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Abstract

Future wireless networks aim at providing higher quality of service (QoS) to mobile users.

However, phenomena such as multipath fading and limited resources, namely bandwidth,

still constrain almost every design. The emergence of relay technologies has shed light on

new methodologies through which the system capacity can be dramatically increased with

low deployment cost. In this thesis, novel relay technologies have been proposed in two

practical scenarios: wireless sensor networks (WSN) and cellular networks. The research

includes theoretical analysis and simulations performed to show the advantages of the pro-

posed protocols over existing relay protocols.

In practical WSN designs, energy conservation is the single most important requirement;

being powered by batteries and deployed in distributed areas, designs aim at extending the

life span of the sensor network by reducing its energy consumption. Often, replacing or

recharging batteries is too difficult or even impossible; thus extending the life span of the

network would reduce maintenance costs. The introduction of relay nodes to the WSN has

much relieved the burden of each source node. This is because the relay nodes are usually

more powerful and being deployed in the middle of the remote transmissions, which can as-

sist to forward messages from the source nodes. At the same time, because adjacent source

nodes are observing the same phenomenon, there should be a lot of redundancy within the

data they have gathered. Relay nodes can thus eliminate the redundancy through processing

the received signals together. This thesis draws attention to a multiple access relay channels

(MARC) model in the WSN, where two correlated source nodes transmit their messages to

a common destination via the help of a relay node. Network coding (NC) is performed at the

relay node by merging two received signals into one signal using predetermined techniques.

In this thesis, the network coded symbol for the received signals from correlated sources has

been derived; the network coded symbol vector is then converted into a sparse vector, after
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which a compressive sensing (CS) technique is applied over the sparse signals. A theoretical

proof analysis is derived regarding the reliability of the network coded symbol formed in

the proposed protocol. This reliability is compared to the one for the conventional estimate-

and-forward (EF) protocol. The proposed protocol results in a better bit error rate (BER)

performance in comparison to the direct implementation of CS on the EF protocol. Simu-

lation results validate our analyses. Additionally, as less number of signals are transmitted

from the relay node due to CS, the overall transmission time is reduced and thus the system

throughput is improved.

Another hot topic is the application of relay technologies to the cellular networks. In this

thesis, a two-way relay channels (TWRC) model is considered, where two source mobile

users exchange their information via the help of a third mobile user. In the existing relay

protocols, the soft information forwarding (SIF) protocols stand out, as they can achieve a

better error performance by forwarding the intermediate soft decisions at the relay. The soft

information can be in the form of estimates of the source signals or the mutual information

of the received signals. However, in practical scenarios, the delivery of soft information

takes a lot of bandwidth. Even if we quantize the soft information into a few bits, the loss of

precision and the expanded bandwidth requirement decrease the quality of service of these

SIF protocols. In this thesis, a practical two-way transmission scheme is proposed based on

the EF protocol and the network coding technique. A trellis coded quantization/modulation

(TCQ/M) scheme is used in the network coding process, because the TCQ uses a structured

codebook with an expanded set of quantization levels then the quantization noise can be

reduced without rate increasing. The soft network coded symbols are quantized into only one

bit thus requiring the same transmission bandwidth as the simplest decode-and-forward (DF)

protocol. The probability density function (PDF) of the network coded symbol is derived to

help to form the quantization codebook for the TCQ. Moreover, an adaptive codebook is

proposed for the TCQ/M scheme under different channel conditions. Simulations show that

the proposed soft forwarding protocol can achieve full diversity with only a transmission rate

of 1, and its BER performance is equivalent to that of an unquantized EF protocol.
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Chapter 1

Introduction

This Chapter presents the background information and motivation for our research topics,

and briefly formulates the research problems underlying the industrial needs. Further, major

contributions of this thesis are listed, and followed by a concise outline of the thesis.

1.1 Wireless Relay Networks

In wireless networks, signal fading resulting from multipath propagation becomes a severe

channel impairment. To mitigate the influence of signal fading, the use of diversity is thus

proposed. There are a variety of diversity forms, including spatial diversity, temporal di-

versity, and frequency diversity [1]. Space diversity is most attractive because it does not

use the precious communication resources, as time and frequency diversity do; besides, even

when such other forms of diversity are not available, space diversity can still provide superb

performance gains. The underlying principle of spatial diversity is that geographically sep-

arated transmitters transmit signals to geographically separated receivers, and these signals

will experience independent fading conditions through separate channels. Works in [2–4]

indicate that multiple antennas can offer the spacial diversity; however, in future cellular net-

works or wireless sensor networks, due to the size and hardware implementation constraints,

a compact mobile terminal or wireless sensor node may not be capable of supporting multi-

ple antennas [5]. Authors in [6] proposed a new form of spatial diversity whose purpose is



1.1 Wireless Relay Networks

Figure 1.1: A future cooperated cellular network.

to combat this constraint while still emulate the antenna diversity. They proposed that, the

wireless users in cellular or ad hoc variety cooperate with each other, aiming to achieve the

diversity gains. Therefore, users can be regarded as the relay nodes, and each of the coop-

erated users takes responsibility for not only the transmission of its own messages, but also

the messages of other users.

The cooperative communication can be tracked back to the first relay model introduced in

1971 in [7]. Back then it was a special form of a three-terminal network. Then the ground-

breaking work on information theoretic properties of the relay channels was given by au-

thors in [8] where the system model was also a simple three-terminal network consisting

of a source, a destination and a relay. However, on one hand, for wireless communication

systems, the analysis made in [7,8] only considered additive white Gaussian noise (AWGN)

channel, and this does not apply to the fading channels. On the other hand, the users are

playing a more important role in cooperative communication, as they are working as both

the information sources and the relays, which differs from the totally independent role of the

relay node back in 1970s. The state-of-the-art relay-based technologies are vital to many ap-

plications. In the cellular systems, as the data throughput in mobile communication networks

2



1.2 Research Problems

is increasing dramatically, as well as the number of mobile users located in cells, it is high

time that we took advantage of the limited frequency spectrum and the scarce bandwidth

resource [9–11]. Moreover, standardization organizations already included relay-based co-

operative networks in the 3rd Generation Partnership Project (3GPP) [12]. Fig. 1.1 depicts

one possible future cellular network where relay nodes are deployed near the edge of the

cell to solve the coverage problem for high data rates. With regard to ad-hoc networks, one

attractive branch is the wireless sensor networks (WSN) [13]. Researchers also proposed to

deploy a small number of relay nodes in the large scale WSN, in order to prolong the network

life span, thus achieving energy conservation [14, 15].

1.2 Research Problems

Given the nature and features of wireless communication channels and the anticipated de-

mand for future wireless networks with high data transmission rate, it is crucial to design

bandwidth-efficient techniques which can help to mitigate any limiting effects of the wire-

less channels. In this thesis, one soft information relaying protocol for correlated sources is

proposed, and one practical soft information delivery scheme is proposed.

1.2.1 Network Coding for Physical Layer Communications

The notion of network coding (NC) was first introduced as a network layer multicasting

technique in computer networks [16]; the nodes do not directly forward packets received,

instead, they combine packets together before further transmission. Compared with con-

ventional transmission methodology, network coding has been proved to improve networks’

efficiency, throughput and robustness [17, 18]. Recently, to further enhance the capacity of

physical layer relaying channels, network coding has been applied to cooperative relay net-

works [19,20], and protocols aiming for these networks are generally referred to as physical

layer network coding (PNC) protocols [21, 22]. The underlying principle of PNC is that the

relay nodes in the network combine multiple messages received from physical-layer trans-

mission [23]. Compared with NC in computer networks where intermediate nodes combine

digital signals, the PNC protocols take advantage of the analog signals from various source

3



1.2 Research Problems

nodes for combination [22].

Two classical relay protocols, namely, amplify-and-forward (AF) [24] and decode-and-forward

(DF) [25], have been widely investigated in PNC. However, in the AF protocol, the relay

amplifies the incoming signal and forwards it to the destination, resulting in the noise am-

plification at the relay; in the DF protocol, the relay decodes the received signal, re-encodes

it and then forwards it to the destination. Its drawback is that it propagates the erroneous

decisions to the destination. Consequently, a new relaying concept, namely, soft information

forwarding (SIF) has been proposed to achieve a better error performance by forwarding the

intermediate soft decisions at the relay [26–29]. The soft information can be in the form of

log-likelihood ratio (LLR) [26], soft symbol [27], or soft mutual information [28, 29].

However, these SIF protocols are investigated in one-way or two-way relay channels, which

are not directly applicable for general multi-source relay channels, where multiple sources

communicate with their destination with the help of the relay. Multiple access relay channels

(MARC) are common and basic building blocks in wireless networks, such as WSN [13].

In the MARC, wireless network coding has been applied to enhance the network perfor-

mance [30, 31]. Besides, in WSN, it is common that two sources in the MARC transmit

correlated information. This is because neighboring sensor nodes obtain spatially correlated

measurements, and the problem of the sensor reachback problem on how to efficiently trans-

mit correlated data from multiple source nodes to one or multiple destination nodes, has been

investigated recently [32, 33]. When NC is applied at the relay, the network coded symbols

of the correlated sources contain redundant information, which can be compressed before

being forwarded to the destination. However, the current SIF protocols only consider uncor-

related sources. Then how to efficiently reduce the redundancy in the network coded signals

at the relay nodes becomes a worthy research problem.

1.2.2 Delivery of Soft information

In terms of the soft-symbol based SIF protocol in [27], also known as estimate-and-forward

(EF), the relay node forms the soft symbols by calculating the minimum mean squared errors

(MMSE) estimates of the received symbols at the relay. The MMSE estimates of the received

symbols are referred to as the expectation of the transmitted symbols on condition of the

received signals at the relay. It is shown in [27] that the EF protocol maximizes the signal-
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to-noise ratio (SNR) at the destination and thus gains a better error performance compared

to the AF and DF protocols. Another recent soft information relaying protocol is referred

to as mutual information forwarding (MIF) [28, 29, 34, 35], where the relay nodes forward

symbol-wise mutual information (SMI) to the destination. Results in [34] have shown that

the MIF protocol can achieve better error performance compared to the EF protocol.

The research of relay protocols has been extended to more complicated wireless networks,

such as the two-way relay channels (TWRC) whose model will be discussed in the following

chapter. This model has recently attracted much attention due to its promising application to

future wireless cooperation systems [28, 36–39], such as, two mobile users exchanging their

own information via a third mobile user. Hence relay protocols targeting at TWRC have

emerged, including an EF based soft network coding protocol proposed in [38], and two

MIF based protocols, namely, network-coded MIF and superposition-coded MIF proposed

in [28].

These SIF protocols are all proved to outperform both AF and DF protocols over fading

TWRC. However, an assumption is made within the SIF protocols, that soft information at

the relay nodes can be directly forwarded to the destination through the bandwidth limited

channels. This is impractical for real systems because continuous real numbers require an

increased bandwidth, which is unacceptable in a bandwidth limited network. Apart from

this, even if we are capable of quantizing such soft information into a few bits, compared

with the traditional DF protocol which only requires a transmission rate of 1, and the AF

protocol which can be easily implemented without any computing, the SIF protocols still

appear to be flawed.

1.3 Contributions of the thesis

In this thesis, novel designs for relay protocols have been proposed, and further validated

by rigorous mathematical analysis and extensive simulations. In relation to the two major

research problems, contributions are classified into the following two parts.

With regard to increasing transmission efficiency of correlated sources, I have made the

following contributions.
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1. The soft symbol expression at the relay node, with the sources’ correlation informa-

tion, is derived. When the EF protocol is designed for multiple sources, source signals

are regarded as independent. However, in WSN where adjacent sensor nodes collect

correlated information, it is extremely energy-consuming to adopt conventional relay

protocols where independent sources are considered. Based on the principle of the EF

protocol, we still calculate the MMSE estimates of the received signal but consider the

source correlation information. We analytically show that, the soft symbols obtained

from the proposed protocol have higher reliability than those calculated in the EF pro-

tocol, except for the scenario where sources are independent to each other. In the latter

case, the soft symbols in these two SIF protocols are exactly the same.

2. When the source nodes are correlated, based on the simulation and observation of the

probability density function (PDF) of the soft symbol obtained at the relay node, we

find out that the soft symbol vector can be easily converted into a sparse vector by sub-

tracting one from each soft symbol. The definition of sparsity drives us to implement

compressive sensing (CS), which is an efficient and attractive tool at the cutting edge

of signal processing. Belief propagation (BP) is performed at the decoding side, being

able to decode both strictly sparse signal and approximately sparse signal transmitted

from the relay node. We define our proposed signal as correlated estimate-and-forward

with compressive sensing (CEF-CS) protocol. To our best knowledge, this is by far

the first work to concatenate CS with the relay networks.

3. Simulations show that the source correlation has a great impact on the performance

of the proposed protocol. Specifically, as long as the source correlation is below a

certain level, the proposed protocol can achieve full diversity. In addition, when the

source correlation is fixed to a value corresponding to the full diversity, simulations

demonstrate that the compression rate is directly linked to the BER performance of

the CEF-CS protocol. In particular, the higher the compression rate is, the worse the

performance will be. There also exists a certain threshold, beyond which the system

can no longer achieve full diversity. It is important to note that with highly correlated

source model and a compression rate of 0.3, the CEF-CS protocol can achieve the

same BER as the conventional EF protocol, while it consumes much less transmission

time due to the compression at the relay node; thus the throughput performance of the

system is much improved.
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For the practical delivery scheme of the SIF protocols, our contributions are as follows.

1. We take advantage of the trellis coded quantization/modulation (TCQ/M) to quantize

the soft bits obtained from the EF protocol into 1 bit. To our best knowledge, this

is the first attempt to adopt a source coding method at a relay node aiming at the

compression.

2. The probability density function expression of the networked coded soft symbol in the

EF protocol is derived for the TWRC. The PDF expression is further exploited by the

Lloyd-Max quantizer, and being used to determine the quantization levels of the TCQ.

3. We propose to use adaptive codebooks for the TCQ/M system according to different

channel conditions. Specifically, when the source-to-relay channel SNR is in relatively

low region, the codebooks for the TCQ/M are generated by a Lloyd-Max quantizer

based on the PDF of the soft symbols; when the source-to-relay channel SNR is high,

the codewords are repeated in a codebook in order to ensure that erroneous mapping

is avoided in the trellis of the TCQ.

