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Abstract

The paper considers a discrete-time buffer system with infinite storage capacity
and one single output channel. Users can start and end sessions during which
they are active and send packets to the buffer system. In this paper we study
a simple model for the resulting session-based arrival process: we assume that
each active user generates a random but strictly positive number of packets
per time slot. Furthermore it is assumed that the time (expressed in slots)
needed to transmit a packet is geometrically distributed. The distribution of
the session lengths is also geometrical. This model can be applied to study the
traffic of a file server, where one file download by a user is considered to be
one session. The probability generating functions of the steady-state number
of active sessions, the buffer occupancy and the packet delay are derived. We
also derive an approximation for the tail probabilities of the buffer occupancy.
Furthermore, an expression for the mean session delay is obtained. This allows
us to study the influence of the different system parameters: some examples are
presented. We end by applying the model to a web server, based on actual web
traffic.

Key words: discrete-time queueing model, session-based arrivals, performance
evaluation, packet-based networks, web servers

1. Introduction

Packet buffers can be found in many communication systems. It is therefore
important to model their behaviour to study the performance of the whole
system. The performance measures of a packet buffer (buffer occupancy, delay,
...) are greatly influenced by the nature of the packet arrival process. Session-
based arrival streams are a new approach for modelling the traffic streams that
arise in modern telecommunication networks. We consider a user population

∗Corresponding author
Email addresses: lhoflack@telin.UGent.be (L. Hoflack), sdv@telin.UGent.be (S. De

Vuyst), sw@telin.UGent.be (S. Wittevrongel), hb@telin.UGent.be (H. Bruneel)

Preprint submitted to Performance Evaluation July 24, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55843625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


where each user is capable of starting and ending sessions. During a session
a user is active and sends information through the communication system. A
session can be considered as a high-level concept: e.g., a person starts surfing on
the internet (start of the session) until he shuts down his computer (end of the
session). Low-level interpretations are also possible: e.g., a session begins when
a user starts downloading a file from a server, and the session ends when the
transmission of the file is complete. In the most general session-based arrival
models, the traffic generated by the users is not uniform in every time slot, but
can vary (e.g. in a periodic manner, as in [20]) in time. Moreover, during one
session active and non-active periods can succeed each other.

In this paper we study a more simple variant of the session-based arrival
model. We consider an arrival process where each active user generates a random
but strictly positive number of packets per slot. So, each user generates a non-
interrupted data flow until his session ends, where the number of generated
packets varies from slot to slot (but is never equal to zero). The model under
study can therefore be considered as an extension of the train arrival process
[7, 9, 10, 14, 15, 16, 35, 36, 37, 39], where messages (the equivalent of what we
consider sessions) arrive in the buffer at the rate of one packet per slot.

Also related is the on/off arrival process (see e.g. [22, 24, 32, 40]), where a fi-
nite number of sources alternate between active periods during which one packet
per slot is generated and passive periods during which no packets are generated.
In [12], messages consisting of a fixed number of packets are considered in case
of an uncorrelated packet arrival process. Related continuous-time models with
dispersed messages are studied in [2, 11]. Note that in [2, 11, 12, 22, 24, 32, 40]
the model has a finite user population (or a limitation on the maximum num-
ber of simultaneous active messages), unlike the infinite user population model
assumed in the current paper where the idea of a dedicated input line per user
is abandoned.

Although in our model the generated traffic does not exhibit interruptions,
it has its practical use. Consider for instance a file server that serves a number
of users (e.g. a video on demand server). If we define the download of a file by
one user as one session, our model delivers a good description of the outgoing
data buffer behaviour. As another example, consider a user hitting the ‘send’
button after writing an email. The transmission of this email to the central mail
server can be considered as a session.

The purpose of this paper is to develop a basic analytical technique for the
performance analysis of a discrete-time buffer system with session-based arrivals.
To the best of our knowledge, such analysis technique has not been reported
before. In order not to unnecessarily complicate this first analysis and to clearly
present the basic approach, we have chosen to consider a geometric distribution
for the session lengths in this paper. This appears to be a realistic assumption
e.g. in case of small files downloaded from a web server. It is expected however
that with some appropriate modifications, like a more refined state description,
our analytical technique will also work for other session-length distributions.

In the next section, we give a description of the model under study. The
mathematical model and the system equations are given in section 3. A detailed
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analysis of the arrival process, the buffer occupancy (and its tail behaviour), the
packet delay and the mean session delay is discussed in section 4. In section 5
the results are illustrated with some examples. The model is applied to an actual
web server in section 6. Conclusions and future work are given in section 7.

2. Model description

We study a discrete-time queueing system with one output line and an in-
finite storage capacity. As usual for discrete-time models [6, 21, 33], time is
divided in fixed-length time slots and transmissions can only take place at slot
boundaries. Packets entering the queueing system cannot leave the buffer at
the end of their arrival slot: their system time must include at least one whole
time slot and their transmission can start no earlier than at the beginning of
the slot following their arrival slot. So, using the terminology of [21], the system
we consider in this paper is a late arrival system with delayed access (LAS-DA).
An infinite user population starts and ends sessions, during which information
is sent over the communication system. When a user starts a session, he gen-
erates a variable but strictly positive number of packets per slot. The session
ends when the user has no more data left to send. Note that a session cannot
include passive periods during which a user is idle and does not generate any
information. Hence, the model is useful for the study of non-interrupted data
flows, e.g. file downloads.

There is no limitation to the number of active sessions, and as we consider
an infinite user population, the number of packet arrivals per slot can be very
large. This means that the model can be used in situations where the bandwidth
on the input side of the buffer is not an issue or where all packets originate from
one source. An example of the latter is the outgoing buffer of a file server: each
session is the transfer of a file to a client, but all files originate from one central
place: the server’s hard disk.

The numbers of new sessions starting in successive slots are assumed to be
independent and identically distributed (i.i.d.) variables. In normal conditions,
internet users act independently from each other and thus this seems like a
realistic assumption. The session length itself is assumed to be geometrically
distributed.

Finally, the transmission time of a packet is also geometrically distributed
and independent of the transmission times of other packets. Note that the as-
sumption of geometric transmission times enables us to study buffer systems for
packets of variable size. Alternatively, the model can also be used to describe
a system with constant packet transmission times of one slot and an unreli-
able output line subject to random failures that occur independently from slot
to slot. Indeed, the latter results in a geometric distribution for the effective
transmission times required for the successful transmission of a packet.

3. Mathematical model and system equations

We need the following definitions (k is an integer ≥ 1):
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Figure 1: Definitions of the random variables mk, uk and rk.

• ak: number of active sessions during slot k,

• sk: number of new sessions generated during slot k,

• uk: buffer occupancy after slot k,

• pi
k: number of packets generated during slot k by session i,

• mk: total number of packets generated during slot k.

