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Abstract

By reaching to the CMOS scaling limitation based on the Moore’s law and due to the

increasing disparity between the processing units and memory performance, the quest is

continued to find a suitable alternative to replace the conventional technology. The recently

discovered two terminal element, memristor, is believed to be one of the most promising

candidates for future very large scale integrated systems.

This thesis is comprised of two main parts, (Part I) modeling the memristor devices,

and (Part II) memristive computing. The first part is presented in one chapter and the

second part of the thesis contains five chapters. The basics and fundamentals regarding

the memristor functionality and memristive computing are presented in the introduction

chapter. A brief detail of these two main parts is as follows:

• Part I: Modeling- This part presents an accurate model based on the charge trans-

port mechanisms for nanoionic memristor devices. The main current mechanism

in metal/insulator/metal (MIM) structures are assessed, a physic-based model is pro-

posed and a SPICE model is presented and tested for four different fabricated devices.

An accuracy comparison is done for various models for Ag/TiO2/ITO fabricated de-

vice. Also, the functionality of the model is tested for various input signals.

• Part II: Memristive computing- Memristive computing is about utilizing memristor

to perform computational tasks. This part of the thesis is divided into neuromorphic,

analog and digital computing schemes with memristor devices.
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ABSTRACT

– Neuromorphic computing- Two chapters of this thesis are about biological-

inspired memristive neural networks using STDP-based learning mechanism.

The memristive implementation of two well-known spiking neuron models,

Hudgkin-Huxley and Morris-Lecar, are assessed and utilized in the proposed

memristive network. The synaptic connections are also memristor devices in

this design. Unsupervised pattern classification tasks are done to ensure the

right functionality of the system.

– Analog computing- Memristor has analog memory property as it can be pro-

grammed to different memristance values. A novel memristive analog adder is

designed by Continuous Valued Number System (CVNS) scheme and its circuit

is comprised of addition and modulo blocks. The proposed analog adder design

is explained and its functionality is tested for various numbers. It is shown that

the CVNS scheme is compatible with memristive design and the environment

resolution can be adjusted by the memristance ratio of the memristor devices.

– Digital computing- Two chapters are dedicated for digital computing. In the

first one, a development over IMPLY-based logic with memristor is provided to

implement a 4:2 compressor circuit. In the following chapter, A novel resistive-

type, single-step and multiple fanin and fanout memristive logic is designed

over a novel mirrored memristive crossbar platform. Different logic gates are

designed with the proposed memristive logic method and the simulations are

provided with Cadence to prove the functionality of the logic. The logic imple-

mentation over a mirrored memristive crossbars is also assessed.

viii
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Chapter 1

Introduction

MEMRISTOR (memory-resistor) is a two-terminal device which attracts significant

amount of interest by the researchers recently due to its unique characteristics.

Its unique i − v curve shows a device with memory and variable resistance that makes

it an interesting element for future computing and memory systems. Its non-volatility,

low power and high switching speed promise an alternative solution for conventional high

speed Static Random Access Memory (SRAM) and Dynamic Random Access Memory

(DRAM). It does not have a leakage power due to its non-volatile behavior, which makes it

a suitable candidate for Flash memories. Also, this device can implement logic in addition

to its memory features and this can provide an architectural solution for future comput-

ing systems. Memristive computing systems can provide logic within the memory in the

same platform, which has the potential to change the current Von-Neumann computing

paradigm. In addition to these features, memristor devices are believed to be able to mimic

biological synaptic behavior and reproduce Long Term Potentiation (LTP) and Long Term

Depression (LTD) phenomenon. Utilization of memristive systems have been intensified in

neuro-science research by the experts who are in the quest of building brain-like computers.

Therefore, with these features memristors can be applied for wide ranges of applications.

This introductory chapter reviews the memristor device definition, functionality, modeling,
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1. INTRODUCTION

applications and the thesis outline.

1.1 Definition of Memristor

Until 2008, it was believed that there are only three fundamental passive circuit elements,

capacitor (1745), resistor (1827) and inductor (1831). Although by 1960 Widrow [1] pro-

posed the first concept of memory resistor device which was named Memistor, the three-

terminal device with the ability to control its memristance by the time integral of current

passes through the device, this device was not considered as fundamental element in circuit

theory. Later in 1971, Leon Chua theorized that the fourth fundamental element named

Memristor should exist based on the symmetrical relationship between voltage (v), current

(i), charge (q) and flux (Φ) [2]. As it can be seen in Fig. 1.1, this device would complete

the circle where the resistor holds relation between voltage and current (f(v, i) = 0), the

inductor holds relation between current and flux (f(i,Φ) = 0 where v = dΦ
dt

and Φ = Li),

the capacitor holds relation between voltage and charge (f(v, q) = 0) and the memristor

holds relation between charge and flux (f(q,Φ) = 0). Chua, based on the mathematical

analysis, predicted that a solid-state device (memristor) should exist to make a connection

between charge and flux. Later, he developed the idea of memristor to broader class which

is called memristive devices and systems while a memristor is only a special case in this

family [3]. In 2008, the first physical realization of a memristor device was realized in HP

lab by Dr. Strukov [4]. The device structure was composed of a doped titanium dioxide

(TiO2−x) thin film which was sandwiched by two platinum (Pt) electrodes. The doping is

performed by creating positively charged oxygen vacancies over the length of TiO2 film by

removing the negatively charged oxygen atoms from their position in crystallization stage.

By applying an electric field over the device, oxygen vacancies tend to move along the

length of the film and it results the alteration in the conductivity of TiO2 film. Therefore,

resistance of the device can be changed based on the time integral of current passes through

2
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Figure 1.1: The fourth missing fundamental circuit elements [4].
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Figure 1.2: The TiO2-based device and its doping profile behavior is displayed.

the device [4]. Also, the oxygen vacancies will remain in their position as the electric field

is removed from the device which shows non-volatility behavior of it. The TiO2-based

device is presented in Fig. 1.2. In 2009, Di Ventra extended the definition of memristor

and memristive systems to capacitor and inductor by defining the terms, meminductor and

memcapacitor which are history dependent elements [5]. Memristor device’s i-v curve is

a hysthersis loop which shows variable resistance between High Resistance State (RHRS)

and Low Resistance State (RLRS). The device is in high resistance state when the doping
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profile is not spread along the film length and the un-doped region covers the whole length

of the device. On the other hand, the high resistance state is when the oxygen vacancies

are migrated through the length of the device and cover the whole length of the film. The

memristor symbol used in this thesis is displayed in Fig. 1.3(a). The polarity of the device

is recognized by a thick black bar. As it can be seen in this figure, the resistance of the de-

vice decreases when the current goes through the bar side and it is increasing when current

enters the device from non-bar side. HP proposed a model [4] for memristor and considers

the variable length of the doped region along the device as the internal state variable (w).

The device is in high resistance state when w = 0 and it is in low resistance state when

w = L (L is the total length of thin film). Memristor device characteristic can be defined

by the following equations:

i = g(w, v) · v, (1.1)
dw

dt
= fv(w, v). (1.2)

These equations refer to the voltage-controlled memristor devices. i and v are the cur-

rent and voltage over the memristor device, respectively. Parameters w is the internal state

variable of the device and based on the HP model, it is in the domain of 0 ≤ w ≤ L.

Also, function g(·) is the memristor’s conductance which is named memductance. Current-

controlled memristor devices characteristics can be defined by,

v = R(w, i) · i, (1.3)
dw

dt
= fi(w, i). (1.4)

FunctionR(·) refers to the resistance of the memristor which is named memristance. Mem-

ristor is any two terminal black box that follows these equations and have hystheresis i-v

curve which alters in shape by changing the excitation frequency over the device. Hys-

theresis loop of the device is displayed in Fig. 1.3(b) for lower frequencies. Also, it is
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Figure 1.3: (a) The memristor symbol and its behavior toward different current directions enter the
device. (b) Hystheresis loop in low frequencies. (c) The frequency behavior of i-v curve of the
device.

shown that by increasing the excitation frequency the hystheresis loop begins to shrink and

it becomes a single line as the frequency goes beyond specific threshold (fth). Memristor’s

i-v curve behavior by altering frequency is displayed in Fig. 1.3(c). This speed limit fea-

ture can be applied in READ operation of the memristor devices to avoid unwanted state

changes in the device.

1.2 Memristor Modeling

Since 2008 due to exciting discovery of memristor device, significant amount of research

has been devoted in the search for novel materials and structures to manufacture these non-

volatile devices [6–13]. Also, there is a vital need to a reliable models which can reproduce

5



1. INTRODUCTION

the behavior of the device for simulation and development of memristive circuits and sys-

tems. In addition to acceptable accuracy and computational efficiency, the proposed model

should be compatible with commonly accepted design modeling packages like SPICE. Fol-

lowing the recent advancements in the memristor and memristive systems and applications,

several models have been developed for implementation in SPICE-like simulators for de-

signing and simulating the future analog and digital systems based on memristor [14–30].

The very first efforts for modeling memristor [4] presented a linear ion drift model of mem-

ristor which is a physical model derived from mathematical equation of HP 2008 fabricated

memristor. HP memristor was consisted of TiO2 thin film sandwiched between two plat-

inum electrodes. Deficiency in oxygen atoms in one side of TiO2 makes a doped region

of the film (TiO2−x). This kind of doping makes two regions with different resistance in

series (doped region: low resistance, undoped region: high resistance). Since the oxygen

vacancies have low mobility by removing the bias over the titanium oxide film they have

the tendency to remain at their current place. Memristors saving information capability by

means of its resistance makes it a non-volatile memory. Effective resistance of the thin

film is related to the boundary position of the regions. The boundary position between the

doped and un-doped regions is proportional to the place of the dopants which is determined

through dopants velocity. Position of the boundary region can be determined through its

velocity (vD).

vD = lim
∆t→0

∆w

∆t
=
dw

dt
(1.5)

Linear form of the velocity of dopants (vD) equation is the reason for calling this model,

linear boundary drift model. It is determined by,

vD =
ηµDRLRS

L
· i(t) (1.6)
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Figure 1.4: The linear ion drift model equivalent circuit for TiO2-based device.

where L is the length of the film, η shows the memristors polarity and µD indicates the

mobility of dopants and as mentioned before, the memristor is considered as two series

resistors which have high and low resistances. The doped region has low resistance (RLRS)

while the undoped region shows high resistance (RHRS). Boundary region is moved along

the TiO2 film. Therefore, the memristance for a TiO2 memristor with boundary position

of w less than its films thickness L can be determined through:

Rw = RLRS
w

L
+RHRS

(
1− w

L

)
. (1.7)

Schematic illustration of the linear boundary drift model for Ag/TiO2/ITO memristor is

depicted in Fig. 1.4. Consequently, the i-v relationship is determined by,

i(t) =
v(t)

Rinit

(√
1− 2ηµDRLRS∆Rφ(t)

D2R2
init

) . (1.8)

where the parameters Rinit and ∆R are given by,

∆R = RHRS −RLRS (1.9)

Rinit = RLRS
w0

L
+RHRS

(
1− w0

L

)
. (1.10)
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(a) (b)

f(w) f(w)

w/Lw/L

Figure 1.5: The behavior of window function 1 and 2 which are defined in [19] and [18] are consid-
ered for two different p values. (a) The p = 1 is set for the window function 1 and 2. (b) The p = 7
is set for the window function 1 and 2.

Position of the boundary region varies along the length of TiO2 film. In linear ion drift

model, Eqn. 1.6 shows that the velocity along the whole film thickness has linear behavior,

while the maximum pace of the dopants occurs at the middle point of the film. Due to the

non-linear characteristic of the dopants movement, different window functions (f(·)) were

proposed to insert non-linearity into velocity,

vD =
ηµDRLRS

L
· ×f(w)× i(t) (1.11)

For the purpose of decreasing the dopants velocity at the edge of the film and having the

maximum speed at the middle in [19], the non-linear phenomenon takes into account.

fw = 1−
(

2w

L
− 1

)2p

(1.12)

where, p has a positive value. Power of the above equation adjusts non-linearity in the

velocity of dopants. By increasing p, the linearity rate is soared and this is demonstrated in

Fig. 1.5. The above window function has some problems for incorporating with memristors
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model. After setting memristor to its terminal states RLRS or RHRS where window function

1 has zero value [19], changing its state to another value becomes impossible [17]. The

second problem with using this window function is, its weakness for showing the asym-

metric switching behavior. It uses the same behavior pattern for both zero to one and one to

zero transitions ,which may not be the case based on experimental results for ON and OFF

switching [20]. While these mentioned obstacles do not satisfy with window function in

Eqn. 1.12, the following function was proposed which meets the above requirements [18],

fw = 1−
(w
L
− stp(−i)

)2p

(1.13)

In the above equation, i is the memristors current. The maximum value of this window

function is limited to one and cannot be adjusted to the values less or more than one.

Therefore, in this window function the scale factor has been added for the purpose of having

adjustable maximum value for the state variable [23],

fw = j

(
1−

((w
L
− 1
)2

− 0.75

)p)
(1.14)

where j is scale factor. It controls the maximum value of the window function. This

window function [23] as is depicted in Fig. 1.6, has different maximums which are lower

or upper than one. In addition, the hyperbolic sine behavior has been noticed between

the changing rate of the differential conductance and the applied voltage at low electric

field relative to the tunneling barrier width [31]. While those window functions satisfy

the boundary problems the linear ion drift model cannot fully reproduce the non-linear

behavior of the device. Additionally, the common problem in former models is that there

was no threshold consideration. To fulfill these issues, in [23] the following equations are
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(a) (b)

f(w)

w/Lw/L

f(w)

Figure 1.6: The window function 3 [23] can adjust its amplitude through the scale factor j. (a)
Three figures of window function 3 [23] with the same p = 1, and three different scale factor values
(j = 0.75, j = 1, j = 1.5). (b) Three figures of window function 3 with the same p = 7, and three
different scale factor values (j = 0.75, j = 1, j = 1.5).

presented,

dw

dt
= a× f(w)× g(v) (1.15)

i(t) = w(t)nβ sinh(αv(t)) + χ (exp(γv(t))− 1) . (1.16)

where g(v) = v(t)m and m is an odd integer. Also, a is a constant parameter. The velocity

equation shows nonlinear relation to voltage. The differential parameters are α, β, γ and

χ which can be determined through experimental data. In the above equation, n is a pa-

rameter which demonstrates the impact of the state variable over the memristor’s current.

w parameter is the normalized state variable which has a value between 0 and 1. This state

variable is approximately equal to one in ON state. When the memristor has the lowest

memristance the second expression, χ (exp(γv(t))− 1), has a negligible value in compar-

ison with the first part, β sinh(αv(t)), which defines the tunneling phenomenon. When the

opposite state occurs the dominant value is the second expression which behaves like an

10
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(a) (b)

Figure 1.7: (a) It depicts Ag/TiO2/ITO memristors linear ion drift model hysteresis plot with an
input voltage source by 2 V triangular wave with 1 Hz frequency in comparison with the memristors
measured experimental data [20].(b) This shows linear ion drift model of Ag/TiO2/ITO memristor
by proposing window function 3.

ideal diode. Another model can be defined by [32],

Asign(v(m)
(

exp( |vM |
v0
− exp(vTH

v0

)
|vM | > vTH

0 otherwise

(1.17)

where vTH and vM are the threshold and the applied voltage, respectively. This equation

consists of signum function, and v0 may depend on the velocity of dopant or be inde-

pendent. In the high resistance state of memristor the velocity of the dopants is assumed

0 which is an ideal value as the applied voltage is less than the threshold voltage. The

Ag/TiO2/ITO memristors nonlinear model is shown in Fig. 1.8 in comparison with the real

measured data in laboratory. In the non-linear ion drift modeling of memristor like the lin-

ear ion drift modeling, the memristor doped and undoped region considered as two series

resistor. In [14], a new assumption of memristor for modeling is presented. In this model,

memristor is considered as a resistor in series with an electron tunnel barrier. As it is shown

in Fig. 1.9, the state variable x is the Simmons tunnel barrier width. So the dopants drift

11
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Figure 1.8: This shows nonlinear ion drift model of Ag/TiO2/ITO memristor by proposing window
function 1 and 3.

velocity can be determined by [14],

dx

dt
=

coff sinh( i
ioff

exp
(
− exp

(
x−aoff
wc
− |i|

b

)
− x

wc

)
i > 0

con sinh( i
ion

exp
(
− exp

(
x−aon
wc
− |i|

b

)
− x

wc

)
i < 0

(1.18)

Fitting parameters are coff , con, aoff , aon, ioff , ion, wc and b. coff , con adjust the magnitude

of x derivative change while con is larger about an order of magnitude than coff . Since this

model provides a programming threshold, ioff and ion are the quantities for limiting the

threshold current. Changing in state variable derivative is desired for higher current than

the threshold current. The aoff and aon defines the upper and lower bound interval for state

variable x. Therefore, the x−aoff and (x−aon) are negative quantities. Subsequently, since

the exponential function is used in this equation and the negative value of its variable, a

small value is allocated to the derivative of the state variable x. This equation demonstrates
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the different ON and OFF switching pace which fits the experimental results as well. The

current voltage relationship in this model defined as follow [14],

vg = v − i(t)Rs, (1.19)

where vg is the voltage of un-doped region and v is the internal voltage on the memris-

tor which is differed from the applied voltage on memristor. A SPICE model of simmons

tunneling barrier model is proposed in [15]. Although it has complexity and high computa-

tional time, it brings the highest accuracy in comparison with the other models. This model

is shown in Fig. 1.9, for Ag/TiO2/ITO memristor in comparison with the experimental

data. The other good model is [33] which is based on a piece wise modeling approach

which is the subtle function of the rate of change in memristance. In [33], the window

function is eliminated whereas the g(.) function is imposed the tunneling phenomenon and

asymmetric switching behavior to the model,

dx

dt
= vx.g(v, ρ(w), φ0), (1.20)

where vx is a constant which is determined switching pace in x normalized distance (0,1)

based on experimental data and φ0 is the equilibrium barrier height. ρw is the shape factor

parameter which has a linear dependent to the tunneling junction width. This makes a

high non-linearity in one boundary of memristor and low non-linearity at opposite side

which results dinormalization of the function. The voltage current relationship which is the

modification of the i− v relation [33],

i(t) = wn sinh(vMϑ) + χ (exp(γvM)− 1) , (1.21)

where w and ϑ are fitting parameters for defining ON state of the device. χ and γ are the

fitting parameters for characterizing OFF state as well [34]. The non-linearity is inserted
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through the first term of this equation. Parameter n is defined the rate of non-linearity

between the drift velocity of dopants and the ON switching current. The higher value

parameter n has the non-linearity rate is increased. Like the model in [15], this model is

showed acceptable accuracy and a good adaptation with tunneling phenomena. A more

simplified model [21] with acceptable accuracy in comparison with its former peers was

presented later. In addition of its generality in comparison with Simmons tunneling barrier

model, it uses simpler mathematical functions to achieve the same physical memristive

behavior. Since this model is using polynomial dependence rather than exponential one

which was used in Simmons tunneling barrier model, the TEAM model is becoming more

computationally efficient. The TEAM models derivative state variable is,

dx

dt
=


koff

(
i(t)
ioff
− 1
)αoff

· foff (x) 0 < ioff < i

0 ion < i < ioff

kon

(
i(t)
ion
− 1
)αon

· fon(x) i < ion < 0

(1.22)

The ion and ioff are the current thresholds and koff , kon, αoff and αon are constants. The

effective electric tunnel width which is considered as an internal state variable is repre-

sented by x. The window functions are fon and foff which limit the internal state variable

to [xon , xoff ] interval. Like Simmons tunnel barrier asymmetric behavior, fon and foff

may have different values. This model shows an acceptable accuracy but lower than Sim-

mons tunneling barrier model. In Fig. 1.9, the Ag/TiO2/ITO memristors experimental data

has compared with the TEAM models simulation data. Later on, a voltage-based model is

also presented with the same method [27]. Beside the mentioned predictive models in the

literature, model in [26] was proposed based on fitting to an experimentally measured i− v

curve from a fabricated memristive device. The compact model [26] based on experimental

observations were developed to account for irregular i − v characteristics. In this work, a

simple compact model that describes behavior of chalcogenide based memristor devices

14
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(a) (b)

Figure 1.9: (a) It depicts Ag/TiO2/ITO memristors simmons tunnel barrier model which has the
highest accuracy in comparison with the other predictive models. (b) It depicts Ag/TiO2/ITO mem-
ristors TEAM barrier model.

is presented. Although this model has demonstrated better accuracy in comparison with

the predictive models, it does not present a comprehensive template for modeling various

memristive devices and it also needs mathematical computations to find the model param-

eters for every memristive device. One of the other model is presented in [24], is known

as generalized memristive device model. In this work, by utilizing several mathematical

functions, behaviors of the memristor devices are simulated based on their physical prop-

erties. Although the model in [24] is a general model which is simple and it can be used in

large-scale computations, it cannot reproduce the non-linear device behavior in high resis-

tance state. Also, this model in not fully established based on the physical charge transport

mechanism of the memristor devices. The simulation of generalized model is displayed in

Fig. 1.10

1.3 Memristor Crossbar

One of the most promising structure developed by memristor devices is crossbar architec-

ture [35]. This structure is highly scalable and it can be used for future ultra-dense memory
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Figure 1.10: This plot displays how the generalized memristor model [24] is able to match the
Ag/TiO2/ITO-based memristor data.

systems. As it can be seen in Fig. 1.11, a memristor crossbar is a connected structure that

comprises of a matrix of memristors connected with metal wires. Each device is connected

to a top horizontal metal wire and a vertical bottom wire. The crossbar structure provides

the highest possible integration density of memristor devices within a single layer, in which

each memristor uses 4F 2 circuit area where F is the minimum feature size.

