen as in [26]. Suppose that row i of H has a

degree of di. Denote the vector of non-zero coefficients in this row as ai and denote
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each element of ai as aij. The condition

aij ̸= ±aij′ , ∀j, j′ ∈ {1, · · · , di} , j ̸= j′ (4.5)

guarantees that the minimum Euclidean distance between any two lattice points

λ1, λ2 such that σ(λ1) and σ(λ2) satisfy the ith parity check, exceeds
√
2 [26].

Following the construction of H, the spatially-coupled LDPC code C is formed

and each codeword component is mapped to elements in the quotient ring Z/qZ

(Z[ω]/πZ[ω]) via the ring homomorphism ϕ and tesselated over qZ (πZ[ω]). The

overall construction is summarized in Fig. 4.2.

Spatially coupled
LDPC code

over Fq

u
φ +

(πZ[ω]n)qZn

λc

Figure 4.2: Construction of spatially-coupled LDA lattices

4.3.2 Efficient decoding of spatially-coupled LDA lattices

Suppose Λ is chosen from the (n, k, q,Z) LDA ensemble and λ ∈ Λ is transmitted

across an AWGN channel. Let y denote the received vector given by

y = λ+ z (4.6)

where z ∼ N (0, σ2I). The decoding algorithm is a simple extension of the message

passing algorithm for decoding non-binary LDPC codes and is nearly identical to the
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one in [26]. It consists of the following steps

4.3.2.1 Initialization

For each ĉ, we compute the q-ary probability vector

P
(
ĉ(i)|y(i)

)
=

∑
λ̂
(i)∈Z|λ̂(i)

mod q=ĉ(i)

P
(
λ̂
(i)
|y(i)

)
(4.7)

where

P
(
λ̂
(i)
|y(i)

)
∝ exp

−

(
y(i) − λ(i)

)2
2σ2

 . (4.8)

Note that there are an infinitely many summands in (4.7) which makes it impossible

to compute the exact value.

We approximate the above summation by choosing only one representative from

every coset Z/qZ that lies closes to y. Define λ̃
(i)

as:

λ̃
(i)

: argmin
λ̂
(i)∈Z|λ̂(i)

mod q=ĉ(i)

∣∣∣λ̂(i) − y(i)
∣∣∣ (4.9)

Then, (4.7) can be approximated as P
(
ĉ(i)|y(i)

)
≈ P

(
λ̃
(i)|y(i)

)
. We would like to

note that for large q, this approximation becomes very good.

4.3.2.2 Iterations

Once the initialization process is completed, variable-to-check node messages and

check-to-variable node messages can be updates identical to the traditional message

passing algorithm over Fq where q is prime.
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4.3.2.3 Decisions at each iteration

Denote the normalized product of all messages that variable node i receive from

the check nodes it is connected to at the jth iteration as

P (j)
(
ĉ(i)|C, y\y(i)

)
. (4.10)

The decision for the ith component of λ at the jth iteration can be written as:

argmax
λ̃
(i)|λ̃(i)

mod q=ĉ(i)

P (j)
(
ĉ(i)|C, y\y(i)

)
· P
(
λ̃
(i)|y(i)

)
(4.11)

For decoding LDA Z[ω]-lattices, (4.7), (4.8), and (4.9) should be changed such

that λ, z ∈ Cn. Also, the mod q operation in (4.7), (4.9), and (4.11) should be

replaced with the ring homomorphism ϕ(λ̂
(i)
) mentioned in section 4.2.2.

4.3.3 Simulation results of spatially-coupled LDA lattices

In this section, we present simulation results in which we empirically study the

thresholds of a spatially-coupled LDA Z-lattice and a spatially-coupled LDA Z[ω]-

lattice with the same underlying H. H was chosen from the (dl = 3, dr = 6, L = 64)

ensemble over F31 with a protograph lifting factor of M = 10000 and each non-zero

element of H is chosen as mentioned in Section 4.3.1. For the spatially-coupled

LDA Z[ω]-lattice, the Eisenstein prime π = 2− 3
√
3j is used for generating the ring

homomorphism that maps Z[ω]/πZ[ω] to F31. This choice of parameters result in a

code with codeword length 1.29× 106 and code rate of 0.4922 including the rate loss

from the termination. Due to the symmetry in the lattice, the all-zero lattice point

is assumed to be transmitted. Instead of plotting the symbol error rate curve, we

focus on determining the threshold of the resulting lattice under message passing.
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We estimate the threshold by determining the maximum noise variance for which

no codeword errors (ĉ ̸= 0) were observed in the simulation of 10 codewords each of

length 1.29 × 106 symbols. There is a small difference between the codeword error

rate and the probability of decoding to a wrong lattice point for finite q.

Notice that the minimum squared Euclidean distance between any two lattice

points in any lattice constructed using Construction A over integers is at most q2

and that over Eisenstein integers is q. These correspond to the minimum Euclidean

distance between any two points in the coset qZ and πZ[ω], respectively. When the

decoder chooses a wrong lattice point from the same coset, the codeword over the

finite field will still be correctly decoded. These events are not counted as errors

in our simulations. As q increases, the probability of these events decreases and,

hence, does not become a significant issue. For any fixed q, the symbol error rate is

lower bounded by Q

(√
q2

4σ2

)
for Z-lattices and is lower bounded by Q

(√
q

4σ2

)
for

Z[ω]-lattices. For q = 31, these are 2.02 × 10−29 for Z-lattices and 1.17 × 10−7 for

Z[ω]-lattices. Thus, there will be an error floor which is not shown in the threshold

calculations.