The probability generating function (pgf) of the number of new sessions
generated per slot is given by

Sk(z) , E[zsk ] = S(z) , (1)

where E[.] denotes the expected value operator.
The pgf of the number of packets generated per slot per session is given by

P i
k(z) , E

[

zpi
k

]

= P (z) , (2)

where P (0) equals zero, for at least one packet is generated.
The session length is geometrically distributed with parameter α, i.e. with

the following probability mass function and pgf:

ℓ(n) , Prob[session length is n slots] = (1 − α)αn−1 , n ≥ 1 , (3)

L(z) =
(1 − α)z

1 − αz
. (4)

The mean session length is therefore given by 1/(1 − α).
The transmission time of a packet is also geometrically distributed with

parameter 1 − σ and the mean transmission time equals 1/σ. Owing to this
geometric distribution, whenever there is a packet under transmission during a
slot, this transmission will end at the end of this slot with probability σ and the
transmission will continue with probability 1 − σ, independent of the length of
the elapsed part of the transmission time.
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Let us now define a variable ci
k that is one if the ith session that is active

in slot k − 1, still continues in slot k, and zero otherwise. As the session length
is geometrically distributed, the ci

k’s are i.i.d. Bernoulli random variables with
the following probability mass function:

Prob
[

ci
k = 0

]

= 1 − α ; Prob
[

ci
k = 1

]

= α . (5)

In view of the above model description and definitions, the evolution in time of
the number of active sessions, the total number of packets generated per slot
and the buffer occupancy is then expressed by the following system equations:

ak = sk +

ak−1
∑

i=1

ci
k , (6)

mk =

ak
∑

i=1

pi
k , (7)

uk = mk + (uk−1 − rk)+ , (8)

where (x)+ = max(x, 0) and the rk’s are i.i.d. Bernoulli random variables with
probability mass function

Prob[rk = 0] = 1 − σ ; Prob[rk = 1] = σ , (9)

in view of the geometric distribution of the transmission times.

4. Steady-state queueing analysis

The state of the queueing system after slot k can be fully described by the
values of two variables: the number of active sessions ak in slot k and the
buffer occupancy uk after slot k. Due to the geometric nature of the session
lengths and the transmission times, we do not need to remember the duration
of the active sessions nor of the ongoing transmission: geometrically distributed
variables possess the memoryless property.

We begin the analysis by defining the joint pgf of the system state after slot
k (i.e. of the variables ak and uk) as

Qk(x, z) , E[xakzuk ] . (10)

Applying the system equations derived in the previous section, we find

Qk(x, z) = S(xP (z))E
[

(C(xP (z)))ak−1z(uk−1−rk)+
]

,

where C(z) , 1−α+αz is the pgf of the variable ci
k. In order to further expand

this equation, we need to distinguish between three cases, namely (1) rk = 0,
(2) rk = 1, uk−1 > 0 and (3) rk = 1, uk−1 = 0. Doing so, we finally get

Qk(x, z) =
S(xP (z))

z
{Φ(z)Qk−1(C(xP (z)), z) + σ(z − 1)pk−1,0} , (11)
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where Φ(z) , σ + (1 − σ)z and pk−1,0 denotes the probability that the buffer
is empty after slot k − 1. Note that we used the fact that an empty buffer
at the end of a slot implies that there were no active sessions during that slot,
because a session generates a strictly positive number of packets per slot. Hence,
uk−1 = 0 implies ak−1 = 0, which leads to Qk−1(x, 0) = Qk−1(0, 0) for all values
of x. This means that Qk−1(0, 0) is equal to Qk−1(1, 0) = pk−1,0.

If we let k go to infinity and assume that the system reaches a steady state,
the functions Qk−1 and Qk converge to the same limiting function Q. Intro-
ducing this into equation (11), we obtain that the steady-state joint pgf Q(x, z)
must satisfy the following functional equation:

Q(x, z) =
S(xP (z))

z
{Φ(z)Q(C(xP (z)), z) + σ(z − 1)p0} , (12)

where p0 is the steady-state probability of an empty buffer.

4.1. Arrival process

The pgf A(x) of the steady-state number of active sessions can be derived
by putting z equal to one in the functional equation. This leads to

A(x) , Q(x, 1) = S(x)A(C(x)) =

∞
∏

i=0

S(1 − αi + αix) . (13)

An elegant proof for the convergence of (13) can be found in [31]. The mean
number of active sessions is given by A′(1) and equals S′(1)/(1 − α). This means
that the mean number of sessions is the product of the mean number of newly
started sessions per slot and the mean session length.

The pgf of the steady-state total number of packet arrivals per slot is given
by

M(x) = A(P (x)) . (14)

We can also determine the equilibrium condition: the mean number of packet
arrivals per slot has to be strictly less than the number of packets that can be
transmitted per slot. This implies

P ′(1)A′(1) < σ ⇔
P ′(1)S′(1)

1 − α
< σ .

The equilibrium condition can also be expressed in terms of the mean load ρ of
the system:

ρ =
P ′(1)S′(1)

σ(1 − α)
< 1 . (15)

4.2. Buffer occupancy

4.2.1. Moments of the buffer occupancy

Let us look at the buffer occupancy at the end of an arbitrary slot in the
steady state. First, we demonstrate a technique to calculate the various mo-
ments of the buffer occupancy directly from the functional equation (12), i.e.
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without first requiring an explicit expression for the pgf U(z) of the buffer occu-
pancy. This method moreover turns out to be less complex than the derivation
of the moments based on the pgf U(z).

If we consider those values of x and z, for which the respective arguments
of the function Q in the left and right side of the functional equation (12) are
equal to each other, we can solve the functional equation. This means that we
have to choose x as follows:

x = C(xP (z)) =
1 − α

1 − αP (z)
. (16)

Introducing this into the functional equation (12), we get the following expres-
sion:

Q

(

1 − α

1 − αP (z)
, z

)

=
σ(z − 1)p0S(L(P (z)))

z − S(L(P (z)))Φ(z)
. (17)

The value of p0 can be calculated from the normalisation condition Q(1, 1) = 1.
Putting z = 1 in (17), we get that p0 equals 1 − ρ, as expected.

Differentiation of both sides of equation (17) with respect to z and evaluation
at z = 1 yields

A′(1)
αP ′(1)

1 − α
+ U ′(1) =

P ′(1)S′(1)[1 − α − P ′(1)S′(1) + αP ′(1)]

(1 − α)[σ(1 − α) − S′(1)P ′(1)]

+
S′′(1)P ′(1)2 + S′(1)P ′′(1)(1 − α)

2(1 − α)[σ(1 − α) − S′(1)P ′(1)]
,

from which we can derive an explicit expression for the mean buffer occupancy
U ′(1). We rewrite this expression in terms of the variances σ2

S and σ2
P of the

number of new sessions started per slot and the number of packets generated
per session per slot respectively:

U ′(1) =
1

2(1 − α)2σp0

{

S′(1)(1 − α)σ2
P + P ′(1)2σ2

S

+P ′(1)S′(1)[1 − α + P ′(1)(α − S′(1))]} −
αP ′(1)S′(1)

(1 − α)2
. (18)

In this expression we clearly see that the mean buffer occupancy is a linearly
increasing function of these variances. This has a logical explanation: when
the values of the variances σ2

S and σ2
P increase, the arrival process becomes less

predictable and shows more ‘variability’. It is a common result in queueing
theory that more ‘variable’ arrival processes lead to higher buffer occupancies.