One of the most important issue in memristor crossbar array is the problem of sneak

path currents [36]. This can affect the functionality and performance of the system. As

an example in READ operation, due to several alternate current paths in a regular crossbar

array an exact value of stored value in cell cannot be READ properly. To avoid these

issues, several approaches were proposed by the researchers [37, 38]. These solutions are

in device and architectural level. In the device level, a complementary resistive switch

(CRS) was proposed with specific i − v characteristic [37]. This device comprised of two

series memristor devices with different polarity and it provides high net resistance close to
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mij

i-th

j-th

y

x

Figure 1.11: READ operation in memristor crossbar architecture.

high resistance state which considerably reduces the alternate current paths in crossbar.

Beside the device level solution, modification in the architecture of the memristive

crossbar systems can provide lower sneak path effect. In [39], an access transistor was

added over each memristor device which isolates other unwanted devices and mitigate al-

ternate current paths. This crossbar architecture is called 1T1R architecture and its main

drawback is its low density due to the large area needed for access devices. The other archi-

tecture is 1TNR [40] architecture which is utilized only one access transistor for all devices

in each row. This architecture has higher density in comparison with 1T1R and provides

acceptable sneak path current mitigation rate.

The READ operation in crossbar for each device can be done individually. For example,

when reading the resistance of memristor mij connecting to i-th top metal wire and j-th

bottom metal wire, a sensing voltage v will be applied on i-th top wire and all of the other

wires are grounded. The current cj can be sensed from j-th metal wire and resistance of

mij = v/cj . The programming (WRITE) procedure in the crossbar is displayed in Fig.
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Figure 1.12: WRITE operation in memristor crossbar (a) Write 1. (b) Write 0.

1.12. This method is a two step process. It writes desired values on entire row of selected

crossbar array. In the first step for writing logic 1 (RLRS) on target devices, a voltage of

VW/2 and GND (0 V) are applied to a selected row and all unwanted rows, respectively.

The voltage VW is greater than threshold of the device (> VTH). Also, the columns on

which logic 1 should be connected to −VW/2 and a voltage VW/2 is applied to the other

columns. The logic 1 will be written over the target devices in this step. In the second step,

the selected row is connected to−VW/2 and the voltage of GND is applied to all unwanted

rows. Furthermore, a voltage of VW/2 and −VW/2 are applied to the columns which logic

0 should be written on and other columns, respectively. This step will write logic 0 on all

target devices in the selected row.

1.4 Applications of Memristor

Due to the unique features of nanoscale memristor devices, these devices attract researchers

attention to be applied in wide ranges of applications. Memristor can be utilized in several

applications like memory, logic, analog circuits, cryptography, neuromorphic, filter design,

computer arithmetic, neuro-fuzzy systems and chaotic circuits. Here, we review memory,
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logic and neuromorphic applications to get a better insight about the following chapters of

the thesis.

1.4.1 Memory

One of the important application of memristor device is memory [41]. The non-volatility,

low power, scalability and CMOS compatibility features of memristor device makes it a

promising alternative for conventional SRAM and DRAM memories. Several types of

memories are fabricated based on the memristive behavior. Spintronic memristor (STT-

MRAM) is one of the most promising candidate for future ultra high density and high speed

memories [42]. Spintronic memristor alters its resistance by changing the direction of the

spin of the electrons. Due to the low memristance ratio (RHRS/RLRS) of these devices, an

access transistor should be utilized in crossbar array for each individual memristors. This

limits the maximum size of array’s areal density by the size of access transistor devices.

Phase Change Random Access Memory (PCRAM) is another promising memory tech-

nology. In comparison with STT-MRAM and Resistive Random Access Memory (RRAM)

it has a longer switching time (50 to 100 ns) and it has the lowest endurance in terms

of switching cycles before failure [43]. Therefore, these devices are not considered for

SRAM because of their low switching speed and they can be considered as a replacement

for DRAM cells. The unipolar switching characteristic [44] in PCRAM makes these de-

vices a good candidate for high density design which limiting the sneak path currents can

be provided by using a diode. RRAM [45] is one of the important memory technologies

and its functionality is based on the resistive switching. Unlike PCRAM devices which

uses heat to change resistance state, the resistance of the RRAM device is changed by ap-

plying a voltage across the device. These devices provides high density, low manufacturing

costs, high switching speed and relatively acceptable endurance. Conductive Bridge Ran-

dom Access Memory (CBRAM) [46] is another memory with low current, high resistance

ratio but it has a longer write time in comparison with other technologies.
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Figure 1.13: Spintronic memristor device schematic. [47].

1.4.2 Logic

Memristor is not only a memory but it has the capability to implement logic which makes

it a unique device for use in future memory and computing systems [48]. These devices

can implement logic within the memory which can be applied for in-memory computing

scheme. Unlike Von-Neumann architecture where the memory and processing units are

separate and there is a constant need for huge amount of interconnections between these

units for constant communication, in-memory computing systems not only requires only

one platform to implement logic and memory but also it does not need the interconnections.

Thus, logic implementation with memristor has been intensified in research and there are

several logic methods [48–50, 50–55] have been designed recently.

Memristor logic implementation methods can be divided based on the digital and analog

property of the device. Memristor can be used as analog memory [53, 55] since it can be

programmed to different memristance values. This opens a new path to explore analog

arithmetic circuits by using the analog memory property of the memristor. Also, logic

implementation of memristor can be applied in digital domain and there are several logic

methods proposed [48–52]. Digital logic implementation with memristor devices can be

categorized into the resistance-based and voltage-based logic methods. In resistance-based

logic, the logical state can be determined by the memristance of the output device while in

20



1. INTRODUCTION

voltage-based logic method the logical state is determined by the voltage level. Therefore,

the resistance-based logic can be applied for in-memory computing scheme while there is

no memory feature in voltage-based logic [51, 52]. In the resistance-based logic the logic

0 corresponds to high resistance state and the logic 1 corresponds to low resistance state.

There are several resistance-based logic method proposed by memristor devices.

IMPLY logic is one of the famous logic implementation method with memristor [48].

This logic is based on IMPLY function which comprises of two input memristor devices and

one resistor. The inputs should be programmed by memristance over the input devices. This

logic is a sequential logic and it requires some steps to finish its computation procedure.

Two voltage levels are required for this logic (VCOND and VSET). IMPLY logic is a pure

memristive logic and it can be implemented on memristor crossbar. The main drawback for

this logic is, its sequential nature which requires several computational steps to implement

large-scale computations. Also, the output is written over one of the input devices and this

results in loosing one of the inputs. Another resistance-based logic is MAGIC [51] and this

logic is a pure memristive logic. Only one voltage level is required to be applied in this

logic. The inputs are the memristance of the input devices. The input and output devices

in this technique are separate. In this method, for some input combinations, input devices’

states are changed during the logic operation and this results in missing the input for next

operation.

Hybrid CMOS/Memristor-based method is another technique to implement logic. MRL

[49] is one of hybrid CMOS/memristor approach which is a voltage-based logic. This

logic suffers from a signal degradation and therefore CMOS buffer is needed to amplify

the output signal level. Also, for creating some logic gates like AND and OR, a CMOS

inverter should be added to the output of NAND and NOR MRL gates. In this logic method,

memristors are worked only as computational element and do not store any value. In this

logic, the inputs are applied as voltage levels to the circuit and the initial memristance of the

devices does not affect the logic computation. This logic requires only one computational
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step to perform the logic operation.

1.4.3 Neuromorphic

Neuromorphic engineering is a field for designing neural architectures and circuits based

on biological nervous system. Over the past few years, interest in neuromorphic computing

has been increasing significantly [31]. There is a growing need for efficient smaller hard-

ware with powerful data processing capability to implement large scale neural network for

recognition, mining, and synthesis applications. The memristor is attracted significant at-

tention as a potential element for building the neural systems. As it can be seen in Fig.

1.14, it has a similar behavior to a real synaptic connections in brain [56]. Since like brain

synapses which need only electrochemical pulses to alter their weights, memristors require

a voltage pulse for changing its conductivity. Memristor device can mimic a real biolog-

ical synapse behaviors and can reproduce Spike Time Dependent Plasticity Mechanism

(STDP) [57]. STDP consists of two main phenomenon Long Term Potentiation (LTP) and

Long Term Depression (LTD) which generate based on timing difference of the pre- and

post-synaptic spikes.

1.5 Outline of Thesis

This thesis encompasses two main parts Part I and Part II. Part I is related to the mem-

ristor device modeling and Part II is focusing on memristive computing circuits and ap-

plications. Part II is divided into different computing schemes (neuromorphic, analog and

digital). This part contains five independent chapters. A background about memristor def-

inition, its applications and a brief review of the selected previous models are presented

in Chapter 1 (introduction). The modeling and its analysis is presented in Chapter 2. The

neuromorphic computing task with memristor is studied in Chapter 3 and 4. Also, an ana-

log domain application is presented in Chapter 5. Chapter 6 presents a development over
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Figure 1.14: Memristor versus biological synapse [58].

existing memristive digital logic (IMPLY logic). In Chapter 7, a novel memristive logic

is presented along with its novel architecture, summary, conclusion and future works are

presented in Chapter 8.

• Introduction, in Chapter 1, the background information and memristor definition

and its functionality is presented. Also, the memristor crossbar architecture is ex-

plained along with READ and WRITE operation methods within the crossbar on

each device. In the next section, some relevant previous models, window functions

and the modeling evolution are discussed. Then, the significant potential applications

of memristor are explained (memory, logic and neuromorphic).

• Part I- Modeling, in Chapter 2, an accurate model for nanoionic memristive device

is presented. The proposed model is based on the charge transport mechanisms in

memristor devices. The main charge transport mechanism in metal-insulator-metal
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structures are discussed. A physic-based model is presented based on charge trans-

port mechanisms existed in schottky barrier region. Also, a SPICE code is developed

for the proposed model and it is tested for various devices to ensure its functionality.

• Part II- Memristive Computing, This part is comprised of 5 chapters. In Chapter 3

and 4, pattern classification tasks are performed by a memristive bio-inspired Spiking

Neural Network (SNN). In Chapter 5, an analog memristive adder is presented with

a Continuous Value Number System (CVNS). This adder is designed based on the

analog property of memristor devices. In Chapter 6, a 4:2 compressor circuit is

designed with IMPLY logic and this implementation is completely optimized. In

Chapter 7, a novel memristive logic paradigm is presented and a mirrored crossbar

architecture has been developed to implement this novel logic. Different logic gates

are also designed and tested with the proposed logic scheme. Also, the mirrored

architecture has been tested by Cadence simulation for a larger combinational logic

function.

1.6 Summary of Contributions

This thesis consists of several contributions which are defined briefly in this section.

Memristor modeling is an important topic in memristive systems research due to the

growing need of circuit designers for an accurate and reliable model which is capable of

reproducing the behavior of a real device. For this purpose a review of the memristor

models is presented in Chapter 1 and different models were analyzed. In Chapter 2, a

physic-based accurate model is presented based on the charge transport mechanisms in

schottky barrier region of the memristor devices. This is one of the novel contributions

in this thesis. The proposed model was tested in Matlab to prove its functionality and

it showed an acceptable error in comparison with experimental data extracted from a real

fabricated device (Ag/TiO2/ITO). Also, a SPICE code is developed based on the equivalent
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circuit model of the proposed memristor model. The functionality of the SPICE code is

tested by simulating four different devices. Also, based on the error analysis the proposed

model showed the most accurate behavior toward experimental data in comparison with its

previous relevant peers.

Implementing a bio-inspired system that functions based on the brain’s learning mech-

anisms attracts so much attention in recent years. Memristor device mimics the behavior

of real synaptic connections in the mammalian brain and its nanoscale feature makes it

a promising candidate for ultra dense neuro-inspired integrated chips. In Chapter 3, the

memristive implementation of a noble prize winner Hudgkin-Huxley (HH) neuron model is

discussed and a bio-inspired spiking neural network based on memristor synapses and HH

neurons is presented. The STDP learning mechanism is successfully implemented with this

network. Some pattern classification tasks are done with this network by an unsupervised

learning scheme.

In Chapter 4, a memristive implementation of Morris-Lecar (ML) neuron model is

defined. Then, a biological spiking neural network is implemented using the defined ML

neurons and memristor synapses. The STDP learning mechanism is successfully tested

with the proposed network. Also, pattern classification tasks are performed by applying

different patterns as the input to the network and the results proved the functionality of the

design.

Multi-state memory would allow an increased information storage on a single element.

Then, output of arithmetic operations on these multiple states could be stored directly in

memory itself and this will results in omitting the data transfer between computing unit

and memory which is the bottleneck of the current digital computers. Memristor has the

analog memory feature and it can be programmed to different levels. In Chapter 5, a novel

analog adder is designed with memristor devices based on a recently proposed continuous

value number system. A programmer circuit is designed to map part of the adder circuit

to provide modulo operation. Also, CVNS scheme is interpreted for memristive systems
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and it has been shown that the environment resolution is dependent on memristance ratio of

memristor devices. The functionality of the proposed adder is tested for different numbers.

Memristor as an emerging history dependent nanoscaled element will play an important

role in future nanoelectronic computing technologies. Some pure and hybrid memristor-

based implementation techniques have been proposed in recent years. Material implication

logic is one of the significant areas for memristor-based logic implementation. In Chapter

6, a memristor-based 4:2 compressor cell is implemented based on IMPLY logic. 4:2 com-

pressor cells are commonly utilized in high performance arithmetic systems and they are

basic blocks in multipliers architecture. Two XOR/MUX and full adder-based representa-

tion of 4:2 compressors are implemented by using the IMPLY logic gates. The proposed

parallel design showed good speed performance with considerably less area than conven-

tional CMOS designs.

Chapter 7 presents another novel contribution of this thesis where a new memristor-

based logic is presented. This logic needs only one computational step and it is a resistance-

based logic. This logic can be applied for in-memory computing systems. This logic

has the capability to provide multiple fanins and fanouts. AND, OR, NAND, NOR, NOT

and COPY logic gates are designed with this logic and CADENCE simulation have been

carried out to ensure their functionality. A mirrored crossbar architecture is developed

to implement the proposed logic. This architecture reduces alternate current paths since

during the logic whole operation time one plane of the crossbars is isolated by switches.
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Chapter 2

Accurate Charge Transport Model for

Nanoionic Memristive Devices

MEMRISTORS have the potential to significantly impact the memory market, and

have demonstrated the potential for analog computing within a sub-class of neuro-

inspired information processing. In order to enable circuit designers to use and test memris-

tor/CMOS hybrid circuits, it is necessary to have an accurate and reliable memristor model.

Here, a new memristor model based on Charge Transport Mechanism (CTM) is presented.

This chapter analyzes different current mechanisms that exist in Schottky barrier region

of memristors: direct tunneling, thermionic emission, and Ohmic currents. The proposed

memristor model is based on direct tunneling and Ohmic conduction, and it accounts for

physical phenomena within memristive devices. The proposed model is implemented in

SPICE and a sub-circuit for the model is provided.

2.1 Introduction

The memristor (memory-resistor) was first theorized as the fourth fundamental circuit el-

ement by Leon Chua in 1971 [1]. In 2008, Hewlett-Packard laboratories (HP Labs) an-
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nounced fabrication of a physical memristor device [2]. The resistive switching effects in

memristive devices promise an emerging alternative for flash memory, which has limita-

tions in the sub 20 nm range. The Valence Change Memory (VCM) effect is a special type

of resistive switching in redox-based devices [3]. VCM memristors offer bipolar switching

behavior due to valency change within specific transition oxides like TiOx, HfOx, TaOx and

SrTiO3. Following the recent advancements in the memristor-based applications, several

models have been developed for implementation in SPICE-like simulators. These models

can be the base for designing and simulating future memristive-based analog and digital

systems. Due to either the complexity or inaccuracy of previous models, it is necessary to

develop an accurate model that can be used in SPICE-like circuit simulators and closely

matches experimental data.

In this chapter, we present a new physics based memristor model that incorporates ionic

transport and tunneling mechanisms. The proposed model is based on data extracted from a

fabricated memristor with a Ag/TiO2/ITO structure [4]. The developed model can be easily

utilized as a macro model in SPICE-like circuit simulators such as HSPICE and SPECTRE.

The noise aspect of charge/trap hopping and effects of process variation within memristor

devices are beyond the scope of the presented work.

The chapter is organized as follows: Section 2.2 defines memristor device function-

ality. The most important models of memristor devices are discussed in Section 2.3. In

Section 2.4 different memristor charge transport mechanisms are discussed. In Section 2.5,

the proposed model is presented with its SPICE code. The applicability of the model is

tested for various input stimuli with different shapes, amplitudes, and frequencies in this

section. In Section 2.6 the behavior of the proposed model is discussed and its accuracy

is compared with state of art models. A conclusion of the presented work is provided in

Section 2.7.
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Figure 2.1: (a) A cross-sectional view of the Ag/TiO2/ITO memristor with a fabricated memristor
micrograph [4] is illustrated. The Ag and ITO top and bottom electrodes have a 200 nm width
each while the thickness of the TiO2 is about 22 nm. In this case, the doped and un-doped regions
have thickness of 20 nm and 2 nm, respectively. The whole structure is placed on top of a glass
layer because of the transparent nature of Indium Tin Oxide (ITO) electrodes [4]. (b) The i-v
characteristic of the physical Ag/TiO2/ITO memristor device that was obtained using a Keithley
4200-SCS semiconductor parameter analyzer [4]. The proposed circuit and the triangular excitation
input voltage are also displayed.

2.2 Memristor Device Functionality

The memristor is a special class in a more general family of memristive systems and can

be either a voltage-controlled or current-controlled. From this point on, it is assumed that

the term memristor refers to the physical memristive device developed for the work in this

chapter. The behavior of the N th order current-controlled memristor is defined through,

VM(t) = M (u, i, t) i(t) (2.1)
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u̇ = f(u, i, t), (2.2)

where u is a vector and it represents N internal state variables. The parameters VM(t) and

i(t) are the voltage and current across the memristor device, respectively and M is called

memristance (memory resistance). The charge-controlled ideal memristor is a particular

case of equations (1) and (2), where memristance becomes a function of charge,

VM = M (q (t)) i, (2.3)

and current is defined by: i = dq/dt. The pinched hysteresis loop in the i-v characteristic

is a unique feature of memristors. It demonstrates the passive nature of these devices as

M is always positive. By increasing the excitation frequency, the hysteresis loop shrinks,

and it will approach a single line as the input frequency approaches infinity. A schematic

illustration and i-v curve of Ag/TiO2/ITO memristor [4] are depicted in Fig. 2.1. The initial

resistance of the device is 172 Ω. The memristor-based circuit for simulation is comprised

of a serially connected input voltage source with a Ag/TiO2/ITO memristor where the posi-

tive side of the voltage source is connected to the doped side of the memristor. The common

node between the negative side of the voltage source and the undoped terminal of the de-

vice is grounded. The input voltage is one period of a 1 Hz triangular wave with a range of

-2 V to 2 V.