4. Simulations verify that, with transmission rate 1, the DF protocol has only the diversity

gain of 1, but the proposed 1-bit soft forwarding protocol can achieve the full diversity.

Furthermore, the proposed protocol has about 1 dB coding gain compared to the AF

protocol at a BER of 10−3.

1.4 Thesis Outline

This thesis is composed of five Chapters, including the background information, research

designs, corresponding simulation results, and conclusions we draw from the research. The

structure is briefly summarized as follows:

Chapter 1 contains background knowledge, research problems and major contributions of

this thesis.

Chapter 2 presents the preliminary knowledge, including existing relay protocols, trellis

codes and compressive sensing, laying a foundation for the subsequent Chapters.
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Chapter 3 proposes a novel estimate-and-forward protocol in MARC where two correlated

sources transmit their information to the common destination with the help of a relay. We

convert the network coded soft symbol vector at the relay nodes into a sparse vector and

adopt CS over the sparse signal. We also analyze the performance of the proposed CEF-

CS protocol by comparing the soft symbol value and received signal-to-noise ratio with the

conventional EF protocol. Simulations show that our protocol can achieve the same BER as

the conventional EF protocol with proper compression rates, while it consumes much less

transmission time due to the compression.

Chapter 4 proposes a practical 1-bit soft forwarding protocol for a network-coded two-way

relay channel, which solves the soft information delivery problem for the EF protocol. We

concatenate the TCQ/M scheme with the relay network, and design an adaptive codebook

for the TCQ scheme in order to achieve good error performance. Simulations show that

our 1-bit soft forwarding protocol outperforms both the DF and the AF protocols, and well

approximates the conventional EF protocol without any quantization.

Chapter 5 concludes the thesis by summarizing the major contributions and findings.
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Chapter 2

Background

The first part of this chapter provides a brief review of the popular relay network types and

major relay technologies that are crucial to the understanding of Chapter 3 and 4. Relay

functions in terms of different strategies are given, providing benchmarks as well as solid

foundations for the proposed relay protocols in Chapter 3 and 4.

The second part of this chapter discusses a signal processing tool called compressive sensing.

Several reconstruction algorithms of CS have been involved and compared, among which a

belief propagation decoding algorithm under the Bayesian framework draws our attention,

leading to the essential part of our decoder design in Chapter 3.

The third part talks about a joint source/channel coding technique, referred to as trellis coded

quantization/modulation. Channel coding and source coding have been reviewed respec-

tively, followed by a joint system. The Viterbi algorithm is also reviewed for better under-

standing of the notion of trellis coding.
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2.1 Relay Cooperation

2.1.1 Relay Models

According to various applications, the introduction of relay nodes has enabled the study of

different relay models and different deployments of the relay nodes. In this section, we

will introduce two popular and practical relay models, namely two-way relay channels and

multiple access relay channels.

2.1.1.1 Two-way Relay Channels

TWRC have attracted a lot of attention from both academia and industries [40, 41]. The

concept of a TWRC model is that two source nodes communicate with each other with the

help of another relay node or other relay nodes. This model can be easily extended to mobile

communication within cellular networks where two mobile users exchange their information

with the aid of a third mobile user. Initially, the exchange of bidirectional information was

completed in a transmission period of four time slots [42]. Specifically, one source sends

its own message to the other source and the relay in the first time slot, and the relay helps

to forward the received signal to the other source in the second time slot, then during the

third and fourth time slots the other source transmits its message in the same way. However,

such a system leads to a problem that the introduction of relay nodes degrades the overall

throughput performance [23, 43].

In order to improve the spectral efficiency, works in [16–18] raised that the two source nodes

can complete communication within three time slots, with the help of network coding. NC is

introduced in [44] aiming to exploit the characteristics of the wireless medium, in particular,

the broadcast nature of the wireless channel, in order to increase the throughput of the entire

network. A typical TWRC model with three-time-slot transmission is shown in Fig. 2.1.

Within the first two time slots, either source transmits their own messages to the relay and

the other source, respectively. During the third time slot, the relay forms the network coded

symbols and transmits these signals back to both sources [45].

The throughput performance can be further enhanced by enabling two sources to transmit
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Figure 2.1: A two-way relay network.

their signals simultaneously to the relay and their counterpart. Therefore, this can be accom-

plished within one time slot [21]; within the next time slot, the relay transmits the formed net-

work coded symbols back to both sources. With less time slots being used for transmission,

such a two-time-slot scheme can achieve higher spectral efficiency than the three-time-slot

scheme [41, 46].

2.1.1.2 Multiple Access Relay Channels

In conjunction with network coding, another PNC scheme is referred to as multiple access

relay channels. The simplest MARC is shown in Figure 2.2, which consists of only two

source nodes, one relay node and one destination node.

A general MARC system can be used for the cooperative uplink for multiple mobile stations

to a base station with the help of a relay [47], or can be extended to WSN where multiple

sensors transmit message to the remote server via the help of the more powerful relay node.

Another example to explain the simplest MARC is that two mobile users communicate with

a base station using a third mobile user as a relay node in a cellular system. As described

in [48], the relay node can even be a fixed node settled in higher locations such as street light

posts and roof tops in metropolitan mesh network applications,.

In a general MARC, multiple sources transmit their messages to a common destination with

the help of a single relay. As MARC is based on the realization of network coding, the relay

node merges the messages received from the sources and forwards them to the destination. A

general MARC model can be found in [49]. And the capacity bound for the general MARC,

where the sources and the relay can transmit simultaneously is given in [50].
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Figure 2.2: The orthogonal uplink relay channel with two sources, one relay, and one desti-
nation.

2.1.2 Relay Protocols

We review the relay functions of the amplify-and-forward, the decode-and-forward and the

estimate-and-forward protocols in this section. We consider about the two sources and one

relay scenario, namely S1, S2 and R, in the source-to-relay channels in either the TWRC

shown in Fig. 2.1 or the MARC shown in Fig. 2.2.

We denote by hiR, i = 1, 2, the channel coefficients between Si and R. We assume that

each source transmits l independent and identically distributed (i.i.d.) binary phase-shift

keying (BPSK) symbols. Thus, the symbol vector of Si is denoted by xi = (x1i , · · · , xli)T ,

xqi ∈ {±1} and q ∈ {1, · · · , l}, with the power Ei. The received signals at the relay from Si

can be expressed as

yiR = hiR
√
Eixi + niR, (2.1)

where the vector yiR consists of l received signals, i.e., yiR = (y1iR, · · · , yliR)T , and the vec-

tor niR = (n1
iR, · · · , nl

iR)
T consists of l additive white Gaussian noise (AWGN) samples at

the relay. We assume the noise sample at the relay is independent and identically distributed

(i.i.d.) with a mean zero and variance σ2, and the sources’ power satisfies E1 = E2 = ES .

When the AF protocol is applied, the task of the relay node is to superimpose the received

signals from the two sources, and then broadcast the superposition in the next stage of the

transmission. Therefore in the AF protocol, the relay function for each network coded sym-
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bol can be expressed as

fAF(y
q
1R, y

q
2R) =

√
1

2 (ES + σ2)
(yq1R, y

q
2R). (2.2)

For the DF protocol, the relay makes hard decisions on the symbols xq1 and xq2, and then

obtains the network coded symbol according to the hard decisions x̂q1 and x̂q2. We define the

network coded symbol vector as xR = (x1R, · · · , xlR)T , xqR ∈ {±1}; then a network coded

symbol xqR in x is defined as xqR
∆
= xq1x

q
2. So the hard decision of xqR can be calculated as

x̂qR = x̂q1x̂
q
2. Thus for the DF protocol, the relay function can be given by

fDF(y
q
1R, y

q
2R) = x̂qR = x̂q1x̂

q
2. (2.3)

In terms of the EF protocol, the minimum mean squared error (MMSE) estimation of xqR is

calculated at the relay nodes, namely the conditional expectation of xq1x
q
2 based on yq1R and

yq2R: E (xq1x
q
2|y

q
1R, y

q
2R). Due to the independence of the received yq1R and yq2R, the MMSE

estimation at the relay is given by [38]

E (xq1x
q
2|y

q
1R, y

q
2R) = E (xq1|y

q
1R) E (xq2|y

q
2R) = tanh

(
LLRxq

1,R

2

)
tanh

(
LLRxq

2,R

2

)
, (2.4)

where LLRxq
i,R

represents the log-likelihood ratio (LLR) of yqiR at the relay, which is calcu-

lated as

LLRxq
i,R

= ln
p (xqi = 1|hiR, yqiR)
p (xqi = −1|hiR, yqiR)

=
2
√
EihiRy

q
iR

σ2
. (2.5)

And the power-normalized relay function f(yq1R, y
q
2R) is defined as

fEF(y
q
1R, y

q
2R) =

tanh

(
LLR

x
q
1,R

2

)
tanh

(
LLR

x
q
2,R

2

)
√√√√E

[∣∣∣∣tanh(LLR
x
q
1,R

2

)
tanh

(
LLR

x
q
2,R

2

)∣∣∣∣2
] . (2.6)
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2.2 Compressive Sensing

The task of processing many kinds of natural signals is often to identify and estimate a few

significant coefficients underlying the signals. This is because most of the information of a

signal, in a proper basis, resides in just a few large coefficients, while rest of the information

can be neglected. The conventional wisdom in data acquisition is that the sensing process

first acquires the entire data, then throws away the majority of the small coefficients and

only keeps the minority of the significant coefficients [51]. Admittedly, sensing the entire

signal while discarding most of the information at a later stage wastes time, energy and

resources. At the same time this suggests a proposition that only the information residing in

the significant coefficients need to be sensed, instead of sensing the entire data and discarding

most of the information at a later stage. To our great interest, the work in [52] already

demonstrates that the information within the few significant coefficients can be encoded by

a small number of random linear projections. Afterwards authors in [53–55] have proposed

possible recovery algorithms to decode the original signals from these random projections,

and this ground-breaking research topic is referred to as compressive sensing (CS).

In this section, we will go through the basic encoding techniques of compressive sensing.

Specifically, we will briefly discuss several decoding algorithms of CS, including Basis Pur-

suit via linear programming [56], and one of the many greedy methods, namely Orthogonal

Matching Pursuit (OMP) [57]. Moreover, we will give a concrete explanation of belief prop-

agation algorithm under the Bayesian framework crucial to the design in Chapter 3.

2.2.1 Sparsity and Encoding

The basic knowledge of CS is that most of the information included in a signal only rests

within a few large coefficients, and this feature is referred to as sparsity. Define a signal

vector x ∈ Rl, if it has the following form

x = Ψθ, (2.7)

where Ψ ∈ Rl×l is an orthonormal basis, θ ∈ Rl satisfies ∥θ∥0 = k ≪ l, and ∥·∥0 denotes

the l0 norm which counts the number of nonzero entries in a vector. For 1 ≤ p < ∞, we
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denote by ∥x∥p as the usual norm,

∥x∥p =

(
l∑

i=1

|xi|p
) 1

p

, (2.8)

and ∥x∥∞ = max |xi|.

Then the vector x has sparsity; we also call the signal is k-sparse. If there exists an orthonor-

mal basis Ψ, there is no need to sample all of the l elements in the vector x; instead, a small

number of the linear combinations of the k elements are enough for reconstruction of the

signal at the receiver [53, 54]. We obtain a measurement vector y by computing m linear

projections of x via an encoding matrix Φ, where Φ ∈ Rm×l, and the encoding process can

be given by

y = Φx. (2.9)

This is the original definition of sparsity for strictly sparse signal; it means that the signal

has non-zero entries and zero entries. Approximately sparse signal models are sequentially

explored to broad the application range [58]. In this scenario, signals need to have k ≪ l

large coefficients, and the rest of the remaining coefficients are only required to be small

but not necessarily zero. For compressible signals, if all of the coefficients are sorted, they

would decay fast according to the power law, which is given by

|x∗i | ≤ ci(−1/v), (2.10)

where x∗ represents the non-increasing arrangement of the vector x, v ∈ (0, 1), and c is a

positive constant.

Besides, in real applications, the measurements are subject to some noise and the imprecision

of the sensing devices. Then for the noisy scenario, Eq. (2.9) can be rewritten as

y = Φx+ n, (2.11)

where n denotes the noise vector.
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2.2.2 Reconstruction Algorithms

Given the observed measurement vector y and the encoding matrix Φ, we aim to decode

x. Decoding x from Eq. (2.9) is superficially an ill-posed inverse problem, but the sparsity

feature underlying x allows recovery from less measurements. In the following, we will

describe two commonly used algorithms: the basis pursuit algorithm and the orthogonal

matching pursuit algorithm. We also will give a detailed explanation of the compressive

sensing via belief propagation (CS-BP) algorithm.

2.2.2.1 Basis Pursuit

To solve an ill-posed inverse problem, optimization comes as a natural idea. It is to imple-

ment traversing through all of the sparsest coefficient vectors θ that satisfy the measurement

vector y. Once we have sufficient m measurements and a strictly sparse signal x, we draw

the solution by calculating the l0 as follows.

θ̂ = argmin ∥θ∥0 s.t.y = ΦΨθ. (2.12)

However, it is demonstrated in [59] that solving this l0 optimization is NP-complete and

unstable; it requires an exhaustive search of all of the Ak
l locations of nonzero entries in x.

Fortunately, an l1 minimization surprisingly offers a desired outcome [53, 54] by solving

θ̂ = argmin ∥θ∥1 s.t.y = ΦΨθ. (2.13)

According to Eq. (2.13), an exact reproduction of the k-sparse signal x can be recovered

by using only m = O (k log (l/k)) independent and identically distributed (i.i.d.) Gaussian

measurements. Such an optimization problem is referred to as basis pursuit [56], and it can

be easily solved via the linear programming technique who has a O(l3) cubic computational

complexity.

For robust recovery from noisy data in Eq. (2.11), we utilize the l1 minimization with relaxed
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constraints for recovery:

θ̂ = argmin ∥θ∥1 s.t.∥ΦΨθ − y∥2 ≤ ε, (2.14)

where ε denotes the amount of noise in the data y.