We can also derive closed-form results for the higher-order moments of the
buffer occupancy in a recursive way. The nth-order moment of the buffer oc-
cupancy is obtained by differentiating equation (17) n times and evaluating
the result for z = 1. Unknown partial derivatives in this result are obtained
recursively from the functional equation (12).
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4.2.2. Pgf of the buffer occupancy

The pgf U(z) of the buffer occupancy can also be computed explicitly: we
obtain U(z) by putting x equal to one in the functional equation and by suc-
cessively applying this equation. In order to determine how the first argument
of the Q-function evolves during these successive applications, we first define

Ni(z) , C(P (z)Ni−1(z)) =
1 − α + α(1 − P (z))(αP (z))i

1 − αP (z)
, (19)

and we notice that

lim
i→∞

Ni(z) =
L(P (z))

P (z)
, for |αP (z)| < 1 . (20)

The recursion formula (19) for Ni(z) and the functional equation (12) then lead
to

U(z) = Q(1, z) = Q(N0(z), z)

=
S(P (z)N0(z))

z
{Φ(z)Q(N1(z), z) + σ(z − 1)p0}

= . . .

= σ(z − 1)p0

(

∞
∑

i=0

1

Φ(z)

i
∏

j=0

S(P (z)Nj(z))Φ(z)

z

)

+

(

∞
∏

i=0

S(P (z)Ni(z))Φ(z)

z

)

Q

(

1 − α

1 − αP (z)
, z

)

.

The quantity Q(. . .) in the right-hand side is given by equation (17), and there-
fore we get the following explicit expression for the pgf of the buffer occupancy:

U(z) =
σ(z − 1)p0

z − S(L(P (z)))Φ(z)

{

S(L(P (z)))

(

∞
∏

i=0

S(P (z)Ni(z))Φ(z)

z

)

+ [z − S(L(P (z)))Φ(z)]

(

∞
∑

i=0

1

Φ(z)

i
∏

j=0

S(P (z)Nj(z))Φ(z)

z

)}

. (21)

As this explicit expression includes infinite sums and products, the derivation
of the various moments of the buffer occupancy from it is more complicated
than the method presented in the previous section. We can however use this
expression to obtain the tail behaviour of the buffer occupancy, as we will explain
next.

4.2.3. Tail behaviour of the buffer occupancy

In practice, we are mainly interested in the probability that the buffer oc-
cupancy exceeds a certain (and high) threshold value. As indicated in a.o.
[5, 23, 25, 26, 38], this probability can be used to estimate the buffer overflow
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probability in a finite-capacity buffer system. In principle, the probability that
the buffer occupancy exceeds a given threshold can be calculated based on the
pgf U(z) by means of inverse z-transformation techniques [18]. Since we are
interested in high threshold values with small probabilities, the exact calcula-
tion becomes time consuming and error prone. In order to keep the calculation
time small, we introduce an approximation method described in [8, 38]. The
probability mass function u(n) is dominated by the contribution of the pole z0

of the pgf U(z) with the smallest modulus, and can be approximated by

u(n) ≈ −
θ0

z0

(

1

z0

)n

, (22)

for n sufficiently large, and where θ0 denotes the residue of U(z) in the point
z = z0. As such, the probability of exceeding a threshold of T packets in the
buffer is given by the following formula, for sufficiently large values of T :

Prob[u > T ] ≈ −
θ0

z0 − 1

(

1

z0

)T+1

. (23)

How do we identify z0 and θ0? It can be shown (as in [8]) that the denomi-
nator of U(z) (i.e. z−S(L(P (z)))Φ(z)) has exactly one real positive zero outside
the unit circle in the complex z-plane with multiplicity one. Therefore, to calcu-
late z0, we need to calculate the root of z − S(L(P (z)))Φ(z) = 0 different from
1. It can be calculated numerically with, for instance, the Newton-Raphson
algorithm.

The residue θ0 can now be obtained as follows:

θ0 = lim
z→z0

(z − z0)U(z) =
σz0(z0 − 1)p0

(

∏∞
i=0

S(P (z0)Ni(z0))Φ(z0)
z0

)

σ − S′(L(P (z0)))L′(P (z0))P ′(z0)Φ(z0)2
. (24)

Notice the infinite product in this expression. We know however that the factor
S(P (z0)Ni(z0)) goes to S(L(P (z0))) when i approaches infinity (see equation
(20)). This is, due to the definition of z0, equal to z0/Φ(z0), so we see that the
factors of the infinite product go to 1, as i goes to infinity. We can therefore
compute the residue θ0 up to any desired precision by taking the product over
a sufficiently large number of factors:

∞
∏

i=0

S(P (z0)Ni(z0))Φ(z0)

z0
≈

J
∏

i=0

S(P (z0)Ni(z0))Φ(z0)

z0
. (25)

4.3. Packet delay

We now study the delay experienced by individual packets. The delay of a
packet is defined as the time period between the end of the slot in which the
packet arrives and the end of the last slot of the packet’s transmission time.
We assume that the queueing discipline is FCFS (first-come first-served) for
packets, and that all packets entering during a certain slot arrive in a random
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order, irrespective of what session they belong to. To calculate the packet delay,
we consider a tagged packet P that arrives in the buffer during a slot in the
steady state. Let up denote the buffer occupancy after the arrival slot of P , ap

the number of active sessions during this slot, mp the total number of packets
that arrive in the same slot and q the number of packets that arrive after P in
the same slot. Then the packet delay of P is given by

d =

up−q
∑

i=1

ti , (26)

where ti denotes the (remaining) transmission time of the ith packet that is
present in the buffer after the arrival slot of P and has to be transmitted no
later than P . The transmission time is geometrically distributed, with pgf
T (z) = σz/(1 − (1 − σ)z). Due to the memoryless property of the geometric
distribution, the remaining transmission time of the first packet in this sum is
independent of the already completed part of the transmission when P arrives.

In order to derive the pgf D(z) of d, we first define V (x, y, z) as the joint
pgf of the variables mk, ak and uk for a random slot k in the steady state.
These variables are respectively the total number of packet arrivals in slot k,
the number of active sessions in slot k and the buffer occupancy after slot k.
Based on the system equations of section 3, the steady-state pgf V (x, y, z) can
be derived as

V (x, y, z) , lim
k→∞

E[xmkyakzuk ]

=
S(yP (xz))

z
{Φ(z)Q(C(yP (xz)), z) + σ(z − 1)p0} . (27)

It can be shown, using similar methods as in [7, 9], that the pgf W (x, y, z) of
the variables mp, ap and up is given by

W (x, y, z) , E[xmpyapzup ] =
x

M ′(1)

∂

∂x
V (x, y, z) . (28)

To determine the pgf of the packet delay we need the joint pgf of q and
up. Because we assume all packet arrivals during a certain slot have a random
order, the random variable q has a uniform distribution, only dependent on
the total number of packet arrivals in the considered slot. This means that
Prob[q = ℓ|mp = m] = 1/m, for 0 ≤ ℓ ≤ m − 1. Using this, we can derive
B(x, z), the joint pgf of q and up:

B(x, z) , E[xqzup ] =
∞
∑

j=1

∞
∑

i=j

i
∑

m=j

m−1
∑

ℓ=0

Prob[ap = j, up = i, mp = m]
xℓzi

m

=
1

x − 1

∫ x

t=1

W (t, 1, z)

t
dt =

V (x, 1, z) − V (1, 1, z)

M ′(1)(x − 1)
. (29)
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From the joint pgf of q and up, we can derive the pgf D(z) of the packet delay:

D(z) = E
[

z
Pup−q

i=1 ti

]

= E
[

T (z)up−q
]

= B

(

1

T (z)
, T (z)

)

=
σ

P ′(1)A′(1)
[U(T (z)) − p0] , (30)

where we used the fact that M ′(1) = P ′(1)A′(1) and U(z) = Q(1, z). We obtain
an expression for D(z) in terms of the pgf of the buffer occupancy U(z), which
we know explicitly. Therefore, the pgf of the packet delay is fully determined
and all moments of the packet delay can be expressed in terms of correspond-
ing moments of the buffer occupancy. This result is in conformance with the
general result obtained for a discrete-time G/Geom/c queue in [19]. It is also
in accordance with Little’s law [27].