2.3 Review of Memristor Models

The first memristor modeling effort [2] considered it to be two resistors in series. In this

model, the memristance of device is dependent on the ratio between the thickness of doped

region within the dielectric layer and the total dielectric thickness (D). The dopants velocity

decreases at the edge of the thin film, and this non-linear effect is modeled using a window-
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ing function. A number of efforts to model the non-linearity aspect of these devices using

windowing functions have been demonstrated [5], [6], [7], however the accuracy of these

models is limited. Subsequently in [8], changing modeling approach and using non-linear

functions for simulating memristor device behavior have resulted in a non-linear boundary

drift model. The non-linear ion drift model of memristors, like the linear ion drift model,

is divided into doped and undoped regions that are represented by two separate series re-

sistors. Due to the non-linear dependency between the derivative of the state variable, the

thickness of the doped region along insulator film, and voltage, this model is considered

non-linear. However, this modeling approach is unable to accurately model the switching

behavior of the device.

In [9], a new assumption for memristor modeling considered memristor as a resistor in

series with an electron tunnel barrier. The state variable in this model is Simmons tunnel

barrier width [10]. This model provides a programming threshold, so change in the state

variable is only occurs for current values higher than the threshold current. Due to the im-

pact of the exponential function, there is no need for defining a window function. A SPICE

based model that utilizes the Simmons tunnel barrier was proposed in [11]. Although it

is complex and has a high computation time, the model is more accurate when compared

to the previous models. In [12], the electron tunnel barrier model [9] is modified to avoid

non-convergence, numerical errors, and non-physical solutions during time-domain sim-

ulation. Also, two physics-based models have been proposed recently for TaOx-based

devices [13] [14]. The model in [13] considers TaOx-based devices with a circuit model

that consists of a Schottky barrier diode in low resistance state, a variable resistor, and a

base-layer resistor. In [14], modeling is based on incorporating the tunneling probability

factor between the metal layers and the semiconductor layer, and demonstrating its effect

on the conduction mechanism.

Another popular model is described in [15] that uses a piecewise modeling approach [16]

when determining the rate of change in memristance. In [15] the window function is elim-
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inated and another function is implemented to model the tunneling phenomena and asym-

metric switching behaviors of the memristor. This causes a high non-linearity in one of the

memristance boundaries and a low non-linearity at the opposite side. This model shows a

high accuracy and good adaptation of tunneling phenomena like [11].

A more simplified model with lower accuracy, when compared with [17], was presented

in [18]. In this model, unlike the other predictive memristor models, the i-v relationship

can be adapted according to data from every i-v characteristic of memristor devices based

on setting their related threshold voltage. In addition to its generality in comparison with

Simmons tunnel barrier model [9], it uses simpler mathematical functions to achieve the

same physical memristive behavior. The effective electric tunnel width is an internal state

variable in this model. It has two window functions that limit the internal state variable.

This model shows an acceptable accuracy, but it is still lower than that of the Simmons

tunneling barrier model.

As an alternative the mentioned predictive models in the literature, [19] and [4] are

applied to measured data and evaluated by fitting an experimentally measured i-v curve

from a fabricated memristor. The compact model [19] based on experimental observations

was developed to account for irregular i-v characteristics. In this case a simple compact

model that describes the behavior of chalcogenide based memristor devices is presented.

Although this model shows better accuracy in comparison with the predictive models, it

does not present a comprehensive template for modeling various memristors, and would

require additional mathematical computations to find new model parameters for different

memristor devices.

One of the latest models presented in [20] is known as the generalized memristor model,

which utilizes a set of mathematical functions to model the behavior of several different

memristor devices. This model has been used to match the characterization data of 6 differ-

ent device structures with less than 7 percent relative Root Mean Square (RMS) error [20]

and is capable of successfully simulating several thousand memristors within a single cir-
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cuit. Other than the model proposed in the following sections, this model was able to match

the Ag/TiO2/ITO memristor with the least amount of error.

Although this model is accurate for a broad range of memristors, it is not fully estab-

lished based on the physical charge transport mechanisms present in memristor devices.

This model is slightly less accurate when modeling the memristors OFF state in contrast to

modeling the ON state. This is because the device i-v characteristic has a curvature present

in the OFF state due to more complex charge transport effects. In the following sections

we present a SPICE-like physical model that is based on the charge transport mechanisms

in memristor devices and we present an accurate physical model of the memristor.

2.4 Memristor Charge Transport Mechanisms

Since the memristor is fabricated using a transition oxide (TiO2) its special behaviors

mainly originate from the conduction properties of titanium dioxide. The transition ox-

ides can also act as semiconductor materials. The doped titanium dioxide thin film of a

memristor is divided into two regions. One side of the TiO2 film which contains oxygen

vacancies that shows semiconductor properties, and the other side is behaving as an insu-

lator. Therefore a typical memristor has a Metal-Semiconductor-Insulator-Metal (MSIM)

like structure. Unlike typical semiconductor-based devices, the ionized atoms can drift in

the direction of the current in transition oxide while an electric field is applied [21] across

the memristor. Movement of this mobile ions via the phenomenon of electro-migration

causes a change in ion concentration along the film. Subsequently it results in changing the

conductivity of the device. Therefore, for assessing the memristors charge transport, ana-

lyzing the oxygen vacancy drift is primary. Two metallic contacts at both sides of the doped

TiO2 and undoped TiO2 region are different from each other. The electrode in contact with

the doped TiO2 region (Ag with TiO2−x) is the ohmic contact, and the electrode in connec-

tion with undoped region (ITO with TiO2) is considered the Schottky contact [17]. In this
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Figure 2.2: The Schottky Barrier Region is demonstrated as one of the main charge transport mech-
anisms. As it can be seen EC and EV are energy levels of conduction and valence bands of the
insulator region respectively. The parameter ζ is the Fermi level. Also ∆φB is the difference insula-
tor barrier height before and after the doped region (TiO2−x) extension over the insulator film length
near the Schottky barrier region. The ∆Eac, W , φB and φ

′
B are the activation energy required for

an electron to leave the valence band, width of the Schottky barrier, the Schottky barrier height,
and the maximum barrier height. (a) The TiO2 near Schottky barrier region is fully undoped and
tunneling current is limited. Therefore the dominant transport mechanism is thermionic. (b) The
oxygen deficiencies are reaching the Schottky barrier region and the potential barrier is decreased
significantly. Thus, the dominant conduction mechanism is becoming tunneling. (c) In this state
the number of oxygen deficiencies has reached its maximum value near the Schottky barrier so the
main conduction mechanism is ohmic.

structure, the oxygen vacancies drift from the doped region to the undoped zone when the

appropriate electric field is applied. The number of oxygen vacancies migrating through

the undoped region in the Schottky barrier zone of titanium dioxide film can demonstrate

the ionic drift behavior of the memristor device. The quantity of the oxygen vacancies as a

rate can be expressed as [22],

dNSchottky

dt
=

1

τ
[−stp(V )NSchottky + stp(−V )NRest] (2.4)
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NSchottky and NRest are the number of mobile oxygen vacancies in the Schottky barrier re-

gion and rest of titanium dioxide thin film areas, respectively. The total quantity of oxygen

vacancies along the thin film is the sum of NSchottky and NRest. The high resistance and

low resistance cases occur when NSchottky = 0 and NRest = 0, respectively. τ is the time

required for oxygen vacancies to move from one region to another and it can be found using

an activation-type expression for the drift velocity as proposed in [23]

τ ≈ L/2

ν
≈ L

2µE0 sinh
(
|E|
E0

) ≈ L

2µE0 sinh
(
|V |
LE0

) (2.5)

where E0 =
2KBT

e tV
, (2.6)

and ν is the vacancies drift velocity along the insulator film during the electro-migration.

KB and L are the Boltzmann constant, and the length of titanium dioxide film, respectively.

T, e, µ and tV are the temperature, the electron charge, the dopant mobility, and the poten-

tial period, respectively. The oxygen vacancies are confined by the periodic potential due

to all other atoms along the film. The quantity of oxygen vacancies near Schottky barrier

region can determined by [22],

nL = NSchottky/(NSchottky +NRest) (2.7)

After analyzing ion migration in memristor the charge transport in Schottky barrier re-

gion should be discussed. The charge transport in transition oxides is comprised of three

main mechanisms: quantum mechanical tunneling, thermionic emission, and ohmic con-

duction [24–28]. The previous efforts in modeling the memristor are based on a current

equation derived from the Simmons current equation extracted from [10] for MIM struc-

tures.
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2.4.1 Tunneling Current

The main limitation for electron movement is the Schottky barrier, the contact zone be-

tween the metallic electrode and the undoped zone of the TiO2 side along the memristor.

When a negative bias is applied across the device, width of the Schottky barrier expands

and results in less electrons tunneling through as can be seen from Fig. 2.2. On the other

hand, by applying a positive bias the oxygen vacancies will move toward the Schottky bar-

rier side of the TiO2. This results in narrowing the width of the Schottky barrier and more

carriers movement, therefore the tunneling current density is increased dramatically and it

is determined by [10],

JTunn =
α e(−β)

(γKBT )2

πγKBT

sin(πγKBT )

[
1− e(−γeV )

]
, (2.8)

where α and KB are the Richardson and Boltzmann constants respectively. The β and γ

parameters that are a function of V show different behaviors toward forward and negative

bias, while the Richardson constant has the same behavior in the different bias conditions.

In the forward bias they can be determined by

α =
4πme (KBT )2

h3
(2.9)

β =
φB − eV
EM

(2.10)

γ =
1

2EM
ln

[
4(φB − eV )

ζ

]
, (2.11)

where m is the effective electron mass. φB is the barrier height which is the difference

between the affinity of the semiconductor and work function of the metal. For the sake of

simplicity a constant barrier height is considered in the proposed model calculations. ζ is

the Fermi level of the semiconductor. The energy EM is the material dependent parameter
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Figure 2.3: The plot displays the Ag/TiO2/ITO memristor’s tunneling current in comparison with
the thermionic current at different temperatures for a -1.2 V to 1.2 V voltage domain and a ±2 V,
1 Hz triangular wave input voltage.

that is inversely related to the width of the Schottky barrier [10] and given by [29]

EM =
E0M

(1− aM nL)
, (2.12)

where E0M is the value of EM at nL = 0. aM is constant with a value between 0 and 1.

The width of the Schottky barrier, W , will change linearly as function of the quantity of

oxygen vacancies that have drifted through this region given by

W = W0(1− aM nL). (2.13)

The maximum width of the Schottky barrier is W0. The minimum width happens when the

quantity of oxygen vacancies is increased to its highest value when nL is considered as 1.

Therefore the minimum width of the Schottky barrier is W0(1− aM).
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2.4.2 Thermionic Current

In addition to the tunneling current, the thermionic current is another electron transport

mechanism in the Schottky barrier region. Based on Fig. 2.2 this mechanism is more con-

siderable when the doped region is not spread around the Schottky barrier region. Usually

in memristor models this mechanism is ignored due to its negligible value in comparison

with the tunneling current. The thermionic current density in metal insulator metal struc-

tures is determined through [30],

JTherm = Ath T
2e

(
−φ
′
B

KBT

) [
1− e

(
−eV
KBT

)]
(2.14)

where Ath =
4πmeK2

B

h3
, (2.15)

where φ′B is the maximum barrier height and h is Planck’s constant. Based on Fig. 2.3 this

mechanism has a negligible value in comparison with the other mechanisms in Schottky

barrier region.

2.4.3 Ohmic Current

The charge transport mechanism in the memristor becomes an ohmic process when oxygen

vacancies move forward to the Schottky barrier and cover the whole length of the TiO2 thin

film. Therefore the doped and undoped regions will contain oxygen vacancies and both of

them will behave as semiconductor materials. The TiO2−x/ITO interface is considered an

ohmic contact as shown in Fig. 2.2. The ohmic current density can be determined by [31]

JOhmic =
e n(T )µν V

D
(2.16)
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where n(T ) ∼=
√
NDNC

2
e

(
− ∆Eac

2KBT

)
, (2.17)

and ∆Eac is the activation energy of electrons. n(T ) is the temperature dependent charge

carrier concentration. ND andNC are the effective density of states in the valence band and

the effective density of states in the conduction band, respectively. The density of states in

a semiconductor equals the density per unit volume and energy of the number of solutions

to Schrodinger’s equation.

2.5 An Accurate SPICE-Based Memristor Model

The idea of this model is based on the electron transport mechanisms in the Schottky barrier

region. The current in the memristor may be due to either tunneling, thermionic emission,

ohmic contact, or a combination of the three depending on the state and applied voltage in

the model. The thermionic current is too small in comparison with the tunneling mecha-

nism. Therefore, to decrease the complexity of the model, thermionic current is ignored due

to its negligible effect on improving accuracy. Although in the proposed model thermionic

current is not considered, its effect on memristor device behavior can be assessed in future

works for a wide temperature spectrum. The movement of oxygen deficiencies and the

electron traveling mechanisms should be considered to determine the memristor current.

The proposed model is simulated in Fig. 2.4 for the Ag/TiO2/ITO memristor fabricated

in [4]. As described in Table 5.2, the i-v curve has been divided into six regions based

on the voltage domain and the memristor’s Schottky barrier currents in each region for

the Ag/TiO2/ITO device. . To implement the dominant memristor current mechanisms for

different regions in Table 1, the state variable nL is determined by,

dnL
dt

= g(V, nL). (2.18)
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By substituting (5) into (4) the oxygen vacancy dynamics determined in (4) can be rewritten

as [22]

g(V, nL) =
2µE0

L
sinh

(
|V |
LE0

)
[−stp(V )nL + stp(−V )(1− nL)] ,

(2.19)

also nL = NSchottky/(NSchottky + NRest). The state variable nL describes the quantity of

the oxygen vacancies near the Schottky barrier region of the memristor. It is worth noting

that the proposed model successfully reproduced the i-v curve of different devices with

different excitation voltages. However, the behavior of the Ag/TiO2/ITO device has been

analyzed and accuracy comparison with other memristor models has been made for the

triangular-voltage excitation because of data availability for this type of excitation. The

equivalent circuit for the proposed SPICE model is displayed in Fig. 2.5. To implement the

derivation presented by (2.19) in SPICE tools, a capacitor Cn with capacitance of 1 F is

used. Also, the initial quantity of oxygen deficiencies near the Schottky barrier region, n1,

is defined as the initial voltage stored across the capacitor, Cn, VCn(0)=n1. The equiv-

alent circuit for state variable nL is shown in Fig. 2.5. Therefore, the initial voltage stored

in the capacitor of the equivalent circuit is considered as n1. This value shows the initial

quantity of oxygen deficiencies in the first moment before applying a voltage across the

memristor. The dependent current source Gn is used for extracting (2.19) from the voltage

of the node nL in Fig. 2.5. Also the mobility of the oxygen deficiencies is defined using two

different parameters. The uvp is defined as the mobility of the oxygen deficiencies as the

forward bias is applied to memristor. In this case, the vacancies drift toward the ITO elec-

trode. In addition, the uvn is the mobility of the oxygen deficiencies when the memristor is

reverse biased. Since the electron mobility in the forward bias is higher than in the reverse

bias mode, these two parameters are used for fitting purposes based on the physical prop-
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Figure 2.4: This plot displays the Ag/TiO2/ITO memristor’s CTM model i-v curve which has the
highest accuracy in comparison with the previous works. The memristor i-v curve is divided into
six regions with different voltage domains. The CTM model parameters are the same as parameters
applied in Table 2.2. This i-v curve is for a ±2 V, 1 Hz triangular wave input voltage. The bottom
right corner inset displayed logarithmic scale i-v curve for positive voltages.

Table 2.1: The memristor i-v curve is divided into six regions with different voltage domains and
limited current mechanisms for a ±2 V triangular input voltage with 1 Hz frequency.

Region Voltage Domain Limited Current Mechanism
1 -2 ≤ V < 0 Tunneling & Thermionic
2 0 ≤ V < 1.5 Tunneling & Thermionic
3 1.5 ≤ V < 2 Ohmic - Tunneling & Thermionic
4 0 < V ≤ 2 Ohmic
5 -1.4 < V ≤ 0 Ohmic
6 -2 < V ≤ -1.4 Ohmic - Tunneling & Thermionic

erties of the insulator and electrodes of the memristor devices [32]. For memristor current,

the Gtunn and Gohmic current sources are used. The switching of the the Tran func

function is defined based on the logistic function given in [20]. Since the change in state

from LRS to HRS (or the inverse case) occurs gradually, the dominant current mechanism

is changed with a non-linear behavior. For instance when switching from the LRS to the
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Figure 2.5: Memristor SPICE model schematic diagram. The memristor SPICE model has three
nodes. Node 1 and 2 represent the positive and negative nodes of the memristor device, The node
nL is for visualizing the number of oxygen deficiencies near the Schottky barrier region.

HRS, the ohmic current is dominant at first, then the tunneling mechanism gradually starts

to dominate. The changing coefficient to model this behavior is applied using a logistic

function. The proposed equation is

Tran func =
1

1 + e(S Dec)
, (2.20)

where S is the setting parameter to control the state shifting of the device. This parameter

can have different values according to the physical properties of the various memristors.

The Dec parameter is given by

Dec = nth − nL, (2.21)

where nL is the quantity of the oxygen deficiencies near the Schottky barrier region at each

point in time. nth is the threshold value for the quantity of oxygen deficiencies near the

Schottky barrier region. Since the transition oxides behave like semiconductor materials as

the number of the oxygen deficiencies is exceeded, the specific value of this parameter is
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Table 2.2: Accurate memristor model spice code with charge transport mechanism analysis. The
code is written in HSPICE software.

.title SPICE Model For Memristor based on CTM

*CTM= Charge Transport Mechanisms

***********************************************
* Connections:

* 2 - Positive Electrode

* 1 - Negative Electrode

* nl - initial state

***********************************************
.Subckt Acc_CTM_Mem 2 1 nl

*
*Constants
.param
+Area=1e-17 * Effective area
+L=22e-09 * Length of insulator film
+m0=9.109e-31 * Electron weight
+h=6.626e-34 * Plank constant(j.s)
+k1=1.38e-23 * Boltzmann constant(j.s)
+K=8.617e-05 * Boltzmann constant(eV.s)
+e=1 * Electron charge (e)
+q=1.6e-19 * Electron charge (c)
+pi=3.14

*
*Physical Parameters
+T=300 * Temperature
+uve=0.1e-10 * Electron mobility
+uvo=0.14e-14 * Ion mobilty
+E0=9e07 * E0=2kT/(qa1),

* T:Temprature

* q:Electorn charge

* a1:Potential period

* E_0M Related to Schottky barrier width at nL=0
+E_0M=1.7
+Eb=3.5 * Barrier height
+n_th=0.8 * Threshold of nL
+n1=0.79 * Initial value of node nL
+deltaE=0.11 * E is activation energy
+ND=1e19 * Density of states in valence band
+NC=9e19 * Density of states in conduction band

*
*Setting Parameters
+aM=0.99
+zeta=0.2
+S=550
+bn=0.27

*
*Simplifying Parameters
.param uvp=’1*uvo’
.param uvn=’bn*uvo’
.param m = ’0.85*m0’

** A=Area*4*Pi*m*q*(K1*T)**2/(h**3)
.param A = ’0.0875e11*Area*4*PI’
.param N = ’0.707*sqrt(ND*NC)*Area*exp(-deltaE/(2*K*T))’
.param C1 =’log((4*Eb-4*e*V(2,1))/Zeta)*
+ (1-aM*V(nL,0))/(2*E_0M)’
.param b1=’(Eb-e*V(2,1))*(1-aM*V(nL,0))/E_0M’
.param Tran_func = ’1/(1+exp(S*(V(nL,0)-n_th)))’
.param sn=’(sgn(V(2,1))+1)/2’

*******************************************************
* nL: Oxygen Deficiency Quantity around Schottky Barrier
.ic nL = n1
Gn 0 nL value=’sinh(abs(V(2,1))/(L*E0))*
+ (sn*2*uvp*(E0/L)*(1-V(nL,0))+(1-sn)*2*
+ uvn*(E0/L)*(-V(nL,0)))’
Cn nL 0 1

*******************************************************
* Tunneling and Ohmic Currents*
Gtunn 1 2 value = ’Tran_func*A*pi*exp(-b1)*
+ (1-exp(-C1*V(2,1)))/(C1*K*T*sin(pi*C1*K*T))’
Gohmic 1 2 value = ’(1-Tran_func)*e*N*(uve/L)*V(2,1)’
.ends Acc_CTM_Mem
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called nth. This threshold quantity is different for each of the transition oxide materials. It is

also related to the electrode position at both sides of the insulator in the memristor device.