2.2.2.2 Orthogonal Matching Pursuit

The large amount of computation in the basic pursuit algorithm consumes a lot of time;

this drives researchers to focus on faster decoding algorithms. Greedy algorithms are thus

proposed by computing the support of the sparse signal x in an iterative way. As long as

the support of x is computed correctly, we can take advantage of the pseudo-inverse of the

measurement matrix to recover the actual x.

The orthogonal matching pursuit (OMP) algorithm [57] is one branch of many greedy al-

gorithms that help to speed up the CS decoding process. In OMP, we assume that Φ is a

subGaussian encoding matrix, then Φ∗Φ is approximate to an identity matrix, where Φ∗ is

the conjugate of Φ. Therefore, it is expected that the largest coordinate lying in the mea-

surement vector y corresponds to a non-zero entry of x; we can estimate a corresponding

coordinate in the measurement y for the support of x. Afterwards, this coordinate is elimi-

nated from y, with further repeating estimates of other coordinates iteratively, till the entire

sequence of x is reconstructed. We briefly summarize the OMP algorithm in algorithm 1.

In total, the OMP algorithm provides a faster CS. It requires the same level of measurements

as the basic pursuit algorithm, namely m = O (k log (l/k)), but a smaller computational

complexity, i.e., O
(
llog2 (l)

)
.

2.2.2.3 Decoding via Belief Propagation

The reconstruction algorithms listed above are based on a dense encoding matrix, whereas an

array of structured matrices have emerged leading to faster decoding. The CS-BP algorithm

adopts a sparse encoding matrix Φ and a belief propagation decoding algorithm to further

speed up the encoding and decoding process of compressive sensing [58]. With regard to
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Algorithm 1: The OMP algorithm

1 begin

2 Initialize an index set I = ∅, and a residual vector r = y.

3 for iteration = 1: k do

4 Select the largest coordinate λ of u = Φ∗r in absolute value.

5 Add the chosen coordinate λ into I , namely I → I ∪ {λ}, and update the

residual vector by

x̂ = argmin
x′

∥y −Φ|Ix′∥2 , r = y −Φx′ (2.15)

6 end

7 Output the support set I , define the pseudo-inverse of Φ by

Φ†
I = (Φ∗

IΦI)
−1Φ∗

I , and form the estimate vector of x by doing

x̂ = Φ†
Iy. (2.16)

8 end
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large systems, CS-BP has already been proved asymptotically optimal [60]. A sparse en-

coding matrix is flexible to a variety of signal models, authors in [61] used a sparse matrix

for the special case of noiseless measurement of strictly sparse signals, while in [58] they

managed to apply CS to approximately sparse signals.

In conventional CS, the Shannon’s random code constructions shed light on building dense

sub-Gaussian sparse encoding matrices [53, 54]. However, a large amount of computation

underlying a dense encoding matrix is not efficient, as fast encoding and decoding can not

be directly applied. Later on, a sparse encoding matrix is proposed based on the insight of

the low-density parity-check (LDPC) codes [62, 63], as multiplication by a sparse matrix is

fast. A sparse Rademacher LDPC-like matrix is a typical example of sparse matrices with

entries restricted to {−1, 0, 1}. This enables the computation of multiplication of matrices to

be only the sums and differences of subsets of the vector x. The row or column weights of

the encoding matrix Φ are varied according to the signal model. Generally, the row weight

is chosen on the basis of signal features, such as sparsity. Besides, it is common to fix the

row weight in order to ensure that each row of Φ contains exactly nonzero entries.

We present the sparse matrix Φ as a sparse bipartite graph shown in Fig. 2.3; it is in a manner

similar to LDPC channel coding [62,63]. The sparse feature of the encoding matrix not only

accelerates the encoding and decoding process, but also reduces the number of loops in the

graph, contributing to the convergence of a message passing method. The aim of Eq. (2.9) is

to estimate x provided that the encoding matrix Φ and the measurement vector y are known.

However, because the length of measurements is shorter than the length of the initial vector,

solving Eq. (2.9) leads to infinite solutions. In CS-BP, the MMSE estimate is considered to

solve the under-determined equation. Let X = [X(1), . . . , X(l)] be a random vector in Rl

and x = [x(1), . . . , x(l)] be an outcome of X . Then the MMSE estimate can be expressed

as,

x̂MMSE = arg
x′

min E ∥X − x′∥22 s.t.y = Φx′, (2.17)

where the expectation is taken on the prior PDF for X . Alternatively, the MMSE estimate

can be denoted by the conditional mean,

x̂MMSE = E [X|Y = y], (2.18)

where Y is a random vector in Rl that can generate the measurement vector y.
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Figure 2.3: Bipartite graph connecting the variables nodes and constraint nodes in belief
propagation.

The iterative message passing algorithm over factor graphs becomes a natural means to solv-

ing such a problem. In a bipartite graph, the measurement vector y is set to occupy constraint

nodes; our goal is to find the MMSE estimates of vector x on the variable nodes side. CS-BP

enables message passing between variable nodes and constraint nodes. Based on the obtained

measurements, CS-BP approximates the marginal distributions of all the coefficients shown

in the factor graph. In Fig. 2.3, we define the set of variable nodes that the cth constraint

node nc depends on by their indices V (c) and the set of constraint nodes that vth variable

node nv depends on by C (v). We introduce V (c) \v, nc\v to represent the set V (c) with

variable node nv excluded and the set of variables in nc with nv excluded, respectively. Then

we denote the messages sent from the variable nodes to constraint nodes by qv→c and the

messages sent from the constraint nodes to variable nodes by rc→v. The updating principle

for the two sets of messages is defined in [64, (26.2)]:

qv→c(nv) =
∏

c′∈C(v)\c

rc′→v (nv), (2.19)

rc→v (nv) =
∑
xc\v

fc (nc)
∏

v′∈V (c)\v

qv′→c (nv′)

, (2.20)

where fc (nc) is a function of the constraint node nc that constrains on the set of variable

nodes. In CS-BP, the constraint node nc is a linear combination of nv, whose weights are
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only 1 and −1. When PDFs are being passed along the edges as messages, Eq. (2.20) corre-

sponds to the convolution of the received PDFs at the constraint node. At the variable nodes,

Eq. (2.19) corresponds to the multiplication of the PDFs. The marginal distribution, i.e., the

PDF of each variable node, is obtained by the multiplication of all the incoming messages

linked to this node, which can be written as,

p(nv) =
∏

c′∈C(v)

rc′→v (nv). (2.21)

Note that if the noise item exists, e.g. Eq. (2.11), except that the messages passed from

variables nodes set V (c) with nv excluded are convolved at nc, the PDF of the noise item is

further convolved. Besides, because loops and quantization errors exist in the factor graphs,

damping methods are applied to stabilizing the decoding process by adding old estimates to

new estimates in a proper weight [65]. The CS-BP decoding algorithm is summarized in

algorithm 2.

To further increase the computation efficiency of the CS-BP algorithm, point-wise multipli-

cation of messages is performed corresponding to the multiplication of PDFs in Eq. (2.19);

the convolution of the messages in Eq. (2.20) is computed in the frequency domain via fast

fourier transform (FFT); FFT has already been used in LDPC decoding using BP in [64]. Ad-

ditionally, modifications to Eq. (2.19) and Eq. (2.20) are performed to reduce computation

of the iterations as follows,

qv→c(nv) =

∏
c′∈C(v)\c

rc′→v (nv)

rc→v (nv)
,

rc→v (nv) =
∑
xc\v

fc (nc)

∏
v′∈V (c)\v

qv′→c (nv′)

qv→c (nv′)

. (2.22)

The modifications made in Eq. (2.22) can apparently reduce the computation, as the numer-

ators are only computed once and reused for all of the messages diverging from the certain

node.

Overall, the CS-BP algorithm needs O (k log (l)) measurements and O
(
l log2 (l)

)
computa-

tion to decode a signal of length l containing k large coefficients. Besides, the main advan-
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2.2 Compressive Sensing

Algorithm 2: The CS-BP decoding algorithm

1 begin

2 At the first iteration, set up the data structures with messages qv→c(nv) and

rc→v (nv), initialize messages qv→c(nv) with the signal prior PDF.

3 for iteration = 2: max do

4 For every measurement c = 1, . . . ,m, compute rc→v (nv) for all of the

neighbouring variable nodes n(c) via the convolution defined in

Eq. (2.20). If noise exists in Eq. (2.11), do further convolution of the

noise PDF. Apply damping methods by weighing new estimates with

the old estimates from the previous iteration.

5 For every coefficient v = 1, . . . , l, compute qv→c(nv) for all of the

neighbouring constraint nodes n(v) via multiplication defined in

Eq. (2.19). Apply damping methods by weighing new and old

estimates.
6 end

7 At each variable node, compute MMSE estimate based on Eq. (2.21) and

output the required data.
8 end
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2.3 Trellis coding

tage of the CS-BP algorithm is that it can be flexibly applied to different prior distributions,

as long as the PDF of the transmitted signal can be captured. However, sampling of the

PDF requires large memory and introduces quantization errors, which inevitably reduces the

precision and becomes a hindrance to the convergence during message passing.

2.3 Trellis coding

The terminology of trellis coding was invented by Gottfried Ungerboeck of IBM in 1982 [66].

It helps to improve error performance without increasing data rate, as channel coding can of-

fer expanded sets of multilevel signals and in turn increases the Euclidean distance. With

larger distance between the signal sequences in Euclidean space, the signal waveforms rep-

resenting these information sequences would be more impervious to the noise-induced de-

tection errors [67].

It is apparent that a length-l sequence needs to be encoded into a set of 2(l+1) channel sig-

nals for better error performance. This can be easily accomplished by implementing a rate-

l/(l + 1) convolution encoder; the convolutional encoder is concatenated with a subsequent

modulation scheme, mapping these (l + 1) bits into a larger set of channel signals. This en-

coding process is shown in Fig. 2.4. We denote by d(an,a
′
n) the Euclidean distance between

the channel signals an and a′
n; therefore, the encoder is aiming to achieve the maximum free

Euclidean distance between all pairs of the channel-signal sequences {an} and {a′
n} that

can be produced by the encoder, namely

dfree = min
{an}̸={a′

n}

√√√√[∑
n

d2 (an,a′
n)

]
. (2.23)

In order to achieve the maximum free Euclidean distance, Ungerboeck introduced a map-

ping rule called set partitioning in [66]. The underlying principle is that this mapping rule

successively partitions a channel signal set into subsets with increasing minimum distances

between each signal within the same subset. Fig. 2.5 illustrates how this mapping scheme

works with an 8PSK modulation, and it can be applicable to any other modulation scheme.

The increased minimum distance after successive partitioning is represented by δ0 < δ1 < δ2.
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Figure 2.5: Set partitioning of 8PSK channel signals.

The term trellis is formed because the mapping process can be described by a state-transition

(trellis) diagram similar to the trellis diagrams of binary convolutional codes. The trellis

coding was first introduced as a combined coding and modulation technique in [66], and it

can also be viewed as trellis coded modulation [67]. But the branch labeling in TCM differs

from convolutional codes, specifically, TCM labels branches with the redundant non-binary

modulation signals instead of the binary code symbols.
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2.3 Trellis coding

2.3.1 Trellis Coded Quantization

As mentioned in Chapter 1, trellis coded quantization (TCQ) is involved in delivering soft

information from the relay nodes, because it ensures to reduce quantization noise without

rate increase by using a structured codebook with an expanded set of quantization levels.

TCQ extends the notion of set partitioning and branch labeling of TCM, which enables the

trellis coding to prune the expanded set quantization levels down to the reduced rates [68]. A

deterministic codebook is then utilized to achieve a computationally simple encoding struc-

ture. The Viterbi algorithm (VA) [69, 70] is employed at the encoder, and it is demonstrated

that the encoding process only requires 4 multiplications, 4 additions and 4 times of scalar

quantization for each source sample, in addition to 2 additions and 1 comparison for each

trellis state per source sample [68].

A TCQ encoder works as follows. At an encoding rate R, for each incoming sample, the

TCQ maps it into one of the 2R+1 reproduction levels (codewords), defined by a finite length

of alphabets regarded as the codebook. This codebook is partitioned into 2R subsets, used as

labels on a trellis with 2 branches entering and leaving each trellis state. Usually the TCQ

uses a rate R/ (R + 1) convolutional encoder to define the structure of the trellis, and the

Viterbi algorithm is used to search all possible paths in the trellis and select the minimum

distortion path. It takes 1 bit to specify the sequence of the trellis branches and (R− 1) bits

to specify the corresponding codewords in each subset.

Consider two sequences of length l: the input sequence of the source encoder x, and the cor-

responding output sequence x̂. The TCQ aims to find the reproduction sequence x̂ which has

the minimum Euclidean distance with the input sequence. The Euclidean distance between

the two sequences is given by

d (x, x̂) =

√√√√ l∑
i=1

(xi − x̂i)
2, (2.24)

and the Viterbi algorithm is used to find the output sequence which minimizes d (x, x̂).

Equivalently it can be viewed as minimizing the mean squared error (MSE) of the two se-

quences, namely

ρl (x, x̂)=d
2 (x, x̂) /l. (2.25)
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2.3 Trellis coding

We denote by xk and x̂k the k-th symbol in the input sequence and the output sequence cor-

respondingly, and we denote by Dj(s) the minimum accumulative squared error distortion

for state s at time j, where s ∈ S is one of the state in the state space of the trellis. Therefore,

Dj+1(s) can be recursively calculated by

Dj+1(s) = min
s′∈S

[
Dj (s

′) + (xj+1 − Λ (s′, s))
2
]
, (2.26)

where Λ (s′, s) is the corresponding quantization level assigned to the actually existed tran-

sition between the current state s′ and the next state s. Denoting by C the codebook gener-

ated from a proper quantizer, we have Λ (s′, s) ∈ C. To solve Eq. (2.26), TCQ starts from

D0(s) = 0, ∀s ∈ S , which means that the TCQ can start at any state. For feasible synchro-

nization at both the encoder and decoder, initialization can be implemented by fixing the start

state as s0, where s0 ∈ S, and setting D0(s
0) = 0 and D0(s) = ∞, given s ̸= s0, s ∈ S .

