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ABSTRACT
We present the Java Modelling Tools (JMT) suite, an inte-
grated framework of Java tools for performance evaluation
of computer systems using queueing models. The suite offers
a rich user interface that simplifies the definition of perfor-
mance models by means of wizard dialogs and of a graphical
design workspace.

The performance evaluation features of JMT span a wide
range of state-of-the-art methodologies including discrete-
event simulation, mean value analysis of product-form net-
works, analytical identification of bottleneck resources in
multiclass environments, and workload characterization with
fuzzy clustering. The discrete-event simulator supports sev-
eral advanced modeling features such as finite capacity re-
gions, load-dependent service times, bursty processes, fork-
and-join nodes, and implements spectral estimation for anal-
ysis of simulative results. The suite is open-source, released
under the GNU general public license (GPL), and it is avail-
able for free download at http://jmt.sourceforge.net.1

1. INTRODUCTION
Java Modelling Tools (JMT) is a suite of free open-source

Java applications for researching, teaching, and applying
performance evaluation methodologies based on queueing
models[5, 6]. JMT supports a wide-range of activities that
are common in performance evaluation, such as solution of
capacity planning models via simulation or analytical algo-
rithms, feature extraction and pre-processing of log traces,
clustering algorithms for selection of the most significant
workloads to be modeled, determination of the optimal load
conditions, and automatic identification of performance bot-
tlenecks. The focus of JMT is particularly on queueing
systems and queueing networks models [18], in which re-

1A short version of this paper titled “JMT - Performance
Engineering Tools for System Modeling” will appear in the
ACM Sigmetrics PER newsletter. ACM PER papers are
not copyrighted and the authors retain the copyright.
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quests travel through a number of stations suffering queue-
ing delays because of service contention. Usually, the analy-
sis focuses on estimating performance indices such as mean
throughputs and response times of requests. Queueing mod-
els are wide-spread in the performance evaluation commu-
nity because they can capture very well the trend of perfor-
mance indices of real systems including, but not limited to,
multi-tier architectures [26, 9], storage arrays [14], and com-
munication networks [13]. A comprehensive documentation
of JMT and related case studies are available at [16].

The JMT suite started as a project of the Politecnico di
Milano - DEI in 2002 with the aim of integrating into a sin-
gle portable Java application pre-existing tools for workload
characterization and queueing analysis, namely Win Mod-
elling Tools [21]. Later, it evolved into a more sophisticated
and integrated open-source application that runs on Win-
dows, Linux, and MacOS. In particular, from April 2006
the tool has adopted a distribution and maintenance model
based on sourceforge.net, which has quickly boosted the dif-
fusion of the tool through practitioners, students, and re-
searchers. Currently, the application has been downloaded
about ten thousand times and has a solid base of users con-
tributing to the JMT development forums.

A distinguishing feature of JMT is that its design has en-
hanced the usability and accessibility of the tool through
a rich graphical user interface, rather than exposing the
technical detail. In particular, the tool is able to guide
users through simple wizard interfaces. Further, the pa-
rameterization of experiments requires minimal interaction
with the user. In this way, JMT hides the complexity of
the core algorithm implementations, thus significantly re-
ducing the learning curve of inexperienced users. This fea-
ture also makes the tool of special interest for teaching pur-
poses. However, interface simplifications do not penalize the
technical level of the tool. JMT implements state-of-the-art
methods for discrete-event simulation and analytical evalu-
ation of queueing models as we describe in the remainder
of this paper. The integration of the different applications
that compose the tool as well as the communication between
the graphical user interface and the underlying algorithms
is based on XML. This, together with the open source de-
velopment model, makes it simple to interface JMT algo-
rithms with external software. For instance, OPEDo [2]
uses the JMT analytical algorithms to optimize queueing
models. Furthermore, JMT can execute parametric what-if
analyses which are useful to evaluate the sensitivity of per-
formance estimates to changes in the model characteristics.
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Figure 1: JMT - General Architecture

Parametric what-if curves can be plotted by JMT to display
trends of performance indices as well as confidence intervals
determined by the simulation engine.