In Table 4.1, thresholds are stated with and without considering the rate loss from

the termination. For the results in this table, q = 31 andR = 0.4922. σ2
max

∗
and Gap*

correspond to the Polytrev limit and gap from the Polytrev limit without the rate loss

from termination, i.e. R = 0.5. If the rate loss from the termination is ignored, the

threshold of the spatially-coupled LDA Z-lattice and Z[ω]-lattice with the specified

parameters are 0.11 dB and 0.08 dB from the Poltyrev limit, respectively. This gap

increases to 0.34 dB and 0.19 dB away from the Poltyrev limit, respectively if the

rate loss from termination is included.
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Table 4.1: Thresholds for SCLDA Z and Z[ω]-lattices .
Lattice Threshold σ2

max Gap σ2
max

∗
Gap*

Z-lattice 1.7707 1.9149 0.34 dB 1.815 0.11 dB
Z[ω]-lattice 0.2776 0.2900 0.19 dB 0.2823 0.08 dB

4.4 Spatially-coupled LDA Z[ω]-lattice codes for CF

Encouraged by the near-Poltyrev-limit performance of spatially-coupled LDA

Z[ω]-lattices, we use them to build lattice codes in order to implement the separation-

based framework for compute-and-forward proposed in Chapter 3. 3.3. For the sake

of simplicity, we will assume two transmitter 1 relay node model in Fig. 3.6.

4.4.1 Simulation results

In this section, we present the simulation results for the separation-based compute-

and-forward scheme that employs a spatially-coupled LDPC code, i.e. the resulting

code is a spatially-coupled LDA Z[ω]-lattice code. We build the underlying LDPC

over F7, corresponding to an Eisenstein prime of π = 2−
√
3j, and choose it from the

(dl = 3, dr = 6, L = 64) ensemble with a protograph lifting factor of M = 10000.

This choice of parameters result in a code with codeword length 1.29× 106 and code

rate of 0.4922. Due to the fact that the infinite lattice is not considered in this

case, the minimum Euclidean distance of the single parity check code loses its sig-

nificance. Hence, each non-zero element in the parity check matrix chosen according

to a uniform distribution over the set {1, 2, 3, 4, 5, 6}.

For channel realizations h = [1.4193+0.2916j; 0.1978+1.5877j], the computation

rate of the proposed scheme is maximized for b1 = 1, b2 = 5 for all SNRs considered.

Using the same approach in Section 4.3.3 for estimating thresholds, we have observed

the threshold of the spatially-coupled LDA lattice code to be within 0.28 dB from
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Figure 4.3: Estimated threshold for the spatially-coupled LDA Z[ω]-lattice code

RL(h, P, q) and 1.06 dB from RE(h, P ) as seen in Fig. 4.3. We would like to note

that if the rate loss from the termination of the code is ignored, the gaps reduce to

0.18 dB and 0.96 dB, respectively. The remaining gap is mainly due to the shaping

loss.
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5. CONCATENATED SIGNAL CODES FOR COMPUTE-AND-FORWARD∗

In this chapter, we present a new coding scheme based on concatenating convo-

lutional lattice codes, also referred to as signal codes, with interleaved low density

parity check (LDPC) codes. We derive two decoding algorithms for these codes.

In the first one, hard decisions are forwarded from a stack decoder which reaches

a certain depth whereas in the second one, soft outputs from a Trellis-based de-

coder are forwarded. For the point-to-point case, simulation results show that our

proposed scheme based on forwarding hard decisions approaches capacity to within

1 dB, whereas forwarding soft decisions approaches capacity to within 0.1 dB. Since

these codes belong to the family of lattice codes, this facilitates their use as a cod-

ing scheme for the compute-and-forward paradigm. Simulation results show that our

proposed coding scheme can approach the theoretically achievable exchange rates for

compute-and-forward over the bidirectional relay network using nested lattice codes,

which is log(1/2 + SNR) [24], as close as 0.5 dB in the medium SNR regime.

5.1 Introduction

Compute-and-forward is an information forwarding paradigm in wireless relay

networks in which relays directly decode to functions of signals transmitted from

multiple transmitters, i.e. integer linear combinations, and forward them to a cen-

tral destination such that the central destination can recover each individual signal

from the transmitters. Due to the fact that lattices are closed under integer addi-

tion, lattice codes are naturally suited to decoding integer linear combinations of

transmitted signals.

∗Reprinted with permission from “Concatenated Signal Codes with Applications to Compute
and Forward” by N. E. Tunali and K. R. Narayanan, 2011. Information Theory Workshop, pp. 1-5,
copyright [2011] by IEEE.
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In [12], Low-Density Lattice Codes (LDLC), which are lattices with sparse parity

check matrices, have been introduced and were shown to have near Poltyrev-limit

asymptotic symbol error rate (SER)performance in the asymptotic block length. For

decoding LDLC, a message passing decoder which passes quantized probability den-

sity functions is used. One of the drawbacks of LDLC is its high-complexity decoding

algorithm. In order to overcome this disadvantage, a reduced complexity message

passing algorithm based on passing Gaussian mixture parameters was introduced in

[30]. In order to further enhance the SER performance of LDLC, spatially-coupled

LDLC have been introduced by Uchikawa et. al. in [38]. Low-density Construction

A (LDA) lattices, which are lattices built from LDPC codes through Construction

A and also belong to the class of low-density lattices, were introduced by Pietro et.

al. in [26] and were shown to achieve the Poltyrev limit under ML decoding in [27].

The performance of spatially-coupled LDA lattices and their application to compute-

and-forward were studied in [39]. Polar lattices, which are lattices constructed from

Polar codes through Construction D, were introduced by Yan et. al. in [31] and

were shown to achieve the Poltyrev limit under multi-stage decoding. In [13] and

[21], convolutional lattice codes, also known as signal codes, which can be thought of

as the lattice counterpart of convolutional codes, were introduced by Shalvi et. al..

One of the disadvantages of convolutional lattice codes is the lack of good asymptotic

SER performance in block length and the utilization of a high complexity sequential

decoder in order to approach capacity.

In this chapter, we propose a lattice-based coding scheme, which we refer to

as concatenated convolutional lattice codes (CCLC), that is based on concatenat-

ing convolutional lattice codes with interleaved LDPC codes in order to achieve

good asymptotic SER performance in blocklength and approach capacity without

the burden of a high-complexity sequential decoder. The outline of the chapter is
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as follows. We first give some background on convolutional lattice codes. We then

introduce CCLC, and two different decoding algorithms which are based on forward-

ing hard decisions and soft outputs to the interleaved LDPC code, respectively. We

then employ CCLC for the compute-and-forward paradigm in a bidirectional relay

channel.