TCQ keeps track of the squared error distortion of the survivor path through the trellis, and

finally chooses the survivor path that has the minimum accumulative distortion, namely,

Dmin(s
l) = min

∀s∈S
Dl(s), (2.27)

where sl represents the final state in the trellis. Then TCQ tracks back from the final state to

the initial state and thus finds the survivor path with the minimum squared error distortion.

An example of a TCQ encoder for memoryless Gaussian source at rate R = 1 bit/sample is

given below.

• The Gaussian source generates the sequence x consisting of l = 1000 symbols,

x = (−0.9818, 0.0057,−0.2679,−0.5454, 1.2585, 0.4240, . . . ,−1.8464,−1.2401).

• With a rate (R+ 1) Lloyd-Max quantizer [71, 72], the corresponding codebook of the

input sequence is give by C = (c1, c2, c3, c4) = (−1.3308,−0.2639, 0.6424, 1.7734).

• A proper convolutional encoder, e.g. a rate-1/2 (5, 2) encoder, defines the trellis,

branches of which are labeled with codewords ci, i = {1, 2, 3, 4}, as shown in Fig. 2.6.

• Viterbi Algorithm is used to encode the input sequence x as show in Fig. 2.7. The
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Figure 2.6: A rate-1/2 convolutional encoder and corresponding trellis branch labeling.
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Figure 2.7: Viterbi Algorithm for source encoding at rate 1 with a 4 state trellis
.

solid line depicted in Fig. 2.7 is the survivor path which has the minimum Euclidean

distance to the source sequence x.

2.3.2 Joint Trellis Coded Quantization/Modulation

Joint trellis coded quantization/modulation is one means of joint source/channel coding tech-

niques. In the joint trellis coded quantization/modulation (TCQ/M) system, the encoding rate

for the TCQ and the transmission rate for the TCM are the same. They both use the identical

trellis to ensure the consistent labeling in the trellis diagram; this can guarantee that likely

channel error events will only lead to small additional TCQ distortion [73]. Both the TCQ

and the TCM use the Viterbi algorithm to find the appropriate sequence path of quantization

levels or modulation symbols that have the shortest Euclidean distance to the corresponding

input.

The TCQ/M system functions as follows. The quantization process is first adopted as de-
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2.3 Trellis coding

scribed in Section 2.3.1. Combined with the TCM, the single bit used in the TCQ is then

taken as the input to the TCM convolutional encoder, and the rest (R− 1) bits are used to

specify the modulation symbol in the TCM subset. As the TCQ generates a sequence con-

sisting of the 2R+1 reproduction levels from the defined codebook, these levels are mapped

to the symbols made up of the 2R+1-point TCM alphabets [68, 73, 74].

2.3.3 Decoding

The Viterbi Algorithm (VA) can be used to decode the TCM signals. The output sequence

is formed as the one that has the minimum Euclidean distance from the received signals.

Then the decoded bits are simply obtained from the trellis branch specified by the 1 bit and

the decoded symbols specified by the (R − 1) bits. For the decoding of TCQ, the Viterbi

algorithm uses the 1 bit to specify the trellis branch and the rest (R − 1) bits to specify the

codeword in the corresponding subset, and then outputs this codeword. Below is a detailed

description of the Viterbi algorithm.

2.3.3.1 The Viterbi Algorithm

The VA is accomplished by performing the maximum likelihood decoding of convolutional

codes. It involves a search through the trellis for the most likely sequence. For an (n, k)

convolutional code, its trellis diagram has 2k branches entering and leaving each state.

Assume that the information sequence x is encoded by an (n, k) convolutional code into a

codeword c = (c1, c2, · · · , cl+m) of length (l +m), where ci = (ci,1, · · · , ci,n), and that the

received sequence is denoted by y =
(
y1,y2, · · · ,yl+m

)
. A maximum likelihood decoder

is performed based on the received sequence to choose the survival path ĉ. The aim is to

maximize the log-likelihood function of log p(y | ĉ). The conditional PDF p(y | ĉ) is given

by

p(y | ĉ) =
l+m∏
i=1

p(yi | ĉi), (2.28)

which is equivalent to

log p(y | ĉ) =
l+m∑
i=1

log p(yi | ĉi), (2.29)

28



2.3 Trellis coding

where log p(y | ĉ) denotes the path metric and log p(yi | ĉi) represents the branch metric for

the i-th branch.

The Viterbi algorithm is then to select the survivor by comparing the metrics of all paths

merging into each state and storing the path with the largest metric, as well as its own metric.

Finally the survivor is decoded. The Viterbi algorithm is summarized in algorithm 3.

Algorithm 3: The Viterbi algorithm

1 begin

2 At time t = 1, compute the branch metric for the single branch

merging into each state. Store the branch metric (the survivor) and its

own metric for each state.

3 for t = 2: l +m do

4 Obtain the partial metric for each path entering a state by adding

the branch metric entering that state to the metric of the connecting

survivor at the preceding trellis depth. For each state, store the path

with the largest metric (the survivor), along with its metric, and

eliminate all other paths.
5 end

6 Keep the final survivor and decode the code sequence.

7 end

In terms of the branch metrics, for convolutional codes, they are Hamming distance and

squared Euclidean distance for hard and soft decoding, respectively.
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Chapter 3

Compressive Soft Forwarding in

Network Coded Multiple Access Relay

Channels

In this chapter, we design a novel EF protocol in MARC where two correlated sources trans-

mit their information to the common destination with the help of a relay. With the application

of network coding at the relay, the network coded soft symbols contain redundant informa-

tion due to the correlated sources; the redundancy can be compressed before soft symbols

being forwarded. Specifically, we first derive the value of the network coded soft symbol

by considering the correlation of the two sources. Due to this correlation, the values of the

majority of soft symbols are close to the area of one. Then we convert the network coded

soft symbol vector into a sparse vector; such a sparse vector is suitable for compression by

using CS. Next, we analyze the performance of the proposed EF protocol by comparing the

soft symbol value and received signal-to-noise ratio with the conventional EF protocol. Sim-

ulations show that our protocol can achieve the same BER as the conventional EF protocol

with proper compression rates, while it consumes much less transmission time due to the

compression.



3.1 Introduction

3.1 Introduction

WSN serve as a much more feasible means than the conventional wired sensing network,

given the features of its low-cost and low-power sensor nodes [13]. In the case where

neighboring sensor nodes obtain spatially correlated measurements, the topic of the sensor

reachback problem, specifically, how to efficiently transmit correlated data from multiple

source nodes to one or multiple destination nodes, has drawn attention from the academia

recently [32].

On the other hand, in order to further enhance transmission efficiency, support long distance

transmission and combat fading channels, relay nodes are introduced into WSN. These relay

nodes are relatively costly, but more powerful [14]. They listen to the signals transmitted by

the source nodes, implement signal processing on the received signal, and further forward

the processed signal to the destination. Therefore, the destination nodes can exploit spatial

diversity by combining signals from both the source nodes and the relay nodes. One specific

scenario is that one relay assists multiple sources, which is modeled by the MARC. In the

case of independent sources, quite a few relay strategies have been explored [25, 28, 38, 75–

78].

However, none of these works considered correlated sources. In this work, we consider an

MARC system with correlated sources. Upon deriving the expression of the network coded

soft symbol at the relay from two correlated sources, we obtain sparsity from the processed

signals by doing proper transformation on the soft symbol vector. Therefore, it becomes

desirable to exploit this sparsity, in order that the relay node can use less transmission time.

The ground-breaking work in CS has recently proved that a sparse vector can be effectively

recovered from a small number of random projections onto a proper basis [53,54,58]. In the

literature, works on CS applied in WSN have emerged recently [79, 80]. The novel form of

NC approach named Netcompress in [79] has been proved to meet the reconstruction condi-

tion of CS and overcome the high link-failure rate in WSN, and experimental proof supports

that Netcompress approach only needs half the number of nodes packets to obtain reason-

able recovery. In [80], the authors have proposed a coding scheme on a finite field based

on the quantized measures in WSN, and this coding scheme coincides with the Bayesian

BP structure in [58] with a nonbinary parity-check encoding matrix and the BP decoding

algorithm.
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In this chapter, we investigate the SIF protocols in the MARC with NC and correlated

sources. We consider to use CS [54, 58] to compress and forward the network coded soft

information at the relay. Specifically, we design a novel EF based SIF protocol by compress-

ing the soft network coded symbols at the relay with CS, which is referred to as correlated

EF with CS. We first study the network coded soft symbol in the MARC with the correlated

sources. Due to the correlation of the two sources, the values of the majority of the soft sym-

bols are close to the area of one. Then we convert the network coded soft symbol vector into

a sparse vector to make it suitable to be compressed by the CS. Next, we analyze the perfor-

mance of the CEF-CS protocol by comparing the soft symbol value and the received SNR

with the conventional EF protocol. Simulations show that our CEF-CS protocol can achieve

the same BER as the EF protocol with some proper compression rate, while it consumes

much less transmission time due to the compression.

The contribution of [58] is that they perform asymptotically optimal Bayesian inference

using BP decoding and achieve fast computation. Its theoretical contribution is the derivation

of the measurements and decoding complexity. On the other hand, I take advantage of their

CS via BP decoding concept and apply it to the network coded symbol vector in the MARC.

The original contribution of my thesis lies in the application of CS to the relay model, and

my theoretical analyses part in this chapter is about deriving the network coded symbol of

the correlated sources, and the reliability comparison between the network coded symbols

formed with or without the side information of source correlation.

3.2 System Model

Consider an MARC with two correlated sources, one relay and one destination as shown in

Fig. 2.2, where the two sources S1 and S2 broadcast their messages to the common desti-

nation D with the help of a half-duplex relay R. Each transmission period consists of three

phases. In the first phase, S1 broadcasts its message, and in the second phase, S2 broadcasts

its message, to the relay and the destination. After the first two phases, the relay processes

the network coded information based on the signals from the two sources, which is then for-

warded to the destination during the third phase. At the end of each transmission period, the

destination decodes the messages of the two sources based on the signals from the sources

and the relay.
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We denote by hiR, i = 1, 2, hiD, and hRD the channel coefficients between Si and R, be-

tween Si and D, and between R and D, respectively, as shown in Fig. 2.2, and denote by diR,

diD, and dRD the distances between Si and R, between Si and D, and between R and D, re-

spectively. We assume that hiR, hiD, and hRD are independent and identically Rayleigh dis-

tributed with the channel gains as λiR, λiD, and λRD, respectively. These channel gains are

related to the corresponding distances with the attenuation exponent γ, i.e., λiR = 1/(diR)
γ ,

λiD = 1/(diD)
γ , and λRD = 1/(dRD)

γ . We consider quasi-static fading channels, i.e., the

channel coefficients are constant during one transmission period, and change independently

from one period to another.

In each transmission period, we assume that each source transmits l i.i.d. BPSK symbols.

Thus, the symbol vector of Si is denoted by xi = (x1i , · · · , xli)T , xqi ∈ {±1} and q ∈
{1, · · · , l}, with the power Ei. The received signals at the relay and at the destination from

Si can be expressed as

yiR = hiR
√
Eixi + niR,

yiD = hiD
√
Eixi + niD, (3.1)

respectively, where the vectors yiR and yiD consist of l received signals, i.e.,

yiR = (y1iR, · · · , yliR)T and yiD = (y1iD, · · · , yliD)T , the vector niR = (n1
iR, · · · , nl

iR)
T

consists of l additive white Gaussian noise (AWGN) samples at the relay, and the vector,

niD = (n1
iD, · · · , nl

iD)
T , consists of l AWGN samples at the destination. We assume that all

the noise samples at the relay and destination are i.i.d. Gaussian variables with a mean zero

and variance σ2, and the sources’ power satisfies E1 = E2 = ES . We define the SNR as

ρ , ES/σ
2.

After receiving yiR, the relay detects xi and obtains the network coded symbol vector as

xR = (x1R, · · · , xlR)T , xqR ∈ {±1}. A network coded symbol xqR in xR can be calculated

as xqR = xq1x
q
2. However, in our CEF-CS protocol, the relay does not forward xR directly.

Instead, it first obtains the soft symbol of xqR in xR, denoted by x̃qR. Note that the soft

symbol of xqR is equivalent to the expectation of xqR given the received signals, i.e., x̃qR =

E [xqR|y
q
1R, y

q
2R] [27]. Then the relay compresses the soft symbol vector x̃R = (x̃1R, · · · , x̃lR)T

by exploiting the correlation between the two sources, which will be discussed in detail in

the next section. We denote by B(x̃R) the power-normalized vector after compression. The

length of B(x̃R), denoted by m, (m < l), varies according to different compression rates.
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Then the received signal vector at the destination in the third phase can be expressed as

yRD = hRD
√
ERB(x̃R) + nRD, (3.2)

where ER is the power at the relay, yRD = (y1RD, · · · , ymRD)
T is the received signal vector,

and nRD = (n1
RD, · · · , nm

RD)
T is the AWGN vector at the destination.

At the end of the third phase, the destination first recovers x̃R from yRD; the recovered

signals are then combined with the signals from the source-to-destination channels to make

hard decisions.

With regard to the modulation schemes, for the signals transmitted from the source nodes

to the relay nodes and the destination nodes, BPSK and QPSK modulation schemes are the

same because decoding is performed both on the bit level. To my best knowledge, I have

not found related works on the high level modulations (beyond QPSK) being applied to the

soft information relaying. In addition, as I consider a wireless sensor network, it will be

quite challenging if high level modulations are applied to a large number of sensor nodes

with low transmission power. The resulting cost will be much increased to implement more

complicated modulation schemes over each sensor node.

3.3 Correlated EF with Compressive Sensing

In this section, we introduce our CEF-CS protocol. First, we derive the network coded soft

symbols based on the correlated messages from the two sources. We note that the correlated

messages from the two sources lead to redundancy in the soft symbol vector x̃R at the relay.

Then we compress x̃R by using compressive sensing.

