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ABSTRACT OF THESIS

A METHODOLOGY FOR AUTONOMOUS ROOF BOLT INSTALLATION

USING INDUSTRIAL ROBOTICS

The mining sector is currently in the stage of adopting more automation, and with

it, robotics. Autonomous bolting in underground environments remains a hot topic

for the mining industry. Roof bolter operators are exposed to hazardous conditions

due to their proximity to the unsupported roof, loose bolts, and heavy spinning mass.

Prolonged exposure to the risk inevitably leads to accidents and injuries.

The current thesis presents the development of a robotic assembly capable of carry-

ing out the entire sequence of roof bolting operations in full and partial autonomous

sensor-driven rock bolting operations to achieve a high-impact health and safety in-

tervention for equipment operators. The automation of a complete cycle of drill steel

positioning, drilling, bolt orientation and placement, resin placement, and bolt secur-

ing is discussed using an anthropomorphic robotic arm. A human-computer interface

is developed to enable the interaction of the operators with the machines. Collision

detection techniques will have to be implemented to minimize the impact after an

unexpected collision has occurred. A robust failure-detection protocol is developed

to check the vital parameters of robot operations continuously. This unique approach

to automation of small materials handling is described with lessons learned. A user-

centered GUI has been developed that allows for a human user to control and monitor

the autonomous roof bolter.



Preliminary tests have been conducted in a mock mine to evaluate the developed

system’s performance. In addition, a number of different scenarios simulating typical

missions that a roof bolter needs to undertake in an underground coal mine were

tested.

KEYWORDS: Mining industry, autonomous roof bolter, industrial robotics, coal

mining
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Chapter 1 Introduction

1.1 On Safety in the Underground Coal Mines

Continuous mining equipment is employed in underground room and pillar mines

for the mechanical excavation of coal. Continuous miners are typically used in the

construction of main access entries, gate road entries, and bleeder systems for longwall

mining. The freshly extracted coal is then directly transferred to haulage equipment.

In the eastern Appalachian region, the extraction or mining height typically ranges

from four to ten feet. The ongoing mining processes often result in an unsupported

roof that can fall under gravity forces. The unsupported roof can also be a result of

the present in situ rock stresses. Hence, roof-bolters need to speedily provide roof

and rib support through suitable bolts that secure the immediate roof rock layers.

Past research related to enhancing the safety of the roof-bolting operations shows

that approximately 85% of the fatalities could be attributed to roof fall (Miller and

McLellan, 1975; Helander et al., 1983). Drilling, volt-insertion, and tramming ac-

tivities could also lead to an accident. Accidents have been reported involving the

bolter itself as well as drill steel, boom, and automatic temporary roof supports. The

majority of accidents were caused by human error. In addition, recent research stud-

ies have examined the exposure of roof-bolters to silica and coal dust underground.

Studies by Ainsworth et al. (1995) show that these operators are exposed to the high-

est levels of silica dust, even higher than the continuous miner operator. Driven by

the goal of making roof-bolting activities safe, the National Institute of Occupational

Safety and Health (NIOSH) carried out research for automation of these activities at

its Spokane branch. This involved the installation of position sensors on the machine

for accurate positioning, communication, navigation, and guidance. Automating the

roof-bolter was found to be the most challenging task (Schnakenberg, 1997). In 2008,

Beck and Goodman (NIOSH) experimented with vacuum and mist drilling systems

on the bolters. Dust levels in the ambient environment were compared by sampling

the airflow. The vacuum drilling system was found to lower the dust concentration

1



significantly when compared to the mist drilling system (Beck and Goodman, 2008).

Investigation of dust exposures by NIOSH in mines in the southern Appalachian re-

gion have also showed the roof-bolter operators to be exposed to high dust levels.

These studies also recommended that mines should minimize down-wind bolting es-

pecially in cases where the sampled dust showed high quartz levels (Pollock et al.,

2009). NIOSH also carried out research on minimizing the dust emitted from the

exhaust of the roof-bolter dust collection system. A wet exhaust conditioner was

developed that forced the dust-laden air over a water surface. An airborne respirable

dust reduction of about 41% was achieved in laboratory settings (Beck, 2012). NIOSH

has also designed a novel canopy air curtain to lower the roof-bolters’ dust exposure.