5.2 Background on convolutional lattice codes

5.2.1 Convolutional lattice codes

Definition 26 (Convolutional Lattice). Let f denote a monic causal filter with

transfer function F (z) = 1 +
∑L

l=1 flz
−l. A convolutional lattice, Λ is defined as

Λ = {x = f ⋆ a : a ∈ Z[i]n}. The generator matrix of Λ, which we denote as

G ∈ C(N+L)×N , can be written as

G =



1 0 0 · · · 0 0 0

f1 1 0 · · · 0 0 0

f2 f1 1 · · · 0 0 0

...
...

...
...

...
...

...

fL fL−1 fL−2 · · · 0 0 0

0 fL fL−1 · · · 0 0 0

...
...

...
...

...
...

...

0 0 0 · · · f2 f1 1

...
...

...
...

...
...

...

0 0 0 · · · fL fL−1 fL−2

0 0 0 · · · 0 fL fL−1

0 0 0 · · · 0 0 fL
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Therefore Λ can also be defined as Λ = {x = Ga : a ∈ Z[i]n}

Definition 27 (Unshaped Convolutional Lattice Code). Let M denote anM2-QAM

constellation, where ℜ(M) = ℑ(M) = {0, 1, . . .M − 1} and let a ∈ MN . An un-

shaped convolutional lattice code, which we denote as ΛC is defined as ΛC = {x =

f ⋆ a : a ∈ Mn}, or ΛC = {x = Ga : a ∈ Mn}. Hence, x can be written as:

xn = an +
L∑
l=1

flan−l (5.1)

for n = 1, · · · , N+L−1 and an is assumed to be zero outside the range n = 1, · · · , N .

In [13], the filter coefficients are carefully chosen such that the minimum distance

between any two codewords in ΛC is substantially higher than that of uncoded M2-

QAM. However, this comes at the cost of a higher average energy for ΛC . In order

to reduce the average transmit power and maintain the increased minimum distance,

hypercube shaping based on Tomlinson-Harashima precoding can be implemented

as follows [20].

Definition 28. (Convolutional Lattice Codes with hypercube shaping):

Recall that an belongs to an M2-QAM constellation. The shaping operation maps

each an to bn via

bn = an −Mkn (5.2)

where kn is a complex integer and is computed as

kn =

⌊
1

M

(
an +

L∑
l=1

flbn−l

)⌉
(5.3)

and ⌊x⌉ denotes the complex integer closest to x. After kn and bn have been computed,
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xn can be computed as

xn = bn +
L∑
l=1

flbn−l (5.4)

which is the equivalent of x = Gb. This shaping method ensures that for every xn,

ℜ(xn) ∈ [−M
2
, M

2
) and ℑ(xn) ∈ [−M

2
, M

2
). As n→ ∞, it can be shown that ℜ(xn) and

ℑ(xn) is uniformly distributed within [−M
2
, M

2
), which results in an average power of

1
6
M2. Notice that an can be determined uniquely from bn by a modulo M operation.

The encoding of Convolutional Lattice Codes is summarized in Fig. 5.1.

z−1

1

z−1a

f1

z−1

f2

z−1

fL

+ + + x

+

−Mk

Figure 5.1: Encoding of convolutional lattice codes

5.2.2 Decoding convolutional lattice codes

Assume that each xn is transmitted over an AWGN channel such that yn = xn+zn

where zn are zero mean, independent and identically distributed (i.i.d) Gaussian

random variables. In order to decode to the corresponding a, the maximum likelihood

decoder should maximize

L(y|a) = −
∑
n

∣∣∣∣∣yn −
L∑
l=0

flb
a
n−l

∣∣∣∣∣
2

(5.5)
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where ban’s correspond to hypercube shaped an’s. In the decoding algorithm proposed

in [13], the bns are treated as free variables and the decoder attempts to maximize

L(y|b) = −
∑
n

∣∣∣∣∣yn −
L∑
l=0

flbn−l

∣∣∣∣∣
2

(5.6)

This decoder is the equivalent of decoding to the nearest lattice point without taking

the shaping region into consideration. It can be shown that for lattice codes of large

dimensions, disregarding the shaping algorithm does not affect the performance of

the decoder.

It can be observed that convolutional codes (or inter-symbol interference chan-

nels), and convolutional lattice codes share similar structural properties. Just as

convolutional codes, the sequence-wise optimal maximum likelihood decoder of con-

volutional lattice codes would be the Viterbi Algorithm with at leastML many Trel-

lis branches. However, hypercube shaping increases the cardinality of bn to a much

larger value than M . Hence, implementing a straightforward Viterbi algorithm is

computationally infeasible.

Therefore, suboptimal decoders for convolutional lattice codes were proposed

in [13] . One of these suboptimal decoders is the stack decoder which stores the

candidate bn’s in a stack and updates the stack after each step by sorting the metrics

of the candidates and only allowing SL of them to remain in the stack where SL is

the maximal stack length [1]. The Fano metric to be used in the stack decoder with

Tomlinson-Harashima shaping has been derived in [13] and is given by

L(y|b) = −
∑
n

[∣∣∣∣∣yn −
L∑
l=0

flbn−l

∣∣∣∣∣
2

−B

]
(5.7)
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and

B ≈ σ2 · log 4

σ2
(5.8)

where B is the bias term [13].

It can be inferred that convolutional lattice codes do not have good asymptotic

SER performance in blocklength, which is undesirable for certain applications. In

order to overcome this disadvantage, convolutional lattice codes can be concatenated

with LDPC codes. However, a straightforward concatenation would not result in a

good coding scheme due to the fact that the failure of the stack decoder results in

bursty errors and thus cripples the error correcting capability of the LDPC code.

This has motivated us to develop a more sophisticated concatenation scheme and an

appropriate decoding scheme which is discussed in the following section.

5.3 Concatenated convolutional lattice codes

5.3.1 Motivation

As we have mentioned before, there is a great similarity between convolutional

lattice codes and inter-symbol interference (ISI) channels. In fact, convolutional

lattice codes can equivalently be thought of as transmitting QAM symbols through

an ISI channel with carefully selected channel coefficients combined with Tomlinson-

Harashima precoding. Therefore in order to approach capacity with convolutional

lattice codes, we were motivated by various works that focused on designing coding

schemes that achieve capacity over ISI channels [2], [3], [4] [5].

