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A B S T R A C T

Emerging memristive devices offer enormous advantages for applications such as non-volatile memories and in-
memory computing (IMC), but there is a rising interest in using memristive technologies for security applications
in the era of internet of things (IoT). In this review article, for achieving secure hardware systems in IoT, low-
power design techniques based on emerging memristive technology for hardware security primitives/systems
are presented. By reviewing the state-of-the-art in three highlighted memristive application areas, i.e. memristive
non-volatile memory, memristive reconfigurable logic computing and memristive artificial intelligent computing,
their application-level impacts on the novel implementations of secret key generation, crypto functions and
machine learning attacks are explored, respectively. For the low-power security applications in IoT, it is essential
to understand how to best realize cryptographic circuitry using memristive circuitries, and to assess the impli-
cations of memristive crypto implementations on security and to develop novel computing paradigms that will
enhance their security. This review article aims to help researchers to explore security solutions, to analyze new
possible threats and to develop corresponding protections for the secure hardware systems based on low-cost
memristive circuit designs.
1. Introduction

Recent advances in energy- and cost-efficient computation and in
cloud/wireless infrastructure have led to the Internet of Things (IoT) [1].
The IoT has been a main driving factor in scientific, technological, eco-
nomic and social progress. IoT comes with a set of requirements:
ultra-low-power consumption for long-term autonomous operation
without the possibility of recharging the battery; the need to function
reliably in harsh environments; and the resilience against possible ma-
licious cyber-attacks (including both: remote attacks mounted through
network connections and physical attacks by adversaries [2]). Past
spectacular cyber-attacks have clearly demonstrated the vulnerability of
existing systems and the need to prevent such attacks in the future.

Modern cryptographic schemes are related to our daily lives. The
majority of available cyber-defenses concentrate on protecting the
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software part of electronic systems or their communication interfaces.
However, manufacturing technology advancements and the increasing
hardware complexity provide a large number of challenges so that the
focus of attackers has shifted towards the hardware level. In particular,
we saw already evidence for powerful and successful hardware-level
attacks that circumvent any software-level security mechanisms.

The attacks mentioned above happened on products built using state-
of-the-art microelectronic technology, however, we are facing
completely new security challenges due to the ongoing transition to
radically new types of nano-electronic devices, such as memristors,
spintronics, or carbon nanotubes. The use of such emerging nano-
technologies is inevitable to continue the exponential improvement of
integration density and address the key challenges related to energy ef-
ficiency, computing power and performance. Therefore, the entire in-
dustry, from foundries to circuit and system designers, are switching to
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these emerging nano-electronics alongside scaled CMOS technologies in
heterogeneous integrated systems. The progress in nanotechnology
promises to address some of the aforementioned requirements/chal-
lenges for IoT: Power management, scalability, sustainability and reli-
ability. For example, memristive technologies are considered as a hot
candidate to complement or even replace traditional CMOS technology in
applications from domains such as Internet of Things or autonomous
systems.

The memristive technologies come with attractive properties, espe-
cially nonvolatility and reconfigurability, and also facilitate the devel-
opment of non-volatile memory (Mem-NV memories) and in-memory
computing architectures, i.e. memristive reconfigurable logic computing
(Mem-Logic computing) and memristive artificial intelligent computing
(Mem-AI computing) as demonstrated in Fig. 1. The memristive tech-
nologies and architectures provide new opportunities for achieving se-
curity targets (e.g., by realizing stateful cryptographic functions or
neuromorphic anomaly-detection co-processors), but also raise questions
about their vulnerabilities to new types of hardware-related attacks.

There are several review articles on specific memristive security
primitives. For example [3], focuses exclusively on memristor oriented
physical unclonable functions (PUFs) and [4] on memristor oriented
PUFs and true random number generators (TRNGs), whereas [5] reviews
memristor oriented chaotic systems and hash functions. Such review
articles are generally introducing only one or two memristive imple-
mentations of cryptography systems. In comparison to that, our review
article is aiming at a higher-level, application-oriented analysis of
memritive security techniques, i.e. to explore the security implication by
reviewing the major areas of memristive applications. This article re-
views the hardware-oriented security for the applications in IoTs, with a
particular focus to the impact of revolutionary emerging memristive
applications on security. We start with an overview of the three emerging
memristive application areas: Mem-NVmemories, Mem-logic computing,
and Mem-AI computing, with a focus on their key differences from their
non-memristive counterparts. Then, we introduce three emerging topics
of hardware-oriented security where we can expect memristive solutions
to unfold their full potential:

� Memristive entropy primitives that can be used, e.g., for generation of
secret keys;
Fig. 1. Memristive applications and their connections to secure h
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� Memristive cryptographic functions, specifically block ciphers that
can encrypt data and provide its confidentiality;

� Memristive machine-learning systems, which can be used to defend
the system against attacks.

We will review state-of-the-art in novel secure system designs based
on low-power memristive technology in IoT. This review article aims at
showcasing the application-level features at the interdisciplinary frontier
of material science and hardware security. Many security approaches are
based on cryptographic schemes and primitives, and therefore we will
have to briefly introduce the basic mathematical concepts and state of the
art developments for some of the modern cryptographic solutions, in a
manner meant to be accessible for researchers from material science and
electrical engineering. Thus this article can serve as a step stone for future
researchers to understand the advantages and disadvantages of mem-
ristive devices in the world of security and cryptography.

The remainder of this article is organized as follows. We first intro-
duce the background of memristive applications regarding three major
areas: NV (nonvolatile) memory, reconfigurable logics and artificial
intelligent computing (section 2). In the following sections 3 to 5, the
three emerging hardware security topics mentioned above are reviewed.
It has to be understood that any categorization of a developing scientific
topic has its limitations, as some research questions cannot be perfectly
attributed to a single sub-area of hardware-oriented security. Thus in the
end of each section, the prospective/expected impact of memristive
technology both on respective and extended implementation designs will
be discussed. Moreover, we discuss the potential security vulnerabilities
associated with memristive technologies in Section 6.

1.1. Background on memristive applications and hardware security

IoT demands dedicated secure chips with constrained power con-
sumption. The power optimization on all levels of design abstraction is
the key point, and is also helpful for increasing the chip reliability and
chip life. In-memory-computing (IMC) is one of the leading solutions to
realize area- and energy-constrained hardware systems for IoT security
applications.

As demonstrated in Fig. 2, the separation between processing units
and data storage units has been considered as the basic assumption for
ardware systems for applications in Internet of Things (IoTs).



Fig. 2. General structures of (a) CMOS-based von-Neumann computing paradigm and (b) memristive in-memory computing paradigm.
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designing computing architecture, i.e. von-Neumann architecture
(Fig. 2a). Orders of magnitude improvement in computer performance
has been achieved by the impressive technological achievements in these
two essential system units (processor speed up, reduced power con-
sumption and the downscale of system dimensions). As nowadays both
processing and data storage units have reached a scaling barrier, the
processing performance is now limited mostly by the inevitable need for
data transferring [6], the so-calledmemory wall. To alleviate the memory
wall, numerous approaches have been developed, including integration
of cache memory near to processor [7] or integration of processing units
within memory unit [8–10]. However, the data transfer between pro-
cessing and memory units are not fully eliminated within these ap-
proaches. Memristive technology can fully explore the potential benefits
of IMC, with which the data transfer is reduced by adding processing
capabilities into the memory itself (Fig. 2b). Furthermore, for the
essential building blocks, i.e. logic gate in Mem-Logic computing scheme
and the artificial synapse in Mem-AI computing scheme can be realized
more efficiently by exploiting the memristive devices [11,12]. Such
building blocks that realized with less numbers of memristive devices
lead to further less power and less connections (i.e. more space between
connections), where the system reliability is thus enhanced.

1.2. Introduction to memristive devices

Memristive devices have been investigated intensively since the link
between memristor theory by L. Chua [13] and physical resistive
switching device was established by HP labs in 2008 [14]. A memristor is
a two-terminal device, whose resistance can be modulated by applying
appropriate electrical stimuli. The programmed resistance states, i.e. low
resistance state (LRS) and high resistance state (HRS), are in general
non-volatile. The “SET” process is usually referred to a switching pro-
cedure from HRS to LRS, while the “RESET” process is a switching pro-
cedure from LRS to HRS. Over past decades, the resistive switching (RS)
behaviors were found in various materials: phase-change chalcogenides
[15,16], solid-state electrolytes [17], organic films [18,19], and transi-
tion metal oxides [20–22]. Several physical representations have been
established correspondingly for resolving resistive switching behavior in
memristive devices, for example, the switching behavior can be induced
by a Joule heating induced phase change mechanism (PCM memories)
[23], by switching the magnetization in magnetic tunnel junctions
(MTJs) with spin-polarized currents [24], by electric-field induced
switching of the ferroelectric polarization in ferroelectric tunnel junc-
tions (FTJs) [25], or by electric-field induced ionic motion and concur-
rent redox reactions (ReRAMs) [26].

