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Abstract—Temporal dependence in workloads creates peak
congestion that can make service unavailable and reduce system
performance. To improve system performability under conditions
of temporal dependence, a server should quickly process bursts
of requests that may need large service demands. In this paper,
we propose and evaluate ASIdE, an Autocorrelation-based SIze
Estimation, that selectively delays requests which contribute to
the workload temporal dependence. ASIdE implicitly approxi-
mates the shortest job first (SJF) scheduling policy but without
any prior knowledge of job service times. Extensive experiments
show that (1) ASIdE achieves good service time estimates from
the temporal dependence structure of the workload to implicitly
approximate the behavior of SJF; and (2) ASIdE successfully
counteracts peak congestion in the workload and improves system
performability under a wide variety of settings. Specifically, we
show that system capacity under ASIdE is largely increased
compared to the first-come first-served (FCFS) scheduling policy
and is highly-competitive with SJF.

Index Terms—Temporal dependence, delay-based scheduling,
no-knowledge scheduling, FCFS scheduling, SJF scheduling

I. INTRODUCTION

Burstiness and temporal dependence in workloads are of-
ten found in multi-tier architectures, disk drives, and grid
services [15], [20], [25]. These features are responsible of
dramatic degradations of the system performability (i.e., per-
formance and availability) as they create peak congestion that
can make service unavailable. Under bursty conditions, system
availability is strongly dependent on the response taken to
counteract workload peak congestion and on the adoption of
efficient schemes that address burstiness.

The characterization and the definition of remedies for tem-
poral dependence congestion effects have been exhaustively
studied in networking, leading to the development of accurate
models of autocorrelated traffic processes (e.g., Markov Mod-
ulated Poisson Processes (MMPPs) and fractional Brownian
motion) [32], and to measurement-based load-control schemes
for network availability under rapidly changing flows [9]. The
schemes in [9], [32] are based on fitting distributions to data.
However, the fitting problems can become very challenging,
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especially when one wants to find a fit to measured higher
moments and temporal dependence of the data. Even if one
can solve such fitting problems, it is still difficult to know
how to use the fitted distributions in scheduling. Hence, these
schemes unfortunately cannot be easily applied to systems.
In this paper, we fill this gap by addressing the lack of ef-
fective measurement-based schemes to maintain performance
and availability in systems with bursty workloads. We focus
on systems with finite buffers and/or admission control. In
addition, we assume that work reduction techniques such as
dropping jobs [19] cannot be applied, i.e., processing of the
entire workload is mandatory. This assumption makes the
problem more challenging. We also remark that the terms
“burstiness”, “temporal dependence” and “serial correlation”
are interchangeably used in the text.

The shortest job first (SJF) scheduling is well-known from
classic scheduling theory [26] for minimizing the average
completion time of all jobs if knowledge of exact job sizes
is available to the scheduler. However, the optimality of SJF
depends on a priori knowledge of job service times, which
is not practical in systems where job service times are only
known after the jobs are completed. The purpose of this paper
is to present a new autocorrelation-based size estimator called
ASIdE that effectively estimates (i.e., differentiates) long/short
job service times using the burstiness characteristics of the
service process and implicitly approximates SJF by delaying
jobs that are expected to be long.

We show that ASIdE predicts requests as short or long
based on burstiness in the service process. ASIdE is based
only on measurement of past workload (e.g., service times
of completed jobs), leveraging on the structure of temporal
locality to forecast the size of upcoming requests and defining
self-adjusting criteria to delay requests that it deems as large.
By selectively delaying requests that contribute to temporal lo-
cality, ASIdE significantly improves system throughput, which
results in increasing the amount of requests that a server can
process at a given time and deals effectively with congestion
conditions. We interpret the significant performance improve-
ment as an outcome of the burstiness reduction in service
process of the resource where requests are delayed. More
importantly, in the case where there is a series of servers
that a job needs to be served before completion (e.g., [20]),
decreasing the source of burstiness at one server reduces
burstiness propagation [20] in the flow of the entire network of
servers, which results in generalized throughput improvement.

Experimental results show that ASIdE can increase through-
put under temporally dependent workloads, without service
rejection, while delaying only a small fraction of jobs. ASIdE
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dramatically increases system capacity compared to FCFS
scheduling and works comparably to SJF despite the fact that
it does not require any a priori knowledge of future workload.
Sensitivity analysis with respect to different workload charac-
teristics shows that ASIdE is effective and robust. Using two
real traces, ASIdE is shown to be also effective with real-world
workloads. The remainder of the paper presents our results in
detail.

II. DELAY-BASED SCHEDULING POLICY: ASIDE

In this section, we introduce ASIdE, a delay-based schedul-
ing policy that improves performance and availability in sys-
tems with temporally dependent workloads. The basic idea
behind ASIdE is to implicitly approximate the SJF scheduling
policy but without requiring any knowledge of job service
times. ASIdE uses the measured temporal dependence in the
service times to estimate the job service time of upcoming
jobs. Once reliable estimates of the job service times are
available, we delay large jobs by putting them at the tail of the
queue up to a fixed number of times. As a result, long jobs
will be more likely served after most short jobs are served.
Estimated short jobs are instead never delayed by ASIdE.

Summarizing, the ideas that ASIdE is based on are: (1) to
approximate the behavior of the SJF scheduling discipline by
proper use of job delaying; and (2) to estimate the expected
service times of the jobs waiting in queue from the temporal
dependence in the job service process. We stress that ASIdE
does not assume any a priori knowledge of the service time of
any of the enqueued jobs. The system knows the exact service
time received by a job only after the job completes execution.
Estimation of service times for upcoming jobs is based only
on past history. ASIdE also incorporates mechanisms to avoid
job starvation. In the following subsections, we present the
policy in detail.

A. Forecasting Job Service Times
The effectiveness of the proposed policy depends on the

accuracy of forecasting job service times. If prediction is done
effectively, then long jobs to be delayed can be accurately
identified and ASIdE performs optimally. We first present
the forecasting approach which is specifically tailored to
temporally dependent workloads.

Exploiting Service Time Variability: ASIdE’s service time
forecasting relies on two system aspects: service time vari-
ability and temporal dependence. Concerning the former, we
leverage on the fact that service time distributions found in
systems are typically characterized by high variance and heavy
tails [2], [25] and therefore the differentiation between small
and large service times can be performed effectively and used
to improve performability. Rather than using a constant value,
ASIdE uses a large-job threshold (LT),

LT = µ−1 + k · σ, (1)

where µ−1 is the mean service time at the resource, σ is the
standard deviation of service times, and k >= 0 is a constant

determined online1. If a job service time is greater than LT ,
then ASIdE regards the job as “long” (also referred throughout
the paper as “large”). Otherwise, ASIdE classifies it as “short”.
Note that the policy can successfully measure the parameters
for computing LT in an online fashion, i.e., the mean µ−1 and
the standard deviation σ of the service times are continuously
updated in ASIdE using Welford’s one-pass algorithm [31].

Exploiting Temporal Dependence: Given a classification of
jobs into long and short, the next step is to effectively forecast
whether the jobs currently in the queue are long or short.
To this end, we exploit the structure of temporal dependence
in order to make an educated “guess” whether a job in the
queue is long or short. We assume that the scheduler is able to
measure correctly the service times of jobs that are completed
by the server; this is readily available in most systems. Let T
be the time instant in which a forecasting decision is needed.
This instant always corresponds to the departure instant of a
long job leaving from the queue. Also assume that during the
period [T − TW , T ], the system has completed n jobs with
service times S1, S2, . . . , Sn, where TW , 0 ≤ TW ≤ T , is
a window monitoring past scheduling history. A forecasting
decision is always done at the departure instant of a long job
leaving from the queue.

