1,762 research outputs found

    New thermocouple-based microwave/millimeter-wave power sensor MMIC techniques in GaAs

    Get PDF
    We describe a new RF and microwave power sensor monolithic microwave integrated circuit design. The circuit incorporates a number of advances over existing designs. These include a III–V epitaxial structure optimized for sensitivity, the figure-of-merit applicable to the optimization, a mechanism for in-built detection of load ageing and damage to extend calibration intervals, and a novel symmetrical structure to linearize the high-power end of the scale

    Study of solid-state integrated microwave circuits Scientific report no. 1, 15 Sep. - 14 Dec. 1965

    Get PDF
    Solid state microwave devices applied to integrated circuit

    NASA micromin computer Monthly progress letter, Jan. 1967

    Get PDF
    Microminiature circuit development for flight control computer

    Progress of analog-hybrid computation

    Get PDF
    Review of fast analog/hybrid computer systems, integrated operational amplifiers, electronic mode-control switches, digital attenuators, and packaging technique

    Solid state image sensor research Final technical report

    Get PDF
    Fifty-element linear arrays of InAs photodiode

    4H-SiC Integrated circuits for high temperature and harsh environment applications

    Get PDF
    Silicon Carbide (SiC) has received a special attention in the last decades thanks to its superior electrical, mechanical and chemical proprieties. SiC is mostly used for applications where Silicon is limited, becoming a proper material for both unipolar and bipolar power device able to work under high power, high frequency and high temperature conditions. Aside from the outstanding theoretical and practical advantages still to be proved in SiC devices, the need for more accurate models for the design and optimization of these devices, along with the development of integrated circuits (ICs) on SiC is indispensable for the further success of modern power electronics. The design and development of SiC ICs has become a necessity since the high temperature operation of ICs is expected to enable important improvements in aerospace, automotive, energy production and other industrial systems. Due to the last impressive progresses in the manufacturing of high quality SiC substrates, the possibility of developing ICs applications is now feasible. SiC unipolar transistors, such as JFETs and MESFETs show a promising potential for digital ICs operating at high temperature and in harsh environments. The reported ICs on SiC have been realized so far with either a small number of elements, or with a low integration density. Therefore, this work demonstrates that by means of our SiC MESFET technology, multi-stage digital ICs fabrication containing a large number of 4H-SiC devices is feasible, accomplishing some of the most important ICs requirements. The ultimate objective is the development of SiC digital building blocks by transferring the Si CMOS topologies, hence demonstrating that the ICs SiC technology can be an important competitor of the Si ICs technology especially in application fields in which high temperature, high switching speed and harsh environment operations are required. The study starts with the current normally-on SiC MESFET CNM complete analysis of an already fabricated MESFET. It continues with the modeling and fabrication of a new planar-MESFET structure together with new epitaxial resistors specially suited for high temperature and high integration density. A novel device isolation technique never used on SiC before is approached. A fabrication process flow with three metal levels fully compatible with the CMOS technology is defined. An exhaustive experimental characterization at room and high temperature (300ºC) and Spice parameter extractions for both structures are performed. In order to design digital ICs on SiC with the previously developed devices, the current available topologies for normally-on transistors are discussed. The circuits design using Spice modeling, the process technology, the fabrication and the testing of the 4H-SiC MESFET elementary logic gates library at high temperature and high frequencies are performed. The MESFET logic gates behavior up to 300ºC is analyzed. Finally, this library has allowed us implementing complex multi-stage logic circuits with three metal levels and a process flow fully compatible with a CMOS technology. This study demonstrates that the development of important SiC digital blocks by transferring CMOS topologies (such as Master Slave Data Flip-Flop and Data-Reset Flip-Flop) is successfully achieved. Hence, demonstrating that our 4H-SiC MESFET technology enables the fabrication of mixed signal ICs capable to operate at high temperature (300ºC) and high frequencies (300kHz). We consider this study an important step ahead regarding the future ICs developments on SiC. Finally, experimental irradiations were performed on W-Schotthy diodes and mesa-MESFET devices (with the same Schottky gate than the planar SiC MESFET) in order to study their radiation hardness stability. The good radiation endurance of SiC Schottky-gate devices is proven. It is expected that the new developed devices with the same W-Schottky gate, to have a similar behavior in radiation rich environments.Postprint (published version

    Characterization and fabrication of a (6H)-SiC as a piezoresistive pressure sensor for high temperature applications

    Get PDF
    A prototype monolithic 6H-SiC pressure sensor operational up to 350°C, with potential to operate up to 600°C, was batch fabricated and tested. At temperatures higher than 450°C, silicon diaphragms creep under minimal load. To operate beyond 450°C, therefore, the use of 6H-SiC was proposed. However, three key technological issues - fabrication, high temperature metallization, and gage factor characterization - had to be resolved. Since conventional fabrication technology is not applicable to SiC due to its near inert chemistry, photoconductive selectivity techniques to etch the piezoresistors were developed. Techniques to wet etch the cavities in a dark current mode were developed, resulting in 25µm diaphragms free of etch-pits and hillocks. Average etch-rates between 0.6 and 0.8µm/min were achieved. Ti/TiN/Pt and Ti/TaSi2/Pt multilayer metallization schemes that maintained stable contact resistivity on n-type 6H-SiC epilayers after more than twenty hours of heat treatment at 600°C in air were demonstrated. The characterization research revealed that the longitudinal and transverse gage factors were 22 and 19, respectively, at room temperature. They increased in absolute values with temperature, and then assumed constant values of 11 and 9, respectively, above 400°C. The experimental data obtained demonstrated for the first time that 6H-SiC pressure sensors capable of operating up to 600°C can be fabricated and manufactured
    corecore