The remainder of the paper is as follows. In Section 2, we
introduce the tools that compose the suite and describe the
general architecture of JMT. Section 3 describes discrete-
event simulation of queueing models. Analytical evaluation
of queueing models and bottleneck identification methods
are described in Section 4 and Section 5, respectively. We
discuss the features of JMT for workload characterization
and traffic analysis in Section 6. In Section 7, we present a
case study of admission control analysis in multi-tier systems
which uses several tools of the JMT suite. Finally, Section
8 summarizes the paper and outlines future work.

2. JMT SUITE ARCHITECTURE
The architecture of JMT (version 0.7.4) consists of a set

of loosely coupled graphical applications that communicate
using XML with a core algorithmic module composed by
the simulation engine (JSIMengine) and by a library of an-
alytical functions, see Figure 1. Applications are selected
through the main JMT interface, see Figure 2. JSIMgraph
and JSIMwiz are graphical and wizard-based design envi-
ronments for queueing models, respectively. The two ap-
plications provide a front-end interface for the underlying
discrete-state simulation engine. The focus of JSIMgraph
and JSIMwiz is on generating XML specifications of sim-
ulation models, pretty-print visualization of complex net-
works, automatic model debugging, and dynamical presen-
tation of the current simulation state and of the current es-
timates of performance metrics and related confidence inter-
vals. JSIMengine supports the evaluation of the most impor-
tant classes of queueing models that cannot be solved with
exact analytical techniques. These include, among others,
multiclass queueing networks with blocking, priorities, fork-
and-join elements, burstiness, and state-dependent routing
schemes.

JMVA is a graphical user interfaces for the analytical eval-
uation of queueing network models. The tool relies on an
implementation of the Mean Value Analysis (MVA) algo-
rithm for closed networks [24], together with similar algo-
rithms described in [7] for open and mixed networks. Com-
pared to JSIMgraph and JSIMwiz, JMVA relies on a much
simpler description of the model based only on the mean
service demands of the different classes of requests and on
the workload intensities (arrival rates, population sizes).

JABA is an analytical tool for automatic identification of
performance bottlenecks in multiclass closed queueing net-
works. The tool receives in input a set of service demands
specifying the speed of each server in processing requests of
the different classes. Using the geometrical approach in [10],

Figure 2: JMT - Tool Selection Interface

JABA efficiently identifies under which mixes of requests a
server can become the most congested in the network. This
saves the computational costs of a long simulative analysis
over different mixes of requests.

The JWAT tool offers a stand-alone environment for log
file analysis and preprocessing, identification of relevant work-
loads in multiclass performance data using clustering tech-
niques, and primitives for characterization of time-varying
workloads (e.g., burstiness analysis). The tool is used in the
derivation of the parameters needed to define the queueing
models analyzed by the other applications of the JMT suite,
such as the mean service demands used in JMVA and JABA.

Finally, the JMCH application is a graphical simulator of
M/M/1 and M/M/1/K queues. The simulation state is vi-
sualized both on the queue buffer and on a Markov model
representing the system. The tool has the pedagogic pur-
pose of showing to students the very basic ideas underlying
queueing system analysis. Because this tool has only graph-
ical capabilities, we do not discuss it in the rest of the paper.

3. JSIMENGINE, JSIMGRAPH, AND JSIMWIZ

JSIMgraph is a graphical design environment for queueing
network models which is tightly coupled to the JSIMengine
for running discrete-event simulation, see Figure 3. JSIMwiz
gives the same functionalities of JSIMgraph, but replaces
the graphical framework with a set of wizards that guide
the user through the definition of a queueing model as de-
picted in Figure 5. In the simulation of queueing network
models with JSIMgraph and JSIMwiz, stations are repre-
sented as a composition of three objects: input section, ser-
vice section, and output section. An input section can be
either a finite buffer that receives jobs from other stations
or from one or more infinite sources that generate new jobs.
The other sections specify scheduling disciplines (e.g., First-
Come First-Served - FCFS, Last-Come First-Served - LCFS)
and routing schemes (e.g., Join the Shortest Queue - JSQ).
Currently, there is support only for non-preemptive schedul-
ing disciplines. The simulation engine works on the basis on
a number of “distributed protocols” which specify the in-
teraction of different sections belonging to the same or to
different stations. For example, in a queueing model with
blocking, when a job departs from a queue, its routing sec-
tion and the input section of the destination queue decide
without the help of a centralized controller if the job can
be accepted in the destination buffer. This simulation style



has been implemented to allow in future releases of JMT
the migration to a multi-processor or distributed simulation
environment, see [6] for additional details.