In [5], Pfister et. al. derive the achievable rates for ISI channels by introducing a

coding scheme which uses interleaved multiplexed codes with different rates chosen in

a specific manner for the channel and a multi-stage decoder which involves multiple
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passes of a BCJR decoder. The structure of this coding scheme can effectively

be thought of as interleaved codes with known symbols added between them and

hence results in the equivalent channels to become memoryless. In [3], a similar

approach is undertaken by using a single interleaved code with the first L columns

perfectly known along with a BCJR decoder that passes optimal soft outputs. Once

a column is decoded, it is assumed to be perfectly known and the BCJR decoder

computes the soft outputs of the next column and forwards them to the interleaved

code with the assumption that the previous columns are perfectly known. Hence,

the equivalent channels for each column become identical and memoryless. This

approach is referred to as BCJR decision feedback equalization (BCJR-DFE) and has

been shown to achieve capacity as blocklength tends to infinity under the assumption

that the interleaved code is a capacity achieving code. Motivated by this result, we

adapt a similar concatenation scheme for convolutional lattice codes.

5.3.2 Encoding concatenated convolutional lattice codes

For encoding concatenated Convolutional Lattice codes, we insert our information

letters into a K×N2 matrix, which we denote as U, and ui,j ∈ FM2 . Then an LDPC

code, which we denote as C, over FM2 with rate R = K/N1 is used in order to encode

each column Ui ∈ FK
M2 to an LDPC codeword Ci ∈ FN1

M2 . We denote the matrix of

cascaded Ci’s as C. The encoding operation that has been described so far can be

expressed as

C = GLC ·U, (5.9)

where GLC denotes the N1 ×K generator matrix of C.

We proceed the encoding process by mapping each element of C to an M2-QAM

symbol with a bijective mapping f : FM2 → M and denote this matrix asA. We then
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encode each row Aj ∈ MN2 to a hypercube shaped convolutional lattice codeword

Xj ∈ CN2+L. We denote the matrix of cascaded Xj’s as X. These operations can be

expressed as

X = (A−MK)GCL
T , (5.10)

where GCL denotes the generator matrix of a Convolutional Lattice Code and K

denotes the subtracted integer vector as a result of hypercube shaping. The overall

encoding operation is thus

X = (f (GLC ·U)−MK)GCL
T . (5.11)

In order to ensure that the energy of the convolution tail is controlled in the

last L columns of X these elements can be chosen from an uncoded larger QAM

constellation as mentioned in [13]. Since we will be analyzing CCLC for asymptotic

blocklength in this chapter, we will not take the last L columns of X into consider-

ation in our analysis.

5.3.3 Decoding concatenated convolutional lattice codes

Suppose a CCLC is transmitted over an AWGN channel such that at the receiver

Y = X + Z is observed where zi,j ∼ CN (0, σ2). With the absence of hypercube

shaping, this coding scheme could equivalently be thought of as transmitting in-

terleaved LDPC codes over an ISI channel. As we mentioned in Sec. 5.3.1, the

BCJR-DFE equalizer combined with a capacity achieving interleaved code achieves

capacity as N1 → ∞ and N2 → ∞. However for concatenated convolutional lattice

codes, obtaining optimal soft outputs for each column is computationally infeasible

since hypercube shaping results in the cardinality of state space to increase sub-
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stantially. In order to approach capacity with Concatenated Convolutional Lattice

Codes, we propose two suboptimal decoders which we refer to as the hard decision

based decoder and soft output based decoder.

5.3.3.1 Hard decision based decoding of CCLC

Once Y is received, N1 stack decoders are run in parallel for each row yi. Once

each stack decoder reaches a depth of τ a hard decision is made on the first symbol for

each ci, thus making a hard decision on the first column c1. Then, the hard decisions

for the first column forwarded to a message passing decoder and c1 is decoded. If

the SNR is higher than the BP threshold of the LDPC code, c1 can decoded with

very high probability and it can be assumed that it is perfectly known. We then

repeat this procedure for the second column c2, under the assumption that the the

first column is known. Note that the equivalent channel for each element in c2 would

be identical to the equivalent channel for each symbol of c1 and these channels would

be memoryless. We continue repeating this procedure for each cj until all N2 + L

columns are decoded.

5.3.3.2 Soft output based decoding of CCLC

For soft output based decoding of CCLC, we forward soft outputs to the inter-

leaved LDPC code as follows. We start from the first column of C and for every

symbol ci,1 ∈ c1, we compute the soft output

p(ci,1 = m|yi,L
′

i,1 ) ∝
∑

xi,L′
i,1 |ci,1=m

1

πσ2
e

−
∑L′

j=1 ∥yi,j−xi,j∥
2

σ2 (5.12)

for every m ∈ M where L′ denotes a chosen depth. We then forward the soft

outputs to a message passing decoder and decode c1. Under the assumption that
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the SNR is higher than the BP threshold of the LDPC code, c1 can decoded with

very high probability and thus assumed to be perfectly known. Similar to hard

decision based decoding of CCLC, we repeat this procedure for the second column

c2, under the assumption that the the first column is known, i.e. we compute p(ci,2 =

m|yi,1+L′

i,2 , ci,1) for i ∈ {1, · · · , N2} and m ∈ M. The remaining steps for soft output

based decoding of CCLC are identical to hard decision based decoding. The encoding

and decoding of CCLC is summarized in Fig. 5.2.