Computer modeling followed by laboratory tests on reduced and full-scale models,

have shown effectiveness. Statistically, reductions exceeding 67% were realized in the

laboratory tests (Listak and Beck, 2012; Reed et al., 2017). Experiments at NIOSH

with a bit sleeve device and dust-hog-type bit combination were also found to lower

dust escaping into the ambient atmosphere by about 50%.

Not only is the bolter operator exposed to roof falls and elevated dust levels, the

drilling and bolting processes are often noisy. MSHA coal mining data acquired in

2005 indicated roof-bolter operators to be continuously exposed to noise over pre-

scribed threshold limits. The noise could also trace its origin to several pumps

mounted on the roof-bolter. The bolter operators adopt a variety of personal protec-

tive equipment to shield themselves from continuous noise. NIOSH developed chuck

and bit isolators and showed that when these are used together, they could signifi-

cantly lower the noise pressure levels (Michael et al., 2015). A suite of instruments

developed by NIOSH including the bit isolator, the chuck isolator and a collapsible

drill steel enclosure working in tandem could lower the sound pressure levels by 13

dB(A) (Lowe et al., 2010). Field tests of the drill bit isolator developed by NIOSH

in collaboration with Kennametal Inc. and Cory Rubber Corporation showed that a

noise reduction of 3-5 dB(A) can be achieved. These were also found to be durable

with five of the nine devices tested exceeding 610 m (2,000 ft.) drill depth (Azman

et al., 2012). In 2011, NIOSH developed elastomeric isolators that break the continu-

ous contact between the drill steels. Laboratory tests showed a noise reduction while
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drilling by 3.7-6.6 dB (Michael et al., 2011).

1.2 On Mechanization of the Roof-Bolting Cycle in the Underground

Coal Mines

During the last decades, the use of roof-bolters to reinforce the underground mine roof

has been growing steadily. roof-bolting practices have become the primary support

system in underground coal mining. The roof-bolters drill holes into the roof and

install roof bolts to support the roof. Nearly all underground coal mines in the USA

are mined under roof-bolted roofs. The majority of roof-bolters in underground mines

are manually operated. The operation involves the following steps:

(i) The operator places the drill steel into a dedicated drill head. By operating

a manual control, it drills the hole to the roof, and the then removes the drill

steel.

(ii) Then, a bolt inserter (wrench) is typically placed in the drill head, and a roof

bolt is placed in the bolt inserter.

(iii) Next, the operator installs the bolts by operating manual controls.

This process is highly labor-intensive and relies heavily on the operator’s judg-

ment. roof-bolter operators are exposed to hazardous conditions due to their prox-

imity to the unsupported roof, loose bolts, and heavy spinning mass. Prolonged

exposure to these risks inevitably leads to accidents and injuries. For these reasons,

the mining sector is currently in the stage of adopting more automation, and with

it, robotics (i.e., Figure 1.1). One of the latest trends in recent years is the devel-

opment and utilization of autonomous equipment. This is particularly prevalent in

many fields of engineering and scientific applications, including mining. Some appli-

cations include intelligent transportation (Zhang et al., 2011), agriculture (Li et al.,

2009), marine and planetary environment exploration (Leitner, 2009; Wynn et al.,

2014), mining (Marshall et al., 2008; Lösch et al., 2018), and disaster reconnaissance

and rescue (Olmedo et al., 2020).
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This study focuses on developing a robotic assembly capable of carrying out the

entire sequence of roof-bolting operations in full or partial autonomous sensor driven

rock bolting operations to achieve a high-impact health and safety intervention for

equipment operators.

Figure 1.1: In a mining site, autonomous bolters can accomplish complex tasks,
such as roof support and protection from falling debris. Remotely, in a command
central, specialized humans supervise all the actions and intervene if necessary. Image
retrieved from Bathopele Mine 2020.