Therefore, two different memristors such as the Pt/TiO2/Pt device and the Ag/TiO2/ITO

device, have the same transition oxide but different electrode designs, so the value for nth

will be different in each case.
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Figure 2.6: Proposed CTM model simulations in comparison with fabricated devices experimental
data. In (a) the proposed CTM model fits the experimental data of the Pt/TiO2/Pt memristor [2]
and the model parameters are L = 50 nm, T = 300 K, nth = 0.9, n1 = 0.83,∆Eac = 1.48, Eb =
3.7, E0 = 2× 10−7, E0M = 0.49, ND = 3.16× 1017, NC = 3.6× 1017, aM = 0.2, ζ = 0.2, bn =
0.17, S = 450. The input voltage applied to the device is displayed in the sub-window. In (b)
the proposed CTM model fits the experimental data of the Pt/Hf/Ti memristor [33] and the model
parameters are L = 10 nm, T = 300 K, nth = 0.91, n1 = 0.88,∆Eac = 1.2, Eb = 2.5, E0 =
2 × 10−7, E0M = 3.3, ND = 1 × 1018, NC = 5 × 1017, aM = 0.03, ζ = 0.1, bn = 0.6, S = 100.
The input voltage applied to the device is displayed in the sub-window. In (c) the proposed CTM
model fits the experimental data of the SrTiO3 based memristor [34] and the model parameters are
L = 500 nm, T = 300 K, nth = 0.97, n1 = 0.95,∆Eac = 1.15, E0 = 1× 10−6, E0M = 1.2, ND =
7 × 1018, NC = 5 × 1018, aM = 0.01, ζ = 0.3, bn = 0.06, S = 60. The input voltage applied to
the device is displayed in the sub-window.
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Figure 2.7: These plots illustrate the fabricated Ag/TiO2/ITO memristor’s accurate modeling and
SPICE simulation. The plot in (a) shows that the i-v curve demonstrates a close match to the
experimental data and (b) the triangular input voltage. The plot in (c) displays the behavior of the
nL parameter versus time and (d) shows the memristor current. The plot (e) shows the behavior
of the nL parameter versus voltage. Lastly (f) plot displays the Ag/TiO2/ITO memristor model
behavior for a ±1 V sinusoidal input voltage of different frequencies.
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The memristor current is determined through,

imem = Tran func(nL)iTunn(V )

+ (1− Tran func(nL)) iOhmic(V ). (2.22)

To implement first and second part of (2.22) two corresponding voltage controlled current

sources, Gtunn and Gohmic are used. The node nL is used to view the quantity of oxy-

gen deficiency near Schottky barrier. The SPICE model code is written for an HSPICE as

shown in Table 2.2. It is worth noting that simulator internal limits can affect the simulation

results of the model, so careful attention to these limits should be taken into consideration

when implementing the model with a specific simulator. If this appears to be an issue with

a specific simulator, a lower capacitance value (e.g. 1 mF, 1 µF or 1 nF) can be utilized.

Subsequently, there is a need to multiply the scaled coefficient (e.g. scaled coefficient for

1 mF is 0.001) with dependent current source Gn in the SPICE code and it does not af-

fect the functionality of the coded models. Also this model can be used for other VCM

memristors such as Pt/TiO2/Pt device [2], Pt/Hf/Ti memristor [33], or this SrTiO3-based

device [34] by changing the aforementioned parameter values according to the physical

properties of each of these devices. The results for modeling these devices are displayed in

Fig. 2.6. In the SPICE code, the parameters are categorized into three groups: constants,

physical parameters, and setting parameters. The constants are independent of memristor

construction e.g. Boltzmann constant, electron charge, and others. The physical parameters

vary for each memristor design, and these parameters can be obtained through the physical

properties of each memristor e.g. thickness, mobility and others. The third category is the

setting parameters. These parameters should be adjusted based on the experimental data

for the fabricated memristors. The setting parameters are bn, S, Zeta and aM and last

two parameters definition is given by (11) and (12), respectively. Also bn and S are pa-

rameters to control switching speed between the HRS and the LRS. The SPICE simulation

for a triangular 2 V input pulse with a frequency of 1 Hz shows the same behavior as the
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experimental data for Ag/TiO2/ITO memristor. This simulation for a single triangular input

pulse is demonstrated in Fig. 2.7. The simulation shows about 0.25 RMS error compared

to experimental data. The proposed model also showed an appropriate behavior toward the

alteration in frequency as seen in Fig. 2.7(f). By increasing the frequency, the hysteresis

loop shrinks. Four sinusoidal shaped ±1 V input voltages with different frequencies were

applied to the model. When the 200 Hz frequency input voltage is used, the i-v curve

diminishes to a single-valued curve. Also this model is tested for several input voltages

with various amplitudes and shapes. In Fig. 2.8 the proposed SPICE model is simulated for

three different input voltage waveforms, sinusoidal, triangular, and pulsed.

2.6 Memristor Model With Charge Transport Mechanisms

(CTM) Analysis

For analyzing the CTM model, charge transport mechanism for different regions of i-v

curve in Fig. 2.4 should be assessed. In region 1, the bias voltage imposed on the mem-

ristor is negative. As a result, the oxygen deficiencies remain in the TiO2−x region. At

this point, the length of the undoped region is at its largest value and the voltage barrier is

high. The only way for electrons to migrate through the Schottky barrier is by tunneling

and thermionic emission. This state is called the High Resistance State (HRS). Although

the tunneling distance is high, some electrons can tunnel through the TiO2 interface and

migrate from the ITO electrode to the doped region. Also electrons can go through the

barrier by gaining sufficient thermal energy from the ambient and pass the Schottky bar-

rier. The newly arrived electrons start to move through the doped region according to the

Poole-Frenkel current mechanism [35]. The oxygen deficiencies behave like traps for the

electrons. So the electrons start their short hopping in this region until they reach to the

other end of the doped region. Moreover, since Ag/TiO2−x is the ohmic contact, these

electrons can travel to the Ag electrode by an ohmic mechanism. By increasing the bias
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voltage, the induced electric field forces the oxygen deficiencies to migrate further through

the undoped region of TiO2. Therefore, the width of the voltage barrier in the Schottky

region is diminished. This phenomenon results in easier tunneling of the electrons from

the ITO electrode through the undoped TiO2 interface to the doped region of TiO2. Sub-

sequently, surpassing the threshold voltage of the device places the memristor in its lowest

resistance (RON). After reaching +1.5 V, the dopants are gradually spread all over the un-

doped region. In region 3, the quantity of the oxygen deficiencies near the Schottky barrier

region reaches its maximum level and the ohmic contact is going to be shaped between the

TiO2−x and ITO electrode. Therefore, the ohmic current mechanism gradually becomes

dominant over tunneling in this region. The memristor’s state switches from the HRS to

the Low Resistance State (LRS) and the ohmic current mechanism becomes dominant at

the end of region 3 by reaching +2 V voltage over the device. In region 4, the voltage is

decreased from +2 V to 0 V. In this domain, since the voltage is still positive the oxygen

deficiencies are placed near the ITO electrode and remain immobile. Therefore, the whole

dielectric length is still doped and ohmic current is the main charge transport mechanism.

By entering region 5, the voltage across the memristor becomes negative. Thus, by re-

versing electric field, the oxygen deficiencies are forced to get back to the left side of the

TiO2 thin film. Shaping a new Schottky barrier is time consuming. Although the oxygen

deficiencies commence their movement to the left side of the TiO2 thin film, the current

mechanism remains ohmic until the undoped region is shaped. As the voltage is decreased

to −1.4 V, a voltage barrier is going to be created at the Schottky region and the current

mechanism is gradually altered to tunneling and thermionic emission. In region 6, the un-

doped region is shaped progressively. As ohmic current is reduced and the undoped zone

is shaped little by little, the majority of the traveling electrons are tending to move from the

ITO electrode to the doped region of TiO2 through tunneling or by passing the barrier by

gaining enough thermal energy. As these electrons are enter the TiO2−x region, the oxygen

deficiencies act like the traps for the newly arrived electrons in the doped region. Subse-
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quently, the electrons migrate through the remaining length of the doped TiO2 through the

Poole-Frenkel mechanism. As can be seen in Fig. 2.4, this model shows high accuracy in

comparison with the experimental data for the Ag/TiO2/ITO memristor fabricated in [4].

To compare simulated and experimental data, relative Root Mean Square (RMS) error is

utilized. This error can be determined by,

ev,i =

√√√√ 1

N

(∑N
n=1(vs,n − vr,n)2

v̄2
r

+

∑N
n=1(is,n − ir,n)2

ī2r

)
, (2.23)

where v̄r and īr are the mean values of the reference (experimental) data for voltage and

current, respectively. Also vs and is are the voltage and current extracted from the model

simulation data. By comparing the proposed model with the experimental data, a relative

RMS error was obtained that is considerably less than that of the other models. The rel-

ative RMS errors of some previous models (when modeling the experimental data from

the Ag/TiO2/ITO memristor) are calculated and presented in Table 2.3. The memristor-

based circuit configuration in Fig. 2.4 is utilized to determine the relative RMS errors. The

fitting parameters for the Simmons and TEAM models were selected for the best fitting

accuracy while considering simulation convergence issues. A detailed study of several pre-

vious models’ performance and optimization was completed in [36]. The semi-physical

model [4] is used to simulate the Ag/TiO2/ITO memristor device i-v characteristic by

simplifying mathematical the equations extracted from the physical assumptions of mem-

ristor behavior when only considering tunneling current. Therefore, the memristor behavior

in regions 3, 4 and 5 are not simulated accurately. This makes, this model vulnerable to

error when simulating memristor device behavior. While the proposed model considered

an ohmic current mechanism for those regions of the i-v curve. This results in accurate

modeling for all regions based on the charge transport mechanisms in memristor devices.

Also, the proposed CTM model shows good behavior when modeling the curvature of the

OFF state in the i-v curve and it has a slightly smaller RMS error in comparison with the
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generalized model.

2.7 Conclusion

In this chapter, a SPICE-based model that utilizes a charge transport mechanisms of mem-

ristor devices is proposed. Various modeling techniques are discussed. The proposed model

considers the memristor as a special MIM device that uses transition oxides for its insula-

tor. This memristor model is based on two main current mechanisms in the Schottky barrier

region namely: tunneling and ohmic currents. These currents are selected as the dominant

currents within the device based on the quantity of oxygen vacancies that exist near the

Schottky barrier region. The SPICE code was defined for the proposed model. The ap-

plicability of the code was tested with various input voltages with different amplitudes

and frequencies. The proposed model shows about 0.25 relative RMS error in comparison

with the experimental data when simulated in MATLAB for the fabricated Ag/TiO2/ITO

memristor. Existing models in the literature were also used to simulate the Ag/TiO2/ITO

memristor and their accuracies were determined. The proposed model fit other VCM de-

vices as well.
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Chapter 3

Brain-inspired Memristive Neural

Network Using Hodgkin-Huxley Neuron

RECENT findings on utilizing memristor devices that mimic biological synapses in

neuromorphic systems opens a new vision in neuroscience. Ultra-dense learning ar-

chitectures can be implemented through Spike-Timing-Dependent-Plasticity (STDP) learn-

ing mechanism by exploiting these nanoscale nonvolatile devices. In this chapter, Spiking

Neural Network (SNN) which uses biological plausible mechanisms is implemented. The

proposed SNN is utilized Hudgkin Huxley neuron and memristive synapse as two perfect

biological plausible candidates for implementation of a bio-inspired neuromorphic plat-

form similar to brain. The behavior of the proposed SNN and its learning mechanism

is discussed. Finally, the proposed design is successfully tested for pattern classification

application.

3.1 Introduction

Spiking Neural Networks (SNNs) have demonstrated good potential for the wide range of

applications like pattern recognition, clustering and computations. The SNN promises a

64
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perfect generation of Artificial Neural Network (ANN) that can be comparable in terms of

efficiency in processing information to its biological counterparts. Today, this may be a lost

part of the hardware puzzle due to the growing needs for high volume data processing in

the coming era of bioinformatics. Emerging memristor devices due to their analog mem-

ory property mimics biological synapses. These two terminal resistive switching devices

attracted intensified research on several applications like memory [1], logic implementa-

tion[2][3][4], neural network [5] and neuromorphic computing [6][7]. It was shown in [8]

memristor devices due to their adaptive behavior can reproduce Spike-Timing-Dependent-

Plasticity (STDP) feature which is the main learning scheme in the brain.

There are several works that have been published on implementation of SNN using

STDP learning scheme in most of these works they utilized simple Leaky Integrate and

Fire (LIF) neuron for their structure [6][7]. Using a biological neuron model can give

better insight of real brain-inspired SNN. Hudgkin Huxley neuron model [9] as one of the

pioneer models in the literature defines the ionic mechanisms underlying the initiation and

propagation of action potentials in the squid giant axon.

In this chapter, a memristor-based SNN is implemented by using Hudgkin Huxley neu-

ron and STDP learning scheme is applied for its learning. The proposed SNN contains

Hudgkin Huxley neurons as its neuron block and it also utilizes current controlled memris-

tor device as synapse. Basic pattern recognition application is also applied to the proposed

SNN to test its functionality.

Rest of this chapter is organized as follows. In section II Hudgkin Huxley neuron

is defined. The STDP learning with memristor synapse is explained in section III. The

proposed SNN structure and its behavior are described in Section IV. In section V the

pattern classification results are presented. Finally in section VI conclusion and remarks

are provided.
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Figure 3.1: Equivalent memristive circuit schematic for Hudgkin Huxley neuron model. The I-V
curves for memristor devices that model sodium and potassium channels are displayed.

3.2 Hudgkin Huxley Neuron

Understanding brain function as one of the most attractive topics in neuroscience can lead

to finding new treatment for brain disease. Therefore it is crucial to model biological mech-

anism in brain specifically for the neurons and synapses. In recent years, several different

neuron models have been presented. These models can be categorized into conductance-

based models with biological precision and spiking-based models, that describe temporal

behavior of cortical spike train. Hudgkin Huxley model [9] is one of the first conductance-

based accurate neuron models that can explain biological mechanisms of neuronal behavior

better than its other counterparts. In 1952 Hudgkin and Huxley by series of experiments

demonstrated that the ionic currents in squid giant axon can be determined by considering

change of the conductances of Sodium and Potassium ions in the axon membrane [12].

Their understanding lead to development of a coupled set of differential equations that be-
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came known as Hudgkin Huxley neuron model. This model can accurately reproduce all

the key biophysical properties of action potential. The electrical properties of this neuron

can be presented in terms of an electrical equivalent circuit. The current across the mem-

brane consist of the two major parts. One is associated with membrane capacitance and the

other one is the current generated by flow of ions in the resistive channels. The equation of

Hudgkin Huxley neuron model [9] can be written as,

I = CM
dV

dt
+ Iionic. (3.1)

Where I , V andCM are the total membrane current, membrane potential and membrane

capacitance respectively. Iionic is the total ionic current. This current includes currents of

Sodium, Potassium and leakage channels. The ionic current can be determined by,

Iionic = INa + IK + IL, (3.2)

INa = gNa(V − ENa), (3.3)

where gNa = ḡNam
3h, (3.4)

IK = gK(V − EK), (3.5)

where gK = ḡKn
4, (3.6)

IL = gL(V − EL), (3.7)

where INa, IK and IL are related to currents in Sodium, Potassium and Leakage channels

respectively. These currents passes Sodium, Potassium and leakage channels with gNa, gK

and gL conductances respectively. ENa, EK and EL are the equilibrium potential for each
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Figure 3.2: (a) Hudgkin Huxley membrane voltage for 15 µA/cm2 stimulus current. (b) Sodium
and potassium channel currents. The parameters were taken from original paper [9]. (c) Sodium and
potassium channel currents versus membrane voltage. (d) Hudgkin Huxley neuron state variables
behavior.

channels. The ḡNa and ḡK parameters are constants which are determined experimentally

to fit biophysical properties of neuron action potential. m, n and h are state variables to

control conductance of Sodium and Potassium channels. The state variables value altered

between 0 to 1. The state variables can be determined by,

dn

dt
= an(1− n)− bnn, (3.8)

an = 0.01
V + 10

e(V+10
10
−1)

, (3.9)

bn = 0.125e( V
80

), (3.10)
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dm

dt
= am(1−m)− bmm, (3.11)

am = 0.1
V + 25

e(V+25
10
−1)

, (3.12)

bm = 4e( V
18

), (3.13)

dh

dt
= ah(1− h)− bhh, (3.14)

ah = 0.07e( V
20

), (3.15)

bh = (e(V+30
10

) + 1)−1, (3.16)

The memristive circuit equivalent with Hudgkin Huxley neuron model has been defined

by professor Leon Chua recently [10]. He showed the currents in sodium and potassium

channels are similar to currents pass through specific memristor devices. The sodium and

potassium channels current-voltage curves are displayed in Fig. 3.1 for 50 mV sinusoidal

membrane voltage with 500 Hz frequency. The memristive equivalent electrical circuit is

depicted in Fig. 3.1. Fig. 3.2 displays an example waveform of Hudgkin Huxley neuron for
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Table 3.1: Scaled Hudgkin Huxley neuron parameters.

Parameters Value Parameters Value Parameters Value
ḡNa(mScm−2) 6 ENA(V) 2.3 CM(nF) 50

ḡK(mScm−2) 1.8 EK(mV) -240

ḡL(mScm−2) 0.015 EL(mV) 212

Table 3.2: Memristor device parameters for simulation.

Parameters RLRS RHRS L µv Vtp Vtn

Units Ω KΩ nm m2/Vs V V

Values 100 40 3 9× 10−13 1.5 -1.5

15 µA/cm2 stimulus current.

3.3 STDP Learning Mechanism with Memristor Synapses

STDP is a learning mechanism that is discovered in live neurons and elucidates cortical

phenomena better than Hebbian correlation-based plasticity. This mechanism is based

on time difference of arrival spikes from pre-synaptic and post-synaptic neurons. Unlike

Hebbian learning mechanism STDP is capable of generating both Long Term Potentia-

tion (LTP) and Long Term Depression (LTD) phenomenons. LTP results in increasing

the synaptic strength or weight of the synapse W and it happens when post-synaptic neu-

ron spikes after pre-synaptic neuron (tpost − tpre ≥ 0). On the other hand, in LTD the

synaptic strength is decreased and it happens when pre-synaptic spike comes after post

(tpost − tpre < 0).

Memristive nanodevices have variable resistance and they can transmit spikes with vari-

able conductance (or weight). When a positive voltage higher than device positive threshold

(Vtp) is applied to memristive synapse, there will be an increase in its conductance. When

a negative voltage smaller than device negative threshold (Vtn) is applied to memristive

synapse, its conductance will be decreased. Memristor synapses can implement STDP bet-
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Figure 3.4: The membrane voltage of pre and post synaptic Hudgkin Huxley neurons connected
with memristive synapse for 15 µA/cm2 stimulus current.

ter than the other elements. In Fig. 3.3 STDP learning mechanism is illustrated for proposed

SNN with memristive synapses.

3.4 Proposed SNN Architecture and Behaviour

The proposed SNN is utilizing voltage controlled memristors (VCM) as synapses and

Hudgkin Huxley neurons as neuron blocks. The Hudgkin Huxley neuron parameters were

scaled around 2 V to have biological plausible shape of spike for proposed SNN. The ap-

plied parameters for proposed Hudgkin Huxley neuron are defined in Table 1. For analyz-

ing the behavior of the proposed SNN architecture, at first dynamic behavior of two coupled

Hudgkin Huxley neurons connected with memristive synapse should be assessed. A volt-

age of memristive synapse’s input terminal which is connected to pre-synaptic Hudgkin

Huxley neuron is determined by,

CM
dVpre

dt
= ḡNam

3h(Vpre − ENa) + ḡKn
4(Vpre − EK)

+ḡL(Vpre − EL)− Iapplied. (3.17)
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The parameter Vpre is pre-synaptic neuron’s membrane voltage. The Iapplied is the input

current to pre-synaptic neuron. The amplitude of input current for proposed Hudgkin Hux-

ley neuron is 15 µA/cm2. On the other hand, the post-synaptic neuron input current is

the current which passes memristive synapse. The membrane voltage of the post-synaptic

neuron in two coupled Hudgkin Huxley neurons network can be determined by,

CM
dVpost

dt
= ḡNam

3h(Vpost − ENa) + ḡKn
4(Vpost − EK)

+ḡL(Vpost − EL)− Isyn. (3.18)

The parameter Vpost is membrane voltage of the post-synaptic neuron. The Isyn is the

current in memristive synapse. The memristive synapse is changing its conductance con-

tinuously as the applied voltage over the device (Vpost - Vpre) exceeds the device threshold.