ASIdE’s forecasting approach is based on the estimates of
the conditional probabilities:

P [L|L]j = P [St+j ≥ LT |St ≥ LT ] (2)
P [S|L]j = P [St+j < LT |St ≥ LT ] = 1 − P [L|L]j (3)

which are computed using the measured service times St

for t = 1, . . . , n − j. Here j is called the lag of the
conditional probability and denotes the distance between the
job service completions. Given that the last completed job is
long, P [L|L]j measures the fraction of times that the j-th job
that has arrived after a long job is also long; similarly, P [S|L]j
estimates how often the j-th job is instead a short job. Using
these estimates, we forecast that the j-th arrival after the last
completed job is going to receive large service time if

P [L|L]j ≥ P [S|L]j , (4)

i.e., if the empirical probability that the j-th arrival being long
is higher than being short. ASIdE is triggered only when the
last finished job is long. Since we focus on the systems with
finite buffer or with constant population N , we only make use
of the conditional probabilities P [L|L]j , for 1 ≤ j < N .

The algorithm in Figure 1 describes how to online calculate
the conditional probabilities based on past history during the
last monitoring window TW . In each monitoring window,
the system completes exactly W requests; in the experiments
presented here, we set W = 10, 000. Consider as an example
two classes of job service times, i.e., C = 2 for large and
small ones. Upon each job completion, ASIdE updates the
number of large jobs completed during the monitoring window
and updates the conditional probabilities P [L|L]j and P [S|L]j
for 1 ≤ j < N by scanning N jobs in two directions (i.e.,

1We remark that Eq.(1) is used here to classify large service times from
small ones because the standard deviation indicates how far values are from
the mean [13].
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arriving before and after the completed job) as follows. If the
last completed job is long, then ASIdE scans the N jobs that
arrived before the completed job and increases the number
of L|L (resp. S|L) pairs at lag j by 1 if the j-th job is
completed and its job size is long (resp. short). The N jobs
that arrive after the last completed job are scanned as well. If
the j-th job is completed and its job size is long, then ASIdE
increases the number of L|L (resp. S|L) pairs at lag j by
1 if the last completed job is long (resp. short). At the end
of the monitoring window, ASIdE recalculates P [L|L]j (resp.
P [S|L]j) using the ratio of the number of L|L (resp. S|L)
pairs at lag j and the total number of jobs that are long.

Illustrating Example. Figure 2 shows an example that builds
intuition on the tight relation between our forecasting approach
and temporal dependence in service times. Figure 2 illustrates
conditional probabilities in a sequence without temporal de-
pendence and with temporal dependence. The two sets of
figures (i.e., Figure 2(a)-(b) and Figure 2(c)-(d)) compare
the conditional probabilities P [L|L]j and P [S|L]j with the
similarly defined P [S|S]j and P [L|S]j which assume that
the last completed job was short. As one can see, useful
information that can be exploited in prediction is found only in
Figure 2(II) where there is temporal dependence in the process.
Figure 2(I), instead, shows that without temporal dependence
the probability of the next service time being small or large
neither depends on the lag j nor on the type of job that just
completed. The opposite is observed in Figure 2(II), where the
lag-j probability of the next job being short or long strongly
depends on the size of the completed job. In addition, we also
see that the conditional probability of having large jobs within
the next nine arrivals after a long job is significant and ranges
from 0.65 to 0.35, see Figure 2(d). Similarly, the probability
of having a short job after another short job is very large, see
Figure 2(c).

Summarizing, workloads for which service times are inde-
pendent and no temporal locality exists, cannot be used to
forecast future service requirements; conversely, temporally
dependent service processes can be useful in predicting future
service requirements. We exploit in ASIdE this property to
approximate the behavior of SJF scheduling.

B. The Delaying Algorithm: ASIdE
We now describe ASIdE in detail. For presentation sim-

plicity, we assume here that the large threshold LT , see
Eq.(1), that is fundamental for forecasting is given; in the next
subsection, we present how ASIdE self-adjusts LT on-the-fly,
i.e., no a priori knowledge of LT is required. We also assume
two classes of service times, i.e., C = 2. Figure 3 gives the
pseudo-code of ASIdE.

Upon the completion of a long job, ASIdE scans the
entire queue and predicts the size of the j-th queued job by
using the conditional probabilities as described in the previous
subsection. If the j-th job is estimated as long, then ASIdE
marks it as such. All jobs that are marked long are delayed
by moving them to the end of the queue. After all jobs in the
queue have been examined and long jobs have been delayed,

ASIdE admits the first job in the queue for service. Delaying
is triggered again only after completion of another long job.

Additionally, during each monitoring window TW , ASIdE
updates the information of job service times after each com-
pletion of a job and recalculates conditional probabilities at
the end of the window as described in Figure 1. The obtained
conditional probabilities are then used to estimate the service
times for the upcoming jobs in the next monitoring window.
ASIdE starts its estimation process after the first monitoring
window. As a result, all jobs completed in that window are
only used as a statistically significant sample for obtaining a
good estimation of the conditional probabilities.

ASIdE “reshuffles” all jobs in the queue based on their
anticipated service times; the order of the jobs in the service
process is therefore altered (attempting to approximate SJF
scheduling) and this modifies both the throughput at the queue
and the serial correlation of the process. Concerning the latter,
we point to [1] for an accurate analysis of the effects of
shuffling on serial correlation. To avoid starvation of long jobs,
we further introduce a delay limit D that caps the maximum
number of times a single job can be delayed. When the number
of times a job has been delayed is more than D, the policy
does not delay this job any longer and allows it to wait for
service in its current position in the queue.

ASIdE does not re-forecast the length of a job whose service
time has been already forecasted to be long. Once a job has
been marked as long it remains as such and is never forecasted
as short in successive activations of ASIdE. The same property
also holds for short jobs. Once a job is estimated as long
and delayed, ASIdE cannot use the conditional probabilities
to re-forecast its length because the order of the jobs in the
service process has been altered. For example, if we have the
first arriving job to be long and delayed by ASIdE, then the
second arriving one now becomes the first job waiting in the
queue and is admitted for service. In the case that the served
job (i.e., the second arriving one) is actually long, one round
of delaying is triggered, see Step 4 in Figure 3. However, as
the conditional probabilities on the sequence of jobs in the
queue are computed according to their arrival indexes, ASIdE
can only estimate the size of the jobs arrived after the second
job completion using conditional probabilities P [L|L]lag ≥
P [S|L]lag , given that the completed one is long.

C. Self-Adjusting the Threshold LT

In this subsection, we discuss how ASIdE adjusts the thresh-
old LT , aiming at controlling the magnitude of the delaying,
in order to strike a good balance between being too aggressive
or too conservative. Intuitively, when the threshold LT is too
large, the policy becomes conservative by delaying few long
jobs and the performance improvement is then negligible.
Conversely, when LT becomes too small, more jobs (even
short ones) are delayed and throughput is reduced. Therefore,
the choice of an appropriate large threshold LT is critical for
the effectiveness of ASIdE.

In ASIdE, the computation of LT is a function of the
monitoring window TW as well. The algorithm in Figure 4
describes how the threshold LT is dynamically adjusted in an
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on-line fashion. At the end of a monitoring window TW , we
update LT while keeping as upper and lower bounds for its
value the 90th and the 50th percentiles of the observed service
times within TW , respectively. Indeed, whenever specific in-
formation on the workload processed by a system is available,
these values can be increased or decreased according to the
characteristics of the workload. The threshold LT is updated
by assuming that the value of the conditional probability
P [L|L]j at some large lag j is representative of the overall
tendency of the system to delay jobs.