The simulator supports a variety of distributions for ar-
rival and service processes, including Exponential, Erlang,
Hypo- and Hyper-Exponential, Pareto, and Gamma. These
are obtained as usual by evaluating the inverted cumulative
distribution function (CDF) on a random number sampled
from a uniform distribution. High-quality pseudo-random
numbers are generated using the Mersenne Twister engine,
which has low computational requirements [19]. Samples
can be also read directly from an external log file. We
have also added to the simulator the capability of generat-
ing samples from correlated processes, which are important
to model burstiness in arrival or service times. In particu-
lar, we have implemented in the simulator support for the
burstiness model of [20], we point to Section 6 for further
details. Another important feature of JSIMengine is that
the simulator provides native mechanisms for the definition
of load-dependent service times. Load-dependence is useful
to represent certain systems, e.g., disk drives, where the la-
tency of service can be a function of the local number of
enqueued jobs. Load-dependence is also important in hier-
archical modelling and parametric analysis [11]. In JSIM-
graph and JSIMwiz the user is given the flexibility to specify
load-dependent service rates by associating a different ser-
vice distribution to a specific range of populations in the
local queue. Further, the parameters of each distribution
can be expressed as an arbitrary mathematical function of
the current population.

JSIMgraph and JSIMwiz allow the definition of a number
of stations and attributes resulting in models that are not
easy to evaluate analytically and typically require simula-
tion to be solved. First, there is support for fork and join
nodes, in which a request is first forked into a user-specified
number of sibling tasks which are later synchronized at the
join node. These models are important to describe parallel
systems where a request is decomposed into a number of pro-
cessing units for load-balancing reasons. The simulator also
supports finite capacity regions which impose constraints on
the maximum number of jobs accessing a local subnetwork
of servers. These are extremely useful to capture the be-
havior of performance saturation effects which are imposed
by admission control policies or memory constraints. Finite
capacity regions can include multiple stations (see the blue
area in Figure 3), they can put limitations only on the popu-
lation of selected classes or on the aggregate number of jobs
in the subnetwork, and they can either drop incoming jobs
or place them in a hidden admission buffer at the bound-
ary of the region. Currently, the support for finite capacity
regions is meant as a simple high-level approximation of ad-
mission control, since JSIMengine does not allow to specify
dynamic admission rules that depends on the whole state
of the network. We remark that statistics about the behav-
ior of the finite capacity region can be collected by specific
performance indexes, e.g., request drop rates at the bound-
ary of the region. Other important modeling features sup-
ported by JSIMengine include support for priority classes
in scheduling disciplines (namely priority FCFS and prior-
ity LCFS), open and closed populations, and state-dependent
routing strategies which direct jobs to stations with either
the least utilization, the smallest expected response time,

Figure 3: JSIMgraph - Graphical design workplace

Figure 4: JSIMgraph - Online computation of con-

fidence intervals by the spectral method

the fastest mean service time, or the the shortest queue
length (i.e., JSQ load-balancing).

In the remainder of this section, we complete the presen-
tation of the JMT simulation capabilities by discussing some
important features related to the statistical analysis of sim-
ulation results and to the control of simulation experiments.

3.1 Analysis of Simulation Results
JSIMengine supports the estimation of several reward mea-

sures that describe the performance of the simulation mod-
els. These include station-level metrics such as queue length,
response time over a single or multiple visits, utilization,
throughput, and drop rate for queues with a finite buffer.
There is also a support for system-level aggregates like the
total number of jobs in the simulation model or within a fi-
nite capacity region, as well as the throughput and response
time of jobs in traversing (or cycling for closed classes) the
network. Each performance index can be estimated for a
particular job class or as an aggregated measure over all
classes.

