76 research outputs found

    In-Memory Computing by Using Nano-ionic Memristive Devices

    Get PDF
    By reaching to the CMOS scaling limitation based on the Moore’s law and due to the increasing disparity between the processing units and memory performance, the quest is continued to find a suitable alternative to replace the conventional technology. The recently discovered two terminal element, memristor, is believed to be one of the most promising candidates for future very large scale integrated systems. This thesis is comprised of two main parts, (Part I) modeling the memristor devices, and (Part II) memristive computing. The first part is presented in one chapter and the second part of the thesis contains five chapters. The basics and fundamentals regarding the memristor functionality and memristive computing are presented in the introduction chapter. A brief detail of these two main parts is as follows: Part I: Modeling- This part presents an accurate model based on the charge transport mechanisms for nanoionic memristor devices. The main current mechanism in metal/insulator/metal (MIM) structures are assessed, a physic-based model is proposed and a SPICE model is presented and tested for four different fabricated devices. An accuracy comparison is done for various models for Ag/TiO2/ITO fabricated device. Also, the functionality of the model is tested for various input signals. Part II: Memristive computing- Memristive computing is about utilizing memristor to perform computational tasks. This part of the thesis is divided into neuromorphic, analog and digital computing schemes with memristor devices. – Neuromorphic computing- Two chapters of this thesis are about biologicalinspired memristive neural networks using STDP-based learning mechanism. The memristive implementation of two well-known spiking neuron models, Hudgkin-Huxley and Morris-Lecar, are assessed and utilized in the proposed memristive network. The synaptic connections are also memristor devices in this design. Unsupervised pattern classification tasks are done to ensure the right functionality of the system. – Analog computing- Memristor has analog memory property as it can be programmed to different memristance values. A novel memristive analog adder is designed by Continuous Valued Number System (CVNS) scheme and its circuit is comprised of addition and modulo blocks. The proposed analog adder design is explained and its functionality is tested for various numbers. It is shown that the CVNS scheme is compatible with memristive design and the environment resolution can be adjusted by the memristance ratio of the memristor devices. – Digital computing- Two chapters are dedicated for digital computing. In the first one, a development over IMPLY-based logic with memristor is provided to implement a 4:2 compressor circuit. In the second chapter, A novel resistive over a novel mirrored memristive crossbar platform. Different logic gates are designed with the proposed memristive logic method and the simulations are provided with Cadence to prove the functionality of the logic. The logic implementation over a mirrored memristive crossbars is also assessed

    Wave computing with passive memristive networks

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Since CMOS technology approaches its physical limits, the spotlight of computing technologies and architectures shifts to unconventional computing approaches. In this area, novel computing systems, inspired by natural and mostly nonelectronic approaches, provide also new ways of performing a wide range of computations, from simple logic gates to solving computationally hard problems. Reaction-diffusion processes constitute an information processing method, occurs in nature and are capable of massive parallel and low-power computing, such as chemical computing through Belousov-Zhabotinsky reaction. In this paper, inspired by these chemical processes and based on the wave-propagation information processing taking place in the reaction-diffusion media, the novel characteristics of the nanoelectronic element memristor are utilized to design innovative circuits of electronic excitable medium to perform both classical (Boolean) calculations and to model neuromorphic computations in the same Memristor-RLC (M-RLC) reconfigurable network.Peer ReviewedPostprint (author's final draft

    Memristors : a journey from material engineering to beyond Von-Neumann computing

    Get PDF
    Memristors are a promising building block to the next generation of computing systems. Since 2008, when the physical implementation of a memristor was first postulated, the scientific community has shown a growing interest in this emerging technology. Thus, many other memristive devices have been studied, exploring a large variety of materials and properties. Furthermore, in order to support the design of prac-tical applications, models in different abstract levels have been developed. In fact, a substantial effort has been devoted to the development of memristive based applications, which includes high-density nonvolatile memories, digital and analog circuits, as well as bio-inspired computing. In this context, this paper presents a survey, in hopes of summarizing the highlights of the literature in the last decade

    Low-power emerging memristive designs towards secure hardware systems for applications in internet of things

    Get PDF
    Emerging memristive devices offer enormous advantages for applications such as non-volatile memories and in-memory computing (IMC), but there is a rising interest in using memristive technologies for security applications in the era of internet of things (IoT). In this review article, for achieving secure hardware systems in IoT, low-power design techniques based on emerging memristive technology for hardware security primitives/systems are presented. By reviewing the state-of-the-art in three highlighted memristive application areas, i.e. memristive non-volatile memory, memristive reconfigurable logic computing and memristive artificial intelligent computing, their application-level impacts on the novel implementations of secret key generation, crypto functions and machine learning attacks are explored, respectively. For the low-power security applications in IoT, it is essential to understand how to best realize cryptographic circuitry using memristive circuitries, and to assess the implications of memristive crypto implementations on security and to develop novel computing paradigms that will enhance their security. This review article aims to help researchers to explore security solutions, to analyze new possible threats and to develop corresponding protections for the secure hardware systems based on low-cost memristive circuit designs

    Study of MoS2/high-k Interface and Implementation of MoS2 Based Memristor for Neuromorphic Computing Applications

    Get PDF
    The scientific world is witnessing an unprecedented triumph of artificial neural network (ANN)- a computing system inspired by the biological neural network. With the enthralling quest for Internet of Everything (IoE), it is expected to have an unparalleled dominance of ANN in our day-to-day life. In recent times, memristor has come as an emerging candidate to realize ANN through emulating biological synapse and neuron behavior. Molybdenum disulfide (MoS2), one well-known two-dimensional (2D) transition metal dichalcogenides (TMDCs), has drawn interest for high speed, flexible, low power electronic devices since it has a tunable bandgap, reasonable carrier mobility, high Young\u27s modulus, and large surface to volume ratio. Hence, in this work, 2D MoS2 based field effect transistor (FET) and memristor devices have been developed to evaluate the performance for advanced logic and neuromorphic computing applications. We probe the superior quality of 2D/high-? dielectric interfaces by fabricating MoS2 based FET transistors with different gate dielectrics. This low interface trap density of ~7x10^10 states/cm2-eV at the MoS2/Al2O3 interface establishes the case for van der Waals systems where the superior quality of 2D/high-? dielectric interfaces can produce high performance electronic and optoelectronic devices. This work also demonstrates Au/MoS2/Ag threshold switching memristor (TSM) device with low threshold voltage, sharp switching, high ON-OFF ratio and endurance. A leaky integration-and-firing (LIF) neuron is implemented with this TSM. It successfully emulates the key characteristics of a biological neuron. The LIF neuron is monolithically integrated with the MoS2 based synapse device to realize a single layer perceptron operation and Boolean logic gates. The Au/MoS2/Ag TSM device also imitates a nociceptor, the single device exhibits all the key features of nociceptors including threshold, relaxation, no adaptation and sensitization phenomena of allodynia and hyperalgesia. This work indicates applicability of this device in artificial intelligence systems-based neuromorphic hardware applications and artificial sensory alarm system

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within
    • …
    corecore