In the implementation considered in the paper, we adjust the
parameter k which defines LT = µ−1 + k · σ with step adj
according to the following scheme. Let Q be the current queue-
length at the server. We evaluate P [L|L]j for the large lag
j = bQ/2c and if P [L|L]j ≥ P [S|L]j , then ASIdE is assumed
to be too aggressive, since it may delay at the next round up
to bQ/2c jobs. In this case, we set k = k+adj, which reduces
the number of jobs identified as long. As a result, we can avoid
half of total requests waiting in the queue to be delayed. A
similar procedure is done for the case j = bQ/10c, where
if P [L|L]j < P [S|L]j , we then conventionally assume that
ASIdE is too conservative by delaying less than 10% of jobs
in the queue; in this case we set k = k− adj which increases
the number of jobs estimated as long. Since delaying jobs in
an aggressive way may achieve worse performance than in a
conservative way, we here set j = bQ/10c instead of bQ/2c
to guarantee at least 10% of queued requests to be delayed.
Extensive experiments suggest that the LT online algorithm
is consistently stable.

A typical example is shown in Figure 5. When an appro-
priative value of adj is chosen, the large threshold LT quickly
converges to a stable value after some monitoring windows,
e.g., adj = 0.01 and 0.5 in plots (a) and (b). On the other
hand, if the value of adj is too large, then the large threshold
LT cannot converge to a stable value but instead oscillates
between two extreme values, see plots (c) and (d) in the figure.
Therefore, we set adj = 0.5 in all our experiments.

III. PERFORMANCE EVALUATION OF ASIDE
In this section, we present representative case studies il-

lustrating the effectiveness and the robustness of ASIdE.
We first consider stationary workloads where the temporal
dependence profile is fixed through the whole experiments and
then evaluate the performance of ASIdE under non-stationary
workloads with the changing temporal dependence profiles in
the end of this section.

We use simulation to evaluate the performability improve-
ment of ASIdE in a network with M servers in series. We
assume that there is only one server with temporal dependence
in its service process and denote it as QACF . The service
process at QACF is drawn from a MMPP(2) distribution with
mean rate µ = 1 job/sec and squared coefficient of variation
SCV = 20. We use the autocorrelation function (ACF) to
describe and quantify the temporal dependence in the service
processes. Let ρj be the lag-j autocorrelation coefficient2. For

2The autocorrelation function ρj = ρXt,Xt+j
=

E[(Xt−µ)(Xt+j−µ)]

σ2

shows the value of the correlation coefficient for different time lags j > 0,
where µ is the mean and σ2 is the common variance of {Xn}.

the MMPP(2), we maintain the same mean, SCV , and higher
moments in all experiments but considering three different
autocorrelation profiles:

• ACF1: ρ1 = 0.47, ρj decays to zero at lag j = 1400;
• ACF2: ρ1 = 0.46, ρj decays to zero at lag j = 240;
• ACF3: ρ1 = 0.45, ρj decays to zero at lag j = 100.

Figure 6 shows the ACF for the three profiles. These ACFs
are typical and representative of real workloads measurements
in storage systems [25], multi-tier architectures [20], and
grids [15]. The other M − 1 servers, denoted as Qi

Exp, have
exponentially distributed service times with mean rate λi,
1 ≤ i < M . All these Qi

Exp servers schedule jobs using
the FCFS discipline. QACF uses different scheduling policies
such as FCFS, SJF and ASIdE. We focus on the case where a
constant workload of N requests circulates in the network, i.e.,
the model is a closed queuing network. Simple networks of
this type are often used to model real systems, e.g., multi-tier
architectures [17], [18], [29]. We remark that service times are
independent across servers. For example, there may be a cache
thrashing issue on server QACF that contributes to burstiness,
yet this does not mean that the workload will find the same
situation on other servers Qi

Exp.

A. Prediction Accuracy
The key idea in ASIdE is to estimate the expected job

service times based on temporal dependence. Here, we first
evaluate the performance of the new dependence-based es-
timator under various autocorrelation profiles. As an ACF
profile of an MMPP(2) can usually be characterized by the
autocorrelation values at lag 1 (ρ1) and the autocorrelation
decay rate Γ.3 Here, we evaluate ASIdE’s prediction accuracy
as a function of ρ1 and a function of Γ as well. We also
define and measure the following two metrics for evaluating
prediction accuracy: (1) RL: the ratio of the number of large
jobs that are predicted as large to the total number of large
jobs in the system; and (2) RS : the ratio of the number of
small jobs that are predicted as large to the total number of
small jobs in the system. The metric of RL indicates how well
ASIdE captures the large ones for delay, while RS indicates
the false positive rate of ASIdE’s prediction.

Table I shows that given a long range dependence in service
times, i.e., Γ = 0.98, ASIdE is able to capture the majority
of large jobs across all ACF ρ1 values. When temporal
dependence with service times is strong (i.e., ρ1 = 0.47),
the false positive rate of ASIdE is quite low. This interprets
that ASIdE performs similar to SJF under strong temporal
dependence. However, as ρ1 decreases (i.e., as temporal depen-
dence decreases), the fraction of small jobs that are mistakenly
labeled as large increases and RS becomes closer to RL, see
ρ1 = 0.1. These prediction errors are mainly caused due
to the weak correlation among job service times. That is,
workloads with weak or no temporal dependence cannot be
used to forecast future service times.

3The autocorrelation decay rate Γ = 2ρ1/(1 − SCV −1) indicates the
speed of autocorrelation values decaying to zero, in a sense Γ is a measure
of short or long range dependence in the process.
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TABLE I
PREDICTION ACCURACY OF ASIDE AS A FUNCTION OF ACF

VALUES AT LAG 1 ρ1 (WITH Γ = 0.98) AND A FUNCTION OF ACF
DECAY RATES Γ (WITH ρ1 = 0.47).

ACF value at lag 1 (ρ1) ACF decay rates Γ
0.47 0.30 0.10 0.85 0.75 0.65

RL 0.91 0.85 0.84 0.75 0.62 0.38
RS 0.03 0.36 0.72 0.30 0.18 0.03

Table I further shows that as the autocorrelation decay rate
Γ decreases, less large jobs are captured and thus delayed.
Similarly, less small jobs are labeled as large ones and RS

decreases to 0.03 when Γ = 0.65. This is because when Γ
decreases, the ACF values drop quickly to zero at the first few
lags. As a result, ASIdE conservatively delays the predicted
large jobs and performs closely to FCFS.

B. Performance Improvement
We now simulate a network with two queues: the expo-

nential queue Q1
Exp has mean service rate λ1 = 2 job/sec;

the autocorrelated queue QACF uses the MMPP(2) described
above with autocorrelation structure ACF1, see Figure 6.
The model population is set to N = 500, the delay limit
D = 1000.4 Sensitivity to the most important parameters is
explored in the next subsections.

We compare system capacity under ASIdE as measured by
the system throughput with the throughput observed when
QACF uses FCFS or SJF scheduling. Indeed, larger throughput
implies that the system can sustain more load, therefore it
handles well sudden bursts of requests which improves the
overall availability of the system. FCFS performance is used
as a baseline for comparison. Our stated goal is to show that
ASIdE is competitive to SJF, this implies that the knowledge
required by SJF can be inferred effectively from the temporal
dependence of the service process.

Table II shows the mean throughput of the different policies
and the relative improvement with respect to FCFS. Through-
put is measured at an arbitrary point of the network, since
for the topology under consideration throughput at steady
state must be identical everywhere [6]. The table shows that,
although we are not reducing the overall amount of work pro-
cessed by the system, both with SJF and ASIdE the capacity
is significantly better than with FCFS. Noticeably, SJF and
ASIdE perform closely, suggesting that the ASIdE approxi-
mation of SJF is effective. Also, we remark that ASIdE can
work on any servers with temporal dependence, which do not
need to be the bottleneck.