U

ui,j ∈ GF(M)

GLU mod M

(LDPC Code)
C =

ci,j

ci,j ∈ GF(M)
Signal Code

Signal Code

xT
1

xTN

(C −MK) GT
SC = X = xi,j

Each row is a signal codeword
Each column is an LDPC codeword

xi,j ∈ [−M,M)

Terminated symbols

+

N

X̃

x̃T
1

x̃T
2

x̃TN
Stack decoder up to τ ≈ 25 for ithsymbol

Stack decoder up to τ ≈ 25 for ithsymbol
c̃1i

c̃2i

c̃Ni

c̃i
LDPC Decoder

ûi

Stack decoder up to τ ≈ 25 for ithsymbol

Figure 5.2: Encoding and decoding of CCLC

5.3.4 Achievable information rates with CCLC

Recall that ci,j ∈ FM2 are a sequence of coded symbols which are mapped to an

M2-QAM constellation denoted as M. Under the assumption that the distribution

on ci,j is independent and identically distributed (i.i.d) and uniform over FM2 and
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N1 → ∞, we denote the achievable information rate for each row Ci as Ci.i.d, which

is given by

Ci.i.d =
1

N2

I

(
Ci;Y i|p(ci) =

N2∏
j=1

p(ci,j)

)
. (5.13)

Due to hypercube shaping Ci.i.d = I(X;Y ), whereX is a complex random variable

with ℜ(X),ℑ(X) uniformly distributed between [−M,M) and Y = X + Z, where

Z CN (0, σ2).

Using soft output based decoding of CCLC, the following propositions can be

stated.

Proposition 29. The equivalent channel across each column cj is a memoryless

channel.

Proof. Each row of C is encoded independently from each other. Hence, the result

follows.

Proposition 30. There are a finite number of statistically equivalent channels with

posterior probability p
(
ci,j|yi,j+L′

i,j , ci,j−1
i,1

)
Proof. Due to hypercube shaping, the equivalent channel p

(
ci,j|yi,j+L′

i,j , ci,j−1
i,1

)
de-

pends on all of the past symbols ci,j−1
i,1 as seen in (5.1), (5.2) and (5.3). The M2

values xi,j can take with the assumption that ci,j−1
i,1 is known, is shifted and folded on

to [−M,M). Note that the amount of the shift depends on ci,j−1
i,1 . As N2 → ∞, xi,j

is uniformly distributed between [−M,M) and thus there are uncountably infinite

values it can take. Nonetheless, since each shift that results in the same ordering

of the M2 values after the folding operation would result in statistically identical

channels, there would be only a finite number of equivalent channels with different
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statistical properties. Due to the uniform distribution of xi,j in [−M,M), each of

the channels with different statistical properties are equally likely.

Corollary 31. For every ci,j, the soft output ergodic mutual information, which we

denote as IS, can be computed as

IS =
1

S
∑
s∈S

Is(Ci,j;Y
i,j+L′

i,j |Ci,j−1
i,1 ), (5.14)

where S denotes the set of statistically different equivalent channels and Is denotes

the mutual information of a particular equivalent channel s.

Corollary 32. The ergodic mutual information IS gives a lower bound on Ci.i.d.

Proof.

1

N2

N2∑
j=1

I(Ci,j;Y
i|Ci,j−1

i,1 ) ≥ I(Ci,j;Y
i,j+L′

i,j |Ci,j−1
i,1 ) (5.15)

which follows from the data processing inequality since Y i,j+L′

i,j is a deterministic

function of Y i.

Corollary 33. Using soft decision based decoding, the information rate IS can be

achieved if the interleaved LDPC code C achieves capacity.

The ergodic mutual information for hard decision based decoding can be derived

similarly, which we denote as IH .

5.3.5 Simulation results

In this section, we shall demonstrate the performance of CCLC with hard de-

cision based decoding and soft output based decoding. A filter pattern of F (z) =
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(1 + 0.98ej0.09πz−1)3, which was shown to be a monic causal filter with good min-

imum distance properties in [13], is used for encoding the LDPC codeword matrix

C to the signal codeword matrix X. Due to hypercube shaping, xi,j is uniformly

distributed between
[
−M,M

)
as N2 → ∞. Therefore, E(|xi,j|2) = M2

6
and SNR is

defined as SNR =
E(|xi,j |2)

2σ2 where σ2 is the variance of real and imaginary compo-

nents of complex AWGN and hence SNR = M2

12σ2 . Since IS and IH denote ergodic

mutual information, we estimate them by averaging over 105 ci,j’s with known past

symbols. We choose N1, in other words the LDPC codeword length to be 106. The

LDPC codes were constructed over GF (M2) a uniform weight distribution for edges

with degree distributions of (3, k) where k ∈ {6, 9, 12, 15, 30} which results in code

rates 1
2
, 2
3
, 3
4
, 4
5
, 9
10
}, respectively. For hard decision based decoding, simulations were

carried out for 9-QAM and 25-QAM constellations and a stack decoder with size

1000 was used with a depth of τ = 25. For soft output based decoding, a 16-QAM

constellation was used with L′ = L + 1 = 4. Since the LDPC codes are chosen

over non-binary fields, the thresholds were estimated empirically by determining the

minimum SNR where 10 codewords were decoded correctly consecutively.

As seen in Fig. 5.3, 5.4 and 5.5, IS approaches Ci.i.d much closer than IH even

though the depth of the soft output based decoder L′ is much smaller than the depth

of the hard decision based decoder τ . This can be attributed to the fact that the

soft outputs can be computed exactly for a depth L′ and the only suboptimality

arises from L′ being less than N2. On the other hand, the suboptimality of the hard

decision based decoder arises from both the stack decoder being suboptimal and

τ being less than N2. Furthermore, there is also the inherent advantage of a soft

outputs channel having a larger capacity over a hard decision channel. For both hard

decision based decoding and soft output based decoding, it can be observed that the

LDPC thresholds are within 1 dB from IH and IS, respectively.
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Figure 5.3: Performace of CCLC over 9-QAM with hard decision decoding

5.4 Extension to compute-and-forward

5.4.1 System model

In Fig. 5.6, we depict the bidirectional relay network, where there are two source

nodes, which we denote as S1 and S2, that would like to exchange information with

each other. These source nodes do not have a direct path of communication, but

they are able to communicate through a relay, which we denote as R. The relay

is able to receive from and transmit to both nodes, via a multiple access channel

(MAC) and broadcast channel, respectively. S1 and S2 encode their information

matrices U1,U2 ∈ Fk×N2

M2 , respectively, to codewords X1,X2 ∈ CN1×N2 , respectively,

and transmit during the MAC phase. Under the assumption that channel gains are
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Figure 5.4: Performace of CCLC over 25-QAM with hard decision decoding

unit and there is perfect synchronization, the relay observes

YR = X1 +X2 + Z (5.16)

where each zi,j ∼ CN (0, σ2) and i.i.d. The relay then decodes to a function f(C1,C2)

and broadcasts it to the transmitters during the broadcast phase. f(U1,U2) is chosen

specifically such that upon receiving it, each transmitter can determine the other

transmitter’s information matrix with the knowledge of its own information vector.