4.4. Session delay

It is also useful to study the delay of a whole session, especially in the case
where we consider a non-interrupted data flow to be one session. The session
delay ds is defined as the time period between the end of the slot in which the
first packet of a session arrives and the end of the last transmission slot of the
last packet of the session. So, in the case of a file transfer, the session delay
represents the time it takes to download the whole file. Determining the pgf of
the session delay is complicated, and we therefore only derive the mean value
of the session delay. The mean session delay is given by

E[ds] =
∞
∑

n=1

E
[

ds|n

]

Prob[session lasts n slots] , (31)

where ds|n denotes the session delay in the case that the session lasts n slots. The
probability that a session lasts n slots is given by the probability mass function
of the session length ℓ(n) (see equation (3)). We need to make a distinction
between ds|1 and ds|n for n > 1.

4.4.1. Delay of a session with length 1

The delay of a session with length 1 is given by the time needed to transmit
all the packets in the buffer after the session’s arrival slot except the ones that
arrived after the last packet of the session. If we define qs as the total number
of packets that arrive in the same slot as the session, but after the last packet
of the session, and us as the buffer occupancy after the session’s arrival slot, we
get the following expression for the mean session delay:

E
[

ds|1

]

= (E[us] − E[qs])E[t] . (32)

The mean transmission time E[t] is given by 1/σ. Note that us is the buffer
occupancy after the arrival slot of a tagged newly started session. Let ss and
as denote the total number of new sessions and the number of active sessions
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respectively, during the arrival slot of the tagged session. In order to derive the
joint pgf of ss, as and us for a slot in the steady state where a new session starts,
we first need to define H(x, y, z) as the joint pgf of the random variables sk, ak

and uk for a random slot k in the steady state. Applying the system equations
of section 3, we obtain for the steady-state pgf H(x, y, z):

H(x, y, z) , lim
k→∞

E[xskyakzuk ]

=
S(xyP (z))

z
{Φ(z)Q(C(yP (z)), z) + σ(z − 1)p0} , (33)

where we have also used the property that H(1, y, z) = Q(y, z). The joint pgf
G(x, y, z) of the random variables ss, as and us for a slot in the steady state

where a tagged new session starts, is then given by

G(x, y, z) , E[xssyaszus ] =
x

S′(1)

∂

∂x
H(x, y, z)

=
x y P (z) S′(xyP (z)) Q(y, z)

S′(1) S(yP (z))
, (34)

which can again be shown using similar methods as in [7, 9]. This expression
enables us to calculate the mean buffer occupancy after the arrival slot of a
tagged new session and the mean number of active sessions during such a slot:

E[us] =
∂

∂z
G(1, 1, 1) = U ′(1) + P ′(1)(1 − S′(1)) +

S′′(1)P ′(1)

S′(1)
, (35)

E[as] =
∂

∂y
G(1, 1, 1) = A′(1) + (1 − S′(1)) +

S′′(1)

S′(1)
. (36)

The only unknown quantity left to derive in equation (32) is E[qs]. If we
define ms as the total number of packet arrivals during the tagged slot and mt as
the number of packets sent by the tagged session, qs is only dependent on ms and
mt, due to the random order of the packet arrivals in a certain slot. Specifically,
it can be shown that Prob[qs = ℓ|ms = m, mt = m∗] =

(

m−ℓ−1
m∗−1

)

/
(

m
m∗

)

, for 0 ≤
ℓ ≤ m − m∗. Therefore, E[qs] is given by

E[qs] =
∞
∑

j=1

∞
∑

m=j

m−j+1
∑

m∗=1

m−m∗

∑

ℓ=0

ℓ Prob[as = j, qs = ℓ, ms = m, mt = m∗]

=

∞
∑

j=1

E

[

ms − mt

mt + 1

∣

∣as = j

]

Prob[as = j] , (37)

where we have used the known property that
∑n

t=k

(

t
k

)

=
(

n+1
k+1

)

. To determine
the conditional expected value in (37), we need the joint pgf of the random
variables ms and mt conditioned on as. We define this pgf as Ωj(x, y), and we
find

Ωj(x, y) , E[xmtyms |as = j]

= E
[

xmtymt+
Pj−1

i=1 pi
∣

∣as = j
]

= P (xy)P (y)j−1 , (38)
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because the number of packets pi generated per session per slot is independent of
the number of sessions and the number of packets generated in another session.
Using Ωj(x, y), we then obtain

E

[

ms − mt

mt + 1

∣

∣as = j

]

=

(

∂

∂y

∫ 1

0

Ωj(x, y)dx

)

∣

∣

∣

∣

∣

y=1

− 1 +

∫ 1

0

Ωj(x, 1)dx

= (j − 1)P ′(1)

∫ 1

0

P (x)dx . (39)

Finally, combining (32)-(39), we get for the mean session delay of a session
with length one:

E
[

ds|1

]

=
1

σ

{

U ′(1) + P ′(1)(1 − S′(1)) +
S′′(1)P ′(1)

S′(1)

−

[

αS′(1)2 + S′′(1)(1 − α)

(1 − α)S′(1)

]

P ′(1)

∫ 1

0

P (x)dx

}

. (40)

4.4.2. Delay of a session with length larger than 1

The session delay of a session that lasts n slots (n > 1) is given by the total
remaining transmission time needed to send the packets present in the buffer
after the first slot, the new packets arriving in the following n − 2 slots, and
the packets arriving no later than the last packet of the session in the last slot
(including the last packet). So if we tag a new session and the slot it started in
as slot J , we define u(J+i) as the buffer occupancy after the (i+1)th slot of the
session (0 ≤ i ≤ n − 1), m(J+i) as the total number of packets arriving in the
(i + 1)th slot and q̄ as the number of packets that do not arrive after the last
packet of the session in the last slot. We can then write the mean session delay
for a session with length n as:

E
[

ds|n

]

=

(

E
[

u(J)

]

+

n−2
∑

i=1

E
[

m(J+i)

]

+ E[q̄]

)

E[t] . (41)

The first term E
[

u(J)

]

is equal to E[us] defined in the previous section, and
therefore given by equation (35).