Further confirmation of this intuition comes from Figure
7(a), which shows the complementary cumulative distribution
function (CCDF) of the round trip times, i.e., the probability
that the round trip times experienced by individual jobs are
greater than the value on the horizontal axis. The plot shows
that both SJF and ASIdE enable most of jobs to experience

4We conducted experiments with various delay limits, e.g., D =
50, 100, ...,1500 but omitted the results here due to the page limit. We
observed that as D increases, ASIdE becomes more aggressive for delaying
long jobs and thus achieves more visible performance improvement. However,
when D exceeds 1000, such performance improvement diminishes because
very few jobs are delayed for more than 1000 times. Thus, we set D = 1000
in the remainder of this paper.

TABLE II
MEAN SYSTEM THROUGHPUT (TPUT) AND RELATIVE

IMPROVEMENT OVER FCFS FOR A NETWORK WITH M = 2
QUEUES, N = 500 JOBS, λ1 = 2 JOB/SEC AND ACF1 .

FCFS ASIdE SJF
TPUT 0.71 job/sec 0.92 job/sec 1.01 job/sec

% improv. baseline 29.6% 40.8%

better round trip times compared with FCFS. Indeed, the part
of the workload whose execution is delayed at QACF receives
increased response times, but the number of penalized requests
amounts to less than 3% of the total. Observe also that the
performance of SJF and ASIdE is close, the only significant
difference is that in SJF a small fraction of jobs (less than
0.5%) receives much worse round trip times than in ASIdE.
This is attributed to the unavoidable forecasting errors in
ASIdE, which may occasionally fail in correctly identifying
long jobs, thus resulting in a smaller CCDF tail than SJF.

Other interesting observations arise from Figure 7(b). This
figure shows the autocorrelation of the service times at QACF

under the different scheduling disciplines. Temporal depen-
dence is much less pronounced under SJF and ASIdE, thus
suggesting that both policies are able to break the strong
temporal locality of the original process.

We further evaluate the performance of short and long jobs
separately. Table III presents the mean round trip times, the
mean slowdown of short and long jobs, as well as the mean
round trip times of all jobs under different policies. Figure 8
shows the CCDFs of round trip times for both short and long
jobs. Here, round trip time is measured as the sum of response
times at all M queues and slowdown is equal to the ratio
between job response time and the corresponding job service
times (i.e., without any waiting in the queue).

TABLE III
MEAN ROUND TRIP TIME (RTT) OF ALL JOBS, SHORT JOBS (S),
AND LONG JOBS (L), AND MEAN SLOWDOWN (SLW) OF SHORT

JOBS (S) AND LONG JOBS (L) FOR A NETWORK WITH M = 2
QUEUES, N = 500 JOBS, λ1 = 2 JOB/SEC AND ACF1 .

RTT S RTT L RTT S SLW L SLW
FCFS 701 sec 548 sec 3326 sec 913 201
ASIdE 540 sec 314 sec 4279 sec 523 259

SJF 492 sec 70 sec 7270 sec 116 440

We observe that under both SJF and ASIdE, the overall
performance is significantly better than under FCFS, see
Table III. Also observe that the distributions of round trip times
under ASIdE lie between those under SJF and FIFO for both
short and long jobs, see Figure 8. We interpret that ASIdE
does not improve the performance of short jobs as much as
SJF does because of the inexact information used. However,
99% of small jobs experience better performance under ASIdE
than under FCFS. On the other hand, ASIdE does not degrade
the performance of long jobs as badly as the SJF does, where
about 60% of long jobs experience better performance under
ASIdE than under FCFS. By giving higher priority to short
jobs, SJF achieves the best performance (e.g., smallest round
trip time and slowdown) for short jobs, by compromising the
tail in the distribution of round trip times and the slowdown for
long jobs. ASIdE achieves moderate fairness (i.e., slowdown)
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compared to FCFS and SJF for both short and long jobs.
Finally, we investigate the impact of different values of LT

on ASIdE’s performance, where LT is used as the threshold
to distinguish large service times from small ones. Table IV
shows the system throughput of ASIdE as a function of LT ,
where the parameter k used in Eq. (1) is varied from 0 to
4. We observe that when k (or LT ) is large (e.g., k = 2
and 4), ASIdE cannot capture most of the expected long jobs
and thus has very conservative delaying. As a result, ASIdE
obtains similar performance as FCFS. In contrast, when k is
small, the performance under ASIdE is significantly improved
because large jobs now can be effectively distinguished from
small ones and thus be delayed to implicitly approximate SJF.
More importantly, the online algorithm shown in Figure 4
successfully self-adjusts LT to a stable value which is exactly
equal to µ−1 + σ.

TABLE IV
MEAN SYSTEM THROUGHPUT (TPUT) OF ASIDE AS A FUNCTION

OF LARGE THRESHOLDS LT = µ−1 + k · σ.

k 0 0.5 1 2 4
LT (sec) 1.00 3.23 5.34 9.92 18.84

TPUT (job/sec) 0.91 0.91 0.92 0.72 0.72

C. Impact of Measurement Delays
The existence of measurement delays is a fundamental

challenge in real systems. There always exists some delay
between the data being available and the information being
recorded. In heavy loaded systems, a significant delay may
occur in recording and making available the job completion
times. To evaluate the impact of measurement delays on
ASIdE’s performance, we introduce delay time Dm into the
measurement of a job’s service time. That is, when a job
completes at a server, one cannot immediately obtain that
particular job’s service time but instead detects the real service
time after Dm elapses. To evaluate ASIdE under such delay
conditions, we delay the update of conditional probabilities as
well as one round of the delaying (i.e., Step 4-a in Figure 3)
by Dm.

Figure 9 shows the mean system throughput of ASIdE
as a function of measurement delay times for a network
with M = 2 queues, N = 500 jobs, λ1 = 2 job/sec and
ACF1. Here, we set the measurement delay time Dm equal to
µ−1, 2µ−1, . . . , 15µ−1, where µ−1 = 1 sec is the mean service
time of QACF . One can observe that such measurement delay
times can cause the degradation on the quality of ASIdE’s pre-
dictions as well as ASIdE’s performance. However, compared
to ASIdE without any measurement delays, i.e., the first bar
with Dm = 0 in the figure, additional measurement delays
do not significantly degrade ASIdE’s performance even when
Dm = 15 seconds, which further verifies the robustness of our
new policy in real systems.

D. Sensitivity to Device Relative Speeds
Here, we investigate the robustness of ASIdE’s performance

to changes in the experimental parameters. Table V summa-
rizes the parameters used in the experiments of Section III-D-
Section III-I. Also, in all these experiments we assume the

service process stationarity (i.e., the autocorrelation profiles
are fixed). Later in the section, non-stationary workloads are
also considered.

TABLE V
SUMMARY OF EXPERIMENTAL PARAMETERS IN SENSITIVITY

ANALYSIS.

Case M N λ1 QACF SCV γ1

III.C 2 500 1/2/5 ACF1 20 7
ACF1

III.D 2 500 2 ACF2 20 7
ACF3

500
III.E 2 800 2 ACF1 20 7

1000
III.F 2/3/4 500 2 ACF1 20 7
III.G 2 500 2 ACF+

1 20/40/100 7
III.H 2 500 2 ACF∗

1 20 7/15

We first focus on evaluating networks with varying pro-
cessing speeds, i.e., we consider the model in Section III-B
and vary the service rate at the exponential queue Q1

Exp

while keeping fixed the speed at QACF . Figure 10 presents
the average system throughput for three experiments, labeled
Exp1, Exp2, and Exp5, where mean service rate at Q1

Exp is
equal to λ = 1, 2, and 5 job/sec, respectively. As the service
rate at QACF is µ = 1 job/sec, in Exp1 the two queues have
identical speed, while in both Exp2 and Exp5, QACF is the
system bottleneck and in Exp5 the relative speed at QACF

becomes even slower. The relative capacity improvement with
respect to FCFS scheduling is marked above each bar in the
figure. The interpretation of the experimental results leads to
the following observations.