In general, one can distinguish between memristive devices pre-
dominantly switching between two states or multiple states. If the
memristive device switches quite abruptly between a HRS and a LRS, we
will call such devices digital memristive devices. Other devices have a
very smooth transition between different states enabling an analog tun-
ing of the resistance state, which can be called analog memristive de-
vices. One material system could possess different RS behavior
depending on the electrode material, oxide properties (thickness,
bandgap, and trap energy level), interfacial barrier height between metal
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and oxide, and fabrication process (deposition technology, annealing
temperature and ambient). Here we take VCM (valence change memory)
ReRAM as an example. The VCM devices have attracted much attention
and offer a promising opportunity for constructing the IMC paradigm,
due to their excellent potential performances, such as non-volatility, low
power consumption [27], excellent scalability [28], fast switching speed
[29] and high endurance and retention [30]. The switching mechanism
of VCM devices are related with the ionic motion of oxygen defects and
concurrent redox reactions in a transition metal oxide in a metal/-
oxide/metal stack.

The VCMReRAMs can show digital or analog switching behavior. The
RS in digital VCM devices involves construction and rupture of conduc-
tive filaments through the oxide layer (filamentary switching) [31,32].
As shown in Fig. 3a, the filaments, which are acting as “bridges”, extend
from one electrode to the other one for charge transport throughout
transitionmetal oxide layer. The effective Joule heating associated with a
localized conduction filament enables fast ion motion during switching.
Thus the current in LRS flows through the confined local path, and the
resistance in LRS is independent of electrode area size. By an application
of a certain voltage pulse the conduction filament is ruptured and the
device can be switched back to HRS, where the resistance in HRS in-
creases with decreasing cell size [33]. One critical and yet potentially
problematic step for the initial formation process of the conducting
filament in digital VCM devices is electroforming (as shown in inset of
Fig. 3a), i.e., a one-time application of stronger electric field strength
upon device operation, i.e. a much-higher voltage than used during
regular switching processes. In general, the filamentary switching de-
vices can only be functioning after performing electroforming process; it
has to be accepted that the induced maximum current can damage or
destroy the device through thermodynamic dielectric breakdown, lead-
ing to yield loss or deteriorated long-term reliability. For this reason,
there is a substantial interest in the usage of analog switching memristive
devices for avoiding the electroforming step altogether. For instance,
BiFeO3 (BFO) memristive device [34,35] is belonging to the catalog of
electroforming-free analog memristive devices. Their further advantage
is their self-rectifying behavior, which is key for developing selector-free
memristive crossbar arrays (MCAs), because it can effectively eliminate
the sneak current when the cells are organized in a crossbar architecture
with no need for a diode or transistor for each cell in the crossbar
structure.

The RS in analog VCM devices in general results from the modulation
of carrier transport barrier at the electrode/switching layer interface
induced by ion migration (interfacial switching) [36,37]. Upon an
application of a positive or negative electric stimulus, oxygen vacancies
in oxide layer can drift toward or rejected from the electrode/oxide
interface (Fig. 3b), and the local charge carrier concentration near the
interface can be changed, which modulates the interfacial barrier height
or depletion layer thickness at the interface between oxide layer and
TE/BE and leads to the modulation of the transport properties.

As aforementioned, both filamentary digital switching and interfacial
analog switching in VCM devices are induced by ion migration, but the
transition oxide layer does not contribute to the switching in interfacial
switching, and is considered leaky compared to the filamentary



Fig. 3. Schematics of switching mechanisms using different classification criteria: (a) Filamentary switching (inset shows sketch before electroforming process) and
(b) Interfacial switching.

Fig. 4. Relationship between memristive switching properties, memristive applications and hardware security for IoT.

1 Memristor discussed in the paper must be nonvolatile, the volatile diffusive
memristors [39] in some of publications are not included here.
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switching. Therefore, the resistance state can be exclusively dominated
by the interfacial effect in interfacial switching, whereas the transport
process in filamentary switching is controlled by local conduction fila-
ments. Furthermore, the retention time limitation in interfacial switching
VCM devices might be caused by the migration of oxygen vacancies
under low electric field in the long time domain [38].

To further enhance the memristive device performance, i.e. data
retention property or power consumption, it is crucial to identify the
exact physical transport mechanism and its relation with resistive
switching phenomena. For example, the switching velocity will influence
the energy cost of RS behavior. The resistive switching material tends to
have higher density of traps, which allows electrons/ions to hop from one
to another traps with lower cost. Furthermore, especially, to assess the
memristive devices with lower power consumption, the required voltage
or current level of switching procedure plays an important role (it makes
a difference whether SET or RESET processes are considered). In analog
VCM devices, the reduction of power consumption can be realized by
shrinking the contact size, whereas in digital VCM devices, it can be
fulfilled by reducing the length or radius of filamentary conduction path
in LRS. As experimentally observed in niobium oxide VCM devices [27],
the SET process can be fulfilled at sub-nanosecond times and ~100 fJ
energies with 30 nm radius of conduction path. Such energy dissipation is
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expected to be depressed down to tens of fJ at tens of ps switching time
with 10 nm radius.

1.3. Introduction to memristive applications

The memristive devices attract much attention due to their excellent
potential performances as demonstrated in Fig. 4. Nonvolatility1 and
variability are the two intrinsic properties of memristive devices, which
are shared among all types of memristive devices. Retention and
endurance [30] are the two functional switching properties, which define
the life time of the constructed secure primitives introduced in the review
paper. The other preferable properties of memristive devices are
low-power consumption [27], excellent scalability [28], fast switching
speed [29], large off/on ratio [40], high uniform switching [41], and
multi-level switching [42].

There is currently no “perfect” memristive device that combines all
the desirable properties as listed in Fig. 4. For example, analog switching
memristive devices show higher uniformity than digital switching
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devices, but require higher switching voltages, i.e. higher power con-
sumption. In contrast, digital switching memristive devices often require
an electroforming step while analog memristive devices are typically
electroforming-free. Therefore, the choice of the memristive device for a
practical system within a given application context must be guided by
fitness of its functional properties (such as analog vs. digital switching
dynamics, endurance, retention). In the following sections we will
demonstrate unconventional ways to construct secure systems by
exploiting emergingmemristive devices. Their functional properties pave
the way to obtain secure systems that outperform their conventional
CMOS counterparts, especially in terms of area- and power-consumption
for the IoT applications. For this purpose three major memristive appli-
cations, i.e. Mem-NV memories, Mem-Logic computing, and Mem-AI
computing, are reviewed.

1.3.1. Mem-NV memory by exploiting memristive technology
The initial interest in memristive applications was due to their

outstanding nonvolatile properties in constructing the non-volatile
memories [43–46]. Memristive memories (ReRAMs) have already led
to early commercial products [47–49], and memristors are likely to play
a leading role in next generation low power and high-density memory
systems [50]. Such NVMs can be further used for entropy primitives for
key generation due to the intrinsic properties of memristive devices, i.e.
nonvolatility and variability.

1.3.2. Mem-Logic computing by exploiting memristive technology
Reconfigurable memristive devices provide logical building blocks

[51,52] for designing innovative in-memory computing paradigms [53].
Several logic families are realized by exploiting emerging memristive
devices, and the circuit designs of representative logic gates for different
logic families are demonstrated in Fig. 5. The popular representatives for
stateful logic concept are memristor-based material implication (IMPLY)
logic [54] and memristor-aided logic (MAGIC) [55], which are attractive
for IMC with memristance as input and output logic state variable. The
universal logic gate set in MAGIC logic family can be realized by using
sequential operation of NOR gate, whereas in IMPLY logic family the IMP
and FALSE logic gates are needed. The typical lengthy sequence opera-
tion and possible difficulties in cascading multiple memristive gates [55]
Fig. 5. Mem-Logic computing application. (a) Demonstration of design levels of abs
Boolean logic building blocks by utilizing memristive IMPLY [54], MAGIC [55], CR
sponding references.
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are major problems in possible applications. The memristor ratioed logic
(MRL) [56] that provides efficient AND and OR functionality and leads to
low latency implementations [57] but requires CMOS inverters in order
to obtain a universal gate set. By applying sequential logic concept, the
complementary resistive switching based logic (CRS) [58] and CRS with
non-destructive reading (CRS-R) [11] are able to realize the logic func-
tions by using only single one memristive device, especially the CRS-R
logic was developed based on the BiBFO EF-free memristors [11] with
potential of low area cost. The difference between CRS-R and CRS are the
reading ability of the memristive cells, whether the output state needs to
be read out to fulfill the truth table or not. Furthermore, the parallel input
processing memristor (PIPM) [59] and the CMOS like logic [60] (not
shown in Fig. 5) are strongly correlated with the memristive topology,
which might have the high consumption of area and power, respectively
(The CMOS like logic is also not possible for cascading logic). There are
many review papers which introduce the operational details for each
memristive logic family [61,62], and we will not list up all details here.
Theoretically the same secure system can be constructed by all types of
memristive logic families. The optimized choice of memristive logic
concept is made by the application-level system requirements, especially
on area size and latency.