Each station in the simulation model is associated with
an object called JobInfoList that, for each performance in-
dex requested by the user, feeds online a statistical analyzer
with samples of that particular metric. Simulation results
are analyzed using transient detection and confidence inter-
val estimation algorithms. These techniques are executed
online and are responsible to stop the simulation when it



is conveyed that all performance metrics can be estimated
with sufficient accuracy. Confidence intervals are generated
using the spectral method presented in [15], see Figure 4 for
their online representation in JSIMgraph. The effectiveness
of this technique depends on the stationarity of the sample
distribution. If the series of samples shows trends or pro-
nounced non-stationary behaviors, the estimate of its power
spectrum can be unreliable and this degrades the quality of
the confidence intervals generated by the spectral method.
Therefore, techniques for determining if a group of samples
is stationary are important to maximize accuracy, since de-
tecting and removing non-stationary data can greatly im-
prove the quality of power spectrum estimates. For this
purpose, we have implemented transient detection using the
R5 heuristic [12] and the MSER-5 stationarity rule [23]. We
point to [6] for a flowchart that explains how these two tech-
niques have been combined in JSIMengine.

After completing the transient detection phase, the sta-
tistical analyzer runs the spectral method of Heidelberger
and Welch [15], which is a stable and computationally effi-
cient method for computing simulation confidence intervals
using variable batch sizes and a fixed amount of memory.
JSIMengine runs the spectral analysis periodically until the
confidence intervals are generated with enough accuracy.
Nonetheless, one run is often sufficient to accurately esti-
mate confidence intervals. The spectral analysis proceeds as
follows. Given a stationary sequence of samples

X(1), . . . , X(N)

of a performance measure X, the spectral analysis obtains
an estimate of the power spectrum p(f) at the frequency
f = 0. The value p(0)/N is an unbiased estimator of the
sample variance, which can be used to generate confidence
intervals on X also if the sequence of sample is correlated.
The advantage of the technique with respect to the standard
variance estimator is that the latter does not hold if the sam-
ples are correlated. However, measured of performance met-
rics in queueing network models are often correlated and this
is an important motivation to use spectral analysis methods
in JSIMengine. The spectral analysis requires computation
of the sample periodogram I(n/N), 0 < n < N/2, and then
generate a certain function J(n), which is the logarithm of
the mean of two consecutive values of I(n/N). The most
important property of J(n) is that its functional shape is a
low-order polynomial in a neighborhood of a zero frequency,
thus the value of I(0), from which we compute the unbiased
estimator of the sample variance, can be estimated by inex-
pensive regression of J(n). In JSIMengine, we implemented
the regression technique using singular value decomposition
and we fit the data to a polynomial of order two. This is
consistent with [15] which shows that J(n) is often linear
or quadratic in a neighborhood of n = 0. We point to [6]
for additional details on the simulation engine and on the
analysis of simulation results.

3.2 Control of Simulation Experiments
JSIMengine offers several options for controlling simula-

tion experiments. Besides defining long-run simulations, the
most interesting features are the possibility of executing an
automatic stop as a function of the quality of confidence
interval estimates and to run parametrically a sequence of
“what-if” experiments. The automatic stop is based on the
concept of maximum relative error of the confidence interval

Figure 5: JSIMwiz - Wizard-guided analysis

[22] and stands for maximum acceptable ratio ε between the
half-width of the confidence interval measure α and the es-
timated mean. For instance, setting ε = 0.07 and α = 0.05
imposes a simulation stop when the half-width of the 95%
confidence interval is no more than 7% of the sample mean.

JSIMgraph and JSIMwiz integrate native support for “what-
if” analyses, which are repeated execution of simulation ex-
periments for different values of a control parameter. Para-
metrical experiments can be controlled by changing the value
of the input traffic rate, of the number of jobs for closed
classes, of the percentage of jobs belonging to a closed class,
of the mean service times, or for different initialization seeds
of the random number generator.

4. JMVA
JMVA is a tool for computing mean performance indexes

of the class of product-form queueing network models de-
fined in [4]. The tool uses an efficient implementation of the
Mean Value Analysis (MVA) algorithm of Reiser and Laven-
berg [24] for closed multiclass networks. However, JMVA
can also compute performance indexes for models with open
and mixed workload classes. The implementation of MVA is
based on the algorithms described in [7] which support both
constant-rate and load-dependent queues. The specification
of load-dependent rates uses the same approach described
for JSIMgraph and JSIMwiz.