First, ASIdE improves the system throughput across all
experiments and is better for smaller values of λ. The intuition
behind this result is that as λ decreases, more jobs are
enqueued at the resource Q1

Exp, and then delaying a job
produces less overhead because a job put in the tail of QACF

can still reach the head of the queue quite rapidly. Therefore,
the cost of delaying becomes negligible and the network can
benefit more of the reordering of jobs.

A second important observation is that as λ increases, the
ASIdE performance converges to that of SJF. This suggests
that ASIdE forecasting is very accurate since in Exp5 almost
all population in the network is queuing at QACF and SJF sorts
nearly perfectly a large population close to N jobs according
to their exact size. The fact that ASIdE achieves similar
performance indicates that accurate ordering is obtained with
forecasting based on temporal dependence.

As a final remark, it is interesting to observe that ASIdE can
be more effective than hardware upgrades. For instance, the
throughput under ASIdE in Exp2 (white bar, Exp2) is more
than the expected throughout with FCFS in Exp5 (black bar,
Exp5). That is, under temporally dependent workloads, it can
be more effective to adopt ASIdE than doubling the hardware
speed of Q1

Exp.
We conclude the experiment showing in Figure 11 the

CCDF of round trip times. The CCDF tail behavior observed
in this subsection persists for Exp1, Exp2, and Exp5, where
again ASIdE degrades the performance of only 3% of the total
number of requests.
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E. Sensitivity to Temporal Dependence
In order to analyze the effect of temporal dependence on

policy performance, we conduct experiments with various
autocorrelation profiles at QACF , but always keep the same
mean and variance of the job sizes. We use the three service
processes with autocorrelation ACF1, ACF2, and ACF3 shown
in Figure 6.

Figure 12 shows the system throughput under FCFS, ASIdE
and SJF policies for the same model evaluated in Section
III-B but for different autocorrelations. In general, we expect
that strong ACF degrades overall system performance more
than weak ACF, as it is clearly confirmed by the experimental
results. Yet, ASIdE under the stronger ACF improves more
than under the weaker ACF. This is because the stronger
the ACF, the higher the conditional probabilities for having
large-large pairs in the service time series and the delaying is
more aggressive. For instance, for ACF1, we have P [L|L]j ≥
P [S|L]j for all j < 69.

When the service process has the two weaker ACFs, i.e.,
ACF2 and ACF3, the margin for performance improvement of
ASIdE and SJF is reduced. In this case, only the conditional
probabilities with lags up to j = 30 for ACF2 and up to
j = 14 for ACF3 satisfy P [L|L]j ≥ P [S|L]j . This implies
that weaker ACFs make ASIdE more conservative in delaying
long jobs, but ASIdE still achieves performance very close to
the target behavior of SJF.

The plots in Figure 13 present the effect of different
temporal dependence on the tail of round trip times under
ASIdE. Strong temporal dependence in the service process
makes ASIdE delay long jobs more effectively, and thus almost
97% of requests are served up to seven times faster than under
the FCFS policy, see Figure 13(a). As temporal dependence
becomes weaker in Figure 13(b), the policy delays long jobs
less aggressively and a few requests show worse performance.
That is, ASIdE becomes less effective, resulting in a longer
tail of the round trip times distribution. With low autocorre-
lation, see Figure 13(c), ASIdE becomes more conservative
in delaying jobs, which is reflected by a small fraction of
affected jobs. Consistently with the results presented in the
previous case studies, SJF gives a long tail in the distribution
of round trip times across all experiments. As the strength of
ACF decreases, the tail becomes longer.

F. Sensitivity to System Load
Now we investigate the sensitivity of ASIdE to an increased

number of requests in the system. This is important because
as the network population N increases, the system reaches
critical saturation. In order to evaluate how ASIdE improves
system availability, we conduct experiments with three dif-
ferent queuing network populations N = 500, N = 800,
and N = 1000, while keeping fixed the other parameters
as the experiment in Section III-B. The system throughput
for these three experiments is illustrated in Figure 14(a). In
the experiment with the highest load N = 1000, ASIdE
improves throughput by 33% compared to FCFS and achieves
performance close to the target SJF performance. The im-
provement is clear also for lower loads, i.e., N = 500, 800, but

performance gains are maximized under the most congested
case for N = 1000.

Regarding availability, ASIdE enables the system to sustain
higher loads compared to the FCFS policy. For instance, for
N = 800 and FCFS scheduling, 80% of requests experience
round trip times less than 1146 when no delaying of jobs
occurs, see the solid curve in plot (b) of Figure 14. However,
even for N = 1000 requests, the fraction of requests having
round trip times less than 1146 becomes 95% with ASIdE (see
the dashed curve in plot (b) of Figure 14). That is, ASIdE is
able to give a remarkably better performance to most jobs
than with FCFS even if the overall population is increased by
200 requests. This makes immediately clear that ASIdE can be
very effective in addressing request bursts that threaten system
availability.

G. Sensitivity to Network Size

We evaluate the sensitivity of ASIdE to the network size by
evaluating throughput improvement for M = 2, 3, 4. Except
for the autocorrelated queue QACF , the remaining M − 1
resources are queues with exponential service times. In order
to evaluate the different impact of service times that are
balanced or unbalanced with respect to the service at QACF ,
we consider the sets of rates shown in Table VI, see the initial
part of this section for related notation.

TABLE VI
QUEUE SERVICE RATES IN THE THREE EXPERIMENTS USED TO
STUDY ASIDE SENSITIVITY TO DIFFERENT NETWORK SIZES.

M QACF Q1
Exp Q2

Exp Q3
Exp

2 µ = 1 λ1 = 1 N/A N/A
3 µ = 1 λ1 = 1 λ2 = 0.25 N/A
4 µ = 1 λ1 = 1 λ2 = 0.25 λ3 = 1

Figure 15 shows throughput improvement provided by the
three scheduling disciplines. Note that the first experiment is
different from the conditions of Table II, since here the two
queues are balanced. As the number of queues in the network
increases, the relative improvement over the FCFS policy
decreases. We interpret this effect by observing that since
there are more exponential servers in the network, the temporal
dependence of the successive requests at the queues are much
weaker than in the experiments considered before. That is,
throughout its path, each request is served multiple times by
exponential service processes without temporal dependence
and therefore the temporal locality effects in the network
are reduced. Therefore, the reduced gain in this experiment
is rather a consequence of the more limited margin for
improvements on these networks rather than a limit of ASIdE.
In fact, one can see that SJF improves modestly with respect
to the FCFS case.

Also, we observe that consistently with the results presented
in the previous cases, ASIdE delays only a small fraction of re-
quests but achieves better performance for most requests. The
results are consistent with the properties of ASIdE observed
in the previous experiments.
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H. Sensitivity to Coefficient of Variation

In order to analyze the effect of the distribution in service
times on policy performance, we first investigate the sensitivity
of ASIdE to the coefficient of variation (CV) in the service
process at QACF , which implicitly describes the spread as
well as the tail characteristics in the distribution.

Here, we conduct experiments with the exponential queue
Q1

Exp having mean service rate λ1 = 2 job/sec and the
autocorrelated queue QACF drawn from MMPP(2) with mean
rate µ = 1 job/sec but three different squared coefficient of
variations SCV = 20, SCV = 40, and SCV = 100. The
model population is set to N = 500. The complementary
cumulative distribution function (CCDF) of service times at
QACF is shown in Figure 16(a). Observe that the tail in the
service time distribution becomes longer as the variability
increases. For instance, SCV = 100 has about 4.5 times
longer tail than SCV = 20.