1.3.3. Mem-AI computing by exploiting memristive technology
Artificial intelligence (AI) computing is high parallelism computing

which can mimic the human intelligence by sensing, acting and adapting
using artificial neurons and artificial synapses [63]. AI computing can be
used in potential areas in IoT, such as autonomous driving, image clas-
sification, object detection and localization, cancer detection, and natural
language processing.

Attracted by the fascinating potential of AI computing paradigm,
great efforts are enforced to develop various methods and algorithms for
enabling artificial neural networks. During the past decade, leveraging
memristive crossbar arrays (MCAs) for this purpose was proposed/
reviewed by several dedicated review papers [67–69]. The advantages of
artificial neural networks implemented by MCAs in comparison to their
counterparts based on the traditional CMOS technology, e.g.,
CMOS-based field-programmable gate array (FPGA) [70], can be sum-
marized as follows:
traction for Mem-logic computing application. (b) Realization of representative
S-R [11], MRL [56] logic families. The diagrams are adapted from the corre-



Fig. 6. Mem-AI computing application. (a) Demonstration of biological neural network with biological STDP. The biological diagram is adapted from Ref. [64]. (b)
Schematic demonstration of artificial neural network. (c) Demonstration of memristive artificial neural network, where the matrix-vector multiplication are computed
by memristive crossbar array (MCA). (d) Illustration of STDP diagrams recorded from memristive artificial synapses based on HafOx [65], TaOy [66], and BFO [42]
memristive devices. The copy right permission is available for Fig. 6d.
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� Reconfigurability of MCAs: A memristive cell is capable of realizing
functions that need several transistors in a CMOS circuit [71] due to
its intrinsic reconfigurability. Further due to its memory functionwith
nonvolatility, no refresh of memristive state is needed even if the chip
is powered off completely [72]. Especially MCAs with analog mem-
ristive cells provide the possibility to process the analog sensory data
directly in analog MCAs in analog domain without analog to digital
conversion, which enables the reduction of circuitry complexity and
depresses power consumption.

� Artificial synaptic behavior of MCAs: By drawing inspiration from the
biology of the human brain (Fig. 6a), the artificial neural network
(Fig. 6b) is constructed by exploiting the artificial neurons and arti-
ficial synapses, and the memristors have been employed as bio-
realisitc synaptic connection elements or neuron elements as
demonstrated in Fig. 6c. It has been observed that one single mem-
ristive cell with its nonvolatile dynamical behavior can intrinsically
behave as an artificial synapse and mimic the learning rule of bio-
logical synapse [73,74] (as shown in Fig. 2d). In comparison, it would
take several transistors in the traditional CMOS technology to
emulate the same artificial synapse [75]. Thus by using MCAs for AI
data processing the scalability of circuit design can be greatly
improved (Fig. 6c).

� Parallel processing capability of MCAs: Matrix-vector multiplication
is the key operation for artificial neural network algorithms, which
dominates the computation time and energy consumption for many
workloads. As illustrated in Fig. 6c, in MCA, by applying a vector of
voltage signals to the rows of a MCA, multiplication by each mem-
ristive cell's conductance is carried out by the Kirchhoff's current law
and the current is summed across each column. Hence, an MCA can
physically carry out vector-matrix multiplication in a single constant-
time step [76]. Such “analog”method of vector-matrix multiplication
with high parallelism can be orders of magnitude more efficient than
a digital circuit [77], particularly as the crossbar array size is highly
scalable. The emerging MCAs can thus provide a promising hardware
realization of artificial neural networks, which can, in the security
context, be further utilized for both: machine-learning-based attacks
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and defenses. Fig. 6d demonstrates different types of memristive
devices can mimic the spike timing dependent plasticity (STDP)
behavior of biological synapse.

Machine learning is one subset of AI computing that realized with
algorithms and statistical models whose performance is improved at tasks
with experience data. In this review paper, we focus on the machine
learning implementations, because ML related hardware security issues
has become one of the research emphases for the near future.
1.4. Hardware security

Today's electronic products are complex cyber-physical systems
which integrate computing, their environment, sensors and actuators,
networks (including the Internet), and their human users [78]. Hardware
is an essential part of these systems, and it can be both: a “root of trust”,
which provides the fundament for their security, and their “Achilles'
heel” that gives rise to new security loopholes. Hardware security is an
emerging scientific discipline which studies both: hardware-related
threats to security of electronic systems, and hardware-based ap-
proaches to protecting such systems against attacks. Security analysis
usually assumes an intelligent, strategically-thinking attacker who can
identify a system's “weakest link” and mounts an attack through it, and
therefore strong security primitives and a secure realization and inte-
gration of hardware modules are needed. In the past, security research
mostly concentrated on possible vulnerabilities related to a system's
software and/or connectivity, while its hardware was traditionally
assumed to be secure; this assumption is collapsing now. One reason for
growing security concerns with respect to hardware is the better avail-
ability of equipment for measuring hardware or meddling with it
(through probing, side-channel analysis, fault injection, circuit editing,
etc.) to potential attackers. A second reason is the complex and distrib-
uted process of hardware design and manufacturing, where some of the
involved parties might not be trustworthy.

Security aspects of hardware are strongly affected by the technolog-
ical progress, both on technology and on architecture level. For example,
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larger integration densities of conventional CMOS technologies have led
to proliferation of multi-core and many-core architectures, which in turn
had a lasting impact on many areas of Computer Science and our daily
lives [79]. More importantly in the context of this survey, radically new
devices, such as memristors, give rise to novel neuro-inspired [80],
memory-centric [81] or approximate [82] computer architectures that
can revolutionize computationally challenging tasks of today and
tomorrow. Security implications of such novel architectures are only
partially explored so far (an overview can be found in Ref. [83]).

In the following of this article, we focus on the role of memristive
technologies in this context. Security aspects of the memristive devices,
circuits and systems on their basis will be explored. Memristive tech-
nologies with their low energy and area consumption can lead to
conceptually novel and strong security primitives, which can be lever-
aged to address hardware security problems and open the door for new
applications. As mentioned in the introduction, we will consider three
specific areas: entropy primitives; ciphers; and machine-learning
functionality.

2. From intrinsic memristive properties towards entropy
primitives

Emerging memristive devices with the inherent variability of their
electrical parameters (e.g., due to unpredictable manufacturing-induced
changes in their sizes and dopant concentrations) are a natural entropy
source for true random number generators (TRNGs), physical unclonable
functions (PUFs) and other primitives from this section, for the purpose
of secret generation for fundamental security functions including key-
based encryption, authentication and identification.

“Entropy” is an information-theoretical concept that can be understood
as measure of information provided by an observation, or amount of un-
certainty before that observation. The main role of entropy in the security
context is the generation of secrets, in particular secret keys for encrypting
data. For instance, consider a block B for generating a 128-bit secret key;
assume that B is securely stored within an integrated circuit and an
attacker, who is interested in learning (or obtaining) the key cannot
directly read out B's outputs. If we assume that B implements (by some
physical principle) a perfect coin toss, i.e., each of the generated 128 bits is
‘0’ or ‘1’ with 50% probability and its value is independent of the other
bits, then the resulting secret key is completely random and can assume
any of 2128 combinations. An attacker who wishes to guess this key would
have to try all 2128 possibilities, which is infeasible; this realization of B has
a maximal entropy of 1 per bit, or 128 for the entire key. In contrast, block
B0 that always produces a ‘0’ for each bit will result in a key that is not
secure at all: It will always be a sequence of 128 bits ‘0’, and the attacker
will guess it immediately. The entropy of the key produced by block B0 is
minimal, or ‘0’. We can imagine further variants, e.g., blockB’’ that obtains
the very first bit by a coin toss, but all subsequent bits are just copies of the
first bit. Here, there are two possible keys (all-‘0’ and all-‘1’), and the en-
tropy will be higher than ‘0’ but lower than 128.

2.1. Classical entropy primitives

The hardware primitive that implements the above-mentioned func-
tionality and produces bits with as high entropy as possible is called a
(true) random number generator or TRNG [84]. Amodern TRNG consists of
an entropy source (a “sufficiently random” stochastic process) and
post-processing circuitry. The entropy source can be off-chip, e.g., a
chamber with a radioactive substance and a detector producing detection
events after unpredictable amounts of time, connected to an input of the
actual TRNG. Of more relevance are TRNGs where the entropy sources
are integrated into the primitive itself. A simple realization of an on-chip
entropy source in conventional CMOS is a ring oscillator, i.e., a chain of an
odd number of inverters where the output of an inverter is connected to
the input of the next inverter and the output of the last inverter is con-
nected to the input of the first inverter. This structure will oscillate
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between the digital values ‘0’ and ‘1’with a high frequency; waiting for a
sufficiently long time and reading out the output of the last inverter will
result in a (somewhat) unpredictable outcome, because the delay of each
inverter is slightly different due to process variability, voltage noise,
temperature, crosstalk with neighboring logic, and other factors. An
overview of advanced ring-oscillator-based TRNGs can be found in
Ref. [85].