The terms E
[

m(J+i)

]

are equal to P ′(1)E
[

a(J+i)

]

, where a(J+i) is defined as
the number of active sessions in slot J + i. The following holds (1 ≤ i ≤ n− 1):

a(J+i) = s(J+i) +

a(J+i−1)−1
∑

k=1

ck
(J+i) + 1 , (42)

as the number of active sessions is equal to the sum of the new sessions and
the ones that continue, and where the term 1 represents the tagged session that
continues with certainty. By taking the mean of this expression, we find (taking
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into account that E
[

s(J+i)

]

= S′(1) and E
[

ck
(J+i)

]

= α):

E
[

a(J+i)

]

− 1 = S′(1) + (E
[

a(J+i−1)

]

− 1)α

=

i−1
∑

k=0

αkS′(1) + αi(E
[

a(J)

]

− 1) . (43)

Here, the term E
[

a(J)

]

is equal to E[as] defined in the previous section and

given by equation (36). Substituting this, we get for E
[

a(J+i)

]

:

E
[

a(J+i)

]

= 1 +
S′(1)

1 − α
+ αi

(

S′′(1)

S′(1)
− S′(1)

)

, 1 ≤ i ≤ n − 1 . (44)

To derive the mean of q̄, we define mt as the number of packets that the
tagged session generates in its last slot. Due to the random order of the packet
arrivals in a certain slot, q̄ is only dependent on mt and the total number of
packet arrivals during the last slot m(J+n−1). Specifically, it can be shown that

Prob
[

q̄ = ℓ|m(J+n−1) = m, mt = m∗
]

=
(

ℓ−1
m∗−1

)

/
(

m
m∗

)

, for 0 ≤ ℓ ≤ m − m∗. In
an analogous way as in the previous section, we get

E[q̄] =

∞
∑

j=1

E

[

mt(m(J+n−1) + 1)

mt + 1

∣

∣a(J+n−1) = j

]

Prob
[

a(J+n−1) = j
]

. (45)

Because the random variables m(J+n−1) and ms are identically distributed, we
can use the result in (39) to obtain

E

[

mt(m(J+n−1) + 1)

mt + 1

∣

∣a(J+n−1) = j

]

= jP ′(1)− (j−1)P ′(1)

∫ 1

0

P (x)dx . (46)

Combining (35), (36) and (41)-(46), we obtain for E
[

ds|n

]

:

E
[

ds|n

]

=
1

σ

{

U ′(1) + P ′(1)(1 − S′(1)) +
S′′(1)P ′(1)

S′(1)

+ (n − 1)P ′(1)

(

1 +
S′(1)

1 − α

)

+ P ′(1)
α − αn

1 − α

(

S′′(1)

S′(1)
− S′(1)

)

−

[

S′(1)

1 − α
+ αn−1

(

S′′(1)

S′(1)
− S′(1)

)]

P ′(1)

∫ 1

0

P (x)dx

}

. (47)

4.4.3. Mean session delay

With the above results, we can derive an explicit expression for the mean
session delay:

E[ds] =
∞
∑

n=1

E
[

ds|n

]

(1 − α)αn−1

=
1

σ

{

U ′(1) +
P ′(1)

1 − α
+

P ′(1)S′′(1)

S′(1)(1 − α2)
+

P ′(1)S′(1)(α2 + 2α − 1)

(1 − α2)(1 − α)

−

[

2αS′(1)

1 − α2
+

S′′(1)

S′(1)(1 + α)

]

P ′(1)

∫ 1

0

P (x)dx

}

. (48)

14



5. Some results

In this section we study the influence of the various parameters involved in
the model.

5.1. Mean buffer occupancy

First of all, we look at the mean buffer occupancy for an increasing system
load ρ (defined in (15)). We start by focusing on the influence of the mean
number of packets P ′(1) generated by a session in a slot. We assume that
the packet generating process is given by the pgf P (z) = zp: an active session
generates a constant number of p packets per slot, and the variance σ2

P equals
zero. The number of new sessions started per slot is a Bernoulli variable and is
either 0 or 1 with probabilities 1− β and β: its pgf S(z) is given by 1− β + βz,
and its variance σ2

S is equal to β(1 − β).
In figure 2(a) we look at the mean buffer occupancy for different values of

P ′(1) = p, by varying the parameter σ of the transmission time to obtain an
increasing load. The mean session length Ts = 1/(1 − α) and β (and therefore
also the variance σ2

S) are kept constant. This means that, when we look at
a certain value of the system load, we maintain the same load for increasing
values of p by proportionally increasing σ, as the load is given by βpTs/σ. So,
when we increase the number of packets sent per slot, we maintain a constant
load by decreasing the transmission time of each packet. However, we see in
figure 2(a) that the mean buffer occupancy increases when we consider higher
values of p. This can be intuitively understood as follows: when we look at
a constant value of the load, the mean total transmission time to remove a
batch of p packets is the same for all values of p, because the transmission time
decreases proportionally for increasing values of p. But, for higher values of p,
more packets arrive simultaneously in the system, giving rise to higher values
of the buffer occupancy during the time needed to remove these packets. This
results in a higher value of the mean buffer occupancy. So, if we consider the
situation of a file server where one session equals the download of one file, this
means that there will be a lower mean buffer occupancy (and hence a smaller
required buffer size) for lower values of p. The value of p denotes the difference
between the bandwidth of the input channel and the bandwidth of the output
channel: the input bandwidth is p times higher than the output bandwidth.

We can also study the mean buffer occupancy for different values of σ, while
varying the mean session length Ts. The result is shown in figure 2(b). When
we consider a certain value of the system load, we need an increasing value of
the session length Ts to compensate for higher values of σ (and hence shorter
transmission lengths). So, for a fixed load, the mean total transmission time
needed to remove all packets of a session is the same for all values of σ. How-
ever, we notice in figure 2(b) that the mean buffer occupancy increases when
σ increases. When σ increases, the mean duration of the sessions is longer and
more packets arrive shortly after each other in the system. So, even though the
mean transmission time needed to remove all these packets is kept constant, in
the mean time higher values of the buffer occupancy are reached, which leads
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Figure 2: Mean buffer occupancy versus the load ρ for different p by varying the parameter
σ of the transmission time (a), and for different σ by varying the mean session length Ts (b)
(Grey line = uncorrelated arrivals).

to a higher mean buffer occupancy. If we look again at the example of the file
server, this means that for longer mean session lengths (and therefore larger
file downloads), the mean buffer occupancy will increase even when the mean
transmission time per byte decreases proportionally.

In figure 3 the mean buffer occupancy is shown for different values of the
probability β that a new session starts. A table with corresponding numerical
results is also included. The distribution of the transmission time (i.e. the
parameter σ) and the number of packets p generated per session per slot are
kept constant. This means that, when looking at a certain value of the load ρ,
an increasing value of β has to be compensated by a proportionally decreasing
mean session length Ts. We see that for a higher value of β, or put otherwise, for
more but shorter sessions the mean buffer occupancy is lower. Again this can be
intuitively understood: more but shorter sessions lead to smoother traffic that
is more spread in time, whereas fewer but longer sessions lead to more bursty
traffic. In the latter case, the buffer occupancy reaches higher values than in
the first case, so the mean buffer occupancy will also be higher. So, in the case
of a file server: if there are more downloads, but the files are smaller, then the
mean buffer occupancy will be smaller than when there are less downloads, but
with larger files.

In figures 2 and 3, we have also plotted the mean buffer occupancy in the
case of uncorrelated arrivals: the total number of packets generated per slot
is determined by the same pgf M(x) as found in equation (14). The arrival
process is however uncorrelated: the number of packets arriving in a slot is
independent from slot to slot. The mean buffer occupancy for this uncorrelated
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Figure 3: Mean buffer occupancy versus the load ρ for different probabilities β that a new
session starts by varying the mean session length Ts (Grey line = uncorrelated arrivals).

arrival process is shown with grey lines. We see that neglecting the correlation
leads to a considerable underestimation of the mean buffer occupancy.