Compared to JSIMengine, JMVA has much lower execu-
tion times on models where the number of workload classes is
not too large, usually less than three or four classes. How-
ever, JMVA can have a larger memory requirement than
JSIMengine if the populations of closed classes are com-
posed by several tens or hundreds of requests, because of the
well-known inefficiency of the MVA algorithm in this case.
However, the increased speed of JMVA is an important mo-
tivation to use this tool, especially in what-if analysis which
can be very time-consuming if simulation is used. JMVA of-
fers the same what-if analysis functionalities of JSIMengine
(see Figure 6) but, because of the properties of the MVA
algorithm, a restricted set of performance indexes can be
computed. These are mean response times, mean through-
puts, utilizations, and mean queue-lengths.

An interesting function of JMVA is the capability of im-
porting model files saved by the JSIMgraph/JSIMwiz; also
the JSIM application can read models saved by JMVA. This
strengthen the inter-operability of the tools of the suite.



Figure 6: JMVA - What if analysis

When an analytical model saved with JMVA is opened in
JSIMgraph, the graphical user interface creates a graphi-
cal arrangement of the model based on automatic layout
techniques and arbitrarily assigns service distributions to
the stations consistently with the product-form assumptions
[4] and with the mean service demands specified in JMVA.
JSIMwiz behaves similarly to JSIMgraph, but without the
need of a graphical arrangement. Instead, when a simula-
tion model is imported in JMVA the situation is completely
different, since the features of a simulation models are a su-
perset of the ones support by JMVA. In this case, the tool
reports warnings on properties of the model that are incom-
patible with product-form assumptions and tries to generate
a product-form model that is the closest possible, but not
always identical, to the input simulation model.

5. JABA
Java Asymptotic Bound Analysis (JABA) is a tool for

the automatic identification of bottleneck stations in mul-
ticlass queueing networks. To understand the application
of this tool, consider the following problem. A multi-tier
system processes transactions belonging to several classes
and, because the web server limits the maximum number of
simultaneous connections, only up to a predefined number
requests can be processed at a given instant. In general, the
particular mix of requests served determines the bottleneck
resource, i.e., a certain mix in which requests to pictures
are the majority of the incoming traffic may overload the
Web server, another mix with several queries may place the
bottleneck at the database server, and a combination of the
two may stress both servers simultaneously. The knowledge
of the potential bottlenecks of an architecture is very im-
portant for resource provisioning, system sizing, and perfor-
mance tuning. JABA has been designed with the focus on
this type of performance analysis and optimization studies.

JABA searches for potential bottlenecks in a network with
arbitrarily large number of stations and two or three work-
load classes. Given a description of server speeds, i.e., mean
service demand for each class at each server, JABA deter-
mines for two class models the group of potential bottle-
necks as a function of the mix of requests expressed as a

vector ~β = (β1, β2), where β1 is the percentage of requests
of class one out of the total requests in the system and, sim-

Figure 7: JWAT - Clustering Result Exploration

ilarly, β2 = 1 − β1 is the fraction of requests of class two.
A graphical representation of the functional dependence on
~β is given based on diagrams similar to Figure 10 given in
the case study. A similar functionality exists also for mod-
els with three workload classes, in this case the mix vector

is ~β = (β1, β2, β3) which can represented graphically as the
triangular section of the plane β1 + β2 + β3 = 1 where all
βrs, 1 ≤ r ≤ 3, are non-negative.

In addition to mapping the potential bottleneck set as a

function of the mix ~β, JABA offers a convenient interface to
explore graphically how this set changes as a function of the
service demands of each server. The user is provided with a
two-dimensional plot of points, each representing a server,
with coordinates given by the service demands of the two
workload classes at that server. A convex hull technique is
used to compute the yellow polytope in Figure 11 reported
at the end of the paper. According to the results in [10],
points falling on the boundary of the polytope are poten-
tial bottlenecks. In a well-balanced system, all points would
have similar coordinates and would concentrate on the same
edge of the polytope; thus the number of edges of the poly-
tope quantifies the level of balance of the system and the
likelihood of bottleneck shifting between resources.

In JABA, the user can also consider what-if scenarios by
changing the service demands of a server and seeing graphi-
cally how the polytope and the potential bottleneck sets are
modified. This is supported by a drag-and-drop interface
for the points of the polytope in Figure 11. This can be
useful to investigate the robustness of an architecture under
slight variations of the workload characteristics as well as
to investigate the sensitivity of the results if measurement
errors have affected the service demand estimates.