5.4.2 CCLC for compute-and-forward

5.4.2.1 Encoding for the MAC phase

We choose our function to be decoded at the relay as f(C1,C2) = C1 ⊕ C2.

In order to decode to this function, encoding at the transmitters are done slightly
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Figure 5.5: Performace of CCLC over 16-QAM with soft decision decoding

different from the point-to-point case as follows. For each transmitter l ∈ {1, 2}, the

information matrix Ul are divided into real and imaginary parts, i.e., ℜ(Ul),ℑ(Ul) ∈

FK×N2
M rather than Ul ∈ FK×N2

M2 as in the point-to-point case. Each column ℜ(ul)j,

ℑ(ul)j are then encoded to ℜ(cl)j and ℑ(cl)j, respectively via an LDPC code C

over FM with rate R = K
N1

. Each element of ℜ(Cl) and ℑ(Cl) are then mapped

to the M2-QAM constellation M as Al = t(ℜ(Cl)) + jt(ℑ(Cl)), where t()̇ denotes

the trivial mapping from FM to Z. For notational convenience, we shall drop t()̇.

The remaining steps for encoding X1 and X2 are identical to what was described in

Sec. 5.3.2.
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Figure 5.6: Compute-and-forward for the bidirectional relay network

5.4.2.2 Decoding at the relay

During the MAC phase, the relay observes

YR = X1 +X2 + Z

(5.17)

and it will attempt to decode to ℜ(C1)⊕ℜ(C2) and ℑ(C1)⊕ℑ(C2). Let X̃ = X1+X2.

Note that X̃ can be written as,

X̃ = (A1 −MK1)G
T
CL + (A2 −MK2)G

T
CL

= (A1 +A2 −M (K1 +K2))G
T
CL

= (ℜ(C1) + ℜ(C2) + j (ℑ(C1) + ℑ(C2))

−M (K1 +K2))G
T
CL

= (ℜ(C̃) + jℑ(C̃)−MK̃)GT
CL (5.18)
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where ℜ(C̃) = ℜ(C̃1)⊕ℜ(C̃2), ℑ(C̃) = ℑ(C̃1)⊕ℑ(C̃2) and

K̃ = K1 +K2 +
ℜ(C1) + ℜ(C2)− (ℜ(C1)⊕ℜ(C2))

M

+ j
ℑ(C1) + ℑ(C2)− (ℑ(C1)⊕ℑ(C2))

M
(5.19)

Comparing (5.10) to (5.18), the observation at the relay can be thought of as en-

coding C̃ to a CCLC codeword matrix X̃ with the only difference being ℜ(x̃i,j),ℑ(x̃i,j) ∈

[−M,M) instead of [−M/2,M/2) as in the point-to-point case. We would like to

note that in the point-to-point case, for every C, there is a unique Gaussian integer

matrix K that satisfies the hypercube shaping constraint. However during the MAC

phase due to the addition ofX1 andX2, there are multiple K̃’s for every C̃ that result

in ℜ(x̃i,j),ℑ(x̃i,j) ∈ [−M,M). More specifically, given c̃i,j−1
i,1 and k̃

1,j−1

i,1 , there are ex-

actly four k̃i,j’s for eachM
2 candidate of c̃i,j that result in ℜ(x̃i,j),ℑ(x̃i,j) ∈ [−M,M).

It can be observed from the statistical properties of the noise that among the four

k̃i,j’s for every candidate of c̃i,j, only one of them is likely to have been subtracted due

to the following. The four k̃i,j’s are placed as a shifted 4-QAM constellation which

has a minimum distance of 1. Taking into account that these k̃i,j’s are multiplied

my M as seen in (5.18) and achieving a certain rate with hypercube requires an

additional 1.53 dB loss compared to the AWGN channel capacity, the probability

that the magnitude of the noise element zi,j exceeds M/2 can be computed as

p(∥zi,j∥ >
M

2
) = e−

M2

4σ2

= e−2.133(M2R−1). (5.20)

where R is the coding rate of the LDPC code.

As seen in (5.20), p(|zi,j| > M
2
) is quite small for a fixed R if M is large. For
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example if M = 7 and R = 0.7, p(∥zi,j∥ > M
2
) ≈ 10−13. Note that the events

∥zi,j∥ > M
2

and x̃i,j ̸∈ B(ỹi,j,M/2) are identical. Therefore for both hard decision

based decoding and soft output based decoding of CCLC, out of the four k̃i,j’s for

each candidate of c̃i,j ∈ F2
M , we pick the one that results in x̃i,j ∈ B(ỹi,j,M/2) since it

is quite unlikely that any of the other k̃i,j’s were subtracted. Also, due to the fact that

k̃i,j’s form a 4-QAM constellation with a minimum distance of 1, it is not possible for

multiple k̃i,j’s to result in x̃i,j ∈ B(ỹi,j,M/2) for a given c̃i,j. Furthermore, there is

also a possibility that none of the k̃i,j’s result in x̃i,j ∈ B(ỹi,j,M/2) for a given c̃i,j = c̃

where c̃ ∈ F2
M , which in this case we simply assume that p(c̃i,j = c̃|Y, c̃i,j−1

i,1 , k̃
i,j−1

i,1 ) =

0. With these assumptions, there is no ambiguity in the k̃i,j’s and we can proceed

with either hard decision based decoding or soft output based decoding as described

in Sec. 5.3.3.

Once ℜ(C̃) = ℜ(C1)⊕ℜ(C2) and ℑ(C̃) = ℑ(C1)⊕ℑ(C2) is recovered at the relay,

it can be re-encoded as described in Sec. 5.4.2.1 and broadcasted to both transmitters.