Figure 16(b)-(d) shows the system throughput under the
FCFS, SJF, and ASIdE policies. Different from the previous
experiments, the large-job threshold LT in Eq.(1) now is
statically set with various k, 0 ≤ k ≤ 4. The goal of exploring
different LT s is two-fold: (1) to discuss how the threshold de-
pends on variation; and (2) to confirm how ASIdE effectively
computes LT in an online fashion. The results under the case
where LT is determined online are also presented in Figure 16
as stripped bars.

The experimental results in Figure 16 demonstrate that
there exists a bound for the large-job threshold, beyond
which ASIdE does not improve the system performance. This
effect can be interpreted by observing that when the large-
job threshold is greater than that bound, very few jobs are
predicted to be long (i.e., with service times > LT ) and thus
delayed by ASIdE. In addition, the higher the variability, the
longer the tail in the job size distribution. As a result, the value
of k for that threshold bound increases when SCV changes
from 20 to 100.

Observe also in Figure 16 that when LT is below that
threshold bound, ASIdE performs nearly the same under
various large-job thresholds. This observation indicates that
ASIdE is insensitive to LT as long as the value of LT is
below some certain value. More importantly, ASIdE always
self-adjusts the value of LT to be one among the best choices,
see the stripped bars in Figure 16.

I. Sensitivity to Skewness

In this section, we investigate the sensitivity to the skewness
in the service process at QACF . The skewness in the service
process is a measure of the asymmetry of the probability
distribution. We observe that compared to FCFS, both ASIdE
and SJF significantly improve the system performance when
the service process has low skewness. However, as the skew-
ness in the service times increases, the margin of relative
performance improvement of both ASIdE and SJF is reduced.
This is because the majority of jobs have similar service times
and thus few large jobs are delayed by ASIdE and SJF.

J. Non-stationary Workloads
In the previous subsections, we have confirmed that ASIdE

performs effectively under a stationary workload. However,
it has been shown that because of different transaction types
in enterprise applications, the transaction mixes from some
production workloads are non-stationary [27]. Therefore, we
turn to evaluate ASIdE under non-stationary workloads, further
verifying its effectiveness when the workload changes over
time.

In particular, we generate a non-stationary workload by
changing the temporal dependence profile in its service process
of QACF . For example, we conduct the same experiments as
we did in Section III-B, but instead of having a fixed auto-
correlation profile (e.g., only ACF1 at QACF ), we here mix
different autocorrelation profiles by having the first 30% of
jobs with the weakest temporal dependence (i.e., ACF3), the
following 40% of jobs with the strongest temporal dependence
(i.e., ACF1), and finally drawing the remaining jobs from the
weaker temporal dependence, i.e., ACF2. In addition, we vary
the service rate at the exponential queue Q1

Exp such that the
mean service rate at Q1

Exp is equal to λ = 1, 2, and 5 job/sec,
respectively.

Table VII shows the mean throughput of the three different
policies (i.e., FCFS, SJF and ASIdE), as well as the relative
improvement with respect to FCFS. We observe that ASIdE
successfully captures the changes in temporal dependence
profiles and dynamically updates the conditional probabilities
and the large-job threshold LT according to the measured
performance and temporal dependence strengths. This policy
obtains significantly better capacity than FCFS. Noticeably,
under the changing workloads, ASIdE still closely approxi-
mates the behavior of SJF. These results further demonstrate
the effectiveness and robustness of ASIdE under both station-
ary and non-stationary workloads.

TABLE VII
MEAN SYSTEM THROUGHPUT (TPUT) AND RELATIVE

IMPROVEMENT OVER FCFS FOR A NETWORK WITH M = 2
QUEUES, N = 500 JOBS AND λ1 = 1, 2, AND 5 JOB/SEC UNDER

NON-STATIONARY WORKLOADS WITH CHANGING
AUTOCORRELATION PROFILES.

FCFS ASIdE SJF
Exp1 TPUT 0.64 job/sec 0.79 job/sec 0.92 job/sec

% improv. baseline 21.6% 41.7%
Exp2 TPUT 0.80 job/sec 0.96 job/sec 1.00 job/sec

% improv. baseline 20.2% 25.8%
Exp5 TPUT 0.91 job/sec 1.00 job/sec 1.01 job/sec

% improv. baseline 10.2% 10.6%

Summary of Experiments The extensive experimentation
carried out in this section shows that ASIdE can effectively
approximate the performance of SJF without the need of
additional information about job service times. The sensitivity
results on the various autocorrelation profiles have shown
that the gains are more pronounced in presence of higher
temporally dependent workloads. This suggests that ASIdE is
an effective solution to increase the performability of systems
processing this type of workloads. Sensitivity analysis to the
number of queues in the network and system load show that
the gains of ASIdE are visible in a variety of different con-
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ditions. By analyzing the effect of the distribution in service
times (e.g., the coefficient of variation and the skewness) on
policy performance, we further demonstrate that ASIdE always
selects the appropriate parameters and is highly-competitive to
SJF. Finally, the experiments conducted under non-stationary
workloads further validate the effectiveness and the robustness
of ASIdE.

IV. CASE STUDIES

Now, we validate the effectiveness and robustness of ASIdE
with a trace driven simulation from actual measured data.
The first real trace was collected by Microsoft Research at an
enterprise server for processing project files [21]. Per volume
block I/Os (including both reads and writes) were collected
below the file system cache over 168 hours in February 2007.
Each record describes an I/O request with a timestamp, the
disk number, the start logical block number, the number of
blocks transferred, and the type (read or write). Here, we con-
sider a multi-tiered enterprise system with limited connections.
Our experimental setup assumes two tandem queues: the first
one Q1 represents the front server and the second one Q2

represents the back-end storage server5. The service process
of Q1 is exponentially distributed with mean rate λ = 0.25
job/msec while the service process of Q2 is driven by the
real I/O trace with mean service rate µ = 0.22 job/msec. We
also observe the existence of autocorrelation in the I/O request
service times, see Figure 17(a). Therefore, we schedule jobs
at Q1 by FCFS only while at Q2 by FCFS, ASIdE and SJF
policies.

In order to evaluate the performance under different system
loads, we increase the number of requests (i.e., the population
N ) in the system up to 10,000 such that the utilization at
Q2 ranges from 75% to 90%. The system throughput under
the three scheduling policies is illustrated in Figure 18(a).
Consistently with the previous experiments using synthetic
traces, these results validate the effectiveness and the robust-
ness of ASIdE: ASIdE significantly improves the throughput
over FCFS, especially when systems are under higher loads.
We can interpret this performance improvement the same way
as in the previous experiments with synthetic traces (e.g.,
see Section III-B): (1) ASIdE accurately forecasts the job
service times and thus implicitly approximates the behavior of
SJF, and (2) ASIdE dramatically decreases the autocorrelation
of the service times at QACF across all lags. To further
investigate the tails of system performance, the CCDFs of
the round trip times (the summation of response times at
two servers) are plotted in Figure 18(b). Clearly, both SJF
and ASIdE allow the majority of requests to experience lower
round trip times compared to FCFS.

The second real trace is an HTTP trace collected from the
Politecnico di Milano - DEI between September 17th, 2006
and September 24th, 2006. The trace consists of a 2,195,988
rows, each structured according to the extended common
logfile format (ECLF) used by the Apache web server. This
format contains information about each individual file size

5An open system with finite buffers and/or admission control behaves in
essence like a system with a closed loop structure [23].

transferred to the users of the web site. We assume service
times of such files to be proportional to their size; this is useful
to illustrate the potential advantage of the ASIdE scheduling
if this is implemented in the scheduling algorithm for cache
or disk access.