6. JWAT
The Java Workload Analyzer Tool (JWAT) is an appli-

cation for exploratory analysis of performance data and for
generation of static and dynamic workload characterizations
that can be used within JSIM, JABA, and JMVA models.
JWAT is based on the workload characterization method-
ology presented in [8]. This starts with a static analysis
phase, in which JWAT extracts samples from the original
log file according to various criteria, computes the distribu-
tion and moments of the measures after a number of pre-



Figure 8: JWAT - Traffic Burstiness Analysis

processing and transformation steps, and then moves to a
dynamic analysis in which time-varying properties of the
trace, such as burstiness, are assessed.

Before starting the static analysis phase, JWAT applies
preliminary filtering and sampling on the raw trace to re-
duce, upon loading in memory, the size of the data. Here,
the user can formulate Perl5 regular expressions for spec-
ifying the columns of interests in the trace and check the
correctness of the entries. We also provide predefined tem-
plates to import performance data from Apache web server
log files. After selecting the metrics of interests, the user
can apply further filtering and transformations to the data
(e.g., variable standardization, logarithmic transformation)
guided by graphical aids such as cross-correlation plots, his-
tograms, scatter-plots, and QQ-plot diagrams. This stage of
the analysis is followed by cluster analysis to partition the
workload into representative classes. These classes can be
used directly in JSIM, JABA and JMVA models as work-
load classes. For instance, the centroid of a cluster may be
considered as a representative value of the service demands
of a workload class. JWAT implements two clustering tech-
niques: k-means and fuzzy k-means. Both techniques re-
quire the specification of the maximum number of clusters
that JWAT can create and of the maximum number of iter-
ations allowed. The last parameter controls the trade-off be-
tween clustering accuracy and computational costs. While
k-means assigns an observation to only one cluster, fuzzy k-
means computes for each observation a stochastic vector de-
scribing the probability of being a member of a certain clus-
ter. Fuzzy characterization of multiclass workload can be
more robust to outliers than traditional approaches. Clus-
tering results can be inspected for both k-means and fuzzy
k-means using the graphical interface, (see Figure 7).

JWAT also helps in identifying the optimal number of
workload classes to be used in the cluster analysis. The op-
timality of a number of clusters is evaluated using different
metrics for k-means and fuzzy k-means: for k-means, JWAT
seeks the maximum overall mean square ratio (OMSR) value,
which is the ratio between the squared sums of intra-cluster
and inter-cluster similarities between samples. For fuzzy k-
means, the internal consistency of each cluster is evaluated
using the entropy function, which quantifies the amount of
information carried by each cluster.

Dynamic modeling is still an experimental feature of the
JWAT, aimed at the generation of models that can charac-
terize the burstiness of a time series. JWAT uses the charac-
terization proposed in [20]. This is a compact representation
where the trace is first divided in intervals called epochs and
then modeled by two parameters a and b that account for
the percentage of epochs where the arrival rate is observed
to be greater than the mean arrival rate and for the mean
arrival rate associated with these traffic surges.

JWAT supports the computation of the parameters a and
b using the traffic analysis functions. In the current imple-
mentation, there is support for investigating the sensitivity
of a and b with respect to the user-defined number of epochs
n. For instance, the graph plotted in Figure 8 shows the es-
timated value of b as a function of n for an HTTP trace
of a university Web server. By progressively increasing the
number of epochs, we see that the value of b converges to a
value close to 0.40. However, the point-wise estimation of
this value for small values of n (n < 15) suggests very differ-
ent values, up to 0.60. This shows the practical advantage
of sensitivity analysis in the estimation of the parameters a
and b.

7. CASE STUDY
In this section, we illustrate the performance optimiza-

tion methodology supported by JMT using a case study that
shows how it is possible to use several tools (i.e., the simu-
lator and the asymptotic bound analyzer) in an integrated
way to find the optimal load of a network. We consider a
multi-tier web system composed by a front server (FS), a
storage server (SS), and a database server (DB). The ap-
plication running on the multi-tier system exports two web
services (WS1 and WS2) with the characteristics of mean
service times and number of visits to the servers reported in
Table 1. Due to the characteristics of the analyzed system,
both requests of type WS1 and WS2 have been modelled
as open classes with exponentially-distributed inter-arrival
times λWS1 = 20 req/s and λWS2 = 30 req/s, respectively.