The synaptic current is determined based on the memristive device model properties. Here

linear boundary ion drift model is applied for simulation. The parameters of the utilized

memristor is defined in Table 2. The synaptic current Isyn can be determined through,

Isyn(t) =
Vpost(t)− Vpre(t)

Rsyn(w)
, (3.19)

Rsyn(w) = RLRS
w(t)

L
+RHRS(1− w(t)

L
), (3.20)

dw

dt
=
µvRLRS

L2
× Isyn(t)× f(w), (3.21)

f(w) =

(
1− 2

(
w(t)

L

))2p

. (3.22)

The parameter f(w) is the window function [11] and p is a constant. The behavior of two

coupled Hudgkin Huxley neurons with memristive synapse is illustrated in Fig. 3.4 for 15

µA input current. The proposed SNN can be utilized for pattern classification application.

The proposed learning scheme is unsupervised as classification occurs based on the patterns

given to input neurons. The output neurons represents a cluster and the center of each

cluster is targeted by weights of connected synapses to each output neuron. When an input
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Figure 3.5: 2×2 network architecture of the proposed SNN. The input patterns for the proposed
network are defined.

patterns applied to the input neuron one of the output neurons becomes a winner due to the

combination of connected synaptic weights. The weight vector of the winner output neuron

is the closest one to the input pattern vector.

3.5 Pattern Classification Results

3.5.1 2×2 Proposed SNN

The 2×2 network is implemented with two input and two output Hudgkin Huxley neurons.

These neurons are connected with four memristive synapses. This network is utilized to

classify between two patterns. These patterns are two pixel images with class 1 and 2.

Pixel 1 and pixel 2 are applied as inputs to pre-synaptic neuron 1 and pre-synaptic neuron

2 respectively. The proposed network is illustrated in Fig. 3.5.

As it can be seen in Fig. 3.6 the post-synaptic neurons are spiking at first without any

specific pattern. It takes some times for post-synaptic neurons to follow the input patterns.

The learning is unsupervised and the winner neuron follows one of the patterns due to its

initial weight vector. When the image with class 2 assigned to post-synaptic neuron 1,

the weight of the memristive synapse 1 increases due to STDP mechanism. Since post-
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Figure 3.6: The membrane voltage of the pre synaptic (black curve) and post synaptic (blue curve)
neurons for 2×2 network. The proposed network classifies the patterns successfully.
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Figure 3.7: The weight evolution of the memristive synapse for 2×2 network.

synaptic neuron 1 spikes after pre-synaptic neuron 1 (black pixel has been applied to input

neuron and make it spiking), the weight of the memristive synapse 1 increases. Also the

memristive synapse 2 weight decreases since post-synaptic neuron 2 is inactive while the

pre-synaptic neuron 1 spikes. The similar procedure is occurred for image with class 1.

The input and output waves for proposed 2×2 SNN is displayed in Fig. 3.6. As it can be

seen in Fig. 3.7 the memristive synapse weights W1 and W4 are increased and W2 and W3

are decreased for the proposed input patterns.
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3.5.2 4×2 Proposed SNN

The 4×2 network of the proposed SNN is also implemented to classify between two four

pixel images and it is illustrated in Fig. 3.8. The proposed network has been successfully

tested as four pixels are applied as input to pre-synaptic neurons of the SNN. The input sig-

nals are displayed in Fig. 3.9. The proposed SNN output results with memristive synapses

weight evolution are displayed in Fig. 3.10. The memristive synapses initial weights were

randomly assigned. In the proposed network, image class 1 and class 2 are assigned to

post-synaptic neuron 1 and post-synaptic neuron 2 respectively.

3.6 Conclusion

This chapter described a bio-inspired spiking neural network by utilizing Hudgkin Huxley

neuron as one of the most accurate biological model. The proposed SNN uses memristive

synapses and STDP online learning which provide closer match to biology for learning

mechanism. The proposed SNN architecture and its learning mechanism explained in de-
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Figure 3.9: The membrane voltage of the pre-synaptic Hudgkin Huxley neurons.

tails. The proposed SNN small networks were successfully tested for pattern classification

applications. The results showed close behavior to biology.
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Chapter 4

STDP-based Memristive Spiking Neural

Network Using Morris-Lecar Model

THESE days, there is an increasing interest in implementation of spiking neural sys-

tems that can be used to perform complex computations or solve pattern recognition

tasks like mammalian neocortex. In this Chapter, Morris-Lecar neuron is utilized to im-

plement bio-inspired memristive spiking neural network for unsupervised learning appli-

cations. The spike-Timing-Dependent-Plasticity (STDP) learning mechanism has been ap-

plied as the learning scheme in the system. The memristive implementation of the Morris-

Lecar neuron has been analyzed. Also the memristors are utilized as the synapses for the

proposed system. The proposed platform is tested for pattern classification applications

and the results are successfully confirmed the functionality of it.

4.1 Introduction

Spiking Neural Network (SNN) is a promising generation of Artificial Neural Network

(ANN) that can be comparable in terms of efficiency in processing information to its bio-

logical counterparts [1]. Today, this may be a lost part of the hardware puzzle due to the
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Figure 4.1: Equivalent circuit schematic for ML neuron model.

growing needs for high volume data processing in the coming era of bioinformatics [2].

In SNN, the presence and timing of individual spikes are considered as the main scheme

for communication and neural computation [3]. Pulse-coupled neural networks with spike-

timing are considered as a vital component in biological information processing systems,

such as the brain. Understanding brain function, as one of the most attractive topics in

neuroscience, can lead to discovery of new bio-inspired computing systems. Hence, it is

crucial to model biological mechanism in brain specifically for the neurons and synapse to

have a deeper understanding of brain information processing mechanisms.

In recent years, several different neuron models have been presented [4-9]. These

models can be categorized into conductance-based models [4-7] with biological precision

and spiking-based models [8-9], that describe temporal behavior of cortical spike train.

Hudgkin-Huxley [4] is the pioneer of conductance-based model to describe the physiolog-

ical mechanisms of neuronal behavior in central nervous system. Despite its high accuracy

in defining a biological behavior of the neuron, it has a high computational cost for im-

plementation due to its complexity. Thus, selecting a simpler model, which has a lower

complexity and acceptable accuracy, is a viable alternative for low cost hardware imple-

mentation of bio-inspired neural systems.
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Morris-Lecar (ML) model [7] is one of the computationally efficient conductance-based

neuron models that offers a reasonable accuracy to produce biophysical behavior of neu-

ronal activities. This model was developed to define the dynamics of the barnacle muscle

fiber. The ML model includes a set of first order differential equations that reproduce the

evolution of the membrane potential, calcium current and potassium current. Interestingly,

ML neuron potassium and calcium current equations show memristive behavior [10]. Thus,

ML neurons can be implemented by utilizing the nanoscale memristors which reduces the

area overhead for hardware implementation ML-based neural systems significantly.

Memristor is an analog memory device, which can be fabricated in high density nano-

scale fabrics. Unique characteristics of this new emerging technology has shown a great

potential to be used as biological synaptic connection in bio-mimic hardware [11]. In ad-

dition, it can reproduce Spike-Timing-Dependent-Plasticity (STDP). Memristor crossbar

architecture opens the opportunity to have ultra size scaling of very large scale neural net-

works. Recently, several studies have been done on neuromorphic computing with mem-

ristor devices but most of them employed spiking-based neuron model like Integrate and

Fire (IF) and Leaky Integrate and Fire (LIF) [12]. Memristive neuromorphic computing

using biological plausible model of neuron [19] is worth to be implemented as it leads to

understanding of real neuronal interactions in brain.

In this chapter, unsupervised STDP-based learning is tested for memristive SNN by

utilizing ML neuron. The memristive implementation of the ML neuron is analyzed by

showing the potassium and the calcium channels memristive behavior. The coupled ML

neurons behavior by using a memristive synapse are assessed for STDP learning rule. For

testing the functionality of proposed SNN, two pattern classification applications are im-

plemented by this scheme. The results of the simulations for pattern classifications are

presented.

82



4. STDP-BASED MEMRISTIVE SPIKING NEURAL NETWORK USING MORRIS-LECAR MODEL

V

I

CM

GL

VLVCaVK

IK ICa

GCaGK

IL

Figure 4.2: Equivalent memristive circuit schematic for ML neuron model.

4.2 Memristor Device and Its Functionality

A nanoscaled passive two-terminal resistive device with non-volatile characteristics was

discovered in 2008 by researchers in HP lab [13]. This device had been envisioned earlier

in 1971 by Leon Chua [14]. The pinched hysteresis i − v curve of memristor represents

its unique memory-dependent feature. These devices have been utilized in various appli-

cations such as, nanoelectronic memories [15], logic implementation [16-17] and neuro-

morphic [18-19]. Memristor comprises of an electrically switchable thin film sandwiched

between two metal contacts with a total length of L. The thin film consists of doped and

undoped regions. The instantaneous voltage and current of memristor device obey a state-

dependent Ohm’s law. The voltage-controlled device can be defined by,

i = G(v, w, t)v, (4.1)
dw

dt
= f(v, w, t)v. (4.2)

The length of doped region, w, is considered as the internal state variable of the device. By

applying a voltage higher than positive (Vtp) and negative (Vtn) threshold of the device, the

internal state variable is altered and the device resistance is changed between low resistance
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state (RLRS) and high resistance state (RHRS).

4.3 Morris-Lecar Neuron

The ML model [7] was developed to generate the biological behavior of calcium Ca++ and

potassium K++ conductances in giant barnacle muscle fiber. This model has three ionic

currents: a membrane leakage current, a potassium current and a calcium current. The

electrical equivalent circuit for this model is defined in Fig. 4.1. The simplest form of the

ML model is defined by,

I = CM
dV

dt
+ Iionic. (4.3)

Iionic = ICa + IK + IL, (4.4)

where I , V and CM are the total membrane current, voltage and capacitance, respectively.

The ionic current, Iionic, consists of calcium (ICa), potassium (IK) and leakage (IL) currents.

These three currents are determined by,

ICa = gCaM (V ) (V − VCa), (4.5)

IK = gKN(V − VK), (4.6)

IL = gL(V − VL), (4.7)
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4. STDP-BASED MEMRISTIVE SPIKING NEURAL NETWORK USING MORRIS-LECAR MODEL

where gCa, gK and gL are maximum or instantaneous conductance for calcium, potas-

sium and leakage channels, respectively. The parameters VCa, VK and VL are equilibrium

potentials corresponding to calcium, potassium and leakage channels, respectively. M and

N denote the fraction of open calcium and potassium channels, respectively. These param-

eters can be determined by,

dM

dt
= λM(V ) [M∞(V )−M ] , (4.8)

M∞ (V ) = 0.5

{
1 + tanh

(
V − V1

V2

)}
, (4.9)

λM(V ) = λ̄M(V )cosh

[
V − V1

2V2

]
, (4.10)

dN

dt
= λN(V ) [N∞(V )−N ] , (4.11)

N∞ (V ) = 0.5

{
1 + tanh

(
V − V3

V4

)}
, (4.12)

λN(V ) = λ̄N(V )cosh

[
V − V3

2V4

]
, (4.13)

where M∞ and N∞ denote the fraction of open calcium and potassium channels at steady

state, respectively. The parameter V1 and V3 are the membrane potential value at M∞ =

0.5mV and N∞ = 0.5mV, respectively. V2 and V4 are reciprocal of slope of voltage de-

pendent M∞ and N∞, respectively. The parameters λM(V) and λN(V) are rate constants

for opening of calcium and potassium channels, respectively. In addition, the maximum

rate constants for opening of calcium and potassium channels are λ̄M(V ) and λ̄N(V ), re-

spectively. By assuming that the response of the calcium ion is considerably faster than

the response of the potassium ion and the state equation of calcium is in the steady state,
dM
dt

= 0 (M = M∞(V )), the differential equation in (1) is simplified to second-order form
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Table 4.1: Scaled Morris-Lecar neuron parameters.

Parameters Value Parameters Value Parameters Value
gCa(µScm−2) 0.11 VCA(V) 4.8 CM(µFcm−2) 0.5

gK(µScm−2) 0.2 VK(V) -3.36 λ̄N(ms−1) 40

gL(µScm−2) 0.05 VL(V) -2.4 λ̄M(ms−1) 800

as follows,

CM
dV

dt
= −gCaM∞(V ) [V − VCa]− gKN(V ) [V − VK ]

−gL [V − VL] + I (4.14)

By analyzing the general form of the ML model, it can be deduced that the calcium and

potassium channels are showing memristive behavior [10]. The time-varying conductance

in potassium and calcium channels can be defined by two memristors as it is displayed in

Fig. 4.2. The parametersN andM are similar to the state variable of memristor devices. By

simulating the current in potassium and calcium channels a pinched hysteresis loop under

bipolar periodic signal is extracted. This feature is similar to the unique characteristic of

memristor devices. In addition, by increasing the frequency of the applied bipolar periodic

signal, the hysteresis loops are shrunk and by reaching to a specific frequency it becomes

to a single-value function through the origin. Hence, these properties prove the memristive

nature of calcium and potassium channels in ML model. The memristive equivalent model

for ML is depicted in Fig. 4.2. For utilizing the ML model in the proposed SNN, the ML

model is scaled to around 2V. The parameters for scaled ML model are defined in Table 1.

The i−v curve of the potassium and calcium channels are displayed in Fig. 4.3 for different

frequencies. In addition, the bifurcation and parameters behavior in the proposed scaled

ML neuron are illustrated in Fig. 4.4 for three different applied currents to the neuron.
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MLML

Pre-Neuron Post-Neuron 
t

t + dt

Post-spike

Memristor 
Synapse

Input Signal

Coupled NeuronsDepression
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dt = tPost - tPre
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dt > 0

Potentiation
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Vtp

Vtn

Vtp

Pre-spike

Figure 4.5: STDP learning mechanism is illustrated for two coupled ML neurons with a memristive
synapse. LTD and LTP phenomenons are displayed.

4.4 STDP Learning Mechanism with Memristor Synapses

STDP is a timing-based learning mechanism postulated to exist in biological neurons of

mammalian neocortex [18]. The functionality of this mechanism is based on the relative

timing of spikes arrival from pre-synaptic and post-synaptic neurons. Long term poten-

tiation (LTP) and long term depression (LTD) phenomenons can be generated by STDP

mechanism and they cause alteration in synaptic efficacy (weight). LTP happens when

pre-synaptic neuron spike proceeds the post-synaptic neuron (tpost − tpre ≥ 0) and it in-

creases the synaptic weight (W ). LTD takes place when post-synaptic synaptic neuron

spikes before pre-synaptic neuron (tpost− tpre < 0) and this results in reduction of synaptic

weight. The degree of change in synaptic weight is a function of the time interval between

post- and pre-synaptic spikes. The larger changes are induced by shorter time interval.

Interestingly, the memristor device behavior mimics biological synapse in the brain as its

conductance can be modulated by applying a stimuli with an ability to store the information

[11]. These devices are capable of reproducing STDP mechanism similar to biology. In
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LTP phenomenon, the voltage over the memristor synapse becomes greater than positive

threshold of the device (Vpost− Vpre ≥ Vtp) and the conductance (weight) of the memristor

increases. On the other hand, in LTD phenomenon the voltage over the memristor synapse

becomes less than negative threshold of the device (Vpost − Vpre < Vtn) and it results a

reduction in conductance (weight) of the memristor. The STDP learning mechanism is

displayed for proposed SNN with memristive synapse in Fig. 4.5.

4.5 The Memristive SNN with ML Neuron

The architecture of the proposed SNN comprises of ML neurons and voltage-controlled

memristor synapses. The scaled ML model, with parameters presented in Table 1, generates

biological plausible shape of spike. The memristor model [20] is applied for memristor

synapse and its parameters are defined in Table 2. The proposed SNN has a pre-synaptic

neurons layer that is connected with memristive synapses to post-synaptic neurons layer.

To analyze the behavior of the SNN, at first two coupled ML neurons with one memristive

synapse is assessed. The pre-synaptic neuron’s membrane voltage can be determined by,

CM
dVpre

dt
= −gCaM∞(Vpre) [Vpre − VCa]

−gKN(Vpre) [Vpre − VK ]− gL [Vpre − VL] + I. (4.15)

The parameter Vpre is pre-synaptic neuron’s membrane voltage. The parameter I is the

applied input current to pre-synaptic neuron. The applied current to pre-synaptic neurons

for proposed SNN is considered 100 µA which produces hopf bifurcation in ML neuron

model. The membrane voltage of the post-synaptic neuron can be determined by,

CM
dVpost

dt
= −gCaM∞(Vpost) [Vpost − VCa]

−gKN(Vpost) [Vpost − VK ]− gL [Vpost − VL] + Isyn. (4.16)
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4. STDP-BASED MEMRISTIVE SPIKING NEURAL NETWORK USING MORRIS-LECAR MODEL

Table 4.2: Memristor device parameters for simulation.

Parameters RLRS RHRS L µv Vtp Vtn

Units Ω KΩ nm m2/Vs V V

Values 100 10 3 1× 10−15 1.5 -1.2

The parameter Vpost is membrane voltage of the post-synaptic neuron. The Isyn is the total

ML

MLML

ML

Pixel 2

Pixel 1

W1

W4

in1

in2

out1

out2

Class 1 Class 2

Pixel 2

Pixel 1

Pattern

Input 1

Input 2

Figure 4.6: 2×2 network architecture of the proposed SNN. The input patterns for the proposed
network are defined.

current enters the post-synaptic neuron by memristive synapses and in this case it is equal to

the current passes memristor synapse. In larger SNN, as post-synaptic neuron is connected

to k pre-synaptic neurons with memristive synapses that have currents (Isyn1,Isyn2,...,Isynk),

the pre-synaptic neuron current is equivalent to,

Isyn =
k∑
j=1

Isynj. (4.17)

The synaptic current in each synapse varying due to the conductance change happens in

each synapse during neuronal activities. As the voltage over each synapse exceeds the

positive and negative threshold of the device, the LTP and LTD phenomenons occur and

the conductance of the synapses alter. The current of each synapse Isynj can be determined
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Figure 4.7: The membrane voltage of the pre-synaptic (black curve) and post synaptic (purple curve)
neurons for 2×2 network. The proposed network classifies the patterns successfully.

as,

Isynj(t) =
Vpost(t)− Vprej(t)

Rsynj(wj)
, (4.18)

Rsynj(wj) = RLRS
wj(t)

L
+RHRS(1− wj(t)

L
), (4.19)

dwj
dt

=
µvRLRS

L2
× Isynj(t)× f(wj), (4.20)

f(wj) =

(
1− 2

(
wj(t)

L

))2p

. (4.21)

The parameter f(wj) is the window function [20] for each synapse and p is a constant.

The p value is considered 2 in simulations. The pattern classification application has been

tested for the proposed SNN.
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Figure 4.8: The weight evolution of the memristive synapse for 2×2 network.

4.6 Pattern Classification Results

The proposed SNN is utilized to perform unsupervised classification by STDP learning

scheme. By applying different patterns to input neurons, the output neurons generate pat-

terns based on the weight update of connected synapses to them. One of the output neurons

becomes a winner and reproduce one of the patterns in input due to the combination of

connected synaptic weights. This happens when the weight vector of the winner output

neuron is closer to one of the input pattern vector. For testing the functionality of the pro-

posed ML-based SNN two simple pattern classification tasks have been done. The first one

is the 2× 2 network that comprises of two input ML neurons (in1, in2) and two output ML

neurons (out1, out2). These two layers are connected to each other by memristor synapses

with random initial weights (W1,W2,W3,W4). Each input neuron is connected to all out-

put neuron with one memristive synapse. This network is applied to classify between two

pixel images with class 1 and 2. As it can be seen from the Fig. 4.6, two different input

waves are applied to the input neurons. The input wave can be divided into several time
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Figure 4.9: The voltage over each memristive synapse that produce LTP or LTD phenomenons for
2×2 network.

frames and in each time frame one of the classes are applied. The input 1 and 2 are cor-

responding to the pixel 1 and 2 of the pattern, respectively. In the first time slot which is

corresponding to class 1, the input 1 is spiking because pixel 1 is black and there is no spike

for input 2 since the pixel 2 is white in this class. Subsequently, in the next time slot, class

2 of the two pixel image is applied as the input 1 is not spiking and input 2 is spiking.

The output for the proposed network with applied input waves are displayed in Fig. 4.7.