The automation of a complete bolting cycle of drill steel positioning, drilling,

bolt orientation and placement, resin placement, and bolt securing is discussed using

an anthropomorphic robotic arm. The bolting cycle as a part of the drill-and-blast

mining cycle is shown in Figure 1.2. A human-computer interface is developed

to enable the interaction of the operators with the machines. Collision detection

techniques is then implemented to minimize the impact after an unexpected collision

has occurred. A robust failure-detection protocol is developed to check the vital

parameters of robot operations continuously. This unique approach to the automation

of heavy tool handling is described with lessons learned. The concept of change

is quite broad and introducing a new technological mind-set will always remain a

challenge. According to Hattingh and Keys 2010, modernizing the industry entails

two components:

(i) Introducing machines and automation into mining operations (mechanization);

and
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(ii) changing the culture of the people from every level, who are involved from

planning to everyday operations (human factors).

Figure 1.2: The underground conventional drill-and-blast mining cycle and bolting
cycle.

Both elements will be covered in the research presented here, although more em-

phasis will be given to the mechanization of the roof-bolting-cycle. Based on Jackson

et al. 2010 , a systems approach can be classified into four stages which are directly

linked to the systems engineering process:

(i) System Analysis (or Conceptual Design Phase): during this stage, the initial

concept for the new mechanization process is defined. The objectives of the

user’s needs and system performance and requirements are to be specified.

Studies will be undertaken in the mine to acquire the field observation data

and a preliminary research and development efforts will be initiated.

(ii) System Design (or Preliminary Design Phase): during this phase, the functional

analysis and synthesis of the system is being conducted. A set of detailed

working specifications are drawn from the preliminary system design for the
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new system (analogical comparison). Subsystems and components are to be

developed during the Systems Design phase of the project. In this stage, it is

important to identify potential errors and problem areas. Those malfunctions

must be addressed to optimize the overall system performance, cost, and other

factors.

(iii) System Implementation (or Detail Design Phase): this stage incorporates the

completion of the system design. A new or redesigned machine is being devel-

oped (prototype system development). A final testing and evaluation process

will ensure if the product is performing successfully.

(iv) System Operation (or Production Phase): during this state, the system needs

to be tested on a routine basis on the environment that is being proposed to

operate (systems are often developed and designed in different environments).

If the results are unsatisfactory, re-optimization is required. When the system

evaluation is completed and the specified objectives are reached, the newly

modelled system is given to production.

1.3 Research Objective

Sustaining the rock mass within the proximity of the excavation after blasting is

crucial in order to decrease potential hazards associated with rockfalls, and rock

bursts. As reported by Ferreira and Minova 2012, falls of ground (FOG) remain the

main contributor of fatalities in narrow reef stopes. Equipment operators, especially,

roof-bolter operators are often exposed to dangerous conditions. The risk increases

due to their proximity to the unsupported roof.

Dust and noise exposure due to rock drilling and bolting should not be discounted.

Roof-bolting has been the principal means for enhancing miner safety regarding pre-

venting different roof falls in underground coal mines in recent decades. This research

focuses on the development of automated processes within the roof-bolting cycle with

the ultimate goal of removing humans from hazardous environments. The only human

interaction with the autonomous roof-bolter should be re-provisioning the onboard

storage, maintenance and supervisory control of the machine (Jobes, 1990).
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A detailed study of human motion is first being carried out using sensors and

computer software. Computer simulations are set up to design the trajectory of the

anthropomorphic robot. The trajectories are then optimized using various techniques

to customize them for mining environment conditions. A replica of the roof-bolter

module and the software controlling the robotic arm is built and tested. The trajec-

tory is then, is being adopted by the robot. The robot can now obtain information

about position, orientation and speed. A human machine interface is being integrated

to enable the manual approval of the tasks and to override the system in the event of

unpredicted or unsafe actions. This robotic system is being deployed and fully tested

in the laboratory environment located in the Mining Engineering Department, at the

University of Kentucky, US. In line with the aforementioned objectives, the following

research questions can be asked:

(i) What processes or methods will be used for the development of the autonomous

roof-bolting cycle?

