1,019 research outputs found

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    A METHODOLOGY FOR AUTONOMOUS ROOF BOLT INSTALLATION USING INDUSTRIAL ROBOTICS

    Get PDF
    The mining sector is currently in the stage of adopting more automation, and with it, robotics. Autonomous bolting in underground environments remains a hot topic for the mining industry. Roof bolter operators are exposed to hazardous conditions due to their proximity to the unsupported roof, loose bolts, and heavy spinning mass. Prolonged exposure to the risk inevitably leads to accidents and injuries. The current thesis presents the development of a robotic assembly capable of carrying out the entire sequence of roof bolting operations in full and partial autonomous sensor-driven rock bolting operations to achieve a high-impact health and safety intervention for equipment operators. The automation of a complete cycle of drill steel positioning, drilling, bolt orientation and placement, resin placement, and bolt securing is discussed using an anthropomorphic robotic arm.A human-computer interface is developed to enable the interaction of the operators with the machines. Collision detection techniques will have to be implemented to minimize the impact after an unexpected collision has occurred. A robust failure-detection protocol is developed to check the vital parameters of robot operations continuously. This unique approach to automation of small materials handling is described with lessons learned. A user-centered GUI has been developed that allows for a human user to control and monitor the autonomous roof bolter. Preliminary tests have been conducted in a mock mine to evaluate the developed system\u27s performance. In addition, a number of different scenarios simulating typical missions that a roof bolter needs to undertake in an underground coal mine were tested

    INSPIRE Newsletter Spring 2022

    Get PDF
    https://scholarsmine.mst.edu/inspire-newsletters/1010/thumbnail.jp

    Automation and robotics human performance

    Get PDF
    The scope of this report is limited to the following: (1) assessing the feasibility of the assumptions for crew productivity during the intra-vehicular activities and extra-vehicular activities; (2) estimating the appropriate level of automation and robotics to accomplish balanced man-machine, cost-effective operations in space; (3) identifying areas where conceptually different approaches to the use of people and machines can leverage the benefits of the scenarios; and (4) recommending modifications to scenarios or developing new scenarios that will improve the expected benefits. The FY89 special assessments are grouped into the five categories shown in the report. The high level system analyses for Automation & Robotics (A&R) and Human Performance (HP) were performed under the Case Studies Technology Assessment category, whereas the detailed analyses for the critical systems and high leverage development areas were performed under the appropriate operations categories (In-Space Vehicle Operations or Planetary Surface Operations). The analysis activities planned for the Science Operations technology areas were deferred to FY90 studies. The remaining activities such as analytic tool development, graphics/video demonstrations and intelligent communicating systems software architecture were performed under the Simulation & Validations category

    Robotic autonomous systems for earthmoving equipment operating in volatile conditions and teaming capacity: a survey

    Full text link
    Abstract There has been an increasing interest in the application of robotic autonomous systems (RASs) for construction and mining, particularly the use of RAS technologies to respond to the emergent issues for earthmoving equipment operating in volatile environments and for the need of multiplatform cooperation. Researchers and practitioners are in need of techniques and developments to deal with these challenges. To address this topic for earthmoving automation, this paper presents a comprehensive survey of significant contributions and recent advances, as reported in the literature, databases of professional societies, and technical documentation from the Original Equipment Manufacturers (OEM). In dealing with volatile environments, advances in sensing, communication and software, data analytics, as well as self-driving technologies can be made to work reliably and have drastically increased safety. It is envisaged that an automated earthmoving site within this decade will manifest the collaboration of bulldozers, graders, and excavators to undertake ground-based tasks without operators behind the cabin controls; in some cases, the machines will be without cabins. It is worth for relevant small- and medium-sized enterprises developing their products to meet the market demands in this area. The study also discusses on future directions for research and development to provide green solutions to earthmoving.</jats:p

    Automation and Robotics: Latest Achievements, Challenges and Prospects

    Get PDF
    This SI presents the latest achievements, challenges and prospects for drives, actuators, sensors, controls and robot navigation with reverse validation and applications in the field of industrial automation and robotics. Automation, supported by robotics, can effectively speed up and improve production. The industrialization of complex mechatronic components, especially robots, requires a large number of special processes already in the pre-production stage provided by modelling and simulation. This area of research from the very beginning includes drives, process technology, actuators, sensors, control systems and all connections in mechatronic systems. Automation and robotics form broad-spectrum areas of research, which are tightly interconnected. To reduce costs in the pre-production stage and to reduce production preparation time, it is necessary to solve complex tasks in the form of simulation with the use of standard software products and new technologies that allow, for example, machine vision and other imaging tools to examine new physical contexts, dependencies and connections

    Mathematical Modeling of a Two Wheeled Robotic Base

    Get PDF
    This thesis presents the concept of using a two wheeled robot on the moon and briefly explores the requirements for successful long term operation in a lunar environment. The mathematical model for the motion of a robot with two fixed wheels on a differential drive with in a global reference frame. The robot is assumed to be balancing a platform so the mathematical model to balance the platform with wheel motors is also developed and briefly evaluated

    “Design, Development and Characterization of a Thermal Sensor Brick System for Modular Robotics

    Get PDF
    This thesis presents the work on thermal imaging sensor brick (TISB) system for modular robotics. The research demonstrates the design, development and characterization of the TISB system. The TISB system is based on the design philosophy of sensor bricks for modular robotics. In under vehicle surveillance for threat detection, which is a target application of this work we have demonstrated the advantages of the TISB system over purely vision-based systems. We have highlighted the advantages of the TISB system as an illumination invariant threat detection system for detecting hidden threat objects in the undercarriage of a car. We have compared the TISB system to the vision sensor brick system and the mirror on a stick. We have also illustrated the operational capability of the system on the SafeBot under vehicle robot to acquire and transmit the data wirelessly. The early designs of the TISB system, the evolution of the designs and the uniformity achieved while maintaining the modularity in building the different sensor bricks; the visual, the thermal and the range sensor brick is presented as part of this work. Each of these sensor brick systems designed and implemented at the Imaging Robotics and Intelligent Systems (IRIS) laboratory consist of four major blocks: Sensing and Image Acquisition Block, Pre-Processing and Fusion Block, Communication Block, and Power Block. The Sensing and Image Acquisition Block is to capture images or acquire data. The Pre-Processing and Fusion Block is to work on the acquired images or data. The Communication Block is for transferring data between the sensor brick and the remote host computer. The Power Block is to maintain power supply to the entire brick. The modular sensor bricks are self-sufficient plug and play systems. The SafeBot under vehicle robot designed and implemented at the IRIS laboratory has two tracked platforms one on each side with a payload bay area in the middle. Each of these tracked platforms is a mobility brick based on the same design philosophy as the modular sensor bricks. The robot can carry one brick at a time or even multiple bricks at the same time. The contributions of this thesis are: (1) designing and developing the hardware implementation of the TISB system, (2) designing and developing the software for the TISB system, and (3) characterizing the TISB system, where this characterization of the system is the major contribution of this thesis. The analysis of the thermal sensor brick system provides the user and future designers with sufficient information on parameters to be considered to make the right choice for future modifications, the kind of applications the TISB could handle and the load that the different blocks of the TISB system could manage. Under vehicle surveillance for threat detection, perimeter / area surveillance, scouting, and improvised explosive device (IED) detection using a car-mounted system are some of the applications that have been identified for this system

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    Described here is the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed on the Space Station Freedom program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) Progress Report 13, and issues of A&R implementation into the payload operations integration Center at Marshall Space Flight Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom
    • …
    corecore