It takes some times for post-synaptic ML neurons to follow one of the input patterns. The

initial weight vector of each output neuron specifies the consumed time to follow the pat-

tern and the pattern class to display due to its closeness to input patterns vector. Assuming

the class 1 is assigned to the post-synaptic neuron 1, the weight of W1 increases by LTP

phenomenon as pre-synaptic neuron in1 spikes before the post-synaptic neuron out1. On
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Figure 4.10: 4×2 network architecture in memristive crossbar array for the proposed SNN. The
input patterns for the proposed network are defined.

the other hand, the weight of W2 decreases due to the inactivity of out2. The similar pro-

cedure is repeated for class 2 image. The memristive synapse weights and their behavior

during STDP learning is displayed in Fig. 4.8. As it can be seen, W1 and W4 weights are

increased and W2 and W3 are decreased. Also the voltage over each memristive synapse

during STDP learning procedure and weight evolution is displayed in Fig. 4.9. The larger

network, 4×2, is also tested with the proposed SNN. This network is displayed on memris-

tive crossbar array in Fig. 4.10. The proposed network classifies 2 classes of the four pixel

image. Two input patterns based on the classes are assigned to four input waves and applied

to pre-synaptic neurons. These inputs are displayed in Fig. 4.11. The network is success-

fully performed the classification task and the output results are illustrated in Fig. 4.12
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Figure 4.11: The membrane voltages of the pre-synaptic neurons for 4×2 network.
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Figure 4.12: The membrane voltage of the post-synaptic neurons for 4×2 network.

for both post-synaptic neurons. The weight evolution and behavior for each synapses are

depicted in Fig. 4.13.

4.7 Conclusion

This Chapter presented a memristive biological plausible spiking neural network with

Morris-Lecar neuron model for pattern classification. The memristive implementation of
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Figure 4.13: The weights evolution of the memristive synapses for 4×2 network.

ML neuron was explained and the potassium and calcium memristive channels behavior

was investigated. The scaled model of the ML neuron was applied in a memristive SNN

architecture and the STDP learning scheme was applied for pattern classification. Finally,

two pattern classification examples was tested successfully with the proposed network as a

proof of concept.
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Chapter 5

A Novel CVNS Adder with Memristive

Analog Memory

CONTINUOUS Valued Number System (CVNS) is a new approach in computer arith-

metic to develop high performance and efficient arithmetic units. In this chapter,

CVNS-based computation scheme is applied to design a memristive analog adder and it

has been demonstrated that this technique is a viable alternative approach to implement

multi-digit arithmetic system with multilevel memory devices. The proposed CVNS adder

has addition and modulo configurations to perform CVNS addition. A mapping circuit has

been designed for modulo operation. The proposed memristive CVNS-based adder has

been tested and analyzed for different CVNS values with radix-10 and 2-digit analog en-

vironment resolution. The simulations are shown acceptable accuracy and the presented

system performance that promises an analog memristive computation method for future

in-memory computation systems.
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Table 5.1: radix-10 CVNS digits of an arbitrary value x = 73.421.

i 1 0 -1 -2 -3
((x))i 7.3421 3.421 4.21 2.1 1
b((x))ic 7 3 4 2 1

5.1 Introduction

Memristive logic circuit design [1]-[5] has been intensified in research, due to the nanoscaled

features of memristor and its capability of performing logic and memory operations simul-

taneously. Von-Neumann based architectures requires a constant communication between

the memory and computation unit. Thus, implementation of memristor-based computing

system is attractive for future in-memory computing architectures which is beyond classical

Von-Neumann theory.

The Continuous Valued Number System (CVNS) [6] is a continuous number system

with non-integer digits. This novel number system has the potential in development of new

types of arithmetic blocks. Due to its digit-wise nature to perform arithmetic operations,

CVNS-based design reduces the wiring complexity and area consumption of the arithmetic

circuits. Several arithmetic units such as adders and multipliers have been designed by

CVNS scheme [7][8].

In this chapter, a memristive CVNS-based adder is implemented which is employed

CVNS scheme to perform a digit-wise summation operation. A new scheme is presented

to display a CVNS value by memristor devices. The proposed adder is required addition

and modulo configurations for CVNS addition operation and it needs fewer number of

interconnections to perform the operation as CVNS offers a summation operation with no

carry. The functionality of proposed adder is evaluated and its relative error is extracted.
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Table 5.2: radix-10 CVNS digits for addition two arbitrary value x = 58.34 and y = 72.89.

i 2 1 0 -1 -2
((x))i 0.5834 5.834 8.34 3.4 4
((y))i 0.7289 7.289 2.89 8.9 9

((x))i + ((y))i 1.3123 3.123 1.23 2.3 3

5.2 Continuous Valued Number System (CVNS)

The CVNS digits, ((x))i, in radix-β are designated as CVNS representation of any real

value, x, within a boundary |x| ≤ M in a positional number system with radix-B [6]. The

CVNS value ((x)) can be written as a vector,

((x))⇒ {((x))L , ..., ((x))0 | ((x))−1 , ..., ((x))−k} (5.1)

where the bar (|) shows the radix point and (−k ≤ i ≤ L) represents the indices of CVNS

digits. In the CVNS paradigm, the digits with higher indices contains higher information

density in comparison with lower indices and the CVNS digit with the highest index has

the whole information with a degree of uncertainty regarding the original value. The CVNS

digits can be determined by applying a basic modular reduction operation as follows,

((x))i =
( x
M
.βL−i+1

)
modβ (5.2)

where mod is the modulo operation on any real value such that (a)modβ = a − N × β

by assuming 0 ≤ (a)modβ ≤ β and N is an integer. Each CVNS digit comprises of an

integer part and non-integer part. The non-integer part overlaps with the lower index digits.

The relationship between two adjacent CVNS digit is determined by,

((x))i = b((x))ic+
((x))i−1

β
(5.3)

where b.c denotes floor function. For better insight a radix-10 CVNS digits of an arbitrary
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Figure 5.1: Programming memristor device by applying a 0.8 V square pulse with different pulse
widths.

Table 5.3: Memristor device parameters for simulation.

Parameters RLRS RHRS L µv Vtp Vtn

Units kΩ kΩ nm m2/Vs V V

Values 1 100 3 8× 10−7 0.4 -0.4

value x = 73.421 is defined in Table 1.

The addition is performed independently on each of the CVNS digits. Hence, it means

there is no need for carry during addition operation in CVNS scheme. The CVNS digits

of ((z)) = ((x)) ((+)) ((y)), by considering x, y ≤ M , can be determined by digit-wise

addition,

((z)) = (((x))i + ((y))i)modβ. (5.4)

The modular reduction operation after the addition prevents the overflow since it limits

the digit within the radix value. Therefore the summation is done for each digit columns
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without intercommunication. The radix-10 CVNS addition of two arbitrary values is shown

in Table 2. The number of required CVNS digits is L = 1 and k = 2.

5.3 Memristor Device and Its Programming

Memristor device is a promising candidate for analog computation and analog memory [5].

In these devices, by applying a voltage higher than a specific threshold the doping profile

of transition oxide filament can be altered between two main states: High Resistance State

(HRS) and Low Resistance State (LRS). The Vtp and Vtn are positive and negative threshold

voltages in memristor devices. On the other hand, by applying a voltage less than |Vtp| and

|Vtn| the change in device state is negligible. The voltage-controlled memristor device can

be defined by [9],

i = G(v, w, t)v (5.5)

dw

dt
= f(v, w, t)v (5.6)

where w is state variable that represents structural property of the device. The linear ion

drift model [9] is described memristor behavior based on the movement of boundary region

along the device. In this model a device with length of L, has doped region with length of

w and un-doped region with length of L−w. The boundary region moves along the length

of the transition oxide filament as the sufficient amount of charge has flown through the

device. The memristor is considered as two variable resistors in series. The memristance

of the device is defined by,

Rmem(w) = RLRS
w

L
+RHRS(1− w

L
). (5.7)
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Figure 5.2: The schematic of CVNS adder circuit and configuration table for the switches. (a)
Configuration table. (b) MCVNS adder.

The parameters RLRS and RHRS are the resistances of the device when doped and un-doped

region covers the whole length of the memristor respectively. The parameters of memristor

device, which is applied for simulation, are defined in Table 3. The memristor can be

programmed by applying a square voltage over it. The amount of programming over the

device is controlled by the duration of the pulse. As it can be seen in Fig. 5.1, the memristor

device is programmed to the desired memristances by applying 0.8 V square pulse with

different pulse widths. The write time for changing the device state from RHRS to RLRS is

100 ns. As an example, for writing 75.58 KΩ the square pulse with 0.8 V amplitude and

30 ns pulse width has been applied over the device.
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5.4 Memristive Continuous Valued Number System (MCVNS)

Adder

The memristive circuit performing CVNS-based addition is designed based on the addition

and modulo operation in CVNS scheme. The proposed circuit stores values as the mem-

ristance of the memristor devices and the numbers are inserted to the circuit by adjusting

input memristors to the corresponding state variables. The radix of the CVNS scheme is

considered as RHRS when the state variable w = 0nm. The proposed circuit is displayed in

Fig. 5.2. As it can be seen from the circuit schematic, the memristor IN1 and IN2 are the

input devices. The memristor OUT is the output memristor that stores the CVNS addition

results by the end of the operation.

This circuit is configured by monitoring of the node P to work in the addition or mod-

ulo modes. The switches S1,2,...,5 are applied to change the configuration of the circuit.

Also, for modulo operation mode a mapping circuit has been designed to adjust C1 and C2

memristors to the desired values.

5.4.1 Memristive Addition Configuration

This mode is taken place when the addition result, ((z))i of the inputs, ((x))i and ((y))i,

becomes less than the radix value (β). For this mode, the switches S1 and S2 are in CLOSE

and OPEN state, respectively. This circuit mode comprises of three series connected mem-

ristors as it is illustrated in Fig. 5.3(a). Let |Vt| = |Vtn| = |Vtp| be the threshold voltage

of memristor devices. In initialization step, the memristances of input devices, IN1 and

IN2 should be set to the corresponding input values and the output device should be initial-

ized to high resistance state (RHRS). This circuit adds to CVNS digits with corresponding

memristances RIN1 and RIN2 while RIN1+ RIN2 ≤ RHRS and stores the result, ROUT, in the

output device. By setting V0 voltage to 2Vt the functionality of the circuit is ensured for the
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Figure 5.3: Different MCVNS adder configurations equivalent circuits. (a) Addition configuration.
(b) Modulo configuration. (c) Modulo circuit for analysis. (d) Mapping circuit.

desired addition operation. The voltage over the output device is determined by,

VOUT = V0

(
ROUT

ROUT +RTot

)
, (5.8)

RTot = RIN1 +RIN2 . (5.9)

The output device, OUT, voltage is depicted in Fig. 5.4 for 2RLRS < RTot < 2RHRS

domain. The maximum VOUT voltage is around 2Vt when two input devices are in low

resistance state. The output device state has been changed until the voltage over it reaches
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Figure 5.4: The voltage over the OUT device. (a) The voltage of the output device in
[2RLRS, RHRS] interval for addition configuration. (b) The voltage of the output device in
(RHRS, 2RHRS] interval for modulo configuration. Also, the resistance value for mapping is dis-
played.

to the threshold voltage of memristor (Vt) which is V0/2. This means at the end of the

operation RTot becomes equal with ROUT. For the values greater than RHRS the output

memristor’s state remains unchanged since the VOUT is less than the threshold voltage.

5.4.2 Memristive Modulo Configuration

This configuration is applied when RTot is greater than RHRS. The modulo configuration

is displayed in Fig. 5.3(b). In this mode, the switches S1 and S2 are both closed and S3 is

OPEN. For designing a modulo operation a circuit schematic in Fig. 5.3(c) is analyzed.

The only difference with addition circuit is the parallel branch with resistor R and the bias

voltage V1. In the modulo operation, the value of ROUT should change from RHRS, initial

memristance, to RTot−RHRS. By assuming V1 = 0V, the equivalent resistance which is in

series with ROUT is,

RTot||R =
RTotR

RTot +R
= RTot −RHRS (5.10)
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Table 5.4: Corresponding memristance for radix-10 CVNS digits with ψ = 2 resolution.

CMOS Devices Width Length Resistors Resistance
M1 120 nm 60 nm R1 26 kΩ

M2 500 nm 60 nm R2 6 kΩ

M3 400 nm 60 nm

M4 500 nm 60 nm

By simplifying this, the parallel branch resistor can be determined by,

R = RTot

(
RTot

RHRS

− 1

)
(5.11)

To ensure the right functionality of the circuit, the grounded parallel resistance, R, max-

imum value should be RHRS while RTot = 2RHRS and the minimum value occurs when

RTot = RHRS. Hence, in modulo configuration by considering RTot > RHRS, the RTot

interval of (RHRS, 2RHRS] should be mapped to corresponding values in (2RLRS, 2RHRS]

interval on C1 and C2 devices. A mapping circuit is designed to map based on this scheme.

The schematic of proposed circuit is depicted in Fig. 5.3(d). For activating the mapping

circuit switches S2, S3, S4 and S5 should be in CLOSE state and the switch S1 should

be OPEN. The proposed mapping circuit architecture comprises of four CMOS devices,

M1, M2, M3 and M4, and two resistors, R1, R2. The transistors aspect ratio and resistors

resistance data are displayed in Table. 4.

5.5 Functionality Test and Simulation Results

The proposed CVNS-based adder is designed with 65 nm CMOS technology and all sim-

ulations are performed in Cadence Virtuoso. One of the important design issues for CVNS

is the analog environment resolution (ψ). The CVNS digits are considered in radix-10

with the resolution of ψ = 2 to obtain a reliable value for CVNS addition result. Hence,
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(a) (b) (c)

Figure 5.5: The simulation results for functionality of MCVNS adder and its relative error. (a) Two
addition operations with the MCVNS adder for radix-10 digits. The circuit configured to addition
configuration and behavior of state variablew is depicted for these additions. (b) Addition in modulo
mode. The dotted and solid lines show the cases with programmed resistance with mapping circuit
and theoretically extracted ideal resistance. (c) Relative error for modulo configuration.

Table 5.5: Corresponding memristance for radix-10 CVNS digits with ψ = 2 resolution.

Radix-10 CVNS digit Memristance
0.1 RLRS

0.2 2RLRS

. .

. .

9.9 99RLRS

A 100RLRS

the proposed CVNS adder analog environment can distinguish 10ψ(= 100) different lev-

els. This parameter is technology dependent and in memristive systems, it depends on the

RHRS/RLRS ratio. High ratio devices can produce high resolution environment. Table 5

displays the corresponding radix-10 CVNS values for different levels of memristance. The

lowest value is RLRS which corresponds to CVNS value 0.1. The highest value is con-

sidered as 100RLRS or RHRS that corresponds to A. In fact, the A value is considered as

0 since it is the starting point of CVNS values when addition result exceeds RHRS. This

scheme is perfectly functional for applying CVNS on memristive analog memory due to

the modulus nature of CVNS computation method and memristor device characteristics.
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Radix-10 CVNS addition operation of the proposed MCVNS adder circuit is tested for

different values and it is displayed in Fig. 5.5. As it can be seen in Fig. 5.5(a), for adding

2.1 with 5, in initialization step the input devices were programmed to corresponding mem-

ristance values for CVNS values 2.1 and 5 which are 21 kΩ and 50 kΩ, respectively. Then,

addition configuration becomes activated since the total input memristance is less than the

radix value RHRS. The output device memristance is changed to 71 kΩ which is the correct

addition result (7.1). In Fig. 5.5(b), CVNS addition of 9.1 and 4.3 is displayed. Initially,

the input devices memristances were programmed to 91 kΩ and 43 kΩ for representing 9.1

and 4.3, respectively. The modulo configuration is configured for this case since the total

input memristance exceeds RHRS. At first, the mapping circuit writes 25.4 kΩ to C1 and

C2 devices. Then, modulo circuit completes the addition operation and changes the output

memristance to 35 kΩ. There is an error duo to the mapping circuit inaccuracy in writing

the exact desired memristance value (25.4 kΩ). By writing the ideal memristance extracted

from the theoretical analysis on C1 and C2 devices, the output memristance changes to 34

kΩ which is the corresponding memristance of correct value (3.4). This circuit has neg-

ligible error when it operates in addition configuration mode. The error analysis of the

proposed CVNS adder for modulo configuration mode is displayed in Fig. 5.5(c).

5.6 Conclusion

In summary in this chapter, we have demonstrated a memristive analog adder that is able

to perform addition operation by utilizing multiple levels of resistive memory devices. A

CVNS computation scheme has been used for this memristive analog adder. The proposed

CVNS-based adder circuit has two main configurations to perform CVNS addition and

a mapping circuit was presented for its modulo configuration. The functionality of the

designed system was tested by applying different CVNS values and their relative error has

been extracted.
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Chapter 6

Improvement on IMPLY Logic design:

Memristor-Based 4:2 Compressor Cells

MEMRISTOR-BASED arithmetic circuits promise new alternatives for their conven-

tional CMOS-based peers due to memristors scalability and non-volatility fea-

tures. In-memory memristor-based calculations become extensively attractive as it can be

a solution to tackle memory bottleneck problems and also an ingredient for future beyond

Von-Neumann computer architectures. In this chapter, material implication-based designs

for 4:2 compressor cells using memristor devices are presented. A physical model is ap-

plied to determine real switching speed of memristive device. The proposed parallel design

promises good speed performance with considerably less area than conventional CMOS

designs. Finally, a comparison has been made between the proposed memristor-based and

CMOS-based designs in terms of number of applied devices per cell and delay.

6.1 Introduction

CMOS technology scaling is reaching to its limits based on the Moores law beyond 2020.

Recently discovered memristor devices [1] have attracted intensified research interests due
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to their nanoscale features to replace conventional CMOS devices. One of the important

application for these two terminal resistive switching devices is logic implementation and

they are also used in arithmetic circuits [2]. Since memristor is capable of performing logic

and memory operations it can be utilized for in-memory computation architectures which

is beyond classical Von-Neumann architecture.

Various memristor-based logic implementation techniques are presented. Hybrid mem-

ristor/CMOS based logic in [3] is based on gaining the advantage of in silicon utilization.

In this logic the voltage defines the logic value and it cannot store last logic state. Pure

memristor-based logic implementations, e.g. Memristor Aided Logic (MAGIC) [4] and

Material Implication Logic (IMPLY) [5], are merging memory and logic block in the same

unit. In these logics unlike hybrid memristor/CMOS based logic, memristance of the out-

put memristor shows output logic state. In memristive implication logic Boolean variables

are considered by High Resistance State (HRS) and Low Resistance State (LRS) of binary

memristor device where HRS and LRS states are considered for logic 0 and 1 respectively.

The memristor-based IMPLY logic is a sequential process. Some memristor-based arith-

metic circuits based on material implication logic were designed in [6], [8] and [11].

In this chapter, a memristor-based 4:2 compressor cell based on material implementa-

tion logic is implemented and compared with existing IMPLY-based designs. 4:2 compres-

sor cells are key components in partial product reduction tree of parallel multipliers.

6.2 Memristor Device and Its Functionality

Transition oxide-based memristor devices are ion-migration-induced redox-based resistive

switches. This kind of devices are belong to Valence Change Mechanism (VCM) class

[7] and their functionality is based on anion migrations along the device. During SET

process in VCM devices, oxygen ions or vacancies (O2−) migrate toward anode and oxygen

deficient region is generated along insulator film. Then the electrons emitted from cathode
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Figure 6.1: (a) Memristor-based crossbar structure. (b) Ideal VCM memristor I-V curve with
different voltages for memristor switching between LRS and HRS.

are trapped by transition metal cations. The reduction in valence states of transition metal

cations turns the oxide region conductive. At the anode, oxygen ions are oxidized and

oxygen atoms are accumulated or released as oxygen gas. The VCM device changes its

state to LRS at the end of the SET process.

The RESET procedure requires inverse voltage bias to device. The oxygen atoms gath-

ered in anode are ionized and start to drift back as oxygen ions along the insulator film. At

the end of the process of RESET the device is switched to HRS. Nano-crossbar layers of

memristive devices can be placed over CMOS platform. Memristor logic states depends

on amount and direction of charge passing through it. The crossbar memristor structure is

displayed in Fig. 6.1. The voltages of VSET and VRESET should be greater than effective

threshold voltage |VOPEN| and |VCLOSE| of VCM device respectively. Physical model [8]

described TiO2/TiO2−x devices by dividing them into three regions: the conductive region,

the transition region, and the insulating region. The switching time for SET procedure in

TiO2/TiO2−x memristor to change device state from HRS to LRS is determined by [8],

tSET =
C0

2

2γtβV λ
. (6.1)

The parameters γt and λ are the electron generating coefficient in the transition region

and transition region length respectively. The parameter V is the voltage across device.
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Other parameters, C0 and β, can be determined by,

C0 =
λ

2
+

(
nc

ni

)(
D − λ

2

)
, (6.2)

β =
1

4

(
nc

ni

− 1

)3

+
2

3

(
nc

ni

− 1

)2

+
1

2

(
nc

ni

− 1

)
. (6.3)

Here ni and nc are ions concentration in insulation and conduction regions respectively.