(ii) What criteria will be used to validate the reliability of the autonomous roof-

bolting cycle?

The objective of the research will be to evaluate whether a system engineering

approach may enhance the level of safety of roof-bolting in underground coal mines.

The research is focused on a single piece of equipment, the roof-bolter.

1.4 Significance and Contribution

The author proposes developing a robotic assembly capable of carrying out the entire

sequence of roof-bolting operations autonomously. To achieve that, a detailed study

of human motion is first carried out using sensors and computer software. Computer

simulations are set up to design the trajectory of the robot. These trajectories are

optimized using various techniques to customize the robot for mining environment

conditions. A replica of the bolter module and the software-controlled robotic arm

is built and tested. The trajectory is adopted by the robot and includes vital pa-

rameters like position, orientation, and robot speed. A human-machine interface is
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integrated to enable manual approval of the tasks and over-ride the system in case

of unpredicted or unsafe actions. The robotic arm is deployed and fully tested in the

laboratory environment. The above processes are iterated for refinement before the

final deployment of the robot in a mining environment.

1.5 Research Delineation

The framework of this study is strictly based on a system engineering approach and

systems engineering tools previously used in various industries. It will be adapted

to roof-bolter implementation in an underground coal mine in the state of Kentucky,

U.S.

1.6 Thesis Outline

The document is structured as follows:

Chapter 2 will cover a brief literature review around mechanization and its chal-

lenges as well as a brief overview of the considerations for the development of the

automated roof-bolting cycle.

Chapter 3 will deconstruct the opportunities and challenges involved in imple-

menting the autonomous roof-bolting operation in underground coal mines, based at

the University of Kentucky, U.S., Mining Engineering lab.

Chapter 4 will cover the basic concepts and the proposed approach followed for

the realization and the development of the autonomous roof-bolter regarding the

laboratory scale setup build for simulations.

Chapter 5 presents the evaluation and results of the tested embedded support

systems used in the project.

Finally, Chapter 6 will conclude and summarize the research, and then provide

recommendations for future work.

1.7 Summary

A background leading to the importance of the research was provided and the ob-

jectives of the research were identified. The major impact of the research was given
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through its significance and contribution, and the contents of the upcoming chapters

were also briefly outlined.

Copyright© Anastasia Xenaki, 2021.
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Chapter 2 Literature Review

2.1 Introduction

Automation in the mining industry is not a novelty. Robotic and Autonomous Sys-

tems (RAS) are already playing an essential role in today’s mining industry. The

mining industry is currently in the stage of adopting more automation, and with it,

robotics. The purpose of this chapter is to gather information on the concept of

automating mining equipment to move miners away from the dangers roof-bolting

creates. A significant emphasis of this research is reviewing mining technology that

improves roof-bolter productivity and fosters safer, more sustainable working condi-

tions for miners. Specifically, the construction of an autonomous robotic manipu-

lator hand depends on developing robust remote calibration diagnostics and a self-

monitoring system, the configuration of the robot-specific remotely triggered actions,

optimized plan and control techniques, and the integration of the robotic spatial

perception. Moreover, various considerations need to be made when developing and

installing communication systems, because the underground mine infrastructure may

affect the signal transmission and propagation.

This chapter describes a systematic approach to automation problems with in-

tegrated automation solutions (systems) based on Programmable Logic Controllers.

The primary purpose of solving an automation problem is to develop a solution that

does not impose the desired behavior on the controlled system. At the same time, a

proper application of automation must meet other criteria, such as the following:

(i) Be economically feasible in principle as a cost for the initial construction and

installation of the solution. In addition, the maintenance cost must be included

in the implementation cost.

(ii) Be safe for operators and the environment.

The typical steps in the process of developing integrated PLC automation solutions

are as follows:
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(i) Description of the automation problem.

(ii) Identification of the signals and parameters involved.