The figures 2 and 3 confirm that more bursty traffic leads to a higher mean
buffer occupancy, which is a well-known result in queueing theory. More com-
binations of varying parameters can also be examined, not always leading to
results that can be easily intuitively explained. For instance, looking at the
mean buffer occupancy for different values of p while varying Ts, gives results
that are dependent on the exact value of the probability β that a new ses-
sion starts. For this comparison, the variance of the number of new sessions
σ2

S = β(1 − β) plays an important role. If β is kept small (≤ 0.01), higher
values of p (more packets per slot, shorter sessions) lead to higher mean buffer
occupancies. When the value of β (and hence the variance σ2

S) is increased, the
curves shift until for β ≥ 0.1 the highest mean buffer occupancy is reached for
the lowest value of p (less packets per slot, longer sessions).

We study the influence of the variance σ2
P by considering different choices

for the pgf P (z) of the packet generation per slot per session:

P1(z) = zp , P2(z) =
(1 − θ)2z

(1 − θz)2
, P3(z) =

(1 − λ)z

1 − λz
,

i.e., a deterministic distribution, a negative binomial distribution and a geomet-
ric distribution, respectively. We choose the parameters of the distributions so
that the mean number of packets generated per session per slot is always the
same and equal to p. The variances are then given by

σ2
1 = 0 , σ2

2 =
1

2
(p − 1)(p + 1) , σ2

3 = p(p − 1) ,

and therefore increasing. The number of new sessions is again assumed to be
a Bernoulli variable with parameter β. The variation of the load is realised
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Figure 4: Mean buffer occupancy versus the load ρ for different distributions of the packet
generation (a), and for different distributions of the number of new sessions S(z) = 1−γ+γzq

(b).

by varying σ. Because of the stability condition, the load ρ can only range
from P ′(1)S′(1)Ts to 1. We see in figure 4(a) that the mean buffer occupancy
indeed increases for a higher variance of the packet generation. The difference
in mean buffer occupancy between the geometric distribution and the negative
binomial distribution is however small, even though in the considered situation
the variance of the geometric distribution is 1.5 times the variance of the negative
binomial distribution.

We can also study the influence of the variance σ2
S of the number of new

sessions while keeping the mean number of new sessions constant. We assume
a constant packet generating process: P (z) = zp and σ2

P = 0. The pgf of the
number of new sessions is given by 1 − γ + γzq. The mean number of new
sessions is then given by S′(1) = γq and the variance by σ2

S = γq2(1 − γ) =
S′(1)(q − S′(1)). If we let the value of q increase and adjust the value of γ
so that S′(1) is always the same, the variance will linearly increase for higher
values of q. In figure 4(b) we see the mean buffer occupancy for different values
of q. Again, the variation of the load is brought along by varying σ. All other
parameters are chosen the same as in the previous case. We clearly see that
a higher variance of the number of new sessions leads to a considerably higher
mean buffer occupancy, and that the variance σ2

S of the number of new sessions
has a greater influence than the variance σ2

P of the packet generation process.
Note that the curve for constant packet generation in figure 4(a) is the same as
the curve for q = 1 in figure 4(b).
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Figure 5: The tail distribution Prob[u > T ] of the buffer occupancy for a constant load, for
different p (a), and for different σ (b).

5.2. Tail behaviour of the buffer occupancy

In figure 5 the tail behaviour of the buffer occupancy is plotted under the
same conditions as in figure 2. So, in figure 5(a) we keep the mean session
length Ts, the probability β of a new session and the load ρ fixed, and we
consider the probability that the buffer occupancy exceeds a certain threshold
value T for different values of p (the number of packets generated per slot per
session). From figure 2(a) it was seen that the lowest mean buffer occupancy was
reached for the smallest values of p, and we can make the same observation here:
the probability that a certain threshold T is exceeded diminishes for smaller
values of p. We also notice that the difference between the different curves is
considerable. For p = 8, the probability that the buffer occupancy exceeds 300
packets is approximately 1.8 · 10−6, while for p = 1 this probability is equal to
9.9 · 10−39: this is a significant difference, taking into account that the load is
the same in both cases.

In figure 5(b) the tail behaviour of the buffer occupancy is depicted under
the same conditions as in figure 2(b). We already concluded from figure 2(b)
that the mean buffer occupancy increases for higher values of σ and the same
can be observed here for the tail behaviour of the buffer occupancy. When σ
increases and Ts increases accordingly maintaining a fixed load, the probability
that the buffer occupancy exceeds a certain threshold T also grows. Notice also
that the tail of the buffer occupancy for σ = 0.8 and σ = 1 does not decay very
rapidly.

Observing the tail behaviour of the buffer occupancy leads to the same con-
clusions as studying the mean buffer occupancy. The tail behaviour however
allows us to know more about peak values, useful for the dimensioning of a data
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Figure 6: The mean packet delay versus the load ρ for different p (a), and the mean session
delay versus the load (b) (Thin line = mean packet delay).

buffer.

5.3. Packet delay and session delay

We reconsider the situation depicted in figure 2(a): the mean session length
Ts and the probability β that a new session starts are kept constant. During
each slot of a session a fixed number of packets is generated, and this number
is given by p. In figure 6(a) we see the mean packet delay for various values of
p, and in figure 6(b) the mean session delay is shown and as a comparison, the
mean packet delay is also displayed with thin lines. The variation of the load is
obtained by adjusting the value of σ (i.e. the length of the transmission times).
We see that for an increasing value of the load ρ, and hence an increasing packet
transmission time, the delays rise quickly. However, the mean packet delay and
the mean session delay for a certain value of p do not show much difference.
Especially for p equal to one, both curves are almost identical, the mean session
delay being slightly bigger than the packet delay. This can be explained by the
fact that the mean session length in the considered case is 2, so most sessions
are not very long. However, the mean session delay includes the transmission
time of (on average) 2p packets, whereas the mean packet delay only includes
the transmission time of 1 packet. The fact that the actual difference is smaller
than the transmission time needed for 2p − 1 packets is due to the difference
in buffer occupancy after a packet or a new session arrival. Note that the
buffer occupancy can never decrease as long as there are active sessions. It is
therefore intuitively easily understood that the buffer occupancy after the start
of a session is lower than the buffer occupancy after a random packet arrival
(which can be at the beginning, in the middle or at the end of a session). During
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the time that a session is active, the buffer occupancy will reach higher values
than just before it started. The buffer occupancy after a packet arrival is an
important factor of the delay of this packet, and the buffer occupancy after a
newly started session is an important part of the session delay. So, if the buffer
occupancy after a random packet arrival is higher, this surplus compensates
some of the 2p − 1 packets more to be sent for the session delay, leading to a
smaller difference in delay for the same values of p. Of course, other factors are
also incorporated in the delay, e.g. the transmission times of the packets that
arrive after the tagged packet do not contribute to the packet delay, and the
transmission times of packets of other sessions are also included in the session
delay.

Notice that increasing the mean session length does not substantially change
the difference between packet delay and session delay: if a session lasts longer,
more packets have to be transmitted, but the buffer occupancies during this
session also reach higher values. Therefore, for longer sessions, the session delay
increases due to the fact that more packets arrive in a session, but the packet
delay increases too due to the higher buffer occupancy after a random packet.
Because we maintain a certain load by varying the parameter σ of the trans-
mission times, a longer mean session length Ts will be compensated by shorter
transmission times (i.e. a higher value of σ). So, for higher session lengths, the
packet or session delay includes the transmission of more packets, but the actual
transmission times are shorter. The consequence of this is that the difference
between mean packet and mean session delay will always be rather small, irre-
spective of the session length. Only for p = 1 we see that the difference between
session and packet delay will increase significantly when the mean session length
increases. Because the packets during a session only arrive at the rate of one
packet per slot, the buffer occupancy after a random packet arrival will not
reach very high values. For higher mean session lengths Ts however, the mean
transmission time decreases proportionally (to maintain a certain load): so,
for a higher mean session length the mean packet delay decreases, whereas the
mean session delay appears to remain the same. This is shown in figure 7(a). In
figure 7(b) the mean values of the packet and session delay are shown for p = 4:
when Ts increases, the difference between mean packet and session delay does
not increase either.