In general, the entropy source may not deliver perfect entropy due to
biases (more produced ‘1's than ‘0's or vice versa) or correlations between
bits. To obtain better entropy, post-processing is applied. Moreover, a
TRNG for use in secure systems should fulfill certain further re-
quirements, e.g., the post-processing must not allow an attacker who
managed to learn (compromise) one generated key to deduct the next or
the previous key produced by the same TRNG (forward/backward se-
crecy). Modern TRNG security standards [86] also demand for a number
of self-tests integrated into the TRNG.

Physical unclonable functions, or PUFs [87], are a second large class of
entropy primitives considered today. A PUF is a “digital fingerprint” of a
circuit (or a different physical object) based on its inherent physical dis-
order. Circuit-based PUFs typically use unpredictable variability in values
such as delays, currents or voltage levels as the source of entropy. For
example, an SRAM PUF is simply an array of static random-access
memory cells; the value produced by this PUF is the vector of logical
values (‘0’ or ‘1’) to which these cells initialize after being switched on.
Due to slight fabrication-induced asymmetries within the memory ele-
ments, this vector will be different for different manufactured instances
of the same circuit and can therefore serve as its fingerprint. This
fingerprint can serve as the unique identifier of the circuit's specific
manufactured instance. In contrast to generating the unique identifier
off-chip and storing it in an on-chip non-volatile memory, a PUF is an
intrinsic feature of an individual circuit.

Similar to TRNGs, PUFs can be used for secret key generation (and
have further applications in so-called challenge-response authentication
protocols). However, there is an important difference: A TRNG aims at
extracting a bit sequence with a maximum entropy per bit from the same
object, whereas a PUF extracts maximum entropy from a population of
manufactured objects. In other words, running the same TRNG multiple
times will result in different responses, whereas running the same PUF
multiple times should result in the same response, but this response will
be different for different copies of the same circuit (this property of a PUF
is called uniqueness). In fact, reliability (the probability to generate a stable
response even under varying temperature and voltage noise) is a central
requirement for a good PUF, especially if it will be used for generating
cryptographic keys where even one flipped bit leads to completely dis-
torted ciphertexts. Many PUFs do not guarantee perfect reliability (for
example, an SRAM PUF may include unstable cells that are sometimes
initialized to ‘1’ and sometimes to ‘0’), and error-correction or fuzzy-
extraction postprocessing is applied to them [88,89].

2.2. Memristive entropy primitives

We will focus on two entropy primitives from the domain of
hardware-oriented security (TRNG and PUF). Below, we summarize
representative memristive realizations and their requirements.

A TRNG should have good statistical properties (e.g., lack of bias or
autocorrelations) and also good security properties (forward and back-
ward secrecy, i.e., difficulty to guess the TRNG's next or previous outputs
from its current output) [90] as demonstrated in Fig. 7a. The first
memristive TRNG (M-TRNG) was suggested in 2010 [91]. Several
M-TRNGs exploited random telegraph noise (RTN) as the entropy source,
e.g., using a W/TiN/TiON/SiO2/Si memristor [92]. The demonstrated
RTN based M-TRNGs circuitry consists of only a simple bias circuit with a
comparator. With carefully biasing design, the RTN based M-TRNG has
been for the first time realized with the area consumption as low as
45 μm2, and can generate the random numbers with kilohertz data rate at
very low power. However, it is difficult to operate due to the heavy



Fig. 7. (a) Schematic illustration of TRNG functionality. (b) Experimental IV characteristics under six repeated switching cycles and circuit design of block interface
for TRNG by using Cu/AlOx based 1T1R structure [94]. (c) Experimental IV characteristics and circuit design of block interface for TRNG by using Ti/HfOx based
memristive device [95]. The insets of Fig. 1b and c are the schematics of memristive devices. The diagrams are adapted from the corresponding references.
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dependence of the applied voltages on the probabilities of ‘0’ and ‘1’.
Moreover, it was recently proved that RTN is randomly activated or
deactivated without predictability [93], which makes the memristive
TRNG based on RTN even more difficult to control. The representative
approach for constructing scalable, low power M-TRNG implementations
is demonstrated in Fig. 7. The M-TRNGs using Cu/AlOx [94] (Fig. 7b) and
Ti/HfOx [95] (Fig. 7c) based memristive devices utilize cycle-to-cycle
(C2C) statistical fluctuation of set bias Vset and reset bias Vreset, where
Vset denotes the abrupt increasing of current from high to low resistance
state in the positive bias range, and Vreset describes the first decrease of
current from low to high resistance state in the negative bias range. The
M-TRNGs based on switching variability in memristive deivces have
resolved the unreliable amplitude and average frequency issues caused
by RTN entropy sources. A key problem in the design schemes of Cu/AlOx
based M-TRNG is to track the median value of set or reset voltages, which
can ensure perfect ratio between random bits ‘0's and ‘1's after comparing
with the C2C stochastically distributed voltage parameter of memristive
devices. Ti/HfOx based M-TRNG has solved this problem by further
adopting two coupled memristive devices in self-compensation schemes
(with increased area cost). Nevertheless, none of the aforementioned
M-TRNGs passes all 15 standard statistical tests from the NIST 800–22
test suite [96] even with post-processing of data (One design that does
pass these tests [97] is based on a volatile diffusive device that is not
comparable with non-volatile memristors considered here.). Recently,
Wei et al. demonstrated a TRNG using randomness from small read
current fluctuation at certain resistance states in TaOx based devices [98].
With the help of post-processing algorithms, such highly reliable
M-TRNG is able to pass NIST 800–22 test suite across all combinations of
voltage (VDD � 0.1 V) and temperature (�40 to 125 �C) with high
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operation throughput of 32 Mbps and low power consumption of 0.04
nJ/bit.

As explained in Section 3.1, PUFs are used as unique identifiers,
device-specific secret keys, or in challenge-response protocols. A PUF
produces a response that is unique for a specific fabricated device and
should exhibit good uniqueness and reliability (Fig. 8a). The first mem-
ristive PUFs (M-PUFs) were suggested in 2013 [99,100]. RTN is also
proposed as entropy source for low cost M-PUF applications with low
noise and high thermal stability (>190�C) [101], but the sensitivity on
large RTNmagnitude can strongly degradeM-PUF reliability because it is
hard to hold the response of PUF from the same chip with larger read
instability.

TheM-PUF designs weremajorly based on the device-to-device (D2D)
variations of memristive devices. Fig. 8b and c are demonstrating the
representative implementations of 1-bit memristive PUF based on the
write time in probabilistic switching of Pt/TiO2–x/TiO2/Pt memristive
device [102] and the stochastic nature of filament formation in Al/Cux-
O/Cu memristive devices [103], respectively. Due to the intrinsic D2D
oxide layer thickness variation during the fabrication processing, the
entropy source for M-PUF in Fig. 8b is the D2D write time variation
[102]. The constructed M-PUF represents strong statistical performance
in terms of uniqueness, uniformity and bit-aliasing with remarkable low
area cost. Note that, the reference write time has to be carefully chosen in
order to make sure that the likelihood that the actual set time is larger
(output ‘1’) or smaller (output ‘0’) than the reference write time should
be in ideal case 50%, which is suitable for PUF applications. The
Al/CuxO/Cu based M-PUF [103] is relying on the inherent D2D vari-
ability of filamental formation in both memristive devices. Due to the
anti-serial connection of both memristive devices, by applying formation



Fig. 8. (a) Schematic demonstration of PUF functionality. (b) Experimental IV characteristics of Pt/TiO2–x/TiO2/Pt and circuit design of 1-bit M-PUF cell that utilizing
the variations in memristor write times [102]. (c) Experimental IV characteristics of Al/CuxO/Cu memristors and circuit design of 1-bit M-PUF cell that utilizing the
stochastic filament formation [103]. The diagrams are adapted from the corresponding references.
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voltage, both memristors can be switched to LRS, but only one of them
can be randomly switched back to HRS, and kept switchable between
HRS and LRS if the RESET and SET biases are continuously applied. Such
M-PUF does not need the complex tracing of physical reference param-
eters for getting one unclonable PUF bit. Moreover, recently, the sneak
paths of cross-point memristive array are proposed as the entropy source
for constructing the M-PUF [104]. By exploiting 12 � 12 memristive
cross-point array based on Pt/HfOx/TiN memristive cells a lightweight
and reliable strong PUF is experimentally implemented and can maintain
the generated response bits with average HDinter of around 46.2% and 0%
HDintra for more than 26,000 s (~7.2 h) at 100 �C or equivalently ten
years at 40 �C. Furthermore, due to the large challenge-response-pair
(CRP) space, the cross-point memristive PUF is immune to
man-in-the-middle attack, which is suitable for IoT applications [104].