Here, we consider a web server with finite buffers. That
is, we conduct experiments with an exponential queue QExp

representing the arrivals to the HTTP server and an auto-
correlated queue QACF representing the service process at
that server. QExp has mean rate of λ = 0.13 job/sec while
the service times in QACF are driven by the real HTTP
trace with mean rate µ = 0.15 job/sec, squared coefficient
of variation SCV = 25, and skewness γ = 22. We remark
that the autocorrelation in static object download sizes, shown
in Figure 17(b), is not as strong and is rippled across all lags,
which makes forecasting job service times more challenging.
In order to evaluate the performance under different system
loads, we increase the number of requests (i.e., the population
N ) in the system up to 2000, and thus obtain a utilization
level at QACF up to 85%.

The system throughput under the three scheduling policies
(i.e., FCFS, ASIdE and SJF) is illustrated in Figure 19(a) and
the CCDFs of the round trip times and the response times at
two queues are plotted in Figure 19(b). Overall, we observe
that both ASIdE and SJF improve the system performance (i.e.,
large throughput) compared to FCFS, which is consistent with
the previous experiment using the disk trace. We also observe
that the majority of requests obtain the faster round trip times
under SJF or ASIdE than under FCFS and the number of
penalized requests due to the delay is less than 4% of the
total, see Figure 19(b). In general, performance trends are
qualitatively similar to those of the synthetic traces.

V. DISCUSSION

A. ASIdE’s Optimality
With ASIdE, upon each job completion, the entire queue

is scanned to predict the service times of all queuing jobs
according to the measured conditional probabilities. We have
shown that the effectiveness of the policy relies on the ac-
curacy of the estimates of job service times. If the exact job
service time is assumed to be known to the scheduler, then
all long jobs to be delayed can be correctly identified, thus
ASIdE can perform optimally. Here, we extend ASIdE to an
optimal version, called AS OPT, which marks each queuing
job to be long or short based on knowledge of each job’s exact
service time but still self-adjusts the large-job threshold LT .
We remark that the AS OPT policy provides the bound on the
performance of ASIdE. By comparing with AS OPT, we can
investigate the prediction accuracy of ASIdE.

The experiments, which are carried out in Section III for
sensitivity analysis on different experimental parameters, are
conducted again under the AS OPT policy. Table VIII gives
the results obtained from AS OPT, as well as those from
the other three schedulers. We can observe that FCFS and
SJF provide a lower bound and an upper bound, respectively,
of ASIdE’s performance. Both ASIdE and AS OPT signifi-
cantly improve system performability compared to FCFS and
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TABLE VIII
MEAN SYSTEM THROUGHPUT (JOB/SEC) UNDER FCFS, ASIDE, AS OPT AND SJF POLICIES.

(a) Device Relative Speeds
FCFS ASIdE AS OPT SJF

Exp1 0.55 0.71 0.76 0.84
Exp2 0.71 0.92 0.97 1.01
Exp5 0.86 0.99 1.00 1.02

(b) Temporal Dependence
FCFS ASIdE AS OPT SJF

ACF1 0.71 0.92 0.97 1.01
ACF2 0.84 0.98 0.99 0.99
ACF3 0.91 0.98 0.99 1.00

(c) System Load
FCFS ASIdE AS OPT SJF

N = 500 0.71 0.92 0.97 1.01
N = 800 0.72 0.96 0.99 1.02
N = 1000 0.73 0.98 0.99 1.02

(d) Network Size
FCFS ASIdE AS OPT SJF

M = 2 0.55 0.71 0.76 0.84
M = 3 0.38 0.44 0.46 0.48
M = 4 0.23 0.24 0.25 0.25

(e) Coefficient of Variation
FCFS ASIdE AS OPT SJF

SCV = 20 0.80 0.99 1.00 1.01
SCV = 40 0.83 0.98 0.98 0.99
SCV = 100 0.79 0.99 1.00 1.01

(f) Skewness
FCFS ASIdE AS OPT SJF

γ1 = 7 0.78 0.99 0.99 1.00

γ1 = 15 0.99 0.99 1.00 1.00

are highly-competitive with SJF. More importantly, ASIdE
performs closely to the optimal one, i.e., AS OPT, with a
maximum error of 6% in all experiments, suggesting that under
a wide variety of system settings ASIdE can achieve good
estimates of job service times from the temporal dependence
structure of the workload.

B. ASIdE’s Classification
In Section III, we showed that ASIdE approximates the per-

formance of SJF by differentiating long and short job service
times. In this section, we further investigate the effectiveness
of such a binary classification in ASIdE. We first divide all jobs
into three classes, i.e., short, medium, and long by drawing job
service times at QACF from a 3-state MMPP. The sojourn
times in each of the three states are exponentially distributed
and their means µ−1

i differ by one order of magnitude, i.e.,
µ−1

i = 1, 0.1 and 0.01 for i = 1, 2, 3. This results in high
variability with SCV = 5.4 and strong temporal dependence
with ACF = 0.4 at lag 1 in the service process at QACF . The
service rates at QExp and QACF are the same and the network
population is N = 200. We observe that for each job class the
relative improvement ratio in terms of round trip times over
FCFS is 24.8% for small, 37.1% for medium, and -346.7%
for large, respectively. These initial results indicate that under
ASIdE the performance improvement mainly comes from
delaying the large jobs, resulting in the major contribution to
the overall improvement. As the queueing performance is more
sensitive to the tail rather than to the body [3], we anticipate
that a binary classification which successfully captures the tail
is sufficient to achieve good performance.

In order to support the above statement, we refine ASIdE
with a ternary classification: upon the completion of a long
job, ASIdE scans the entire queue and estimates the size of all
the waiting jobs. All expected medium jobs are then delayed
by moving them to the end of the queue. Following that, all
jobs that are marked long are moved to the end of the queue
as well. As a result, ASIdE reshuffles all jobs in the queue
based on their anticipated service times: all short jobs are at
the head of the queue; all medium jobs are in the middle of
the queue; and all long jobs are at the end of the queue.

TABLE IX
MEAN ROUND TRIP TIME (RTT) OF ALL JOBS, SHORT JOBS (S),

MEDIUM JOBS, AND LONG JOBS UNDER FCFS AND AS OPT
WITH A BINARY AND A TERNARY CLASSIFICATIONS.

High CV
RRT S RRT M RRT L RRT

FCFS 68.8 31.7 38.1 46.3
AS OPT - 2 58.6 15.3 16.8 165.5
AS OPT - 3 58.5 15.2 16.9 165.9

Low CV
RRT S RRT M RRT L RRT

FCFS 57.0 24.4 31.8 34.2
AS OPT - 2 53.3 14.0 14.4 91.3
AS OPT - 3 53.3 13.9 15.1 89.9

Table IX shows the results obtained from AS OPT with a 2-
class and a 3-class classification. Here, we focus on the effect
of job size classifications by conducting experiments under
AS OPT which provides an upper bound on the performance
of ASIdE. We also investigate the performance on various
CVs in the service process at QACF , i.e., SCV = 5.4 for
“High CV” case and SCV = 1.65 for “Low CV”. Table IX
shows that AS OPTs with both classifications significantly
improve system performability and more importantly obtain
very similar results. This is a good outcome, which verifies
that a “short/long” classification is simpler to implement yet
sufficient to achieve good system performance.