Also D is thickness of device film. The RESET procedure switching time from LRS to

HRS is [8],

tRESET =

[(
1− nc

ni

)
D + 2C0

] (
1− nc

ni

)
D

2γtβV λ
. (6.4)

6.3 Material Implication Logic with Memristor

One of the specific realization of stateful logic with memristive device is material implica-

tion (IMP) [5]. Memristors can execute IMP logic as one of the fundamental Boolean logic

operations. Memristor-based IMP gate is a simple circuit comprising of two electrically

connected memristor devices and one grounded resistor. The IMP statement is defined as,

f = a IMP b ∼= a→ b ∼= (a) ∨ b (6.5)

where f is only false if a is true and b is false. The IMP logic gate with memristor device

is depicted in Fig. 6.2. Memristor A is considered as input memristor and memristor B

is utilized as input/output device. The IMPLY logic with memristor has three main steps.

Initializing the memristive devices based on the inputs is the first step. Then applying

VCOND to memristor A and VSET to memristor B simultaneously. The last step is reading

out memristance of memristor B. In initialization of memristor devices each device based
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Figure 6.2: (a) IMPLY truth table. (b) Schematic of memristor-based IMPLY logic gate.

on the input value should be set to logic 0 (HRS) or logic 1 (LRS). The truth table of

material implication logic and schematic of the IMP gate is shown in Fig. 6.2. The VCOND

voltage magnitude is considered lower than VSET (|VCOND| < |VSET|). After this stage the

output should be read by applying VREAD voltage pulse to the output memristor B. The

resistance of RG should be considered between RLRS and RHRS (RLRS < RG < RHRS).

Also two VCOND and VSET voltages are applied to the doped sides of A and B memristors

respectively. The sequence of applying voltages to each memristive devices of the IMP

gate in each stage for case 1 (a = 0, b = 0) is showed in Table. 1. In this case as it is stated

in case 1 both devices should be adjusted to HRS initially. Therefore at first memristive

device A should be switched with RESET pulse by duration of tRESET. The same procedure

is repeated again for device B in next step. At this point two devices are already switched

to HRS state. Then VCOND and VSET are imposed to A and B memristors. The voltage over

the memristor B is determined by,

VB =
RHRS +RG

RHRS + 2RG

VSET +
RG

RHRS + 2RG

VCOND
∼= VSET (6.6)

This voltage is enough to switch memristor B from HRS to LRS state. By considering

the parameters in Table. 2 for device simulated in [8], −5.5 V for SET voltage and 5.5 V
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Table 6.1: Material implication logic applied voltage sequence for case 1.

Memristors Init. A Init. B A IMP B Read B
A VRESET 0 VCOND 0

B 0 VRESET VSET VREAD

for RESET voltage over the device, minimum tSET and tRESET are about 70 ps and 25 ps

respectively. The SET and RESET time behavior toward sweeping voltage over device and

ions concentration in insulation region (ni) parameters are displayed in Fig. 6.3. As it can

be seen the worst speed performance is obtained in red region where ni is about 1014 cm−3

and voltage is low (|V | < 2 V).

6.4 Memristor-based 4:2 Compressor Cell Designs

4:2 compressor cells are commonly utilized in high performance arithmetic systems and

they are basic blocks in multipliers architecture. Parallel multipliers are consist of three

main blocks: partial product generator, partial product reduction tree and final fast adder.

Designing partial product tree is one of the key determining factors for improving speed,

area and power consumption of multiplier. Several low power and high speed 4:2 com-

pressor cell designs were presented by various digital logic style with conventional CMOS

technology [9]. Memristor-based 4:2 compressor cell design can be applied in memris-

tive crossbar architectures for signal processing application. The 4:2 compressor is a five-

input/three-output device. It takes five equally weighted inputs (X1, X2, X3, X4, CIN) and

produces a sum-bit (S), a carry-bit (C) and a carry-propagate-bit (COUT).

The Boolean expressions for outputs of 4:2 compressors are,

S = X1 ⊕X2 ⊕X3 ⊕X4 ⊕ CIN, (6.7)
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Figure 6.3: (a) SET time behavior by sweeping voltage and ni. (b) RESET time behavior by sweep-
ing voltage and ni.

Table 6.2: Material implication logic applied voltage sequence for case 1.

Parameters Value Parameters Value Parameters Value
D(nm) 35 e(c) 1.602× 10−19 γt 2.3× 10−6

λ0(nm) 0.05D w0(nm) 0.15D γi 1× 10−6

A(µm2) 0.25 nc(m
−3) 8.75× 1022 ni(m

−3) 3× 1013

C = (X1 ⊕X2 ⊕X3 ⊕X4) · CIN + ¬ (X1 ⊕X2 ⊕X3 ⊕X4) ·X4, (6.8)

C = (X1 ⊕X2) ·X3 + ¬ (X1 ⊕X2) ·X1, (6.9)

Two primitive representations of 4:2 compressor cell are illustrated in Fig. 6.4. First design

is comprised of two cascaded Full-Adder (FA). Further minimization of this design pro-

duces another representation comprising of four XOR gates and two multiplexers (MUX).

Since with combination of FALSE and IMPLY logic, complete logic can be created, all

basic logic gates can be implemented by applying IMPLY logic gate [3]. For implementing

4:2 compressor with two cascaded FA design two memristor-based full-adder implemented

in [5] and [10] are utilized for two separate designs. The design with [5] full-adder re-

quires 8 memristors and 58 computational cycles to complete its task. While by utilizing

[10] full-adder with the same quantity of memristors, 44 computational steps are needed

119



6. IMPROVEMENT ON IMPLY LOGIC DESIGN: MEMRISTOR-BASED 4:2 COMPRESSOR CELLS
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X1 X2 X3 X4

CIN
COUT
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COUT

CIN

C S

(a) (b)

Figure 6.4: (a) FA design for 4:2 compressor. (b) XOR/MUX design.

to finish its operation. For designing 4:2 compressor with MUX/XOR design serial and

parallel implementations can be applied. In the MUX/XOR design two blocks of XOR and

MUX are required for implementation. The XOR block designed in [10] is utilized in two

XOR/MUX designs of 4:2 compressor cells. The IMPLY-based implementation of applied

XOR gate is [10],

A⊕B = (A IMP B) IMP ¬ (¬A IMP ¬B) . (6.10)

This XOR design can be implemented by 4 memristors in 9 computational steps. For

MUX circuit previously in [11] a 2 to 1 multiplexer with 13 computational steps (including

initialization of devices) is designed with 6 memristors. Here a memristor-based MUX

circuit with material implication logic is proposed by 4 memristors and 7 computational

steps. By considering initialization of input memristors it needs 10 computational steps

to complete its task. The proposed design utilizes memristors A and X as input devices.

Also memristor B used as both input and output memristor. An additional memristor Y is

applied for storing the values and performing FALSE operation during the procedure. The
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Table 6.3: Memristor-based MUX computational steps.

Step Logic Value
1 False(Y) Y = 0

2 X IMP Y Y = ¬X
3 B IMP Y Y = ¬B+¬X
4 A IMP X X = ¬A+X

5 FALSE(B) B = 0

6 Y IMP B B = ¬ Y=B.X

7 X IMP B B = ¬ X+(B.X)=A.¬X+A.X

Table 6.4: Memristor logic states for proposed MUX in each step.

Memristors A B X Y
Steps InA InB 5 6 7 InX 4 1 2 3

Case 1 0 0 0 0 0 0 1 0 1 1
Case 2 0 0 0 0 0 1 1 0 0 1
Case 3 0 1 0 0 0 0 1 0 1 1
Case 4 0 1 0 1 1 1 1 0 0 0
Case 5 1 0 0 0 1 0 0 0 1 1
Case 6 1 0 0 0 0 1 1 0 0 1
Case 7 1 1 0 0 1 0 0 0 1 1
Case 8 1 1 0 1 1 1 1 0 0 0
Value Output

computational steps and memristors logic states for proposed MUX are displayed in Table

3 and Table 4 respectively.

In first stage, logic statements of ¬B + ¬X and ¬A + X should be generated. This

can be done in three steps. First, FALSE operation should be applied on Y device to set

it to HRS (logic 0). Then, ¬X is stored in Y by utilizing IMPLY operation between X

and Y device. Subsequently, by using IMPLY operation between B and Y the target logic

statement of ¬B + ¬X is stored in Y device. Finally, with IMPLY operation between A

and X devices, ¬A + X logic statement is stored in device X. Since an output of MUX

device is A.¬X + B.X , two stored logic statements in X and Y should be inverted first.
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For this issue FALSE operation is applied to memristor B to change its state to HRS (logic

0). Then, inverse of the statement stored in Y is generated by IMPLY operation between Y

and B and it is stored in B at the end of the step. The stored logic statement in B is B.X . In

step 7 by IMPLY operation between X and B, the final logic statement stored in B becomes

A.¬X +B.X .

For serial implementation of 4:2 compressor XOR/MUX design, two different designs

are proposed. First design has used the MUX circuit presented in [11] and the second

design applied proposed MUX circuit. In XOR/MUX design with MUX circuit [11] 8

memristor devices are used and this design requires 64 computational steps. Second serial

XOR/MUX design with proposed MUX circuit requires less devices and it has lower delay

in comparison with first design. It needs 7 memristor devices for completing its task in

52 computational steps. Although these designs are efficient in terms of area and num-

ber of applied devices they are slower by considering current memristor technology and

switching speed in comparison with conventional CMOS designs. For this purpose parallel

implementation can be applied for increasing the speed of computations.

The parallel memristor-based XOR/MUX 4:2 compressor cell design requires 11 mem-

ristor devices and it requires 26 computational steps to finish its task as it is defined in Table

5. In this design, at first two XOR gates are implemented in parallel and it takes 9 steps for

implementing them. The initialization of the input memristors is the first step for X1, X2,

X3 and X4 devices. Also, all FALSE operations for 5 auxiliary memristors, M0,1,2,3,4,5, are

completed in the first step in parallel. After that, XOR and MUX implementations are done

in parallel. This stage requires 9 computational steps since XOR design last 9 steps with

initialization which is 2 cycles more than proposed parallel MUX. The output of the MUX

is stored in X3 device in step 17 as COUT of 4:2 compressor. In step 18, CIN is applied to

initialize C1 and C2 devices and FALSE operation is done for X2, M0, M1, M2, M3 and

M4. In the last stage, XOR and MUX blocks are implemented in parallel to extract C and

S. At the end of the procedure in step 26, device C2 is stored C and M0 is saved S.
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By comparing proposed 4:2 compressor design in terms of delay with conventional

CMOS designs with transmission gate and pass transistor logic in [9] the proposed parallel

design showed acceptable speed performance. The delay of the circuits is determined by

the time difference from when the inputs reach 10% of their swing until the output signal

reaches 90% of its full potential measure. The worst case delay based on device parameter

mentioned in Table 2 is 1.8 ns. Also in terms of area this model only applied 11 memris-

tors while CMOS-based compressors with transmission gate and pass transistor logic are

utilized 32 and 30 transistors respectively. The comparison for delay and device quantity

per cell of the mentioned memristor-based designs with conventional CMOS designs are

displayed in Fig. 6.5 and Fig. 6.6 respectively.

Figure 6.5: (a) FA design for 4:2 compressor. (b) XOR/MUX design.

Figure 6.6: (a) FA design for 4:2 compressor. (b) XOR/MUX design.
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6.5 Conclusion

In this chapter, several memristor-based implementations by material implication logic for

XOR/MUX and Full-adder based representation of 4:2 compressor are presented. The

physical model of a VCM device is utilized to determine the SET and RESET time. The

parallel implementation with memristor offers comparable speed with considerably less

area in comparison with conventional CMOS-based peers that utilized pass transistor and

transmission gate logic. Also all proposed memristor-based serial and parallel implemen-

tations of 4:2 compressor cells are compared with CMOS based design in terms of delay

and number of device per cell.
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Chapter 7

Logic Design on Mirrored Memristive

Crossbars

THIS chapter presents a hybrid CMOS-memristor logic design and implementation

method on a novel mirrored crossbar architecture. The proposed structure supports

in-memory computation and needs only one computational step to perform basic Boolean

expressions. This logic can provide multiple fanins and/or fanouts, and does not have a

destructive effect on input devices logical states. Various logic gates have been designed

using the proposed structure. Simulation results and practical design constraints for dif-

ferent logic functions are presented, which confirms functionality of the method and its

capability for large-scale memristive computations.

7.1 Introduction

Memristive crossbar array has been introduced as one of the promising candidates for future

in-memory computation platforms due to the upcoming physical limitations on transistor

scaling [1]. The non-volatility and high density in combination with logic implementation

features make this device a viable alternative for the next generation of computers. Several
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memristor-based logic designs have been presented during recent years [2-6]. In resistance

based designs, the logical state 0 and logical state 1 are represented by device high re-

sistance (RHRS) and low resistance (RLRS) states, respectively. This two terminal device

has variable resistance, as the voltage greater than device threshold voltage, VTH, has been

applied to it. It can store the last resistance value after the voltage is dropped below its

threshold or it is unpowered.

In Memristor Ratioed Logic (MRL) [3], memristor device is considered only as a com-

putational element and its voltage is treated as the logical state. MRL logic suffers from

signal degradation for implementation of AND and OR operations. This logic requires

CMOS inverter block to perform NAND and NOR operations. Recently, several pure mem-

ristive techniques have been studied for logic in memory implementation [9-11]. Material

implication logic (IMPLY) [2] is a resistance-based memristive logic. This logic can be

implemented on memristive crossbar array, but suffers from high delay for implementation

of Boolean expressions due to its sequential nature. Furthermore, another drawback for

IMPLY logic is, storing the output over one of the inputs. MAGIC logic [11] performs

any basic Boolean expression in one step (without considering the initialization step). In

MAGIC, the input devices states can be altered after the operation is finished for some input

combinations. Also this logic family cannot provide multiple fanouts.

In this chapter, a novel logic design is presented which requires only a single step to

perform any basic Boolean function. The basic logic gates are implemented on two mir-

rored memristive crossbar arrays. This logic design is capable of providing multiple fanins

and fanouts. Also, input and output memristor devices are separate and logic operation

does not have a destructive effect on the input devices states.
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7.2 Proposed Logic Design

The proposed logic design comprises of memristor devices and a switch within logic gates.

The memristor device has variable resistance and by applying a voltage higher than a spe-

cific threshold (VTH) over it, the doping profile of transition oxide filament is changed

between two main states: High Resistance State (HRS) and Low Resistance State (LRS).

The resistance of the memristor devices represents the logical states in this logic. In this

logic, high resistance (RHRS) and low resistance (RLRS) are considered as logic 0 and logic

1, respectively. The polarity of memristor is represented by a thick black bar. The resis-

tance of memristor decreases as current flows into the device from the bar side (negative

side) and it increases when current enters the device from the non-bar side (positive side).

Here, memristor model [12] with threshold has been utilized for simulations. The input

and output memristors are separate in this logic and the input devices’ logical states are not

altered during the operation. The inputs of this logic should be set based on the input com-

bination in initialization stage. The proposed logic gates require only one computational

step to perform their operations without considering the initialization step.

7.2.1 NOR Gate

In the proposed NOR gate two memristors (MA, MB) are connected in parallel. The positive

side of these input devices is connected to the negative side of the grounded memristor

(MG). The common node of these three devices is connected to the gate terminal of the

switch. The source terminal of the switch is connected to the positive side of grounded

output device (MOUT). The voltage VCOND is applied to the negative side of input devices.

The voltage VWR is applied to drain terminal of the switch. The circuit schematic for NOR

gate is illustrated in Fig.7.1(a). The inputs are resistances of memristors MA and MB.

The output is the final resistance of memristor MOUT. In the initialization stage, the input

devices should be set to the desired states. Also, MG and MOUT devices should be set to low
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MA MB

VCOND VWR

MG

MOUT

VG
VOUT

Rinit = RHRS
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Rinit = RLRS

MA MB

VCOND VWR

MG

MOUT

VG
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Rinit = RLRS

VCOND

GND GND GND GND GND

Q1 Q1

Rinit = RLRS

Figure 7.1: The schematic of logic circuits. (a) NOR gate. (b) NAND gate.

resistance. VCOND is applied to the sensing branch, where the inputs and MG are placed.

The value of VCOND should be selected in a range that the voltages over input memristors

in the sensing branch become less than threshold voltage (VTH) of each input devices. The

voltage over MG in the sensing branch, VG, defines the switch (Q1) status. In the writing

branch of the circuit, VWR is applied to the drain of Q1. The voltage of VWR should be

sufficient to change the logical state of output device (MOUT). According to Kirchhoff’s

law, the VG voltage can be determined by,

VG

RG

+
VG − VCOND

RA

+
VG − VCOND

RB

= 0, (7.1)

where RA, RB and RG are the memristances of MA, MB and MG, respectively. The VG

voltage is,

VG = VCOND

(
RG (RA +RB)

RG (RA +RB) +RARB

)
. (7.2)

Based on different input combinations the logic gate output can be concluded as follows:
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A = 0,B = 0

In this case both input memristors, MA and MB, are initialized to the high resistance state

(RHRS), which corresponds to logic 0. The MG device memristance is set to RLRS. By

assuming RHRS � RLRS, in the operation mode, when VCOND is applied to sensing branch,

the voltage of VG becomes,

VG = VCOND

(
2RHRSRLRS

2RHRSRLRS +R2
HRS

)
≈ 0. (7.3)

The voltage of VG becomes smaller than the threshold of the switch (VTsw). Therefore Q1

remains OFF and there is no current in the output device MOUT. The MOUT memristance

remains on RLRS which corresponds to logic 1.

A = 0,B = 1

First step is initialization of MA and MB to RHRS and RLRS, respectively. In operation step,

the voltage VG becomes,

VG = VCOND

(
RHRSRLRS +R2

LRS

2RHRSRLRS +R2
LRS

)
≈ VCOND

2
. (7.4)

Since VCOND

2
is greater than VTsw, Q1 turns ON. The current goes through MOUT device and

the voltage of VOUT becomes greater than VTH of memristor. Therefore the memristance

starts to change from RLRS (logic 1) to RHRS (logic 0).

A = 1,B = 0

In the initialization step, MA and MB are set to RLRS and RHRS, respectively. This case is

exactly the same as the case 2 after initialization stage.
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A = 1,B = 1

In operation step, the voltage VG becomes,

VG = VCOND

(
2R2

LRS

3R2
LRS

)
=

2VCOND

3
. (7.5)

Q1 becomes ON, as voltage of 2VCOND

3
is greater than VTsw. Therefore, the current flows

through the output device MOUT and the voltage over it becomes greater than memristor

threshold voltage VTH. This results in changing the state of MOUT from RLRS (logic 1) to

RHRS (logic 0).

7.2.2 NAND Gate

The schematic of the proposed NAND gate circuit is shown in Fig.7.1(b). Two input mem-

ristors MA and MB are connected together in parallel similar to the NOR logic gate. The

MG memristor is placed on top of two parallel input devices and connected to the posi-

tive side of them. Two input devices are grounded from negative terminals. The VCOND

is applied to negative side of MG, where The memristances of MG and MOUT devices are

initialized to RLRS and RHRS, respectively. The voltage VG is determined by,

VG

RA

+
VG

RB

+
VG − VCOND

RG

= 0, (7.6)

By simplifying this equation, the voltage VG becomes,

VG = VCOND

(
RARB

RG (RA +RB) +RARB

)
. (7.7)

The proposed NAND gate output for different input combinations can be determined as

follows:
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Figure 7.2: The Schematic of the proposed logic gates. (a) OR gate. (b)AND gate. (c) NOT gate.
(d) COPY circuit.

A = 0,B = 0

After the initialization step, The voltage VG in this case for operation mode becomes,

VG = VCOND

(
R2

HRS

2R2
HRS +RHRSRLRS

)
≈ VCOND

2
. (7.8)

This voltage is greater than VTsw and it turns Q1 ON. The current goes from VWR voltage

source to the output device, MOUT. The resistance of the MOUT starts to decrease from

RHRS (logic 0) to RLRS (logic 1).
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A = 0,B = 1

After initialization step, the voltage VG in operation step becomes,

VG = VCOND

(
RHRSRLRS

2RHRSRLRS +R2
LRS

)
≈ VCOND

2
. (7.9)

Q1 turns ON, as its gate voltage is greater than the threshold voltage, VTsw. The voltage

over the output device (VOUT) becomes greater than the VTH of memristor. The MOUT

device changes state from logic 0 to logic 1.