2.3. Impact of memristive technology and further open questions/
recommendations

M-PUF and M-TRNG security primitives for secret generation in
hardware security applications benefit from the inherent property of
memristive devices: their variability. It includes D2D, C2C and T2T
variations. The D2D variation is due to the process variability, i.e. un-
controllable fabrication process fluctuations (for example thickness of
structures or dopant concentrations), which manifest themselves in the
physical nanoscale geometry. The C2C variation is due to the random
distribution of filaments or charged ions/oxygen vacancies in the func-
tional thin film, which are formed/ruptured or redistributed during
memristive SET/RESET processes. The T2T variation refers to the current
degradation during the continues read-out of the memristive states, i.e.
the LRS/HRS reading current kept decreasing/increasing while applying
continues reading voltage stimuli to the cell. In order to build reliable
secure system for IoT, we need to consider the time-to-time (T2T)
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variation of memristive devices, which might compromise the statistical
properties of constructed M-PUF or M-TRNG after a certain period of
usage.

Further, the nonvolatility of emerging Mem-NV memory may change
the established assumptions on their security and privacy properties. It
can be problematic for security, as secrets are not destroyed automati-
cally during power reset. It could also help the adversary to insert, hide
and trigger Trojans. For example, a Trojan which transfers malicious code
into a microprocessor's cache must do so only once if this cache is
nonvolatile. Thus it is essential to consider possible resilience techniques
for such security issues in the conceptualization and design phase of M-
PUF or M-TRNG.

It is also currently under-evaluated how memristive entropy sources
for TRNGs and PUFs function under changing environmental conditions
(e.g., temperature gradients), stress (e.g., excessive voltage) or aging.
Security analysis, including the evaluation of secrecy and statistical
properties for TRNGs, and uniqueness and reliability for PUFs, must take
the mentioned parameter-dependency into account. Security properties
must be guaranteed for devices working under different conditions, and
at the same time, technology aspects such as yield and manufacturability
must be considered. Developing effective security solutions at reasonable
costs will require joint efforts from scientists from memristive technol-
ogy, circuit design and manufacturing, and security.

A number of extensions to the basic PUF definition are known, and
memristive devices can be helpful in their implementation. For example,
the concept of strong PUFs or erasable PUFs may be realized with
emerging memristive devices. A recent suggestion for an attack-resistant
strong PUF incorporates memristors and relies on their specific proper-
ties [105]. Furthermore, a number of other emerging entropy primitives
have recently been discussed in the literature. One example is the Virtual
Proof of Reality concept [106], where physical properties of a system,
such as its temperature, geometry or proximity to a well-defined object,
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are verified remotely (over a communication link) based on PUF-inspired
concepts. This is one novel class of entropy primitive involve advanced
physical layer techniques that are able to provide entirely new security
functions that have not been possible using traditional cryptographic
techniques. In Ref. [107], the memristor-PUF is demonstrated to satisfy
the requirement of VP of destruction, which is the first construction of VP
of destruction based on electrical circuit.

3. From M-logic computing towards ciphers

Many security techniques are based on cryptography. In particular, it
is not sufficient to generate and store a good secret key as explained
above; it should also be processed in a manner that is resistant to attacks.
Therefore, hardware circuits must be able to provide cryptographic
functionality.

Ciphers are one major class of cryptographic primitives designed to
provide confidentiality, i.e., restrict access to information to authorized
parties only. One can distinguish between symmetric ciphers, where
parties share a common secret (secret key or encryption key) and asym-
metric ciphers, where each party has a pair of a public and a private key.
Asymmetric schemes avoid the need to securely distribute the secret key
among parties, but they require longer keys and involve more complex
(and therefore more power-consuming) mathematical operations than
symmetric schemes. The security of all ciphers is based on the difficulty
of solving certain mathematical problems, and therefore all known and
new constructions undergo a scrutiny known as cryptanalysis, i.e.,
attempting to circumvent the cryptographic protections; that a cipher is
considered “secure” merely means that cryptanalytic efforts so far were
unsuccessful. It is worth mentioning that the security of twomost popular
asymmetric schemes is based on the difficulty of problems that will be
efficiently solvable by a sufficiently large-scale quantum computer once
it will exist. Therefore, there is interest in alternative “postquantum”

asymmetric schemes that have no known vulnerability against crypt-
analysis performed on a quantum computer, but unfortunately are much
more complex and expensive than the traditional schemes.

The focus of this section is on symmetric ciphers, but many ideas are
applicable to asymmetric ciphers and to further cryptographic primitives,
such as digital signatures, message authentication codes or cryptographic
hash functions [108]. Symmetric ciphers can be subdivided into two
classes: stream and block ciphers. Both types take as inputs a plaintext P
and the key k, and produce a ciphertext C ¼ enc(P, k), where enc is the
encryption function. The inverse function is called dec for decryption; if
Alice has encrypted P and sent the resulting C ¼ enc(P, k) to Bob who
knows the key k, Bob can obtain the original plaintext by P ¼ dec(C, k),
whereas an eavesdropper who intercepts C but does not know k cannot
decrypt it. Stream ciphers process P bit by bit; once a bit of P is supplied,
the next bit of C is produced (this can be realized by continuously
generating a stream of key bits and XORing the plaintext bits with this
stream; decryption works by XORing with the same generated key
stream). Block ciphers take a plaintext message (called “block”) that
consist of a fixed number of bits and encrypt them at once; for example,
the popular Advanced Encryption Standard (AES) supports blocks of size
128, 192 and 256 bits.
Fig. 9. Organization of A
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3.1. CMOS implementations of ciphers

Ciphers are mathematically well-defined mappings that work either
on bits or on larger (but still discrete) objects, typically elements of a
finite Galois field. Most ciphers consist of several basic operations applied
one after another; these operations can be written as Boolean functions
andmapped to digital hardware submodules. The outputs of a submodule
can either feed the next submodule directly, or a register (array of storage
elements) can hold this value before handing it over to the next sub-
module. All known techniques to optimize digital hardware can be
applied to ciphers: the basic operations can be synthesized enforcing
area, delay or power constraints; they can be parallelized or pipelined to
increase throughput; they can be decomposed into simpler operations to
reduce their area footprint.

Fig. 9 shows as an example the organization of a possible typical
circuit implementation the above-mentioned AES block cipher's 128-bit
version. It takes a 128-bit plaintext P as input and applies 10 largely
identical rounds to obtain ciphertext C. The cipher maintains a 128-bit
state organized as a 4 � 4 matrix of bytes (8-bit pieces of information
or, equivalently, elements of GF(28)). The state is set to P in the beginning
of the computation, and C is simply the state after all the operations have
been applied. The following specific operations are included:

� Key addition: A bitwise XOR with the round key ki, where k0 is the
secret key and the subsequent ki's are derived from it by a process
called “key expansion”. Key expansion does not ensure independence
between ki's; an attacker who manages to learn one round key can
easily reconstruct all other round keys including k0 and thus break the
cipher.

� SubByte: A mapping (often called S-Box) is applied to each of the
cipher state's 16 bytes. An S-Box maps (substitutes) a byte to a
different byte, so 16 S-Boxes must work in parallel. This is the only
operation in AES that is not linear in GF(28); a cipher which consists
only of linear operations would be easily breakable by solving a
system of linear equations.

� ShiftRows: Here, some of the bytes in the cipher state exchange their
position within the same rowwith no modification (the content of the
byte is unaltered). This operation, together with MixColumns, forms
the “diffusion layer” which makes sure that any individual bit of the
plaintext is spread over many bits of the ciphertext, preventing
certain types of cryptanalysis.

� MixColumn: Here, the four bytes of each column of the cipher state
are “mixed” by multiplying them with a predefined 4 � 4 matrix over
GF(28). This operation is omitted in the last round.

All mentioned operations are combinational (memory-free), and it is
possible to implement all 10 rounds of AES as a combinational circuit (as
indicated in Fig. 9). A more popular realization option is to implement
the combinational logic of one round, a round counter and a 128-bit
register. Then, the cipher state after a round is written into the register
and the next round takes this state as input, thus reusing the same logic;
this is iterated ten times.

While AES can be seen as a de-facto standard block cipher, a number
of other block and stream ciphers are known, some of which are
ES-128 block cipher.
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developed with an efficient hardware implementation as the prime
objective (“lightweight cryptography”). The general principle described
above for AES-128 can be transferred to other ciphers (and other cryp-
tographic primitives). The operations are mapped to combinational
(sometimes sequential) logic; the state is stored in registers; the plaintext
is applied on the circuit's input and the ciphertext produced on its output.
The secret key (which the combinational logic treats as a further input) is
securely stored on the chip, either in protected non-volatile memory or
generated by a TRNG or PUF.
3.2. Memristive implementations of cipher building blocks

Ciphers are digital circuits that consist of combinational logic and
storage elements (registers). Combinational logic is composed of hier-
archical submodules, which are finally composed of logic gates. For
instance, the AES block cipher includes S-Boxes and Galois field matrix
multiplication as combinational sub-modules that can be mapped to logic
gates, and registers to store intermediate results of the encryption. Hi-
erarchy need not be purely combinational; for example, the Trivium
stream cipher (not further discussed here) includes several sequential
linear feedback shift registers (LFSRs) [109,110]. In the following, we
will discuss memristive logic, starting with implementing individual
logic gates or small primitives, with multiplexer serving as an example,
and continuing with memristive adders as examples of more complex
combinational (sub-)modules.