3.3.1 Network Coded Soft Symbols with Correlated Sources

The correlation between the sources is modeled as follows [81]. Let Zq, q = 1, · · · , l, be

an i.i.d. binary random variable with Pr(Zq = 0) = τ , where τ ∈ [0, 1]. Without a loss of

generality, we focus on the q-th symbol xqi in xi. We define the correlation between xq1 and
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3.3 Correlated EF with Compressive Sensing

xq2 as follows. If Zq = 0, then xq1 and xq2 are independent, and if Zq = 1, then xq1 and xq2 are

identical. To simplify the derivation of the network coded soft symbol, we further define the

correlation coefficient between xq1 and xq2 by ζ(xq1, x
q
2), which can be expressed as

ζ(xq1, x
q
2) =

2−τ
4
, if xq1 = 1, xq2 = 1 or xq1 = −1, xq2 = −1,

τ
4
, if xq1 = 1, xq2 = −1 or xq1 = −1, xq2 = 1.

(3.3)

Based on ζ(xq1, x
q
2), we now derive the soft symbol x̃qR = E [xqR|y

q
1R, y

q
2R], and we have

E [xqR|y
q
1R, y

q
2R] =

∑
xq
1=±1,xq

2=±1

xq1x
q
2p (x

q
1, x

q
2|y

q
1R, y

q
2R)

=
∑

xq
1=±1,xq

2=±1

xq1x
q
2

p (xq1, x
q
2, y

q
1R, y

q
2R)

p (yq1R, y
q
2R)

=
∑

xq
1=±1,xq

2=±1

xq1x
q
2

p (yq1R, y
q
2R|x

q
1, x

q
2) ζ (x

q
1, x

q
2)∑

u=±1,v=±1

p (yq1R, y
q
2R|u, v) ζ (u, v)

=
∑

xq
1=±1,xq

2=±1

xq1x
q
2

p (yq1R|x
q
1) p (y

q
2R|x

q
2) ζ (x

q
1, x

q
2)∑

u=±1,v=±1

p (yq1R|u) p (y
q
2R|v) ζ (u, v)

, (3.4)

where p(·) denotes the probability density function, and p (yqiR|x
q
i ) is conditionally Gaussian

distributed, which is expressed as

p (yqiR|x
q
i ) =

1√
2πσ

exp

(
−(yqiR − hiRx

q
i )

2

2σ2

)
. (3.5)

3.3.2 Compressive Sensing on Soft Symbol Vector

The correlation between the two sources leads to redundancy in the soft symbol vector x̃R.

By taking the advantage of this redundancy, we can convert x̃R to a sparse vector. To show

this sparsity, we first investigate the PDF of a network coded soft symbol x̃qR. Fig. 3.1 plots

the histogram results of a soft symbol vector x̃R with τ in Eq. (3.3) equal to 0.2, vector length

l = 10, 000, h1R = 0.5, and h2R = 1. We focus on the curves for the CEF-CS protocol, and

consider the SNR ρ = 0 dB, 10 dB, and 25 dB (the curve ‘EF, SNR=0dB’ will be discussed

later). We can see that the soft symbols are within the range from −1 to 1. When SNR is
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Figure 3.1: The PDF of a soft symbol vector with τ = 0.2, l = 10, 000, h1R = 0.5, and
h2R = 1.

large, the soft symbols are polarized around the areas close to −1 and 1. Furthermore, due

to the correlation between the two sources, the majority of the soft symbols are close to 1.

Then we obtain another length-l vector x̃′
R by calculating x̃′

R = x̃R − 1. Obviously, the

elements in x̃′
R are polarized around the areas close to −2 and 0, and the majority of the

elements are close to 0. Therefore, the vector x̃′
R can be viewed as a sparse vector, and such

a sparse vector can be compressed by using compressive sensing [58]. We now connect the

sparsity in x̃′
R with τ . We can obtain that when ρ is large enough, there are (1− τ

2
)l elements

in x̃′
R around zeros and τl

2
elements around −2. Therefore, the sparsity of the vector x̃′

R is
τ
2
.

Based on the sparsity of x̃′
R, we encode x̃′

R with anm×l (m < l) sparse matrix Φ composed

only of the entries {1,−1, 0}. Specifically, we select Φ as a Rademacher encoding matrix

according to [58]. For each element ϕ in Φ, we have

ϕ =


+1, with probability 2

τl

0, with probability 1− 4
τl

−1, with probability 2
τl

. (3.6)
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3.3 Correlated EF with Compressive Sensing

The encoded vector Φx̃′
R, or called measurement vector, is of length m. Thus, by trans-

mitting Φx̃′
R rather than x̃R, the relay can save (l − m) time slots. The vector B(x̃R) in

Eq. (3.2) is written as

B(x̃R) =
Φx̃′

R√
E
[
|Φx̃′

R|
2
]
√

l

m
. (3.7)

Note that the term
√
l/m in Eq. (3.7) is included to keep relay’s transmission power constant

during the third phase, since the relay consumes less transmission time slots by compressing

x̃R.

From Fig. 3.1, we can approximate the distribution of x̃′
R as a mixture of two Gaussian

variables with two different mean values and the same variance. This approximation can be

equivalently treated as a two-state Gaussian mixture model described in [58] which requires

m = O
(
lτ
2
log (l)

)
to guarantee the reconstruction. Thus, we need O

(
lτ
2
log (l)

)
measure-

ments to recover x̃′
R.

3.3.3 Reconstruction via Belief Propagation

At the destination, the belief propagation (BP) algorithm is applied to recovering x̃′
R, which

is of length l. We assume the PDFs of the soft symbol vector at different SNRs are known

to the destination, which are used as the prior knowledge for BP [58]. We denote by ˆ̃x
′
R

the recovered x̃′
R from BP algorithm at the destination. It is easy to recover the network

coded soft symbol vector x̃R, denoted by ˆ̃xR, from ˆ̃x
′
R by calculating ˆ̃xR = ˆ̃x

′
R + 1. Then

the recovered soft symbol vector ˆ̃xR will be combined with the signals from the source-to-

destination channels to make final decisions on the sources’ messages. In the following, we

focus on how to obtain ˆ̃xR from the received signal yRD by using BP.

To make the received signal yRD suitable for BP process, we first define

β =

√√√√ lER

mE
[
|Φx̃′

R|
2
] , (3.8)

and we have yRD = βhRDΦx̃′
R + nRD. Then we obtain a new vector y by calculating

y = yRD/ (βhRD), i.e., y = Φx̃′
R + n, where n = nRD/ (βhRD). The vector y can
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Figure 3.2: The compression and reconstruction process of x̃R by using compressive sens-
ing.

be interpreted as the encoded vector Φx̃′
R plus Gaussian noise. We use y as the input of

the BP algorithm to recover x̃′
R as in [58]. After we obtain ˆ̃x

′
R, we can thus obtain ˆ̃xR.

The compression and reconstruction process of the network coded soft symbol vector x̃R is

shown in Fig. 3.2.

3.4 Performance Analysis and Comparison

We analyze the soft symbol value and the received SNR at the destination in our CEF-CS

protocol, and compare them with the conventional EF protocol [27].

3.4.1 Soft Symbol Value

Recall that the soft symbol xqR of our CEF-CS protocol is derived in Eq. (3.4). However, in

the conventional EF protocol, the soft symbol is calculated as shown in Eq. (2.4), thus we

obtain

x̃qR = tanh

(
LLRxq

1

2

)
tanh

(
LLRxq

2

2

)
. (3.9)
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In fact, the calculation of x̃qR in Eq. (3.9) does not consider the correlation between the two

sources.

By comparing the values of x̃qR calculated from Eq. (3.4) and Eq. (3.9), we have the following

theorem.

Theorem 1. The soft symbol calculated by the CEF-CS in Eq. (3.4) has a higher reliability

than that calculated by the conventional EF in Eq. (3.9).

Proof. Please refer to Appendix A.1.

From the proof of Theorem 1, we can see that the CEF-CS considers the correlation of the

two sources when calculating x̃qR, thus having a higher reliability. Therefore, the CEF-CS

always has a better performance than the conventional EF.

In Fig. 3.1, we compare the probability distributions of the network coded soft symbols in

the CEF-CS protocol and the EF protocol when ρ = 0 dB. It can be seen that with the cor-

relation knowledge exploited by the CEF-CS protocol at the relay, more soft symbols than

those in the EF protocol approach the value of 1. In fact, due to the correlation between the

two sources, the majority of the network coded symbols calculated in the CEF-CS protocol

are 1. Therefore, the soft symbols in the CEF-CS have higher reliability compared to the

conventional EF. In addition, since the soft symbols in the CEF-CS protocol are more polar-

ized than those in the EF protocol (as seen from Fig. 3.1), it is more suitable to implement

compressive sensing in our CEF-CS.

3.4.2 Received SNR

According to [27], the soft symbol of xqi is modeled as x̃qi = ψi (x
q
i + ei), where ei is the

soft noise, and ψi represents the scalar factor which makes the soft noise ei uncorrelated

to the information symbol xqi . We have E (eix
q
i ) = 0 and ψi =

E(xq
i x̃

q
i )

E((xq
i )

2)
. Similarly, the

network coded symbol is modeled as x̃qR = ψEF (x
q
1x

q
2 + eEF ), where eEF is the soft noise,

and ψEF represents the scalar factor which makes eEF uncorrelated to the network coded

symbol xq1x
q
2.
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In the conventional EF, the relay forwards x̃qR in Eq. (3.9) without compression. At the

destination, the receiver first estimates xqi from the received signal yqiD and obtains x̃qi =

tanh(LLRd,xq
i
/2), where LLRd,xq

i
is the LLR of xqi at the destination. Then x̃qi is multiplied

with yqRD in order to cancel xq
ī
, where ī = 1, 2 and ī ̸= i. By defining κ =

√
ER

E[|x̃R|2]
, we

have

yqRDx̃
q
i = (κhRDψEF (xq1x

q
2 + eEF ) + nq

RD) (ψi (x
q
i + ei))

= κhRDψEFψix
q
ī
+ κhRDψEFψieix

q
1x

q
2 + κhRDψEFψiex

q
i+

κhRDψEFψieieEF + ψin
q
RDx

q
i + ψiein

q
RD, (3.10)

where noise item, denoted byNi,EF = κhRDψEFψi (eix
q
1x

q
2 + exqi + eieEF )+ψi (n

q
RDx

q
i + eqin

q
RD),

can be approximated as Gaussian distributed [27] with mean µi and variance σ2
i . Since

E [eix
q
i ] = 0, we have µi = 0 and σ2

i = κ2h2RDψ
2
EFψ

2
i

(
σ2
ei
+ σ2

e + σ2
ei
σ2
e

)
+ψ2

i

(
σ2 + σ2

ei
σ2
)
,

where σ2
eEF

and σ2
ei

are the variances of eEF and ei, respectively.

Based on Eq. (3.10), we can obtain the LLR for xq
ī
, which is then combined with yq

īD to

make the decision on xq
ī
. Here, we investigate the received SNR in Eq. (3.10), which can be

expressed as

ρi,EF =
κ2h2RDψ

2
EFψ

2
i

κ2h2RDψ
2
EFψ

2
i

(
σ2
ei
+ σ2

eEF
+ σ2

ei
σ2
eEF

)
+ ψ2

i

(
σ2 + σ2

ei
σ2
) . (3.11)

For the CEF-CS, the network coded soft symbol vector x̃R are compressed at the relay.

When recovering x̃R at the destination with BP, errors could be introduced [58], i.e., ˆ̃xR =

x̃R + nqu, where nqu is the quantization noise. Denote ˆ̃xqR and ˆ̃nq
q the q-th symbols in ˆ̃xR

and nqu, respectively. The recovered symbol ˆ̃xqR is multiplied with x̃qi in order to cancel xq
ī
.

Then we have

ˆ̃xqRx̃
q
i =

(
ψCEF−CS (x

q
1x

q
2 + eCEF−CS) + nq

qu

)
(ψi (x

q
i + ei))

= ψCEF−CSψix
q
ī
+ ψCEF−CSψieix

q
1x

q
2 + ψCEF−CSψieCEF−CSx

q
i

+ ψψieieCEF−CS + ψin
q
qux

q
i + ψiein

q
qu, (3.12)

where the noise item, denoted by

Ni,CEF−CS = ψCEF−CSψi (eix
q
1x

q
2 + eCEF−CSx

q
i + eieCEF−CS) + ψi

(
xqin

q
qu + ein

q
qu

)
, can
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be approximated as Gaussian distributed with mean µi and variance σ2
i . Since E [eix

q
i ] = 0

and nq
qu is independent from the signal, we have µi = 0 and

σ2
i = ψ2ψ2

i

(
σ2
ei
+ σ2

e + σ2
ei
σ2
e

)
+ ψ2

i

(
σ2
q + σ2

ei
σ2
q

)
, where σ2

q is the variance of nqu. The

received SNR in Eq. (3.12) can be written as

ρi,CEF−CS =
ψCEF−CS

2ψ2
i

ψCEF−CS
2ψ2

i

(
σ2
ei
+ σ2

eCEF−CS
+ σ2

ei
σ2
eCEF−CS

)
+ ψ2

i

(
σ2
q + σ2

ei
σ2
q

) . (3.13)

3.5 Simulation Results

In the simulations, we consider quasi-static Rayleigh fading channels, and assume that each

source transmits l = 200 BPSK symbols in a transmission period and run 1000 block errors

to obtain simulation results. Also, we assume that the distances dSiR and dRD are equal to

0.5, and dSiD is equal to 1. The attenuation exponent γ is set to be 2, and the sources and the

relay have unit transmission power, namely, ES = ER = 1. When applying the CS at the

relay in the CEF-CS and EF-CS protocols, we denote by r the transmission rate at the relay,

which means that the encoding matrix is of size lr × l, and correspondingly the number of

measurements transmitted from relay is m = lr.