Assuming that the transmitters are able to decode to ℜ(C̃) = ℜ(C1) ⊕ ℜ(C2) and

ℑ(C̃) = ℑ(C1) ⊕ ℑ(C2), they can recover each other’s information by subtracting

their own. We would like to note that the broadcast channel can be thought of as

two parallel point-to-point AWGN channels and hence the achievable rate is identical

to the point-to-point case. However, the same assumption can not be made for the

MAC channel and we compute the ergodic mutual information for hard decision

based decoding and soft output based decoding as we did in Sec. 5.3.4, which we

denote as IH and IS, respectively, in the following section.

5.4.3 Simulation results

In this section, we demonstrate the performance of CCLC with hard decision

based decoding and soft output based decoding for compute-and-forward over the
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bidirectional relay network. We choose the same filter pattern as in Sec. 5.3.5 for

encoding CCLC at the transmitters and at the relay. In order to ensure p(∥zi,j∥ >

M/2) is sufficiently small, we choose M = 7 and the degree distributions of the

regular LDPC codes as (3, k) for k ∈ {6, 9, 12, 15, 30} which result in code rates of

{1
2
, 2
3
, 3
4
, 4
5
, 9
10
}, respectively as in Sec. 5.3.5. We choose the LDPC codes to be over

F7 in order to encode the real and imaginary components of U1 and U2 separately.

For hard decision based decoding, we choose a depth of τ = 25 and a stack size of

1000, whereas for soft decision based decoding we choose L′ = 4 as in Sec. 5.3.5.
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Figure 5.7: Performace of CCLC over 49-QAM with hard decision decoding

As seen in Fig. 5.7 and 5.8, when CCLC is used for compute-and-forward, there

is a negligible loss in the SNR required to achieve same exchange rate/channel use

as in the point-to-point case. This can be attributed to the fact that each row in
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Figure 5.8: Performace of CCLC over 49-QAM with soft decision decoding

X1 and X2 belong to the same lattice and hence each row of X̃ = X1 + X2 also

belongs to the same lattice due to lattices being closed under addition. Furthermore,

the ambiguity of multiple k̃i,j’s are resolved due to our assumption in Sec. 5.4.2.2.

Thus, a very similar performance to the point-to-point case can be obtained when

decoding at the relay. It can also be observed from Fig. 5.8 that the exchange rate

using the soft output based decoder is to within 1.7 dB from log (1/2 + SNR), which

was shown to be an achievable rate by using nested lattice codes, and most of this

gap is a direct consequence of using hypercube shaping at the transmitters and thus

losing 1.53 dB.

5.5 Conclusion and further improvements

A new lattice-based coding scheme has been introduced based on concatenating

convolutional lattice codes with interleaved LDPC codes. The structure of these
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codes enable them to achieve good asymptotic performance in block length while

allowing the stack size to be small. Furthermore, simulation results show that they

can approach capacity very closely. The algebraic structure of these codes make them

a good candidate for implementing compute-and-forward, which simulation results

show that they can approach the theoretically achievable rates to within 1.7 dB. For

future work, other shaping algorithms can be developed in order to further bridge

this gap. Also, the performance of CCLC can be observed in a more general network

setup such as an AWGN network which consists of K transmitters and M relays

with non-unit channel gains.
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6. CONCLUSION

In this dissertation, we extended Nazer and Gastpar’s lattice-based compute-and-

forward framework to recovering Eisenstein integer linear combinations of transmit-

ted messages. Our main motivation lied under the fact that that since channel coef-

ficients are in some sense approximated by integers and Eisenstein integers quantize

the complex field better than Gaussian integers, on average higher computation rates

would be achievable. In order to extend this framework to lattices over Eisenstein

integers, we first proved the existence of lattices over Eisenstein integers that are

simultaneously good for quantization and good for AWGN channel coding. Then,

we derived the achievable computation rates of this extended framework, which sim-

ulation results showed a 0.4 dB improvement in outage performance over decoding

to Gaussian integer linear combinations.

We then introduced a separation-based framework for compute-and-forward that

employs linear codes over Eisenstein lattice partitions. Our motivation in designing

this framework was to develop a practically implementable framework and investigate

whether it would be possible to diminish the effect of channel quantization and

achieve higher rates than the lattice-based framework. We derived the achievable

rates of this separation-based framework and showed that it is possible to achieve

higher rates than the lattice-based framework.

In the second part of this dissertation, we built spatially-coupled LDA lattices

from spatially-coupled LDPC codes and showed that these lattices closely approach

the Poltyrev limit for the point-to-point unconstrained AWGN channel. Motivated

by this result, we employed these lattices to build spatially-coupled LDA lattice codes

for our separation-based framework. Simulation results show that spatially-coupled
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LDA lattice codes can closely approach approach the theoretically achievable rates

for the separation-based framework

In the last part of this dissertation, we introduced a new class of lattice codes

which we refer to as concatenated convolutional lattice codes (CCLC). These codes

comprise of convolutional lattice codes which are interleaved with LDPC codes. Our

main motivation was to enhance the error correcting capability of convolutional

lattice codes and reduce their decoding complexity. We designed a hard-decision

and soft-decision based decoding scheme and simulated CCLC for the point-to-point

AWGN channel. Simulation results showed that with soft-decision based decoding,

CCLC can approach capacity as close as 0.1dB. Motivated by these results, we em-

ployed CCLC for implementing the compute-and-forward paradigm in a bidirectional

relay network. For this setup, simulation results showed that CCLC can closely ap-

proach log(1/2 + SNR), which is the achievable rate of employing nested lattice

codes for compute-and-forward, as close as 0.5 dB.
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APPENDIX A

APPENDIX TO CHAPTER 3

In this appendix, we provide the proof for Theorem 22.

A.1 Proof of the existence of good nested Z[ω]-lattices

Using our result from Theorem 19, let Λ be an n-dimensional Z[ω]-lattice obtained

through Construction-A with a corresponding generator matrix B which is good for

covering.

Definition 34. A set C of linear (n, k) linear code over Fn
q is balanced if every

nonzero element of Fn
q is contained in the same number, denoted by NC of codes from

C.

Note that for fixed n, k, and q, the set of all linear (n, k) codes over Fq is balanced.

We shall now state Lemma 1 in [15].