3.2.1. M-XOR logic gate implementations
Fig. 10 demonstrates the realization of Boolean logic function XOR by

utilizing MRL, CRS-R and IMPLY logic families, which are introduced in
Subsection 2.1.

By seamlessly integrating with the existing CMOS technology, a la-
tency efficient hybrid gate is implemented by using MRL logic family
based on TiOx memristor with dual XOR/AND functionality [111]. The
presented hybrid gate structure is demonstrated in Fig. 10 (Column
“M-XOR/MRL”), and consists of four memristors (M1, M2, M3, and M4),
one transistor and one resistor. TE and BE represent top and bottom
electrode of memristiors, respectively. Memristors M1 and M3 are
TE-to-TE connected for logic OR or MAX operation, whereas M2 and M4
are BE-to-BE connected for logical AND or MIN operation. The XOR logic
function can be realized by comparing the voltage levels between logic
outputs OR and AND. The dual XOR/AND functionality is operated in a
Fig. 10. Implementation of memristive XOR logic gates by exploiting MRL [56], CR
corresponding references.
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single clock cycle. In comparison to power consumption of XOR gate
implementation based on CMOS technology with 10 transistors
(61.11 μW) [112], the MRL based XOR gate consumes much less power
(14.38 μW), and maintains reliable performance at high frequencies (up
to 8 GHz).

CRS-R and IMPLY logic families are belonging to sequential logic
concept, which has been introduced to realize the logic functions in a
sequential operation with a set of clock cycles. M-XOR gate that imple-
mented by CRS-R logic family requires a single memristor with com-
plementary resistive switching behavior [11]. The table in Fig. 10
(Column “M-XOR/CRS-R”) shows the realization of XOR with three clock
cycles, including initialization (Ini.), writing (C.W) and reading (C.R)
cycles. In CRS-R logic solution, the writing bias is determined by the
potential of TE and BE, which depends on the logical variable A and B. In
the initialization (ini.)/reading cycles (C.R), the logical input variables
‘1’ and ‘0’ identify the positive and negative writing/reading bias to the
corresponding terminals, while the other terminal is grounded (GND). In
writing cycles (C.W), the logical input variables ‘1’ or ‘0’ determine the
positive or 0 V writing bias to the terminals. Note that, the reading bias in
reading cycle C.R depends on the logic variable A, which leads to the
correct logic output state of XOR gate. To accommodate stateful logics, a
write-back step can be used to store such logic output state as corre-
sponding resistance state in the same memristive device. M-XOR realized
by IMPLY logic family requires four memristors and one resistor, where
the logic input and output states are stored as resistance states in the
operational memristors. The operational cycles are demonstrated in
Fig. 10 (Column “M-XOR/IMPLY”) which are optimized based on the
computational steps in Ref. [113]. The final output is saved as resistance
state in memristor Y.

Many cryptographic functions are reversible (invertible; e.g., every
encryption function must be complemented by a decryption function to
recover the plaintext by an authorized party who possesses the correct
secret key). XOR gates are very often used in cryptographic blocks; for
instance, the key addition in AES (Section 4.1) is simply an array of 128
XOR gates with inputs driven by the bits of the cipher state and the secret
key coming from the key schedule.

3.2.2. Multiplexer exploiting memristive devices
Multiplexer (MUX) is one of the necessary logic units for imple-

menting AES. Fig. 11 compares and summarizes the circuit structures,
operational device numbers and operational voltage cycles of the
S-R [11], and IMPLY [113] logic families. The diagrams are adapted from the



Fig. 11. Exemplary control sequences for 2-to-1 memristive multiplexers (M-MUX) by exploiting MRL and IMPLY [114] logic families. M-MUX based on MRL logic
family is transformed based on the CMOS implementation, where further CMOS components for cascading gates might be needed. The diagrams are adapted from the
corresponding references.
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representative memristive 2-to-1 multiplexers based on MRL and IMPLY
logic families [114].

MRL-based M-MUX implementation (Fig. 11, column “M-MUX/
MRL”) is transformed from CMOS-based realization, which includes two
memristive AND gates and one OR gate based on MRL logic families.
Based on MRL logic family, no memristive NOT gate can be realized, and
two transistors are applied to implement NOT gate. Not that, the
cascading gates in MRL may require some signal amplification, e.g.,
Fig. 12. Comparison of representative N-bit memristive adder implementations base
The circuit demonstrations for memristive adders are adapted from the correspondi
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through insertion of CMOS buffers or inverters (not drawn here). By
applying logic input variable to ports A and B, the 2-1 M-MUX function
can be realized within 1 clock cycle. In comparison to MRL imple-
mentation, the 2-1 MUX function can be executed starting with one
initialization logic cycle and further with five sequential IMP logic steps
with the help of IMPLY logic solution (Fig. 11, column “M-MUX/
IMPLY”). The logical input variables for MUX are stored in memristive
devices S, A and B, and by exploiting five memristive devices the logical
d on IMPLY [ [102,116,117]], MAGIC [118,119] and CRS [120] logic families.
ng references. The diagrams are all adapted from the corresponding references.
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output of MUX is computed and stored as memristance state in the
memristive devices Y [114].

Multiplexers are essential building blocks of all circuits, including
cryptographic functions. For example, the popular iterative (sequential)
implementation of the AES-128 cipher from Fig. 8 consists of four
combinational blocks Key Addition, SubByte, ShiftRows and MixCol-
umns that are used ten times (rounds). However, the last round of AES-
128 differs from the first nine: MixColumn is skipped. To implement
this, a 128-bit MUX can be inserted before key addition. This MUX re-
ceives the outputs of ShiftRows and MixColumns as inputs and is
controlled by the round counter being compared with number 10: If the
current round is 10, the multiplexer forwards the outcome of ShiftRows
(thus skipping MixColumns), otherwise it forwards the regular MixCol-
umn result.

3.2.3. N-bit memristive adder schemes
The representative N-bit memristive adder schemes based on IMPLY,

MAGIC and CRS logic families are summarized in the table in Fig. 12,
where the structures of designed circuitry are compared in terms of
operational device numbers and cycle numbers.

Based on IMPLY logic family, Lehtonen et al. [115] demonstrated
logic circuit design of N-bit full adder with 3 N þ 5 memristors that
connected in parallel. One additional resistor is needed with 88 N þ 48
sequential operation cycles. Kvatinsky et al. [116] and Karimi et al. [117]
proposed three improved logic architectures for IMPLY-based N-bit full
adder, i.e. serial structure [116], parallel structure [116] and
parallel-series structure [117]. With the optimized structure designs, the
efficiency of implementation area or latency can be improved.

The N-bit memristive adder schemes based on stateful MAGIC logic
family are listed in Fig. 12 with various design considerations by
exploiting NOR and FALSE gates based on MAGIC concepts. In compar-
ison to MAGIC based RCA memristive adder scheme [118], the area- and
latency-optimized MAGIC-based adder schemes [119] needs further less
area and latency. In general, the stateful MAGIC-based adder schemes
demonstrate particular strong computation ability in dealing with more
complex parallelism functions, which outperform the stateful
IMPLY-based implementations both in area, speed and energy
consumption.

Siemen et al. [120] presents two N-bit memristive adder schemes
using CRS (complementary resistive switching) based sequential logic
concept. For the CRS-based adder implementation, both carry and sum
bits need to be computed sequentially (with the help of intermediate sum
bit) with few operational cycles. In order to accelerate operation process,
both the precalculation (PC) adder scheme and the toggle cell (TC) adder
scheme are programmed to compute both the carry bit and intermediate
sum bit simultaneously. The difference between two schemes is that: The
PC adder scheme requires 2(Nþ1)þ2 operational cycles with 2(Nþ1)
devices in two word lines, thus the read-out of carry bit and the
computation of sum bit can be programmed within one step in two word
lines, whereas the TC adder scheme is operated in single one word line
and more operational cycles would be needed (in total (4 N þ 5) cycles
and (Nþ2) devices). Thus the increased operational cycles are mainly due
to the sequential read-out of carry bit and the computation of sum bit.
Moreover, by using CRS memristive device with destructive reading, the
read-out step must be written back to same cell in TC adder scheme,
which consumes more operational cycles. Nevertheless, in general, the
CRS-based non-stateful memristive adder schemes are showing potential
of efficient implementation in terms of both area and latency than IMPLY
and MAGIC-based approaches.