If we compare the mean packet delay (and session delay) illustrated in fig-
ure 6 to the mean buffer occupancy shown in figure 2(a), we see that the mean
packet delay behaves differently than the mean buffer occupancy depending on
the value of p. While the mean buffer occupancy increases for an increasing
value of the number of packets p, the mean packet delay decreases when p rises.
When p rises, the buffer occupancy rises too, so more packets have to be sent
before the tagged packet can be transmitted. An increasing buffer occupancy
leads to higher packet delays. But on the other hand, when p increases, the
parameter σ has to increase to maintain a certain load. So, for a higher number
p of packet arrivals, the transmission time needed to send a packet becomes
smaller. A smaller transmission time has a positive influence on the packet de-
lay by making it also smaller. This means that for higher values of p we have
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Figure 7: The mean packet and session delay versus the load ρ for two different mean session
lengths and p = 1 (a), and for p = 4 (b).

two effects that counteract: we see in figure 6(a) that the packet delay decreases
for higher values of p, and we can conclude that the effect of the smaller trans-
mission time is larger than the effect of the increasing buffer occupancy on the
mean packet delay.

We also look at the mean packet delay and the mean session delay in case
of the situation considered in figure 2(b): the number of packets p and the
probability β that a new session starts are fixed, and we study the delays for
various values of σ. The results are shown in figure 8. We see that in this case
the mean packet and session delay have the same behaviour as the mean buffer
occupancy (figure 2(b)). Notice that there are two opposing effects for a higher
value of σ: when σ increases, the transmission time of a packet decreases, so
this has a positive effect on the packet (or session) delay. However, for higher
values of σ, the mean buffer occupancy is higher, which leads to higher delays.
The last effect has apparently the most impact: for higher values of σ (i.e.
shorter transmission times) and hence higher mean session lengths, we see in
figure 8 that the delay increases. We see however that there is not much distance
between the different curves: for σ = 0.8 and σ = 1.0, the curves are almost
equal to each other. The differences between the corresponding mean buffer
occupancies in figure 2(b) are more substantial. We also notice that there is
again not much difference between the mean packet delay and the mean session
delay. This can be explained in the same way as before.

Finally we study the mean packet delay and the mean session delay when
the number of packets p and the mean transmission time (so the parameter σ)
are kept constant. This is the situation also depicted in figure 3. The load is
varied by adjusting the mean session length Ts and we look at the delays for
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Figure 8: The mean packet delay versus the load ρ for different σ (a), and the mean session
delay versus the load (b) (Dashed line = mean packet delay).
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Figure 9: The mean packet delay versus the load ρ for different probabilities β that a new
session starts (a), and the mean session delay versus the load (b) (Thin line = mean packet
delay).
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different values of β (the probability that a new session starts). The results are
shown in figure 9. The mean packet and session delay behave in the same way
as the corresponding mean buffer occupancy (figure 3). This is a logical result,
as we only vary parameters of the arrival process and the mean transmission
time of a packet is kept constant. The delay is therefore only determined by the
buffer occupancy: if the buffer occupancy rises, the delay will increase too.

We see in figure 9(b) that the mean session delay does not differ much from
the mean packet delay for the same value of β. The difference between both
delays increases for lower values of β. Since lower values of β correspond with
higher values of the mean session length Ts to maintain a certain load (i.e. less
but longer sessions instead of more but shorter sessions), this increasing session
length leads to a higher difference between the mean session and packet delay.
In this situation the distribution of the transmission time is kept constant, so
(in contrary to the situation depicted in figure 7) longer session lengths are not
compensated by smaller transmission times, explaining the higher difference
between mean packet and session delay for longer sessions.

6. Applying the model to a web server

We consider a web server: this is a computer system that accepts requests
from clients for a certain web page or embedded file (e.g. a picture or a movie),
and that responds by sending the requested file to the client. A web server
generally contains the web pages of many web sites. We apply our model on
the situation depicted in figure 10: the web server is connected to the internet
through a gateway. This gateway contains a data buffer for outgoing data
(from the server to the internet). If we consider the transmission of one file
to a client as one session, it is obvious that the buffer for outgoing data will
experience session-like data traffic. We also suppose that the data transfer from
the server to the gateway is uninterrupted. The model proposed in this paper
can therefore be applied. Fixed-length packets requiring one slot of transmission
time are considered. The gateway has an unreliable output line subject to
random failures, occurring independently from slot to slot.

Usually, the HTTP traffic is transported to the user over a reliable con-
nection using the TCP protocol. TCP provides both flow and error control
by employing an acknowledgement- and window-based communication between
source and destination, see e.g. [1, 29]. As a result of TCP’s strategies like AIMD
(additive increase/multiplicative decrease) and ‘slow start’ that are driven by
signs of network congestion, the instantaneous transmission rate of the source
adapts dynamically over time. The throughput of TCP sessions is studied in e.g.
[4]. In our application however, we assume that the network between the web
server and the users is relatively free of bottlenecks. Under these conditions,
the throughput of the sessions is determined by the speed of the web server
rather than by TCP’s congestion control. More intricate models for the traffic
generated by web servers can be found in a.o. [28, 30, 34].

We need to assign realistic values to the parameters that are involved in
the model. First of all, we look at the pgf P (z) of the number of packets
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Figure 10: A web server connected to the internet through a gateway.

generated per session per slot. We assume that the output line of the gateway
(connected to the internet) has a typical bandwidth of 100 Mbit/s. The pgf P (z)
is dependent on the characteristics of the web server itself: we assume that the
web server has a maximum transfer rate of 1000 Mbit/s (as is the case for e.g.
the HP ProLiant DL585 Rack Storage Server). Therefore, the pgf P (z) can be

written as
∑I

i=1 Prob[p = i] zi, where the value of I is 10, as the transfer rate is
at most 10 times higher than the bandwidth of the output channel. We need to
choose the probabilities Prob[p = i] in a realistic manner. For a certain number
of packets p per slot, the transfer rate is equal to p times 100 Mbit/s. The
assignment of the probabilities to these values is done by dividing the values of
p into three classes. When p = 1−3, the transfer rate per session equals 100−300
Mbit/s, so this corresponds with a low transfer rate per session. Because this
low transfer rate occurs the least frequently, we assign a weight factor equal to
1 to these p-values. Analogously, the second class contains p = 4 − 6 (medium
transfer rate) and has a weight factor 3, because a medium transfer rate will
occur the most frequently. The third class contains p = 7−10 (high to maximum
transfer rate) and has a weight factor 2. The pgf P (z) then looks as follows:

P (z) =
1

20
(z + z2 + z3) +

3

20
(z4 + z5 + z6) +

2

20
(z7 + z8 + z9 + z10) , (49)

and P ′(1) = 5.95 packets are generated per session per slot. This means that
we assume that the mean transfer rate per file from the server equals 5.95
times 100 Mbit/s (so 595 Mbit/s). Note that the generation of packets was
assumed to be independent from slot to slot. In reality, this is not the case:
the generation of packets is dependent on the number of simultaneous active
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sessions (the bandwidth has to be shared between the sessions), and because
sessions continue in time, the packet generation is not independent from slot to
slot.