Lemma 35. Let f(·) be an arbitrary mapping Fn
q → R and let C be a balanced set

of linear (n, k) codes over Fq. Then, the average over all linear codes C in C of the

sum
∑

c∈C′ f(c) is given by

1

C
∑
C∈C

∑
c∈C′

f(c) =
qk − 1

qn − 1

∑
v∈(Fn

q )
′

f(v) (A.1)

For proving Theorem 22, we shall use nested Z[ω]-lattices obtained from Construction-

A as mentioned in section 3.2.3. A scaled version of ΛC denoted as γΛC , where

γ ∈ R+ and ΛC was defined in section 3.2.2 is constructed. Then, we multiply γΛC

with the generator matrix B and obtain the lattice Λf = γBΛC . It can be observed
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that γϱZ[ω]n ⊂ γϱΛ ⊂ Λf and there are qk elements of Λf that lie within the funda-

mental Voronoi region of γϱΛ. Hence, the volume of the fundamental region of Λf

is

Vol
(
VΛf

)
= γ2nqn−k

(√
3

2

)n

Vol (VΛ) . (A.2)

We can now extend the Minkowski-Hlawka Theorem in [15] to Eisenstein lattices as

follows, following similar steps.

Theorem 36. (Minkowski-Hlawka Theorem:) Let f be a Riemann integrable func-

tion R2n → R of bounded support(i.e., f(v) = 0 (if ∥v∥ exceeds some bound). Then

for any integer k where 0 < k < n, and any fixed Vol(VΛf
), the approximation

1

C
∑
C∈C

∑
v∈g(γBΛ′

C)

f(v) ≈ Vol(VΛf
)−1

∫
R2n

f(v)dv (A.3)

where C is any balanced set of linear (n, k) codes over Fq and where g(·) : Cn → R2n

as in (3.6), becomes exact in the limit q → ∞, γ → 0, γ2nqn−k
(√

3
2

)n
Vol (VΛ) =

Vol
(
VΛf

)
fixed. Note that these conditions imply that γq → ∞.
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Proof.

1

|C|
∑
C∈C

∑
v∈g(γBΛ′

C)

f(v) (A.4)

=
1

|C|
∑
C∈C

[ ∑
v∈g((Z[ω]n)′):σ̃(v)=0

f(γBv) . . .

. . . +
∑

v∈g(Z[ω]n):σ̃(v)∈C′

f(γBv)
]

(A.5)

=
∑

v∈(g(Z[ω]n)′):σ̃(v)=0

f(γBv)

+
1

|C|
∑
C∈C

∑
c∈C′

 ∑
v∈g(Z[ω]n):σ̃(v)=c

f(γBv)

 (A.6)

=
∑

v∈g((Z[ω]n)′):σ̃(v)=0

f(γBv)

+
qk − 1

qn − 1

∑
c∈(Fn

q )
′

 ∑
v∈g(Z[ω]n):σ̃(v)=c

f(γBv)

 (A.7)

=
∑

v∈g((Z[ω]n)′):σ̃(v)=0

f(γBv)

+
qk − 1

qn − 1

∑
v∈g(Z[ω]n):σ̃(v)̸=0

f(γBv) (A.8)

where the step from (A.6) to (A.7) is due to Lemma 35 and due to the fact that f

has bounded support, the left term of (A.8) vanishes for sufficiently large γq and the
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right term of (A.8) becomes

qk − 1

qn − 1

∑
v∈g((Z[ω]n)′)

f(γBv) ≈

γ−2nqk−n

(
2√
3

)n

Vol(VΛ)
−1

∫
R2n

f(v)dv (A.9)

which becomes exact in the limit as γ → 0, γq → ∞, i.e, a Riemann sum approaching

to a Riemann integral. Note that the term γ−2nqk−n
(

2√
3

)n
appears in front of the

integral in (A.9) since it is the reciprocal of the volume of the fundamental Voronoi

region of Λf = γBΛC .

Suppose now that a transmitter selects a codeword x from an Eisenstein lattice

Λ ∈ Cn (or equivalently R2n) and x is transmitted over an AWGN channel where

a random noise vector z ∈ Cn(or equivalently R2n) gets added with the variance

of each 2n components equal to Pz/2. The receiver obtains y = x + z and tries to

recover x. Furthermore, let E ⊂ R2n be a set of typical noise vectors. We say that an

ambiguity occurs if y can be written in more than one way as y = x+ e where x ∈ Λ

and e ∈ E. Let Pamb|E be the probability of ambiguity given that z ∈ E. Assuming

that the receiver is able to recover x whenever z ∈ E and there is no ambiguity, the

probability of decoding error is upper-bounded by

Pe ≤ Pamb|E + P (z /∈ E) (A.10)

Due to the fact that Minkowski-Hlawka theorem can be proven for Λf , the following

theorem immediately follows.[15]

Theorem 37. Let E be a Jordan measurable bounded subset of R2n and let k be an

integer such that 0 < k < n. Then, for any δ > 0, for all sufficiently large q, and for
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all sufficiently small γ, the arithmetic average of Pamb|E over all lattices Λf = γBΛC,

C ∈ C, which we denote as Pamb|E, is bounded by

Pamb|E < (1 + δ)Vol(E)/Vol
(
VΛf

)
(A.11)

where C is any balanced set of linear (n, k) codes over Fq and where Vol
(
VΛf

)
,

γ2nqn−kVol(VΛ)
(√

3
2

)n
is the fundamental volume of the lattices Λf = γBΛC, C ∈ C.

Note that as n → ∞, E will approach the shell of a 2n-dimensional ball with

radius rz =
√
nPz. Thus

Vol(E) ≤ Vol(B(
√
nPz)) =

(√
πr2z
)n

Γ(n+ 1)
as n→ ∞ (A.12)

which immediately follows that

Pamb|E ≤ (1 + δ)

(
rz

reffγBΛC

)2n

(A.13)

as n→ ∞. This implies that Pamb|E → 0 as n→ ∞ for rz < reffγΛC
. Hence for a given

lattice Λf = γBΛC , Pamb|E → 0 in probability as n → ∞. Taking into account that

P (z /∈ E) → 0 as n → ∞, from (A.10) we conclude that Pe → 0 in probability as

n→ ∞. This completes the proof.
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