For example, the listed memristive implementations of 8-bit full
adder in the table in Fig. 12 based on IMPLY, MAGIC and CRS logic
families require component numbers as less as 27 Mþ1R [115], 5 M
[119] and 10 M [120], which present great area saving potential in
comparison to a single CMOS based 8-bit full with two eight-bit inputs
and one eight-bit output which comprises of around 400T (400 transis-
tors). Furthermore, the stateful memristive addition exploiting novel IMC
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architecture spares the energy to access the data from DRAM and to write
the results back to cache, and costs energy for 32-bit in-memory addition
within the range of 0.1–1 nJ (The exact energy cost is depending on the
exploited specific version of MAGIC or IMPLY logic families) [119].
While the estimated energy cost of conventional 32-bit addition by using
von-Neumann architecture includes DRAM access energy of 3.2 nJ (50
pJ/bit [121]), 32-bit adder operation energy of 0.1 pJ [122], and cache
write-back energy of 30 pJ [123], which is much higher than the mem-
ristive IMC approaches. Thus the memristive IMC implementations are
more suitable for IoT applications concerning the area and power con-
sumption of addition operation in comparison to CMOS conventional
approaches.

The additional criteria referring to the compatibility with the MCAs is
also considered in the table in Fig. 12. Only Kvatinsky's parallel approach
and Karimi's parallel series approach require more complicated mem-
ristive crossbar architecture. In contrast, the introduced adder schemes
based on MAGIC and CRS logic families are all compatible with common
passive MCAs (as shown in Fig. 6c) with less devices and a smaller
number of cycles. The corresponding circuit design architectures for each
adder scheme are illustrated at the bottom of Fig. 12.

Inspired by the memristive adder implementations, the arithmetic in
Galois field can be further realized for constructing memristive AES block
cipher. Moreover, addition (and also multiplication, inversion and
further arithmetic operations) in a Galois field can be realized by mem-
ristive logic as well, since memristive logic families are universal and can
implement arbitrary functions.

3.3. Impact of memristive technology and further open questions/
recommendations

Any implementation of security-relevant functionality must fulfill
both general (security-unrelated) and security-related requirements. The
implementation must obviously be correct (e.g., an AES-128 encryption
circuit must indeed realize the AES-128 encryption) and efficient with
respect to some objectives, e.g., area, power consumption or perfor-
mance. This set of requirements generally applies to all circuits and not
only security-relevant ones. Moreover, the implementation must be
secure, i.e., withstand certain types of attacks, such as side-channel
analysis, fault-injections, or probing. The required extent of counter-
measures against attacks depends on the considered types of attacks and
assumed attacker capabilities. For instance, consider fault injection: one
can assume a powerful attacker who can set any register within the cir-
cuit to a desired value, or an attacker who can decrease the power supply
voltage of a circuit, resulting in poorly controlled and random failing
patterns. Defending a circuit against these two types of attackers will
demand different countermeasures with different costs [124].

This discussion applies to cryptographic circuits (e.g., the AES block
cipher) constructed from emerging memristive devices. As has been
indicated above, a basic decision for all memristive circuits is the choice
of the memristive logic family. Recall Fig. 10, where an M-XOR needs
more chip area but less sequential cycles when the MRL logic family is
used compared to the IMPLY logic family, whereas the CRS-R-based M-
XOR can be seen as a compromise between the two. It can be an
important factor that some of the logic families in question (with proper
circuit topology) can be realized by standard MCAs.

Another parameter that does not occur in conventional CMOS design
is the ease of integration of the memristive logic with CMOS. Most logic
families require CMOS peripheral circuits for synthesizing and auxiliary
control signals, and the MRL logic family is inherently hybrid because its
set of memristive primitives is not universal: it lacks inversion.

Furthermore, the AES block ciphers can offer a high security level, but
for the IoT applications which require further small area and low-power
dissipation, lightweight encryption algorithms with reduced complexity,
such as KATAN [125], can be a more attractive option. For emerging
cryptographic solutions with a higher complexity (e.g., postquantum
asymmetric algorithms), the memristive devices combine the integration
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density and access times of today's SRAMs with the non-volatility of flash
memories; they enable novel cache hierarchies well-suitable for
power-sensitive applications [126]. An attractive inherent feature of
memristors is the ease of implementation of stateful algorithms [54],
which can be employed for a straightforward implementation of “non-
ces” (number used once) often needed by advanced cryptographic
schemes. An interesting property of memristive devices to support stor-
age and manipulation of multi-level data (thus allowing multi-valued
computations in a natural way) is largely unexplored in the context of
modern cryptographic schemes.

4. From Mem-AI computing towards security feasibility: attacks
and protections

Machine learning (ML) is changing the world in security. ML-based
defenses can be used to improve system security, whereas ML-based at-
tacks may also cause major security issues in hardware systems. As Mem-
AI computing paradigm provides great potential to be the leading solu-
tion for ML implementations in IMC for IoT, it is essential to explore the
security implications of Mem-AI computing on ML-supported defenses
and attacks on hardware system, which is insufficiently investigated yet.

4.1. Machine-learning oriented security assessment

Machine learning (ML) can play a major role in both: attacks and
countermeasures on secure hardware. In the attack context, ML can
improve the efficiency of side-channel analysis [127] or compromise the
security of PUFs via “model-building” attacks [128]. When speaking
about defenses, ML can help identify anomalous system behavior that
may point to an (attempted or successful) attack. ML is a computationally
intensive task, and it can be advantageous to provide dedicated hardware
that supports ML operations. On the adversarial side, such dedicated ML
hardware is useful but not strictly required, because attacks are usually
Fig. 13. Memristive implementations of ML building blocks. (a) Schematic demonstra
of functional connection for artificial neurons and synapses by using MCA. (c) Con
1T1M-synapse [130], and 2M-synapse [132,133] (d) Realizations of artificial neuron
for 1M-synapse [140–142] and 2M-synapse [143]. The variable i represents the num
bit line. The copy right permission is available for I&F neuron in Ref. [138], and th
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mounted by adversaries with powerful compute servers. On the defense
side, in contrast, ML-based anomaly-detection solutions must be imple-
mented directly on-chip and monitor the system behavior in real time.

4.2. Implementations of memristive artificial synapses

Inspired by the biological understanding of synaptic and neuronal
behaviors (Fig. 13a), the models for artificial synapses and neurons are
proposed as the building blocks for implementing ML applications in
both training and testing processes. As introduced in Section 2, the
emerging MCAs can provide a promising hardware realization of artifi-
cial neuron networks, and both artificial synapses and artificial neurons
(Fig. 13b) can be implemented by emerging memristive and hybrid
CMOS-memristive devices, respectively.

Fig. 13c demonstrates different configurations of memristive artificial
synapses. The artificial synapse can be realized by using one single
memristor (1M-synapse) [129,130], which is efficient in terms of on-chip
area and power consumption. But such configuration suffers from com-
mon sneak path problems of MCAs. One possible solution would be to
add one transistor in series of memristor (1T1M-synapse) [131], which
solves sneak path issues but requires more energy than 1M-synapse.
Another popular configuration for artificial synapse is based on 2 mem-
ristors (2M-synapse) [132,133], which doubles the implementation area
size but allows implementing negative synaptic weights that needed in
the neural networks. The voltage stimuli generated from artificial neu-
rons in different word lines are applied over the MCA based memristive
synaptic network, and the generated current Iij can be sensed from each
bit line. The energy consumption per synaptic event is critical for the
performance evaluation of AI system. For memristive artificial synapses,
it is easy to reach several pJ per synaptic event [134,135], or even several
hundresds of fJ [27,136], which is close to the biological brain, whereas
the most reported CMOS based artificial synapses usually operate at ~ nJ
per event level [137]. Considering the Mem-AI system with 105 synapses
tion of biological and memristive artificial neurons and synapses. (b) Illustration
figurations of memristive artificial synapses, including 1M-synapse [129,130],
s, including I&F neuron circuit [138] and summing/thresholding neuron models
ber of corresponding word line, while j represents the number of corresponding
e other diagrams are adapted from the corresponding references.
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[138], the energy cost of synaptic operations can already significantly be
reduced by orders of magnitudes in comparison to conventional CMOS
technology.

Furthermore, the neuron cell sums up the input signal stimuli from all
artificial neurons in different word lines and generates voltage spikes
transmitted to other neurons (not shown) through memristive artificial
synapses (Fig. 13b). According to such equivalent representation of
biological neuron, the first proposed neuron model is Integrate and Fire
(I&F) neuron model [139], which contains the major functions as current
integration and spike generation (Fig. 13d). However, for the energy
constrained IoT applications, such artificial neuron models are not
practical and applicable due to the large on-chip area and high power
consumption. The threshold-logic-based linear neuron model, which is
based on summing amplifiers and comparators, is usually utilized for ML
implementations. The conventional summing and thresholding neuron
configuration [140,141] is demonstrated on the right side of Fig. 13d,
where the summing amplifier accumulates the input current and sources
the corresponding voltage signal to the comparator. The comparator
generates the voltage spike to the next layer of neurons if the amplifier
output voltage is above the threshold. An alternative approach for arti-
ficial neuron is based on hybrid CMOS-Memristor design [142]. The first
amplifier with memristor Mf is both to scale the output voltage and
implement the sigmoid activation function, where the reconfigurable
resistance of memristor Mf is utilized to control the feedback gain, and
the second amplifier is for inverting the output. For the 2M-synapse, the
artificial neuron is combining the voltage outputs from both positive and
negative artificial synapses by using two sets of summing amplifier and
comparator circuit [143]. The proposed artificial synapses and neurons
are utilized for different ML architectures, for examples the traditional
artificial neural network (ANN) [131,144] and the convolutional neural
network (CNN) [145].