Firstly, we investigate the BER performance of the CEF-CS protocol under different source

correlation coefficients shown in Fig. 3.3. The system BER is defined as the average value

of BERs of the two sources’ signal at the destination. Note that the correlation coefficient of

the two sources is defined in Eq. (3.3), which is derived from τ . Therefore, in Fig. 3.3, we

simulate the system BERs for different values of τ . Also, in Fig. 3.3, we consider the SNRs

of 10dB, 15dB and 20dB and a transmission rate r = 1/2. As can be seen from Fig. 3.3,

with the increase of the value of τ , the BER performance becomes worse. This is because

that increased τ , i.e., the reduced source correlation, leads to the less sparsity of the network

coded soft symbol vector. Furthermore, we can see from Fig. 3.3 that when τ exceeds 0.5,

the system can only achieve a diversity gain of 1; when τ falls below 0.3, the diversity gain

is close to 2.

Secondly, we study the impact of the transmission rate r on the BER performance for the

CEF-CS protocol for a fixed τ . Here, we choose τ = 0.2 since it offers a good error per-

formance as shown in Fig. 3.3. We investigate the system BERs with different transmission
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Figure 3.3: BER performance of the CEF-CS protocol under different source correlation
models, at SNR = 10dB, SNR = 15dB and SNR = 20dB, and with r = 1/2.

rates r under the SNRs of 10dB, 15dB and 20dB. As can be seen from Fig. 3.8, with the

increase of r, the BER performance will gradually become better. Also, when r exceeds 0.5,

the system diversity gain becomes closer to 2.

Thirdly, we investigate the received SNRs discussed in Section 3.4.2. We compare our CEF-

CS protocol with two other protocols, namely, the conventional EF protocol, the CEF pro-

tocol, with τ = 0.2. Specifically, in the CEF, the relay directly forwards the network coded

soft symbol vector calculated by Eq. (3.4) without any compression. The received SNRs in

Fig. 3.5 for the EF and the CEF-CS protocols are calculated from Eq. (3.11) and Eq. (3.13),

respectively. The received SNR for the CEF protocol can be obtained by following the simi-

lar method as in the EF protocol. We can see from Fig. 3.5 that the received SNR of the CEF

protocol always outperforms that of the EF protocol. However, the gap between the received

SNRs of the CEF and EF goes to zero in the high SNR region, which means that the error

performance of these two protocols tend to be equal in the high SNR region. For the CEF-CS

protocol, it is shown that the CEF-CS with r = 2/10 obtains lower receiver SNR than that

in the EF and CEF protocols. For the transmission rate r = 7/10, the CEF-CS has the best

receiver SNR compared to the other protocols. This is due to the fact that the quantization
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Figure 3.4: BER as a function of the transmission rate r in the CEF-CS protocol, at SNR =
10dB, SNR = 15dB and SNR = 20dB, and with τ = 0.2.

noise nq
qu in Eq. (3.12) is strictly constrained in the range of (0, 2), while the value range of

nRD in Eq. (3.10) is infinite. In particular, when SNR is large enough, the majority of nq
qu

gathers around 0. We compare the PDF of quantization noise with that of (nRD/ (κhRD))

when the CS transmission rate r is 1/2 in Fig. 3.6 and clearly see that the overall quantiza-

tion noise item has relatively smaller value than (nRD/ (κhRD)), which leads to the higher

receiver SNR of the CEF-CS protocol than the EF protocol.

Fourthly, we investigate the BER performance of the CEF-CS, the CEF, and the EF protocols.

We also consider another benchmark protocol, namely, the EF-CS, where the relay applies

CS to the network coded soft symbol vector obtained from the EF protocol. As can be seen

from Fig. 3.7, when τ = 0.2, the CEF-CS protocol with rate 2/10, and the EF-CS protocol

with rate 2/10, 7/10 can only achieve a diversity gain of one, while the CEF-CS with rate

7/10, the CEF, and the EF can achieve a diversity gain of two. The worse performance

of the EF-CS implies that the CS is not suitable for the EF. This is because that the soft

symbol vector in the EF does not ensure the sparsity for CS. Besides, the CEF outperforms

the CEF-CS with rate 7/10, and the CEF-CS with rate 7/10 outperforms the EF. However,

the performance gap between these three protocols goes to zero in the high SNR region. We

also compare the BER performance of the CEF-CS protocol under other correlation models,
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Figure 3.5: Receiver SNR vs transmission SNR, when τ = 0.2.
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Figure 3.7: BER performance of different schemes over fading channels.

namely τ = 0.5 and τ = 1. As can be seen, with the decrease of the correlation, the BER

performance becomes worse. We also investigate the impact of the transmission rate r on

the BER performance for the CEF-CS and the EF-CS protocols in Fig. 3.8, where SNR is

set to be 15dB and 20dB, and τ = 0.2. Fig. 3.8 further verifies the infeasibility to apply CS

directly on the conventional EF protocol. It shows that with the increase of the transmission

rate, the performance of the EF-CS protocol becomes worse. This is because the CS does

not promise recovery for the soft symbols generated from the EF protocol, while the power

allocated on each symbol is reduced with a higher transmission rate.

Furthermore, since the relay node uses less time slots to forward information in the com-

pressed protocols, the throughput performance of the compressed protocols will be much

improved. Specifically, we define the throughput Tr as the number of the correctly received

symbols out of the number of the entire transmitted symbols per transmission period, which

can be calculated by

Tr =
2l − e

2l +m
, (3.14)

where e denotes the number of symbol errors for both sources, l is the length of the source

signal, and m is the length of the signal transmitted from the relay node. For the EF and
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Figure 3.8: BER as a function of the transmission rate r in the CEF-CS and EF-CS protocols,
at SNR = 15dB and SNR = 20dB when τ = 0.2.

CEF protocols without CS, m is constantly equal to l. For the CEF-CS protocol, we have

m < l due to CS. As is shown in Fig. 3.7, the EF, the CEF and the CEF-CS at r = 7/10

have equivalent BER performance. However, in terms of the throughput performance, the

CEF-CS at r = 7/10 will improve 10% compared with the EF and the CEF protocols, as

shown in Fig. 3.9.
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Figure 3.9: BER performance of different schemes over fading channels.
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Chapter 4

A Soft Information Delivery Scheme in

Two-Way Relay Channels with Network

Coding

In this chapter, we propose a practical 1-bit soft forwarding protocol for a network coded

TWRC. Different from the conventional EF protocol, the proposed protocol forwards 1-bit

soft information at the relay. We employ the joint TCQ/M to implement 1-bit transmission

of the soft information. Also, the codebooks in the TCQ are designed to be adaptive to

the source-to-relay channel conditions so that the system can achieve the full diversity gain

over fading channels. Specifically, in the low source-to-relay channel SNR region, we apply

the TCQ/M to the soft information based on the codebook generated by the Lloyd-Max

quantizer. In the high source-to-relay channel SNR region, where the soft information is

equivalent to its hard decision, we design the codebook by repeating the soft information. It

has been shown that the proposed protocol outperforms both the AF and the DF protocols

over fading channels.



4.1 Introduction

4.1 Introduction

The recent emerging relay strategies have been shown significant advantages for most future

wireless applications. Two of these relay strategies are the AF protocol [75] and the DF

protocol [25], which have been widely studied in the literature. To overcome the disadvan-

tages of the AF and the DF protocols explained in Section 2, SIF protocols [82] have been

raised. One of the SIF based protocol is called EF [77]. It has been shown in [77] that the

EF protocol outperforms the AF and DF protocols in the one-way relay channels. Recently,

TWRC have become increasingly appealing to both academia and industry. That is mainly

because network coding can be employed to achieve higher spectral efficiency. Quite a few

relay strategies have been proposed in the TWRC, e.g., [28, 38].

In particular, the soft network coding protocol proposed for the TWRC in [38] has attracted

a lot of attention. However, it was assumed in [38] that the relay-to-source channels have

limitless bandwidth. Therefore, the soft information can be transmitted to each source from

the relay without quantization. In practice, due to the finite channel bandwidth, we need

to quantize the soft information before transmission. However, even if we quantize the soft

information into a limited number of bits, it still has a much lower spectrum efficiency than

the DF protocol. Therefore, 1-bit soft forwarding is an attractive approach to achieving

better performance than the DF with the same bandwidth. The TCQ/M scheme is one of the

quantization schemes that can realize 1-bit quantization with a good error performance [68,

73,74,83], because the quantization noise can be reduced without rate increase if a structured

codebook with an expanded set of quantization levels is used. Although any modulation

scheme can be used in conjunction with the TCQ, it is shown that a joint TCQ/M system

ensures that the squared distance between the channel sequences is commensurate with the

squared error in the quantization [73, 74].

In this work, we are interested in designing a practical 1-bit soft forwarding protocol based

on the joint TCQ/M in the TWRC over fading. Also, we design adaptive codebooks in the

TCQ based on different source-to-relay channel conditions. This is because the probability

distribution of the soft information varies with different SNR values of the source-to-relay

channels. Specifically, the PDF of the soft information presents approximately a Gaussian

distribution in the low channel SNR region. On the other hand, the values of the soft informa-

tion are equivalent to hard decisions in the high channel SNR region. This work applies the
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TCQ/M to the soft information by using codebooks generated from the Lloyd-Max quantizer

in the low channel SNR region, which we define as the EF with TCQ scheme throughout the

chapter. In the high channel SNR region, where the soft information is equivalent to its hard

decision, the codebook is designed by repeating the soft information, and the scheme is de-

fined as the EF with TCQ codewords repeat scheme. It is shown in the simulation that the

proposed protocol outperforms both the AF and the DF protocols over the fading channels.

It also closely approximates the performance of the conventional EF protocol where the soft

information is assumed to be transmitted without quantization.

4.2 System Model

As shown in Fig. 2.1, in the TWRC, the two sources transmit or receive information at

different time slots. At the first time slot, S1 transmits its own signals to both the relay and

S2. At the second time slot, S2 transmits its own signals to both the relay and S1. The

received signal at the relay from each source and the received signal from the direct link can

be respectively calculated by

yiR = hiR
√
Eixi + niR,

yij = hij
√
Eixi + nij, (4.1)

where xi = (x1i , · · · , xli)T , xqi ∈ {±1} and q ∈ {1, · · · , l}, represents signals transmit-

ted from either of the two sources Si, BPSK modulated. Ei is defined as the transmission

power at both sources, hij and hiR represent the channel coefficient between two sources,

and the channel coefficient between each source Si and the relay, respectively. Vectors

nij = (n1
ij, · · · , nl

ij)
T and niR = (n1

iR, · · · , nl
iR)

T are the noise sample at the source and

the relay, which are both defined as Gaussian distributed with zero mean value and variance

σ2. Vectors yiR = (y1iR, · · · , yliR)T and yij = (y1ij, · · · , ylif )T represent the signal received

at the relay and the other source from one source, respectively. As for the SNR of the source-

to-relay channel, it can be defined by ρiR
∆
= h2iREi/σ

2.

At the third time slot, the relay processes the received signals and then broadcasts the pro-

cessed signal to both S1 and S2. In this stage, we apply the TCQ to the soft network coded
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Figure 4.1: Joint TCQ/M system in relay networks.

symbols defined in [38]. We first form the network coded symbols from the conventional EF

protocol. Then we use the TCQ to implement the quantization over the power-normalized

relay function calculated in Eq. (2.6). For simplicity, we eliminate the subscript of the EF in

Eq. (2.6), denoting by f(y1R,y2R) the relay function vector of the EF protocol, and denote

f ∗(yq
1R,y

q
2R) as the quantized relay function vector, and both vectors are of length l. A joint

TCQ/M system follows after the power-normalized relay function is calculated, as shown in

Fig. 4.1. For the TCQ/M at rate 1, quadrature phase-shift keying (QPSK) is employed as the

modulation technique. Then the signal received by each source from the relay can be given

by

yRi =
√
ERhRif

∗(y1R,y2R) + nRi, (4.2)

where hRi represents the channel coefficient between the relay and the source, which is

modeled as an independent zero mean Gaussian random variable with unit variance. nRi

is the noise sample vector at each source, which consists of the complex additive white

Gaussian noise (AWGN) samples with per-dimension mean value zero and variance σ2/2.

As shown in Fig. 4.1, the received quantized signal at the output of the TCQ/M decoder is

denoted by

f̂ ∗(y1R,y2R) = f(y1R,y2R) + nequiv Ri, (4.3)

where f̂ ∗(y1R,y2R) denotes the received quantized signal vector, and nequiv Ri is regarded as

the quantization noise vector. According to Eq. (2.25), the variance of nequiv Ri in Eq. (4.3)

can be expressed as ρm
(
f (y1R,y2R) , f̂

∗ (y1R,y2R)
)

.

At the receiver, the decoding is accomplished by first using the Viterbi algorithm to find
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4.3 Soft Information Quantization

the path which has the MMSE to the received signals, and then mapping the selected path

back into the TCQ levels. The received quantized signal f̂ ∗(y1R,y2R) at Si from the relay

is multiplied with xi to cancel the source’s own signal, which is then combined with yji to

make a hard decision on each symbol in the vector xj .

4.3 Soft Information Quantization

In order to compete with the DF protocol whose transmission rate is 1 at the relay, we uti-

lize the TCQ at rate 1 to implement the quantization. We assume that channels between

all terminals experience independent quasi-static Rayleigh fading. In other words, chan-

nel coefficients keep constant during an m-symbol block but change independently to the

next block. Due to the slow fading, it is possible for receivers to accurately estimate the

channel-state-information (CSI) at all receivers. Besides, the codebook for the TCQ should

be synchronized at both the relay and receivers. This can be achieved by presetting different

codebooks for the TCQ according to different source-to-relay channel SNRs. The source-to-

relay CSI is known to the relay, and the destination also knows the source-to-relay CSI; thus,

the synchronization can be achieved.