A = 1,B = 0

This case is exactly the same as case (2) after initialization step.

A = 1,B = 1

In this case, after initializing the devices to desired states, the voltage of VG in operation

step becomes,

VG = VCOND

(
R2

LRS

3R2
LRS

)
=
VCOND

3
. (7.10)

Since VCOND

3
is lower than VTsw, Q1 remains OFF. Therefore the output device remains on

its last state (logic 0).

7.2.3 Other Logic Gates

The schematic of OR gate is illustrated in Fig. 7.2(a). The only difference with NOR gate

is the MOUT memristor polarity and initial memristance. The memristance of MOUT is set

to RHRS (logic 0) initially. The proposed AND gate is illustrated in Fig. 7.2(b), which has

a similar topology as the NAND gate but the polarity of MOUT device is opposite. The

memristance of MOUT is set to RLRS (logic 1) initially. In this design, NOT gate consists
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Figure 7.3: The proposed architecture. (a) Block diagram of the proposed architecture. (b) Mirrored
memristive crossbar architecture.

of two memristors, MA (input device) and MG, in sensing branch. As it is displayed in Fig.

2(c), the output device MOUT is connected from its positive side to source terminal of Q1

and grounded from the other side. The schematic of NOT gate is displayed in Fig. 7.2(c).

In initialization step, both of MG and MOUT devices are initialized to RHRS. Here, COPY

circuit is designed to store a value from one memristive cell to others. The proposed circuit

schematic is displayed in Fig. 7.2(d). The polarity of MOUT device and its initial mem-

ristance (RLRS) is its only difference from the NOT gate. The operation principles of OR,

AND, NOT and COPY gates are presented in Table 7.1
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7.3 Logic Synthesis on Mirrored

Memristive Crossbars

The proposed logic design method can be realized on two mirrored memristive crossbar

arrays (X and Z planes), which are connected to each other by switches. The proposed

architecture is displayed in Fig. 7.3. This architecture is functional for implementation of

other logic families, like MAGIC [11] and has a higher density in comparison with other

hybrid CMOS-memristor architectures like 1T1M structure [9].

In each logic operation, one crossbar plane is used for implementation of sensing branch

and the other one is used for writing branch. Hence, the inputs and outputs of each opera-

tion, are placed on different crossbar planes.

As can be seen in Fig. 7.3, multiple memristive devices (X11, X12, ..., Xij) in each row of

the X-plane crossbar is connected with one switch (TXZ1, TXZ2, ..., TXZj) to the memristive

devices (Z11, Z12, ..., Zij) in corresponding column of the Z-plane crossbar. Furthermore,

a row decoder is required to provide signals (DRX1, ..., DRXi, DRZ1, ..., DRZi) to select

the rows on both crossbar planes. Also, a column decoder is considered to generate column

select signals (DCX1, ..., DCXj, DCZ1, ..., DCZj) for both planes.

Two voltage controllers apply desired voltages to rows and columns of the architecture.

The row and column voltage controllers are responsible to provide the voltage for each row

(RX1, ..., RXi, RZ1, ..., RZi) and column (CX1, ..., CXj, CZ1, ..., CZj), respectively. The

voltages VCOND and VPRO along with ground (0 V) and float status are provided by the

voltage controllers.

The voltage VPRO is applied to unselected lines to avoid unwanted changes in device

states during the logic operation. This voltage should be chosen in a domain, which does

not have an influence on the state of memristors in the unselected lines. The NOR-based

architecture supports NOR and COPY operations in one step. Also, NAND-based archi-

tecture can be used to implement NAND logic in one step by reconfiguring the switches.
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All logic operations can be implemented by these architectures. For implementation of

single NOR gate on a NOR-based architecture with i× j crossbar arrays as sensing branch

is placed on first row (RX1) of the X-plane crossbar, the voltage VCOND is applied to CX1

and CX2 columns. Column CX3 is grounded and VPRO voltage is applied to the rest of

unselected columns (CX4, ..., CXj) and rows (RX2, ..., RXi). Then VPRO voltage can be

determined by,

(VG − VCOND)
(
(RX11)−1 + (RX12)−1)+ VGR

−1
LRS +

(VG − VPRO)R−1
LRS × (j − 3) = 0. (7.11)

The voltage VPRO should be set at the same level of VG (VRX1) to avoid change in state of

unselected devices on row RX1. By considering VPRO = VG, for X11 = 0, X12 = 0 input

combination, the voltage VPRO is VCOND/(α + 2) where α = RHRS/RLRS. For X11 = 1,

X12 = 1 input combination, the voltage VPRO is 2VCOND/3. By considering that α has a

high value, 2VCOND/3 is bigger than VCOND/(α+2). The voltage |VPRO−VRX1| should be

less than VTH. By considering the appropriate configuration of applied voltages and lower

number of alternate current paths within this structure in comparison with conventional

crossbar, the sneak path effect is largely mitigated in the proposed design. In addition, logic

implementation on two crossbar arrays which are isolated by transistor switches makes this

design more resilient to form closed loops between logic input and output memristors.

The initialization procedure for this crossbar structure is a two-step process. It writes

desired values on entire row of selected crossbar array. In the first step for writing logic

1 on target devices, a voltage of VCOND (> VTH) and VPRO are applied to a selected row

and all unwanted rows, respectively. Also, the columns on which logic 1 should be written,

are grounded and a voltage VPRO is applied to the other columns. In the second step,

the selected row is grounded and the voltage of VPRO is applied to all unwanted rows.

Furthermore, a voltage of VCOND and VPRO are applied to the columns which logic 0 should

be written on and other columns, respectively. This step will write logic 0 on all target
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devices in the selected row.

7.4 Simulation Results and Design Constraints

The proposed logic gates are simulated in Cadence Virtuoso and linear boundary drift mem-

ristor model with threshold and Biolek window function [12] are utilized for simulation.

The 65nm CMOS technology has been utilized for the switch in logic gates. The circuits

are designed by using the following parameters: D = 3 nm, RHRS = 10 kΩ, RLRS = 1

kΩ, µv = 8 × 10−8 m2 V−1s−1, VTH = 0.8 V, p = 2, VTsw ≈ 450 mV, VCOND = 1.1 V,

VPRO = 0.4 V, VWR = 2.5 V. Parameters D and µv are device thickness and mobility of

dopants, respectively. Parameter p is a positive integer in window function of the model

and it adjusts the non-linearity of the model [12]. The behavior and speed of NOR, OR,

NAND and AND gates are displayed in Fig. 7.4. The slowest input case is considered as

delay for proposed logic gates. As it can be seen in Fig. 7.4(a), the proposed NOR gate

has a delay around 1.356 ns for its slowest cases (A = 0,B = 1 and A = 1,B = 0). The

parallel plate capacitance and line capacitance have been determined for each memristor in

crossbar array. The parallel plate capacitance determined to be 205.32 aF by considering

the plate area of device 2500 nm2. The wire capacitance for each set of parallel wires in

crossbar is determined to be 2.68 × 10−11 F/m, by considering half the spacing between

wires and thickness of strips are 25 nm and 50 nm, respectively. This value is multiplied

by 100 nm, the length of wire segments associated with each memristor in light of 25%

packing density, and the wire capacitance per device has been obtained 2.68 aF. To de-

termine the total capacitance for each device, the parallel plate capacitance of memristor

is added to double the wire segment capacitance (for both horizontal and vertical wires).

The total capacitance per each device is determined to be 216.51 aF. This capacitance has

been added to the simulations in Cadence Virtuoso and it was determined that this was not

enough capacitance to alter the operation in crossbar. The low RHRS (10 kΩ) of the device
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Figure 7.4: The simulation results are for following logic gates: (a) NOR gate. (b) OR gate. (c)
NOT gate. (d) NAND gate. (e) AND gate. (f) COPY circuit.

leads to an RC time constant of 2.16 ps which is negligible in comparison with the average

operation time of the gates (1 ns). The delay and output final state error of the proposed

logic gates are displayed in Table 7.2. This error is the percentage error of the final state of

MOUT device from the ideal value. The main source for the error is due to the model and

by changing parameter p error has been altered.

The voltage over inputs in sensing branch should not change the input devices states.

For having a non-destructive voltage over the inputs and right functionality of the gates to

have right outputs value, the VCOND voltage should be selected in a specific range. The pro-

posed logic gates can be implemented with multiple inputs. Design constraints for selecting

VCOND of n-input version of the proposed logic gates are displayed in Table 7.3. These are
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Table 7.2: Delay and output final state absolute error for each gate.

Logic NOR OR NAND AND NOT
Delay (ns) 1.356 1.112 0.853 1.245 0.801
Error (%) 0.085 0.003 0.001 0.033 0.005

Table 7.3: Design constraints for VCOND in proposed logic gates.

Logic Design Constraints - Multiple Inputs

NOR-OR
(
VTsw

(
2RHRS+(n−1)Rn−1

LRS

RHRS+(n−1)Rn−1
LRS

)
, VTH

(
2 + n−1

α

))
NAND-AND

(
VTsw

(
2 + n−1

α

)
, VTH

(
n+ 1

α

))
NOT-COPY (2VTsw, 2VTH)

valid values for VCOND which ensures the right functionality and avoiding logic failure for

each logic gates. The VCOND should be selected in a domain which does not change the

input devices state and can produce appropriate voltage VG for switching the CMOS during

the operation. This design can provide right functionality even for input devices resistance

states variation obtained after programming. NOR logic can tolerate variation in input de-

vices resistance up to 40% and 20% for RHRS and RLRS, respectively. Also, the proposed

design is feasible by considering a real device kinetics [7] and non-linear relationship of

voltage and switching time with 50 mV/dec slope for voltage-switching time diagram [8].

In this design, each gate can have multiple fanouts. Multiple devices can be connected in

parallel in the writing branch of the circuit as it is displayed in Fig. 7.5. With this feature,

there will be no need for additional COPY operation in crossbar memory. Hence, it reduces

the delay in large-scale computations considerably. In the proposed logic, the number of

fanouts is limited and it is dependent to the drain source resistance of CMOS. The higher

the number of the fanouts the lower the equivalent output devices resistance in the writ-

ing branch. This results in decreasing the voltage over the output devices. By reaching

this voltage under threshold voltage of memristor (VTH) the desired logic cannot be written

over the output devices. The average total energy consumption per operation for proposed

NOR gate is about 200 fJ. Unlike CMOS logic, the proposed logic does not need static
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Figure 7.5: Multiple fanouts and simulation results for each output.

power and power for memory refresh in DRAM to keep the output. Also, SRAM has a

leakage energy which does not exist in the memristor-based systems, because memristor

does not require power to retain its memory state, and transistors in the crossbar arrays are

only active during the logic operation or when read/write pulses are activated for memory

operations. In addition, considering density and in memory computation capabilities of

this approach, other implementation costs (i.e. area and speed) can be considerably lower

in long term progress of this technology. As it can be seen in Fig. 7.6, XNOR logic is im-

plemented with 3 computational steps on 4 × 4 mirrored memristive crossbar arrays. The

sequence of applied voltage levels to the corresponding rows and columns of the architec-

ture are defined in Table 7.4. As it can be seen, for each computational step the applied

voltage is displayed by a 16-bits word. The VCOND, VPRO, ground and float are displayed

with c, p, g and f, respectively. The delay for implementation of XNOR function is 4.755

ns as it can be seen from simulation results in Fig. 7.7.
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Table 7.4: The 16-bits words for voltage controller select signals in each step for XNOR implemen-
tation.

Step RXi CXj RZi CZj

i = 1,2,3,4 j = 1,2,3,4 i = 1,2,3,4 j = 1,2,3,4
1 fppp ccgp ggff ffff
2 fgff ffff ffpp ccgp
3 pfpp ccgp ffgf ffff

7.5 Conclusion

Hybrid CMOS-memristor based logic design is presented along with its implementation

on crossbar arrays. The basic logic gates are implemented by proposed design. This logic

requires only one computational step to perform any basic Boolean expression. The state of

input devices remains unchanged during logic gates operation. An architecture presented

by utilizing mirrored memristive crossbar arrays connected with CMOS switches for im-

plementation of the proposed logic. Different logic functions are implemented with this

architecture for testing the functionality of the design.
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Figure 7.7: The simulation results for XNOR implementation on two mirrored memristive crossbars.
This results are extracted from Z32 device.
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Chapter 8

Conclusion

RSEARCH reported in this dissertation mainly focused on memristor device model-

ing and memristive computing systems. At first, a brief overview of the memristor

device, definition, historical background, functionality and structure was presented. Sub-

sequently, modeling of the memristor device was discussed. Modeling evolution of the

memristor was explained and each important model was briefly discussed and used to sim-

ulate an i-v behavior of the fabricated Ag/TiO2/ITO device. Also, different state variables

and window functions were discussed. Then, ultra-dense promising memristor crossbar ar-

chitecture was introduced and READ and WRITE operations on each individual cells over

this structure were defined. Also, the sneakpath problem over the crossbar was explained

and some existing solutions to mitigate this problem were discussed. Memristor device

potential applications are then defined. Different memory technologies were discussed

and their important characteristics were highlighted. Also, a brief overview on the main

memristive logic methods were presented, subsequently. Neuromorphic application of the

memristor devices and their ability to reproduce STDP bio-inspired learning mechanism

was discussed.

An accurate novel model was presented based on charge transport mechanisms in schot-

tky barrier region. The state variable in this model was a quantity of oxygen vacancies
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near schottky barrier zone. Also, the modeling was based on the dominant current mech-

anism existing in schottky barrier zone during the device operation. The proposed model

was tested and it showed high accuracy in comparison with the experimental data of a real

Ag/TiO2/ITO fabricated device. Also, a SPICE code was developed and applied to simulate

the device behavior in HSPICE software. The HSPICE simulation results for four different

memristor devices confirmed the functionality of the proposed model. Also, the behavior

of the proposed model was successfully tested toward different input waves with different

frequencies. In addition, an error analysis was done by determining the RMS error of the

simulation results and experimental data. The proposed model had 0.25 RMS error which

is the lowest value in comparison with other models. This showed the proposed model has

the highest accuracy to reproduce the non-linear behavior of the memristor devices.

Bio-inspired memristive neural networks were presented for pattern classification tasks

by using unsupervised learning schemes. Understanding brain function as one of the most

attractive topics in neuroscience can lead to finding new treatments for brain disease. There-

fore, designing a bio-inspired system to model biological mechanism in brain is a crucial

issue. A noble prize winner Hudgkin-Huxley neuron model which reproduces the most

accurate biological behavior of the neurons in mammalian neocortex among its other peers

is utilized in this bio-inspired network. Also, a memristor synapse as the closest electronic

device which mimics real biological synaptic connection was utilized as the synapse in the

proposed network. Therefore, this system is completely inspired by biology and due to

the memristive implementation it represents a dense and nanoscale system. The memris-

tive implementation of Hudgkin-Huxley neuron was discussed and a coupled HH neurons

behavior was explained. The STDP learning mechanism was reproduced and pattern clas-

sification tasks were carried out which proved the functionality of the system. The same

network was implemented by using a Morris-Lecar neuron model which is a more sim-

plified model. A memristive implementation of Morris-Lecar neuron was explained and

STDP learning mechanism was implemented by two coupled ML neurons. Also, a pattern

149



8. CONCLUSION

classification tasks were successfully carried out by the proposed network with unsuper-

vised learning scheme.

A novel memristive analog adder was designed for Continuous Valued Number System

(CVNS). Analog computation with memristor can be possible due to the analog memory

property of this device. Also, CVNS scheme is a recently proposed numbering system

which can provide design with less wiring complexity and it has an error correction prop-

erty. The proposed analog CVNS adder was designed based on addition and modulo op-

erations. The memristive addition circuit was developed by only three memristors and the

inputs were programmed as the memristance of the input memristors in the circuit. Also,

output is a memristance of the output device. This makes the proposed design an efficient

computing scheme which can store the result in the same platform that perform the pro-

cessing and computation. Also, since the analog computation is based on multiple levels

of the memory in a single device, it can provide larger scale of computation in compari-

son with its digital peers. The modulo operation in this circuit was done by adding two

memristor devices in parallel with the addition circuit. A mapping circuit was designed to

program and map the additional memristors to the desired value which provide the right

functionality for the modulo operation step. Therefore, the modulo step was comprised of

two main steps: mapping and modulo operation. In addition to the adder design, this has

led to development of CVNS computing scheme for memristive systems. It was explained

that the environment resolution of the system is directly related to the memristance ratio

of the memristor devices applied in the design. High environment resolution will result in

more different levels and larger domain of numbers in the system. The proposed CVNS

adder was tested for different scenarios and numbers. The addition and modulo operation

was tested successfully and the modulo operation showed a negligible error which was due

to the mapping circuit and non-linear behavior of memristor devices.

A memristive 4:2 compressor cell which is one of the important blocks in multipliers

architecture was designed with material implication logic (IMPLY). This work presented
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different IMPLY based implementations of 4:2 compressor cell. At first two XOR/MUX

and full adder-based implmentations of 4:2 compressor were selected for memristive de-

sign. A memristive IMPLY-based multiplexer was designed by 4 memristors and 7 com-

putational steps. Then, the existing optimized memristive IMPLY-based implementation

of XOR and full adder was selected. Then, parallel and serial IMPLY-based scheduling

for different implementations of 4:2 compressor circuit was assessed. The most efficient

4:2 compressor cell design was the parallel XOR/MUX design which requires 11 memris-

tors and 1.8 ns delay. This implementation offers comparable speed with considerably less

area in comparison with conventional CMOS-based circuits that utilized pass transistor and

transmission gate logic.

A resistance-based novel memristive logic was presented. This logic is comprised of

two sensing and writing circuit branches. The CMOS switch isolates two branches from

each other. The sensing branch includes the input devices and based on the sensed volt-

age in sensing branch a CMOS switch status is defined and the writing branch is working

correspondingly. Several logic gates like, OR, AND, NAND, NOR, NOT and COPY were

designed with the proposed logic scheme. These gates were analyzed theoretically and

simulated by Cadence to confirm their functionality. The proposed logic gates were tested

successfully and provided desired output. This logic requires one computational step and it

does not posses a destructive effect on the input devices during the logic operation. Also, it

has a capability to provide multiple fanins and fanouts which omits the repetition in com-

putations and reduces high volume of computations significantly. Also, a mirrored mem-

ristive corssbar array was proposed as a platform to implement this logic. This architecture

was consisted of two memristor crossbar planes which is connected with CMOS switches

based on the configuration in the proposed logic. The proposed platform can significantly

reduces the alternate current paths as it isolates two crossbar planes from each other. Also,

a larger combinational logic was implemented over the mirrored crossbar platform and it

was successfully simulated by Cadence.
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8.1 Future Work

In terms of future work, there are a number of areas worthy of further exploration.

Device Modeling

Although the model works properly and it can reproduce an accurate non-linear behavior

of the device in high resistance state and low resistance state, the proposed model needs

to be simplified for application in large-scale simulations. Also, thermionic current effect

can be taken into the account for future work and the behavior of the device in different

frequencies for the model should be considered in the future. Therefore, developing a new

model which is a simplified version of the current model by considering the behavior of

the device in different frequencies and temperature (thermionic effect) can be a potential

future work.

Bio-inspired Neuromorphic Computing

The proposed biological spiking neural networks are just using the STDP learning mecha-

nism to do the simple pattern classification tasks. Therefore, these SNNs are unable to do

larger classification and image processing tasks since STDP alone is not enough to perform

such tasks successfully. For this purpose a lateral inhibition should be considered as well

as STDP learning mechanism to help these bio-inspired network perform larger tasks. As

a future work applying a lateral inhibition to the proposed networks and testing them to do

a larger image and video processing tasks can be interesting.

Memristive Analog Arithmetic

The other potential future work is to work on the memristive CVNS system. This system

can have an error correction scheme because of CVNS behavior and it can be a game

changer in arithmetic and computing hardware implementation. Also, memristive CVNS

multiplier can be designed based on the proposed scheme. The mapping circuit can be

developed to reduce the error in modulo operation of the memristive CVNS adder.

Mirrored Memristive In-Memory Computing Architecture

After presenting the mirrored memristive logic, proposing a novel mirrored crossbar com-
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puting architecture is a potential future work. In this work, the memory speed, bit density

and power consumption in the proposed architecture can be analyzed. Also, the READ

and WRITE operation along with sneak path effects can be assessed. Then, logic functions

should be implemented within the proposed architecture and the control signals of rows

and columns could be defined along with the method to access individual devices within

the architecture.
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