For further IoT application, efforts have also been made to utilize
single power constrained memristive device for highly efficient edge
computing, i.e. to associate memristive device with sensors for data
processing purposes. As an example, in an artificial haptic perception
system, a single Nafion-based organic memristive device is integrated
with a piezoresistive pressure sensor in order to mimic the functionality
of an artificial synapse for application in human perception [146]. The
basic synapse functions including paired pulse facilitation/depression
and spike timing dependent plasticity behaviors are mimicked in one
Nafion-based memristor. Furthermore, the memristive devices can also
be used as memory device for edge computing. Most recently, an artificial
spiking afferent nerve [147] is reported based on a single Mott mem-
ristive device, which is applied as an interface for converting the analog
sensory signal into spikes for further data processing.

4.3. Impact of memristive technology and further open questions/
recommendations

The impact of Mem-AI computing on security assessment can be
explored from two aspects: one aspect is to conduct the most effective use
of advantages in Mem-AI implementations for conventional CMOS ori-
ented ML-supported attacks and defenses, i.e. side channel analysis or
strong PUF modelling, anomaly detection during system operation. The
other aspect is to understand the security feasibility on Mem-AI
computing design itself.

The energy consumption of Mem-AI computing system is highly
depending on the various memristive networks further in association
with different learning strategies, which can be estimated both in
element device level and network learning level [148]. In general, the
MCA-based Mem-AI computing with highly parallel architectures pro-
vides attractive features to implement different types of ML algorithms,
which can significantly reduce the power and area consumption by or-
ders of magnitudes in comparison to conventional CMOS technology.
Therefore, it is also predictable that the ML-supported attacks and de-
fenses can be more efficiently implemented by memristive technology
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instead of standard CMOS technology. Thus Mem-AI computing system
offers promising improved options for hardware-oriented ML oriented
security application in big data and data-intensive applications in IoT.

Furthermore, the impact of memristive technology on ML realizations
can also be explored by studying the vulnerability and resilience in Mem-
AI computing system itself. For example, it has been demonstrated that
Mem-AI computing system can prevent an attacker with physical access
from the replication attack of proprietary learning model [149]. The
learning model is the key for the ML implementation system. If the
attacker has physical access to the device, the learning models which are
exploited in Mem-AI computing system are exposed to the risk of being
attacked by the attacker in the way of observing the inputs and outputs
variables of the system. As has been shown in Ref. [149], time-to-time
(T2T) variability (as the third intrinsic variation of memristive devices
beyond D2D and C2C variations) can be used for preventing replication
attacks against secure Mem-AI computing systems.

Mem-AI computing systems might cause further security issues. For
example, as one major technical issues for the Mem-AI computing
implementations, i.e. the nonlinear G-response of memristive cells [150]
can decisively affect the performance of artificial neural network (e.g.
strong degradation of neural network accuracy during online learning).
Thus the researchers are struggled to realize the preferable linear
conductance response (G-response) of artificial synaptic cell recorded
under application of identical excitation pulses for training process
during ML implementation. There are several solutions proposed to fulfill
this purpose, for instance to apply non-identical voltage pulses with
varying pulse widths for achieving the linear G-response. However, one
needs to take care to not compromise security by creating information
leakage via non-identical voltage stimuli.

Furthermore, Mem-AI computing system enables edge computing
[151] for IoT. Edge computing, where large volumes of data are pro-
cessed on edge devices, is considered as a natural complement to con-
ventional cloud-centered computing. Mem-AI computing system with its
scalability, small on-chip area, low energy dissipation and adaptability is
suitable to be integrated directly into the edge devices, for example the
first programmable memristor computer as demonstrated in Ref. [152],
which can process the data by using Mem-AI computing system on edge
devices, such as smartphones and sensors. It significantly reduces the
long-distance communication between sensor array (edge) and cloud
data center, and enable better security and privacy by avoiding trans-
mission through unprotected media.

5. Security threats to memristive primitives

The material above focuses on expected advantages of memristive
technologies for security applications. It is, however, a legitimate ques-
tion whether memristive primitives themselves can give rise to new kinds
of security attacks. After all, their physical properties are different from
the conventional CMOS electronics, and at least in theory, new attack
vectors might exist, or known countermeasures that work well for CMOS
might be less effective.

Physical attacks are known in principle for all functions discussed
above: entropy primitives; ciphers; and ML components. One can
distinguish between passive side-channel analysis, where an attacker ob-
serves, e.g., the power consumed during encryption to deduct secret in-
formation [153] and active fault-injection attacks where an adversary
induces physical disturbances during encryption [124]. A number of
countermeasures are known against physical attacks, and a secure system
should incorporate some of them.

Physical attacks against memristive implementations, and conse-
quently protections against such attacks, are not yet sufficiently under-
stood. One should pay special attention to potential attack mechanisms
that are unique for memristors and do not exist in conventional CMOS. A
memristor can recall the last resistance state stored in the device even
after the power has been turned off. An attacker might try to utilize such
memory effects during side-channel analysis to leak information from
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previous logical operations. When discussing information leakage
through the power side-channel, it is important that the input voltages in
both MRL and CRS-R logic families depend on their logic values, which
can create new sources of information leakage. Moreover, sequential
voltage operation required by some memristive logic families plays a
crucial role in designing functional security circuits, assessing their
vulnerability to physical attacks, and developing suitable countermea-
sures. They give rise to trade-offs between different design parameters:
area, latency, power consumption, and vulnerability to (or difficulty of
protection against) physical attacks. Moreover, peripheral CMOS logic
added to support memristive operation must be considered when eval-
uating the side-channel information leakage.

A further dimension is spanned by (active) physical attacks, e.g., an
adversary advertently applying laser or electromagnetic pulses to the
entropy primitive with the intent to either disrupt its operation or to
make the generated secret predictable.

An emerging target of physical attacks is the AI hardware, and there
the intellectual property associated with the implemented neural
network itself. In contrast to a cryptographic circuit such as the AES block
cipher, where the functionality is known and only the secret key is
confidential, an AI circuit implements a function that has been obtained
by a laborious and expensive process: constructing or selecting an ar-
chitecture, putting together the training set, and obtain the individual
weights by processing-intensive training. Physical attacks can be moun-
ted by adversary to deduce the architecture (number and shape of layers)
and the weights associated with the individual synapses from measure-
ments of, for example, electromagnetic emanations of the circuit [154]. A
number of protective approaches are under development, e.g., water-
marking [155] where a signature of the legitimate owner is embedded
into the NN (and therefore its circuit implementation) or fingerprinting
[156] where the signature includes a unique identifier or fingerprint to
distinguish between different users of the NN. When memristive logic is
used for AI circuits, their vulnerability to this type of reverse engineering
threats must be assessed.

The resistance of memristive systems to physical attacks is still rather
unexplored. Among the few results published so far are works on coun-
teracting power analysis [157] and active fault-injection attacks against
resistive memories [158]. In Ref. [159], a special memristor-based neu-
ral-network implementation of the AES S-Box is investigated for power
analysis resistance. A deep understanding of attack vulnerabilities of
broader classes of secure hardware discussed in this article is still lacking,
even though it is a necessary prerequisite to design effective counter-
measures against physical attacks.

6. Concluding remarks

IoT demands dedicated low-cost smart chips, including low-cost on
both power and area consumption. The emerging low-power memristive
technology with their intrinsic nonvolatile and reconfigurable properties
and potential numerous advantages, i.e. high chip density, high power
efficiency, high uniformity, fast switching speed etc., enables Mem-Logic
computing and Mem-AI computing and reduces the data transfer by
incorporating processing capabilities into the Mem-NV memory itself,
laying promising foundation for enabling IMC paradigms with highly
parallel processing capability. The memristive IMC paradigms, including
Mem-Logic computing and Mem-AI computing, enable novel non-von
Neumann architecture, which significantly reduce the energy consump-
tion and miniaturize the chip size by orders of magnitudes in comparison
to conventional CMOS technology. This review article surveys the power
and area efficient secure implementations based on emerging memristive
designs for IoT. One main focus of this review article is the emerging
nanoelectronic memristive technology, and its impact on security. We
take the three major application approaches of memristive technology as
the starting point, i.e. Mem-NV memory, Mem-Logic computing and
Mem-AI computing, and further explore the higher-level application-
oriented impact of memristive technology on three corresponding
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cryptography areas, i.e. secret key generation, crypto functions and ML-
related attacks/defenses. It has been demonstrated that the security
implication of memristive secure hardware systems is easier accessible if
we study the security vulnerability and resilience of their corresponding
memristive application. This review article brings together the views of
researchers from material science and hardware-oriented security, and
bridges the gap between memristive applications-level features and their
further usage in hardware security systems. This invited review article
can serve as a guide for the future implementation of memristor-oriented
reliable and secure systems with constrained energy and area cost in IoT
applications.
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