4.3.1 The PDF of the Soft Symbol

In this work, we employ the Lloyd-Max quantizer [71, 72] to determine the codebook for

each block in the TCQ when the source-to-relay channel SNR is low. Similar systems can be

established based on other quantization methods, such as the equiprobable output quantizer

[84]. The Lloyd-Max quantizer can be an insight for other methods. For a quantizer with

Q reproduction levels, the Lloyd algorithm is applied to minimize the mean squared error

distortion, which is given by

DQ = E
{
(f(y1R,y2R)− f ∗(y1R,y2R))

2} =

Q∑
i=1

bi+1∫
bi

(l − ci)
2p(l)dl, (4.4)
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4.3 Soft Information Quantization

where bi denotes the decision boundary, ci represents the ith reproduction level, and p(l) is

the PDF of the signal that shall be quantized. The optimization can be solved iteratively by

employing the Lloyd algorithm. In each iteration, the optimized decision boundary lies in

the middle of two successive reproduction levels, i.e. bi =
ci−1+ci

2
; the reproduction level is

optimized by the centroid of the decision intervals, i.e. ci =
∫ bi+1
bi

lp(l)dl∫ bi+1
bi

p(l)dl
. For each network

coded soft symbol E (xq1x
q
2|y

q
1R, y

q
2R) defined in Eq. (2.4), its PDF is given by

pE(xq
1x

q
2|y

q
1R,yq2R)

(z) =

∫
1

|y|
pE(xq

2|y
q
2R)

(y) pE(xq
1|y

q
1R)

(
z

y

)
dy, (4.5)

in which, the PDF of E (xqi |y
q
iR) can be expressed as

pE(xq
i |y

q
iR)

(t) =
1

2

[
pE(xq

i |y
q
iR)|x

q
i
(t|x = 1) + pE(xq

i |y
q
iR)|x

q
i
(t|x = −1)

]
. (4.6)

As the BPSK modulation is applied in the source-to-relay channel and the additive Gaussian

white noise (AWGN) is considered at the relay, the conditional PDF of E (xqi |y
q
iR) based on

xqi in Eq. (4.6) is calculated as

pE(xq
i |y

q
iR)|x

q
i
(t|x) = σ2

hiR (1− t2)

1√
2πσ

exp

{
− 1

2σ2

[
σ2

2hiR
ln

(
1 + t

1− t

)
− hiRx

]2}
.

(4.7)

According to Eq. (4.5), Eq. (4.6) and Eq. (4.7), the reproduction levels are evaluated by

numerical integration in the simulation. When the source-to-relay channel SNR is high,

however, the use of the codebook generated by the Lloyd algorithm may lead to erroneous

mapping in the trellis diagram. The reason is explained as follows. Based on the analysis

of Eq. (2.6), there may still exist very few small numbers in large blocks, even though the

network symbols in the relay function f(y1R,y2R) approach 1 or −1. This is due to the

occasional big noise at the receiver and random fading channel. By employing the Lloyd

algorithm, such small numbers will appear in the codebook. As long as the structure of the

convolutional encoder is set—the branch labeling in the trellis is set—such codebooks and

the mapping principle given in Eq. (2.24) may map 1 or −1 into the small numbers, which

decreases the reliability of the real values.
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4.3 Soft Information Quantization

4.3.2 Repeating Codewords

As the bad performance of the TCQ results from the unreasonable selection of the code-

book when the source-to-relay channel SNR is high, we may refine the codebook in order

to prevent mapping errors from occurring under the high channel SNR region. Motivated

by Eq. (2.24), instead of selecting the path which minimizes the MSE between the two

m-symbol sequences, we decide to minimize the MSE between each symbol and the cor-

responding reproduction level. This process can be treated as minimizing the following

equation

d(x, x̂) =
m∑
i=1

di(xi, x̂i),

where

di(xi, x̂i) =

√
(xi − x̂i)

2 = |xi − x̂i| . (4.8)

Alternatively, Eq. (4.8) requires that for each state in the trellis, the branches entering or

leaving the state should represent all possible codewords. And this can be simply achieved by

repeating codewords in the codebook. The explanation is given by a rate-1/2 convolutional

encoder shown in the left side of Fig. 2.6. The corresponding branch labeling is shown in

the right side with reproduction levels ci, i = {1, 2, 3, 4}. With such an encoder, for an

integral encoding rate 1, the size of the codebook is 21+1 = 4. To guarantee correct mapping

under the high source-to-relay channel SNR region where the soft information is equivalent

to hard decision, codewords need to be repeated. Hence in the codebook of length four,

only two different codewords can exist, namely 1 and −1. Then, the codebook consists of

four codewords, i.e. −1, −1, 1, and 1. There are several ways to sort the four codewords

in a codebook which can guarantee the accurate quantization, provided that TCM symbols

mapping is consistent with the order of the codebook. For instance, if the QPSK with natural

mapping shown in Fig. 4.2 is used as the modulation technique, and the branch labeling is

depicted on the right side of Fig. 2.6, one possible codebook can be [-1 1 1 -1] corresponding

to the modulation symbols [00 01 10 11]. As can be seen from Fig. 4.2, when −1 is mapped

to both 00 and 11 symbols, and 1 is mapped to both 01 and 10 symbols, the overall QPSK

constellation can be regarded as the BPSK constellation which expands the distance between

different codewords.

We refer to the scheme where repeated codebook is utilized as the codewords repeat scheme.
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Figure 4.2: Constellation diagram for QPSK with natural mapping.

To better demonstrate the mechanism of the codewords repeat scheme, we give an example

as follows. We regard a chain of 10 numbers as a miniature of the hundreds of transmitted

samples from the relay, and give an example that the chain is

(−1,−1, 1,−1,−1, 0.19, 1, 1,−0.4,−1). With a rate-1/2 convolutional encoder, for integral

rate R b/sample encoding, 2R+1 reproduction levels (codewords) are used, and with Lloyd-

Max quantizer, we can get the output alphabet for TCQ from the set of output points of

Lloyd-Max quantizer. In reality, the codebook for each incoming sequence can be obtained

easily. For different channel SNR, a very long train of soft information at the relay can be

generated, and a statistically featured codebook can be found via the quantizer. Under this

very circumstance, the output codebook is C = (−1,−0.4, 0.19, 1). Then the codewords

are mapped into 4 subsets, each of 2R−1 codewords. As it can be easily seen, with the

codebook (−1,−0.4, 0.19, 1), each sample in the chain can find the same value as itself in

the four codewords. However, with a conventional TCQ, we still use a rate-1/2 convolutional

encoder shown in Fig. 2.6, when mapping each sample on the trellis, we have the output

(−1,−0.4, 0.19,−1,−1, 0.19, 1, 1, 0.19,−1), which is quite different from the input. It is

shown in the Fig. 4.3 how conventional TCQ leads to a different output although each sample

of the input has a same corresponding value in the codebook.

As is mentioned in Eq. (2.24), TCQ uses Viterbi algorithm to select the sequence path rep-

resenting codewords closest in Euclidean distance to the input. However, it is the selected

path which has the shortest Euclidean distance from the input within the defined trellis that

encodes the input a wrong sequence. Then we consider adding some branches in the trellis

and making the branches added represent the same value as the branch existed, thus making

it possible to find the shortest Euclidean distance for each mapping, which means that for
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Figure 4.3: Viterbi encoding of the source sequence for 1 bit/sample, and (5, 2) convolutional
encoder shown in Fig. 2.6, 4-state trellis.
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Figure 4.4: 4-state trellis 2 bits/sample and branch added selection.

each incoming sample, let the branch added endue it with the shortest Euclidean distance

between one of the quantizer outputs and itself. The process can be treated as minimizing

the equation of Eq. (4.8), hence with the increase of number of branches in each trellis, the

overall rate of TCQ increases.

4.3.2.1 R = 2 senario

With the Lloyd-Max quantizer, there are 4 quantization levels corresponding to rate-1 trans-

mission. Then to demonstrate the principle of codewords repeat, duplicating 4 quantization

levels leads to 8 quantization levels, which requires rate-2 transmission. To implement the

codewords repeat scheme over the trellis, the difference from a conventional TCQ is the

branch labels in the trellis might represent the same quantization level. We continue the for-

mer example, and still use a rate-1/2 convolutional encoder shown in Fig. 2.6 and 4 state

trellis to demonstrate how this 2 b/sample TCQ works here.

As can be seen from Fig. 4.4, according to the branch labeling on the left, a table on the

right can be used to looked up in order to find the possible codewords repeat for the branches

added. The numbers in the right table denote the branch numbers in the trellis. The cross in

the table indicates that the current mapping exists. There are 2 × 2 = 4 kinds of mapping,
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namely (1 = 6, 2 = 5, 3 = 8, 4 = 7), (1 = 6, 2 = 7, 3 = 8, 4 = 5), (1 = 8, 2 = 5, 3 = 6, 4 = 7),

(1 = 8, 2 = 7, 3 = 6, 4 = 5), and we name it the repeat rule afterwards. It is simple to im-

plement this by repeating old codewords of the Lloyd-Max quantizer.

As for the all 4 kinds of mapping, an exact same chain as the original chain of the ten numbers

can be achieved from trellis coded quantization. Fig. 4.5 shows how the trellis diagram ob-

tains the correct mapping. In reality, modulation should be followed after quantization. Then

the different kinds of mapping we mentioned above might have different system performance

based on different kinds of modulation schemes. Here if conventional joint trellis coded

quantization/modulation is used, then for a 2 b/sample TCQ, after quantization, each branch

is directly mapped into an 8PSK symbol, which of course, determines that for TCQ/TCM

with different repeat rule, the overall performance of TCQ/TCM is different. However, if 2

matched branches are mapped back into the same modulation symbol according to the repeat

rule, QPSK can be used although it is 2 b/sample TCQ/TCM. Besides, with QPSK utilized

here, the destination node needs to repeat its TCM symbol codewords in accordance with the

repeat rule when applying Viterbi algorithm to decode the signal. Therefore, whatever the

repeat rule is, the overall performance of TCQ/TCM will not change. Simulation results are

showed in the next section.

4.3.2.2 R = 1 scenario

However, the EF protocol in TWRC utilizes network coding only to save one time slot,

and correspondingly in TWRC, the DF protocol with network coding enables the system to

decrease one bit transmission from the relay, hence using 2 b/sample to transmit the soft

information makes no much sense to comply with using network coding, our ultimate goal

is still to implement the quantization with rate 1 b/sample. Take a look at the scenario when
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R = 2, with the reproduction level repeating, in the codebook of length 8, we only obtain

4 distinguishing reproduction levels. Compared with the scenario when R = 1 with no

codewords repeating, the BER performance is quite similar under low channel SNR, which

will be shown in the simulation section. But with the increase of channel SNR, the scenario

R = 1 with no codewords repeating shows bad results. Then we designate a threshold for

certain feature of the soft information at the relay in the next section.

4.4 Performance Analysis

We first study the threshold for the selection of the codebooks. Then, we analyze the process

of canceling each source’s own signal from the received network coded signal.

4.4.1 Set a threshold

As the probability distribution of the soft information at the relay is varied according to

the source-to-relay channel SNR, we force the relay to evaluate the quality of the received

signals by checking whether the received signals satisfy the preset requirement. When the

TCQ codewords are repeated, the only codewords 1 and −1 are just the BPSK symbols of

the DF protocol. To prevent erroneous decisions in the DF protocol from propagating to the

receivers, we set a threshold based on the instantaneous BER of each received block; it is

computed as

Pe−iR = Q

(√
Eih2iR/σ

2

)
, (4.9)

where Q (·) is a Q-function [85, (4.1)], and the content inside the Q-function denotes the

SNR of the source-to-relay channel.

In this work, we predetermine a BER threshold at the relay, so as to switch between different

transmission schemes. If the instantaneous BER is smaller than the predetermined BER

threshold, Pth, the source-to-relay transmission is deemed to be highly reliable and the soft

information centralizes on 1 and −1. In the TWRC, according to Eq. (2.4), the network

coded symbols are equivalent to 1 and −1 as long as both received blocks from the two

sources are highly reliable. So we use the EF with TCQ codewords repeat scheme when
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both Pe−1R and Pe−2R are smaller than Pth. Otherwise, the EF with TCQ scheme using

codebooks generated from the Lloyd algorithm is utilized. That is,

Relay Strategy =

{
EFwithTCQcodewords repeat if Pe−iR < Pth

EFwithTCQ Otherwise
.

Setting the certain BER as a threshold is equivalent to setting the corresponding source-to-

relay channel SNR as a threshold according to Eq. (4.9). In practice, the threshold can be

eliminated because codebooks are predetermined at both the relay and receivers based on the

different source-to-relay channel SNRs.

4.4.2 Cancel the source’s own signal

The received quantized signal at each receiver has been defined in Eq. (4.3), which is then

multiplied with xi so as to cancel xi. We follow the method for the EF protocol in [77], the

estimated symbol of xqi is defined as x̂qi = ψi (x
q
i + ei), where ei denotes the uncorrelated

soft noise, and ψi represents the scalar factor which makes the soft noise ei uncorrelated to

the information symbol xqi , namely, E (eix
q
i ) = 0, and ψi =

E(xq
i ∗x̂

q
i )

E(xq
i ∗x

q
i )

. Besides, we define

β =

√√√√ER/E

(∣∣∣∣tanh(LLR
x
q
1,R

2

)
tanh

(
LLR

x
q
2,R

2

)∣∣∣∣2
)

, hence the canceling process can be

expressed as

xqi f̂
∗(yq1R, y

q
2R) = βx̂q1x̂

q
2x

q
i + nq

equiv Rix
q
i

= βψ1ψ2x
q
j + βψ1ψ2

(
ej + xqix

q
jei + xqi eiej

)
+ nq

equiv Rix
q
i , (4.10)

where we define the noise item, i.e. Ni
∆
= βψ1ψ2

(
ej + xqix

q
jei + xqi eiej

)
+ nq

equiv Rix
q
i , and

we regard it as approximately Gaussian distributed with the mean valuemNi
and the variance

σ2
Ni

. The employment of the TCQ is a realization of the minimum mean-square error quan-

tizer. Since the mean value of the output of a minimum mean-square error quantizer is equal

to the mean value of the input; thus, the mean value of the quantization noise is 0. Besides,

since E (eix
q
i ) = 0, we have mNi

= 0 and σ2
Ni

= β2ψ2
1ψ

2
2

(
σ2
e1
+ σ2

e2
+ σ2

e1
σ2
e2

)
+ σ2

equiv Ri,

where σ2
ei

denotes the variance of the soft noise ei, and σ2
equiv Ri represents the variance of

the quantization noise, which is a statistic in practical situations.
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Figure 4.6: Joint TCQ/TCM performance (SQNR) versus SNR for a memoryless Gaus-
sian source and 4-state trellis over AWGN channel (QL: quantization levels, RL1:
(1 = 6, 2 = 7, 3 = 8, 4 = 5), RL2: (1 = 8, 2 = 7, 3 = 6, 4 = 5)).