Until now, we have not defined the length of a slot (in seconds). If we
assume that the parameter σ models the availability of the output channel
(see further), the slot length tslot is the time needed to send one packet if the
channel is available. We define the size of one packet as 100 bytes. Because the
bandwidth of the output channel is 100 Mbit/s, the slot length is given by (100
bytes)/(100 Mbit/s). So, the slot length tslot is equal to 8 µs.

At http://ita.ee.lbl.gov/html/contrib/EPA-HTTP.html, a trace of real web
traffic can be found. A trace is a log file that contains all the file requests
of clients during a whole day. The trace contains a day’s worth of all HTTP
requests to the EPA WWW server located at Research Triangle Park, NC. We
removed the invalid and empty requests from it, and extracted the time stamp
and the byte size of all the file requests. Each file request then corresponds
to a session. If we look at the byte sizes of the files occurring in the trace,
it is possible to approximate the distribution of the file size by a geometric
distribution, for the smallest sizes (a size smaller than 6000 bytes). For higher
file sizes, the geometric distribution is a coarser approximation: the distribution
of the actual file sizes is heavy-tailed [13]. The files on a web server are typically
either small or either very large [3], hence this result. We cut off this heavy tail
by neglecting all files with a size greater than 6000 bytes and as a result we
obtain that the mean file size (in the trace) is equal to 1862 bytes. To derive a
value for the mean session length Ts (and hence the parameter α), we need this
mean file size. We know that the pgf of the total number of packets generated
by a session is given by

Ptot(z) = E[zptot ] = E
[

z
Pℓi

k=1 pi
k

]

= L(P (z)) ,

where L(z) is given by equation (4) and P (z) by equation (49). We match the
first moment of this distribution to the mean file size to obtain an equation for
the mean session length Ts = L′(1):

E[ptot] = L′(1)P ′(1) =
E[file size in trace]

100 bytes
.

Solving this equation gives the following result:

Ts = 3.13 slots ,

and hence
α = 0.6805 .

Left to determine is the pgf S(z) of the number of new sessions per slot.
Because the slot length is small, we assume that at most one new session begins
per slot, so S(z) = 1−β +βz. The parameter β is the probability that one new
session starts. We look at a web server that serves a lot of customers during a
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Table 1: Performance measures of a web server for different values of the output channel
availability σ.

σ = 0.95 σ= 0.5 σ= 0.2

System load ρ 0.157 0.298 0.745
Mean number of active sessions A′(1) 0.025 0.025 0.025

Mean buffer occupancy U ′(1) 2.756 6.696 47.936
Mean packet delay D′(1) 18.499 slots 44.944 slots 321.76 slots

= 147.99 µs = 359.55 µs = 2574.1 µs
Mean session delay E[ds] 22.723 slots 51.053 slots 333.84 slots

= 181.78 µs = 408.42 µs = 2670.68 µs
Mean buffer occupancy after
a random packet arrival E[up] 20.634 25.532 67.412
Mean buffer occupancy after

the first slot of a session E[us] 8.658 12.598 53.839
Prob[u > 100] 0.363 · 10−3 0.00317 0.156
Prob[u > 1000] 7.35 · 10−25 2.41 · 10−20 1.24 · 10−7

rush period. If we assume that on average 1 session is started per millisecond,
β is equal to 0.008. Note that, as the number sk of new sessions in a slot is a
Bernoulli variable, there is no correlation between the number of sessions started
in different slots. In reality however, this is generally not true: the number of
new sessions started will (among other things) depend on the time of the day.

Finally, we have to find an appropriate value for σ. We assume that σ is
a measure for the availability of the output channel and we look at the per-
formance measures for three different values of σ: σ = 0.95 corresponds with
the situation where the output line is available 95% of the time, σ = 0.5 when
it is available half of the time, and σ = 0.2 corresponds with an output line
availability of 20% (unreliable channel). The resulting performance measures
are given in table 1. A lower value of σ corresponds with a higher load: the load
for σ = 0.2 is almost five times higher than the load for σ = 0.95. We see that
the mean buffer occupancy, the mean packet delay and the mean session delay
increase with a factor higher than 5. For σ = 0.2, the system becomes slightly
overloaded: the mean packet delay and the mean session delay have a dimension
of milliseconds, while the actual mean transmission time is only 1/σ = 40 µs.
We also see that the probability that the buffer occupancy exceeds 100 pack-
ets (so, at least 10 kbytes of data are stored in the buffer and waiting to be
transmitted) is about 1/6. The mean number of active sessions is (logically) the
same for all values of σ, as it does not depend on σ.

As this example shows, our model gives us the opportunity of quickly com-
paring different situations corresponding with different values of the system
parameters, for dimensioning purposes.

7. Conclusions and future work

In this paper we have proposed an analytical technique for the performance
evaluation of a buffer system with session-based arrival streams. We have de-
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rived the characteristics of the arrival process, the buffer occupancy and the
packet delay. An expression for the mean session delay was also found. With
the expression found for the pgf of the buffer occupancy, we have also derived
an approximation for the tail distribution of the buffer occupancy, which is
useful for the dimensioning of buffer sizes. Furthermore, it is known that the
overflow probability Prob[u > T ] of the buffer occupancy exceeding level T in
an infinite-capacity system can be used to estimate the loss probabilities in the
corresponding system with finite capacity T with reasonable accuracy.

By adjusting the parameters of the system, we can study their influence. We
have applied the model to a web server, based on a trace of actual web traffic.
It is possible to fit the data to the model, by introducing some restrictions.
The most important restriction is the assumption that the session length is
geometric. For the smallest file sizes, this seems like a reasonable assumption.
For larger files, the distribution is however heavy-tailed. More accurate results
can therefore be obtained by allowing non-geometric session lengths. This will
be the subject of future research. One could e.g. allow for session lengths that
are a probabilistic mixture of geometrics, i.e.

L(z) =

N
∑

i=1

pi

(1 − αi)z

1 − αiz
with

N
∑

i=1

pi = 1 .

In [17] it is shown that a mixture of exponentials can be used to approximate
a heavy-tailed file size distribution. This would probably require an additional
system state variable for each ‘phase’ of the distribution.

A further logical extension is allowing P (0) to be different from 0. This
means that a session can also generate no packets in a slot. This is however
more complex than it seems. Allowing P (0) 6= 0, makes it possible that an
infinite number of sessions are active while the equilibrium condition is still
fulfilled. An analysis of this system leads to a model with an infinite number of
unknown boundary probabilities.

Another issue is the fact that, if we look at the traffic of a web or file
server, sessions usually are TCP sessions. The TCP protocol adjusts the send-
ing rate of the sources in order to avoid congestion in the network. Therefore
the sending rate changes over time as result of strategies like AIMD (additive
increase/multiplicative decrease) and ‘slow start’ [1]. Therefore, it would be use-
ful to examine a model where the number of packets generated per slot during
a session is correlated. The simplest choice (and already reasonable adequate)
would be a two-state Markov modulated packet generation process, indepen-
dently for each session. That would require at least one additional variable in
the system state description. To model slow start, we could assume that when
a session starts, it is always in the ‘bad’ state (with P ′

bad(1) < P ′
good(1)).
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