Mean Service Times
WS1 WS2

FS 28.48ms 68.07ms
SS 314.36ms 62.01ms
DB 111.37ms 126.90ms

Number of Visits
WS1 WS2

FS 1.00 1.00
SS 0.22 0.89
DB 0.78 0.11

Table 1: Case study characteristics: mean service

time and number of visits of service requests

We focus on the following scenario: the administrator
wants to restrict the maximum number of concurrently served
requests to Nmax = 100 and needs to decide the best mix
of requests of type WS1 and of type WS2 that should be
admitted in concurrent execution into the system by the
admission control algorithm. Indeed, the definition of best
may depend on the design objectives, here we consider as
best the one that generates the maximum throughput. In
JMT, admission control can be modeled as a finite capac-
ity region, see the shaded area in Figure 9; we assume that
admission control redirects unadmitted requests elsewhere,
which can be modeled in the queueing network as a request
drop at the border of the finite capacity region.

A classical approach to find the best mix of services in
execution is the exhaustive evaluation of all possible com-



Figure 9: Case study: multi-tier architecture with

admission control system

binations of requests of the different types WS1 and WS2.
However, this is not a scalable approach because the num-
ber of request types grows because the number of possible
workload mixes grows combinatorially. In this section, we
describe a solution approach supported by JABA that ap-
plies also to models with more than two classes, although
for simplicity we consider only WS1 and WS2, and provides
solutions in a computationally efficient manner.

In the first step of this methodology, the values in Table 1
are inserted in JABA to determine the graph in Figure 10.
The figure shows the bottlenecks in heavy-load of the web
architecture as a function of the percentage of WS1 requests
(Class 1, vertical axis) and WS2 requests (Class 2, horizon-
tal axis) while the total population of requests in the system
is kept constant. The segments in green represent mixes of
WS1 and WS2 requests where only one server saturates, the
blue segments are mixes of requests for which two resources
saturate concurrently. With the service demands of the con-
sidered system, no mix exists that produces saturation on
all three servers concurrently. For instance, if the admission
control system allows to enter the system 50% of requests of
each type, the saturation condition is given by the middle
sector of the figure, which tells us that the storage server
(SS) will be the bottleneck.

Saturation is known to be problematic for response times,
but in presence of an admission control scheme the maxi-
mum latency is externally controlled by the maximum num-
ber of concurrently served requests Nmax. After this value
has been fixed, one tries to maximize the utilization of the
resources to increase the throughput. Clearly, two servers
that work in parallel are better than a bottleneck (saturated)

experiment max reqs max reqs expected
name WS1 WS2 bottleneck(s)

I 95 5 DB
II 80 20 DB and SS
III 50 50 SS
IV∗ 20 80 FS and SS
V 5 95 FS

legend: ∗ = mix with expected best performance

Table 2: Experiment characteristics. Each experi-

ment targets a different set of bottleneck resources.

Figure 10: Case study: potential bottlenecks of the

web architecture

resource coupled with an idle server. Thus, a logic choice
is to configure the admission control algorithm with a tar-
get mix of requests within the blue segments in Figure 10.
Let β1 ∈ [0, 1] be the fraction of WS1 requests admitted
to service out of the total admitted; according the values
given by the JABA algorithm and shown in Figure 10, for
β1 ∈ [0.117, 0.284] front server and storage server saturate
together, while for β1 ∈ [0.745, 0.935] database server and
storage server are bottlenecks. To gain intuition on if it is
better to have the front server or the database server sat-
urating together with the storage, we consider the JABA
polytope in Figure 11. Here, by clicking on the edge con-
necting front server and storage server, JABA displays the
expected throughputs of the different classes according to
theoretical formulas in [3]. When front server and storage
server saturate, JABA expects a total throughput of 171 re-
quests per unit of time; on the other hand, when database
server and storage server saturate (case not displayed in Fig-
ure 11), they have an expected throughput of 147 requests
per unit of time. Thus, our best guess for the optimal mix to
be assigned to the admission control algorithm is any value
within β1 ∈ [0.117, 0.284] which we expect to make front
server and storage server saturate with maximal through-
put.