4.5 Simulation Results

4.5.1 Memoryless Gaussian Source

The simulation for memoryless Gaussian source consists of 20 times trellis coded quantiza-

tion of 1000 samples of a zero-mean, unit variance memoryless Gaussian source, followed

by the trellis coded modulation of both situations we mentioned above at each SNR estab-

lished and then calculates the corresponding average signal quantization noise ratio (SQNR),

which is expressed in decibels as

SQNR = 10log10
(
σ2

X/ρn (x, x̂)
)

Fig. 4.6 summarizes the overall source/channel performance as a function of SNR. As can

be seen, firstly for conventional TCQ/TCM, namely the scheme with encoding rate R and

corresponding 2R+1 quantization levels and 2R+1 modulation symbols, the performance at
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encoding rate 1 b/sample is slightly better than the performance at encoding rate 2 b/sample

under low channel SNR. The reason is that when channel SNR is quite low, with a rate-1/2

convolutional encoder for both R = 1 and R = 2, the overall convolutional encoding rate

is 1/2 and 2/3, respectively. Besides, rate-1/2 is more protective against errors with 2 bits

shielding 1 bit, while the other one is with 3 bits shielding 2 bits. Secondly, for TCQ/TCM

with repeat rule, simulations counted for this situation are all based on R = 2. We first

consider the scenario where QPSK is used as the modulation scheme. Under low channel

SNR, with quantization level repeating, it still keeps all 2R quantization levels that R = 1

has, which shows that it should perform no worse than R = 1, but on the contrary, much

better than R = 1. This can be seen in Fig. 4.6, and thus the TCQ/TCM with codewords re-

peat scheme outperforms conventional TCQ/TCM at R = 2 under low channel SNR. As the

channel SNR increases, all kinds of performance incline towards stableness. Performance

of conventional TCM/TCQ at R = 2 keeps less than 1 dB better than that of TCM/TCQ

with quantization level repeating when they both get stable. The reason is that with fewer

errors occurring in the channel, conventional TCM/TCQ at R = 2 has 8 quantization outputs

while TCM/TCQ with quantization level repeating at R = 2 has only actual 4 quantization

outputs, the accuracy loss of the latter one is apparently much more than the former one.

Thirdly, in terms of the scenario where 8PSK is used as the modulation scheme, different

mapping lead to different performance as the figure shows the performance of repeat rules of

(1 = 6, 2 = 7, 3 = 8, 4 = 5) and (1 = 8, 2 = 7, 3 = 6, 4 = 5). Different repeat rules result

in the changes of Euclidean distance of the modulation symbols, thus leading to different

overall performance. While ultimately only 4 quantization outputs exist under these two

conditions, when performance gets stable, it becomes consistent with TCQ/M with quanti-

zation level repeating using QPSK.

4.5.2 Soft Information Delivery in TWRC

In the simulation, we consider Rayleigh fading channels. During each transmission period,

each source transmits one block which contains 1000 binary symbols. Channels between

the sources and the relay, namely h1R, h2R, hR1, hR2, are all with unit variance. Channels

between the two sources, i.e. h12, h21, are both with the variance of 0.36. Besides, the

transmission power and the receiver noise variance at both the relay and the sources are

assumed to be equal. In the simulation, we set the threshold Pth to be 1/1000. At the
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Figure 4.7: BER performance of the proposed soft forwarding scheme over fading channels.

relay, if the instantaneous BER of the received signal is less than the threshold Pth, the EF

with TCQ codewords repeat scheme is applied. Otherwise, the EF with TCQ scheme using

the codebook generated by the Lloyd-Max quantizer is used. The TCQ/M system employs

a rate-1/2 convolutional encoder shown in the left side of Fig. 2.6. We apply the QPSK

constellation with natural mapping in the TCM and choose the codebook of [-1 1 1 -1] for

the EF with TCQ codewords repeat scheme, as discussed in Section 4.3. Finally, we take the

system BER as the average value of BERs calculated at the two sources.

The AF, DF and EF protocols are taken as benchmarks in the simulation. In Fig. 4.7, X

axis denotes the transmission SNR, i.e. ES/σ
2. As can be seen from Fig. 4.7, both with

transmission rate 1, the DF protocol has only one diversity gain, but the proposed protocol

can achieve full diversity. Furthermore, the proposed protocol has about 1 dB coding gain

compared to the AF protocol at a BER of 10−3. With the increase of the SNR, the proba-

bility that the instantaneous BER of the received signals falls below the threshold increases,

thus the times of operating the EF with TCQ codewords repeat scheme will grow, and the

performance of this protocol approximates more towards that of the EF protocol in the high

SNR region.

In addition, when the EF with TCQ codewords repeat scheme is performed, the codewords of
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Figure 4.8: BER performance of replaced DF scheme over fading channels.

the value 1 and −1 are exactly the same as the BPSK symbols of the DF protocol transmitted

from the relay nodes; therefore, we simulate the scenario where the TCQ codewords repeat

scheme is replaced by a simple DF scheme, and the simulation results are shown in Fig. 4.8.

The AF, DF and conventional EF protocols are also taken as benchmarks. We can see that

EF with TCQ combined with DF scheme achieves full diversity gain, i.e. 2 for TWRC, and

outperforms both DF and AF schemes. The two schemes, namely consistently using the EF

with TCQ scheme but switching between different codebooks and switching between the EF

with TCQ scheme and the DF scheme, have similar BER performance. This owes to the fact

that when adopting either codewords repeat scheme or the DF scheme, the instantaneous

BER of the received signals at the relay falls below certain threshold, alternatively it means

that the channel conditions are very good that wrong decisions would not be made at the

relay. Compared with the codewords repeat combined scheme, the DF combined scheme

would save time for the relay nodes, as no coding or trellis routing should be experienced,

while the frequent switching between different schemes would add more cost to the industrial

implementation.
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Chapter 5

Conclusions and Future Work

In this thesis, a soft relaying protocol for correlated sources and a practical soft information

delivery scheme have been proposed. They are designed for the purpose of enhancing spec-

tral efficiency, network coverage, system reliability, and implementation feasibility of the

future wireless networks.

5.1 Conclusions

Chapter 3 has presented an estimated-and-forward technique for correlated sources in an

MARC and has exploited the sources’ correlation at the relay by implementing CS on the

soft bits. We first have developed the expression of the soft bits of the CEF protocol and have

proved that the CEF protocol outperforms the conventional EF protocol theoretically. Then

we shift the soft bits by subtracting one from all the soft bit values in order to obtain sparsity,

and take advantage of a sparsem× l matrix to generate the linear combinations of the shifted

soft bits. Belief propagation is utilized to perform decoding, which requires the prior knowl-

edge of the PDF of the soft bits for different SNRs at the destination. In the simulations, we

have compared the proposed CEF protocol with the conventional EF protocol and have made

comparison between the CEF-CS protocol at different rates over fading channels, as well as

with different correlation models. In addition, the CEF-CS protocol is compared with the

uncompressed protocols in terms of the receiver SNR, BER and throughput performance.



5.1 Conclusions

Simulation results show that, firstly, the CEF protocol outperforms the EF protocol at all

times. Secondly, with the decrease of the source correlation, the network coded symbol vec-

tor at the relay node becomes less sparse; consequently the recovery of a less sparse vector

is less reliable, and the CEF-CS protocol leads to a worse BER performance; when the cor-

relation related parameter τ falls below 0.3, the proposed protocol can promise a diversity

gain of two, while when τ exceeds the value of 0.5, only a diversity gain of one can be

achieved. Thirdly, with the increase of the transmission rate of CS at the relay, more infor-

mation is relayed to the destination node, thus the recovery of the network coded symbols

is more reliable, and the CEF-CS protocol leads to a better BER performance; while with

the transmission rate increasing, the improvement space becomes smaller due to the subop-

timal combining of the signals at the destination; when the transmission rate exceeds 0.5,

the CEF-CS protocol obtains a diversity gain of two, while when the transmission rate drops

below 0.3, only a diversity gain of one is obtained. Fourthly, in terms of the receiver SNR,

the performance of the CEF-CS protocol varies according to different transmission rates;

with a higher transmission rate at the relay, the receiver SNR becomes higher; to a certain

extent, the receiver SNR of the CEF-CS protocol can exceed the conventional EF protocol.

Additionally, the conventional EF protocol is proved to be not suitable for compressive sens-

ing; when CS is applied to the EF protocol, the system only achieves a diversity gain of one

regardless of the transmission rates, and the BER performance stays poorer than the CEF-CS

protocol all the time. Last but not least, because of the compression adopted at the relay node

for the CEF-CS protocol, the transmission time is reduced according to different compres-

sion rates; as a result, when the CEF-CS protocol can achieve equivalent error performance

to the conventional EF protocol, the CEF-CS protocol can achieve a higher throughput due

to less transmission time; at a transmission rate of 0.7, the throughput performance of the

CEF-CS protocol is shown to outperform that of the EF protocol by 10%.

In Chapter 4, we have proposed a practical 1-bit soft forwarding protocol in the TWRC.

We have taken advantage of the joint TCQ/M scheme to forward the soft information. We

have derived the PDF expression of the network coded soft symbol at the relay node; when

the source-to-relay channel SNR is low, we apply the Lloyd algorithm to generating the

codebook for the TCQ. When the source-to-relay channel SNR is high enough that the soft

information is equivalent to its hard decision, we propose to use the EF with TCQ code-

words repeat scheme to implement the information delivery at the relay. We have analyzed

the application of the codewords repeat scheme by explaining both rate 1 and rate 2 sce-
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narios. We have found that the proposed protocol outperforms the AF protocol and the DF

protocol over the Rayleigh fading TWRC; both with transmission rate 1, the DF protocol

has only one diversity gain, but the proposed protocol can achieve full diversity; it also has

about 1 dB coding gain compared to the AF protocol at a BER of 10−3. Besides, it well

approximates the EF protocol which assumes the soft information can be forwarded to the

receivers without quantization. Additionally, when the soft information is equivalent to the

hard decisions of the received signal under high source-to-relay channel SNRs, the DF pro-

tocol can also be utilized. Simulation results show that combining the two schemes, namely

EF with TCQ and DF, can also achieve a diversity gain of two over fading channels. The

disadvantage of this scheme is that switching between two different schemes increases the

cost of implementation.

The proposed protocols can be generalized to any relay networks with more than one source

node. However, in terms of their feasibility in practice, different protocols are designed to

aim at different practical scenarios. The CEF-CS protocol achieves much better performance

when the sources are highly correlated. This is not a common case in TWRC, while in

MARC adjacent source nodes observe a single event and collect correlated information. In

Chapter 4, for the 1-bit soft forwarding protocol, my aim is to investigate a practical delivery

method of soft information in cellular networks as it is not yet discussed in the existing

literature, and TWRC is a common model for cellular networks. Theoretically, the 1-bit soft

forwarding protocol can be directly applied to the MARC.

5.2 Future Work

First of all, all of works within this thesis are based on uncoded systems. As is known, to sep-

arate coded system from the uncoded system is to judge whether channel coding techniques

are incorporated in the data transmission or not. Authors in [76, 86, 87] already considered

the coded relay systems, and it is demonstrated that system performance depends not only

on the forwarding protocol, but also on the distributed coding design. However, through-

out this thesis, the signals transmitted from the source nodes are assumed to be without any

channel code. For the CEF-CS protocol proposed in Chapter 3, if channel code can be added

to the transmitted symbols at the source nodes, a joint decoder at the destination node can

be designed to further improve the system performance; LDPC can be a good option, as the
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5.2 Future Work

CS operation at the relay node utilizes an LDPC like matrix and BP is used at the destina-

tion node, then the BP decoder can be designed to jointly decode the coded signals from the

source nodes and the compressed signals from the relay node. For the 1-bit soft forwarding

protocol proposed in Chapter 4, we can add an interleaver and a convolution encoder after

the TCQ encoder at the relay. We consider to use turbo TCM to modulate the symbols output

from the convolutional encoder. At the destination, we can use iterative decoding algorithms

to decode the source information, thus, enhance the overall system performance.

Secondly, Chapter 3 still proposes a soft information forwarding technique, which again

causes the problem of actual delivery of the soft information. Even if we combine the soft

information delivery scheme proposed in Chapter 4 together, the overall system will be not

efficient, resulting in much delay caused by a large number of computing. However, in

the literature, 1-bit Compressive Sensing techniques have already been drawn much atten-

tion [88–90] and point out our future research focus. We can design a 1-bit CS related relay

protocol to both achieve good performance and save channel bandwidth.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Theorem 1

We further develop the soft symbol x̃jR in (3.4) as

x̃jR =
α (2− τ)− θτ

α (2− τ) + θτ
, (A.1)

where

α =
∑

xj
1x

j
2=1

p
(
yj1R|x

j
1

)
p
(
yj2R|x

j
2

)
, and θ =

∑
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1x

j
2=−1

p
(
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j
1

)
p
(
yj2R|x

j
2

)
. (A.2)

Obviously, we have α > 0 and θ > 0.

The conventional EF derives x̃jR in (3.9) by assuming that the two sources are independent,

i.e., (3.9) can be obtained by considering τ = 1 in (A.1). In the CEF-CS protocol, we derive

x̃jR by considering the real τ . In correlated sources, we always have τ < 1. Given α and

θ, x̃jR can be regarded as a function of τ , which is denoted by δ (τ). To investigate the

relationship between δ (τ) and τ , we derive the first-order derivative of δ (p) as follows.

dδ (τ)
dτ

=
−8αθ

(α(2− τ) + θτ)2
. (A.3)



A.1 Proof of Theorem 1

Since α > 0 and θ > 0, we always have dδ(τ)
dp < 0, which meas that δ (τ) is a decreasing func-

tion in terms of τ . When correlation exists between the sources, we have τ < 1. Therefore,

the soft symbol values in the CEF protocol are always larger than that in the conventional EF

protocol. As the majority of the soft symbols x̃jR approach the value of 1, the soft symbols

in the CEF protocol are more reliable than those of the EF protocol.
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