4,168 research outputs found

    ASIdE: Using Autocorrelation-Based Size Estimation for Scheduling Bursty Workloads.

    Get PDF
    Temporal dependence in workloads creates peak congestion that can make service unavailable and reduce system performance. To improve system performability under conditions of temporal dependence, a server should quickly process bursts of requests that may need large service demands. In this paper, we propose and evaluateASIdE, an Autocorrelation-based SIze Estimation, that selectively delays requests which contribute to the workload temporal dependence. ASIdE implicitly approximates the shortest job first (SJF) scheduling policy but without any prior knowledge of job service times. Extensive experiments show that (1) ASIdE achieves good service time estimates from the temporal dependence structure of the workload to implicitly approximate the behavior of SJF; and (2) ASIdE successfully counteracts peak congestion in the workload and improves system performability under a wide variety of settings. Specifically, we show that system capacity under ASIdE is largely increased compared to the first-come first-served (FCFS) scheduling policy and is highly-competitive with SJF. © 2012 IEEE

    ANALYSIS OF BULK ARRIVALS IN QUEUEING MODELS

    Get PDF
           Present paper surveys the literature on bulk queueing models. The concept of bulk arrivals and bulk services has gained a tremendous significance in present situations. Due to congestion problem everywhere (banks, metro stations, bus stops, railway reservation, traffic … etc.) researchers have to focus their attention to develop models and mechanism to deal with the same. A number of models have been developed in the area of queueing theory incorporating bulk queueing models. These bulk queueing models can be applied to resolve the congestion problems. Through this survey, an attempt has been made to review the work done on bulk queues, modeling various phenomenons. The goal is to provide sufficient information to analysts, managers and industry people who are interested in using queueing theory to model congestion problems and want to locate the details of relevant models

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    JMT – Performance Engineering Tools for System Modeling

    Get PDF
    We present the Java Modelling Tools (JMT) suite, an integrated framework of Java tools for performance evaluation of computer systems using queueing models. The suite offers a rich user interface that simplifies the definition of performance models by means of wizard dialogs and of a graphical design workspace. The performance evaluation features of JMT span a wide range of state-of-the-art methodologies including discrete-event simulation, mean value analysis of product-form networks, analytical identification of bottleneck resources in multiclass environments, and workload characterization with fuzzy clustering. The discrete-event simulator supports several advanced modeling features such as finite capacity regions, load-dependent service times, bursty processes, fork-and-join nodes, and implements spectral estimation for analysis of simulative results. The suite is open-source, released under the GNU general public license (GPL), and it is available for free download at http://jmt.sourceforge.net
    • …
    corecore