VI. RELATED WORK

There is a vast literature on scheduling that has been devel-
oped over recent years (see [8] and [7] and references therein).
Recently, Friedman and Henderson introduce a preemptive
scheduling policy for Web servers in [8]. This new policy
called Fair Sojourn Protocol (FSP) provides both efficiency
and fairness for the sojourn time of the jobs. The SRPT
(Shortest-Remaining-Processing-Time) scheduling policy has
been presented and analyzed in [11], [12]. However, the
SRPT is a preemptive policy while here we focus on the
design of a non-preemptive policy. The Priority-based Blind
Scheduling (PBS) policy approximates the existing standard
blind scheduling policies, e.g., FCFS, PS, and LAS, by tuning
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a single parameter [7]. The Generalized Processor Sharing
(GPS) policy is studied in the literature [16]. For a two-class
GPS system, the admission region is selected for the general
Gaussian traffic sources which contain the service processes
with both long-range dependence and short-range dependence.
The analysis in [10] shows that no single size-independent
scheduling policy is optimal for all degrees of correlations
in job sizes. To the best of our knowledge, very few gen-
eral policies consider the structure of temporal locality in
scheduling for systems. In [14], [28], [33], a set of scheduling
strategies has been proposed from a practical perspective, to
deal with correlations in several applications. [4] introduces
a non-preemptive application-independent scheduling policy
for workloads with correlated job sizes, which uses a class
of Hidden Markov Models (HMM) to estimate the sizes of
upcoming jobs. Compared to this work, ASIdE can be simpler
and more system-oriented. Recently, [24] developed the study
on ASIdE, which modeled and evaluated ASIdE under varying
workload distributions.

Several papers have investigated the idea of using measured
autocorrelation in capacity control policies. In [9] a general
framework for measurement-based call admission control is
introduced, which uses an approximate Gaussian model of
the aggregated traffic to make admission decisions. Similar
approaches appear frequently in the networking literature, e.g.,
in the call admission control in VBR traffic [5], for data
communications over CDMA mediums [32], and for general
self-similar multiplexed traffic modeled as fractional Brownian
motion (fBm) [30]. The above works differ substantially in
the scope and approach of the present paper for several rea-
sons. First, network flows can have highly-variable bandwidth
requirements that are non-stationary and difficult to model
outside heavy traffic or asymptotic regimes; instead service
in systems typically shows consistent functional forms which
are easier to model and can be exploited effectively to control
system load. Another important difference is that network
traffic is often modeled as a superposition of flows which
share the available bandwidth according to a discriminatory or
generalized process-sharing policy; this assumption is instead
often unrealistic in systems, e.g., when the scheduling disci-
pline is approximately first-come first-served (FCFS). FCFS
scheduling is also found in networks, e.g., in ATM commu-
nication, but the service time distributions are here usually
deterministic or Erlang, whereas high job size variability in
systems is a fundamental factor of congestion.

VII. CONCLUSIONS

In this paper, we have proposed ASIdE, a no-knowledge
scheduling technique for increasing the performability of sys-
tems processing temporally dependent workloads. Temporal
locality has been observed in several practical settings, arguing
for significant applicability of ASIdE in real systems. Using
simulation, we have shown that ASIdE consistently improves
performance, as quantified by the system mean throughput and
by the distribution of round-trip times experienced by requests
under temporal dependent conditions. We have shown that
ASIdE is able to approximate effectively the SJF scheduling

techniques which is known to provide very effective results
in systems, but requiring additional knowledge on job service
times that is instead not required by ASIdE. We have also
shown the robustness of ASIdE under both stationary and non-
stationary workloads and confirmed the accuracy of ASIdE
service time forecasting.
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1. input:
a. constant population of the system N ;
b. number of classes for service times C;
c. service time thresholds {T0 = 0, T1, ..., TC =∞};
d. large service time threshold LT ← TC−1;

2. for each monitoring window TW

a. initialize:
I. num. of jobs N L← 0 for service times > LT ;
II. num. of Ck|L pairs N j CkL← 0, 1 ≤ k ≤ C

and 1 ≤ j < N ;
b for each job completion

b.1. if its service time > LT , then
I. N L← N L + 1;
II. for each j-th job arrived before and completed,

- if its service time Sj ∈ [Tk−1, Tk)
then N j CkL← N j CkL + 1;

III. for each j-th job arrived after and completed,
- if its service time Sj > LT

then N j CCL← N j CCL + 1;
b.2 if its service time ∈ [Tk−1, Tk), then
I. for each j-th job arrived after and completed

- if its service time Sj > LT
then N j CkL← N j CkL + 1;

c. at the end of the window TW

update conditional probabilities at lag j, 1 ≤ j < N
I. P [Ck|L]j ← N j CkL/N L, 1 ≤ k ≤ C;

Fig. 1. Description of how to calculate condition probabilities.
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Fig. 2. Conditional probabilities as a function of lags j. Plots (a)
and (b) give results for a temporally independent sequence. Plots (c)
and (d) give results for a temporally dependent sequence.
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1. input:
a. maximum allowable delay limit D;
b. constant population of the system N ;
c. num. of classes for service times C ← 2;
d. arrival index i← 0;
f. large threshold LT ← µ−1 + k · σ;

2. for each job arriving at queue
a. i← i + 1;
b. set that job’s arrival index to i;
c. initialize that job’s predicted result as UnChecked;
d. initialize that job’s num. of delays d← 0;

3. for each monitoring window TW

a. recalculate conditional probabilities P [Ck|L]j ,
1 ≤ k ≤ C and 1 ≤ j < N , as shown in Fig. 1;

4. for each large job (> LT ) completion at queue
a. trigger one round of the delaying;

I. initialize j ← 1;
II. if predicted result of the j-th job is not UnChecked,

then keep using its predicted result;
III. if predicted result of the j-th job is UnChecked,

then predict the size of the j-th job;
– calculate the lag apart the two jobs as j-th job’s

arrival index - completed job’s arrival index;
– if P [Ck∗|L]j = max{P [C1|L]j , ..., P [CC |L]j}

then set that job’s predicted result as class Ck∗;
IV. j ← j + 1;
V. if not reaching the end of the queue,

then go to step 4-II.;
else for each class Ck job with num. of delays
d ≤ D, for 1 < k ≤ C
– delay it to the end of the queue;
– set d← d + 1;

Fig. 3. Description of ASIdE.
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1. initialize: µ← 0, σ ← 0, k ← 1, and adj ← 0.5;
2. set LT ← µ−1 + k · σ;
3. for each request in a monitoring window TW do

a. upon each job completion at the autocorrelated server
I. compute observed conditional probabilities:

P [L|L]j , for 1 ≤ j < N , as shown in Fig. 1;
II. update µ−1 and σ by Welford’s algorithm [31];
III. update the mean queue length Q;

b. at the end of the window TW

I. if P [L|L]bQ/2c ≥ P [S|L]bQ/2c,
then k ← k + adj;
else if P [L|L]bQ/10c < P [S|L]bQ/10c,
then k ← k − adj;

II. set maximum and minimum large thresholds:
LT max← 90th percentile of observed service times;
LT min← 50th percentile of observed service times;

III. recalculate LT ← µ−1 + k · σ;
IV. if LT > LTmax, then LT ← LTmax;
V. if LT < LTmin , then LT ← LTmin;

Fig. 4. Description of how to self-adjust LT .
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Fig. 5. Illustrating the adjustment of large threshold LT given different values of adj in Figure 4.
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Fig. 12. Sensitivity to temporal dependence in a network with M = 2,
N = 500, and λ1 = 2 job/sec.
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Fig. 16. Sensitivity to coefficient of variation (CV) of service times at QACF in a network with M = 2, N = 500, and λ1 = 2 job/sec.
Illustrating CCDF of service times at QACF and performance results (e.g., system throughput), where the service times at QACF are drawn
from MMPP(2) with µ = 1 job/sec and SCV = 20, 40, and 100, and the static large-job threshold for ASIdE is set to µ−1 + k · σ, for
0 ≤ k ≤ 4. The results for ASIdE with online calculated LT are marked by striped bars.
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Fig. 18. Block I/O Trace: (a) overall system throughput as a function
of network population (N ) under FCFS, ASIdE and SJF, and (b)
CCDFs (tails) of round trip times in the system with N = 10000.
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Fig. 19. HTTP: (a) overall system throughput as a function of network
population (N ) under FCFS, ASIdE and SJF, and (b) CCDFs of round
trip times and response times in a network with N = 100.