Note that the estimates of JABA are obtained under product-
form assumptions that do not apply theoretically to the
model in Figure 9, however we have verified that these are
often robust approximations. To confirm this assumption,
we undertake a simulation study to validate the effective-
ness of our prediction. We consider simulation experiments
where we impose to the finite capacity region constraints on
the maximum population of each class according to the seg-
ments in Figure 10. Table 2 summarizes simulation experi-
ments together with the limits imposed in the finite capacity
region. Each simulation is expected to evaluate the perfor-
mance of the system in a different sector of Figure 10, i.e., by
shifting the group of bottlenecks in all possible ways, we try
to verify that the joint saturation of FS and SS gives the best
performance, i.e., in our case the maximum throughput.

Simulation results have been obtained by long run simu-
lation with 0.95 confidence interval, 0.05 maximum relative
error, and a sample space of approximately 10, 000, 000 sam-
ples. Automatic stop functions called by the JSIMengine are
disabled in all experiments. Numerical results are shown



in Figure 12 which shows the throughput for the different
mixes. Note that the ratio between the throughput of exper-
iment II and experiment IV is not too far from the 147/171
predicted theoretically and the individual values differ sub-
stantially in magnitude only because JABA assumes infinite
requests processed, while here we have only one hundreds
requests. For higher population values it is possible to see
that the throughputs closely approach the theoretical val-
ues. Also the other conjectures formulated with JABA are
all validated by the simulation. In fact, the throughput in
experiment IV associated with saturation of FS and SS is
indeed the maximum among the considered ones. The re-
sults for the response times are qualitatively similar, with
experiment IV having a response time estimate for admitted
jobs equal to 6.026s, which is much better than the 7.345s
achieved by experiment I; the other experiments have all re-
sponse times between 6.390s and 6.547s. Finally, we have
also evaluated the server utilization in the five experiments
finding that the largest utilization was consistent with the
estimates in Table 2. For instance, in experiment IV, utiliza-
tions are 0.8478 for the front server, 0.9973 for the storage
server, and 0.7227 for the database server, showing that the
front server and the storage server are the closest to the sat-
uration. A reason why the front server utilization is slightly
less than the expected should be found in the nature of the
JABA bottleneck evaluation technique, which is exact for
product-form models with infinite populations, but which
reduces to an approximate estimate for the models with fi-
nite capacity regions considered here.

Summarizing, we have illustrated with an example some of
the performance evaluation studies that can be performed
with JMT. In particular, we have shown that having dif-
ferent complementary tools in the suite can be helpful to
validate the robustness of the predictions and to afford also
optimization studies and not only simulations. Note also
that one could have explored the expected throughputs and
response times for the web system under the different mixes
by means of JMVA. In this case, the approximation would
be to evaluate a closed model with populations equal to the
mix of requests of class WS1 and WS2 used in the five ex-
periments. For example, setting the closed populations to
NWS1 = 20 and NWS2 = 80 would have provided from JMVA
a throughput estimate of 17.04req/s in the model of exper-
iment IV, which is close to the simulation results and gives
an accurate scaling of the 171req/s asymptotic throughput
estimate given by JABA.

8. CONCLUSIONS
Java Modelling Tools (JMT) is an integrated environment

for workload characterization and performance evaluation
based on queueing models. This paper has summarized the
features of the main applications that compose the suite, and
has provided intuition on the versatility of JMT in dealing
with the different aspects of the performance evaluation and
optimization process.

There are several possible lines of extension of the tool.
First, we plan to integrate approximate analytical methods
(e.g., Bard-Schweitzer’s Approximate MVA or the balanced
job bounds [25, 18]) to evaluate queueing network models.
These are considerably faster and less memory consuming
than MVA on multiclass models. We also wish to add in the
simulator native support for processes with burstiness char-
acterized by Markov modulated processes. JMCH will also

Figure 11: Case study: estimation of maximum

throughput under saturation of multiple servers
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Figure 12: Case study: throughput of the experi-

ments in Table 2. As expected, experiment IV has

the best mix for admission control.

be extended to include other types of stations. We will also
work toward a better integration of the different tools of the
suite. Regarding possible extensions of the simulation al-
gorithms, we will evaluate random number generators with
multiple streams and substreams [17], as well as methods to
estimate steady-state performance alternative to the spec-
tral approach [1].

JMT is open source software released under the GNU
general public license (GPL) and can be downloaded for
free from the JMT web page http://jmt.sourceforge.net. We
point to the web page for additional material.
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