(iii) Description of the automation solution.

(iv) PLC connections and programming.

Each step involves processing the information from the environment and con-

structing a part of the integrated solution. At the same time, each step includes

the corresponding complete documentation to be transmitted or registered for future

use. In the general case, the formulation of the automation problem consists of two

interrelated parts:

(i) The reporting and recording of critical physical parameters (i.e., the tempera-

ture of a room, the level of a tank, the current flowing through a coil) are of

interest for the specific application for which the automation is intended.

(ii) The description of the desired behavior of these physical parameters (i.e., their

values are kept within defined limits required for the safe operation of the

associated machines).

The literature will, therefore, be gathered into the following main topics: 1) The

various challenges addressed by multiple authors related to the mechanical design

around mining automation systems currently in use; 2) the automated equipment

available in existing coal mines, their benefits, capacities, specifications, etc.; and 3)

the study of the human-machine interaction.

Furthermore, selecting the anthropomorphic arm and ways to trigger and operate

it are significant in this review section. Extensively, the main topics are 1) the benefits

and challenges of selecting the industrial manipulator; and 2) the study of triggering

the industrial manipulator during an emergency.

2.2 Re-imagining the Future of Mining Processes

Miners still use heavy machinery, such as explosives, trucks, drills, and bulldozers,

especially when they dig deep into the earth. However, advances in technology have
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allowed miners to excavate with more accuracy and less harm to the surrounding

environment. More efficient machinery can also reduce energy consumption and im-

prove the number of minerals or metals gleaned from the shaft. Thus, mining is no

different from other sectors in that automation is often primarily driven by making

equipment operator activities safe by removing humans from a hazardous environ-

ment and increasing operational efficiency and production capability. Today, mining

is taking advantage of lessons learned by other sectors and industries.

In current times, many mining companies have begun their digital ventures toward

intelligent processes, seizing the future of mining operations. That implies introduc-

ing new technologies and considering what role these technologies will play and what

jobs will look like in a company that assimilates these novel technologies. Emphasis

has been placed on autonomous equipment solutions that can significantly improve

miners’ safety and working conditions. Namely, embedded intelligence systems enable

mining equipment to robustly navigate the prescribed path (production areas) and

accomplish designated tasks. Other intelligence systems in mining include robotized

technologies, machinery, and mechanisms with the elements of artificial intelligence,

as well as mining and transport system automatic controls. Of significant interest

has been the establishment of fundamental objective laws of the interoperability of

mining engineering systems employing industrial robots with the natural human envi-

ronment in the mining engineering system and in the affected area. Virtual industrial

robotic solutions are also being studied with the introduction of Industry 4.0. Flow

charts 2.1 and 2.2 show an example of all technologies incorporated into the design

of autonomous mining equipment.

2.3 Industrial Field Networks

Industrial computer networks are subcategories of local computer networks with spe-

cific requirements and specifications. They are characterized by the handling of small

volumes of data with predictable transfer speed and reliability. The common point of

data transfer in field networks is a twisted pair of cables, which simultaneously carry a
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Figure 2.1: Implementation of MCU, ECU, modules, and sensors on CAN Bus

Figure 2.2: Autonomous technologies in mining

digital signal and a DC power supply. At the end of each part of the network, there is

a terminal resistor that recognizes signals from the interfaces of the network devices.

In field networks, all computing power is distributed to the interconnected controller

processors and not to a central point. Field controllers follow specific communication

protocols. These protocols allow for control the interconnection, communication, and

transfer of data between devices. Protocols determine the type of equipment and

software used. In field networks, there are two basic models in the way information
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is transmitted between network devices:

(i) The client-client model, a network device that provides data services when an-

other network device requests specific information. The client makes a request,

and the server returns a response, or a series of actions are followed. The server

can be activated immediately for this request or add the request to a queue and

is adopted by network protocols such as Modbus, PROFIBUS-FMS, WorldFIP,

INTERBUS, and P-NET.

(ii) The publisher-subscriber model, in which some publisher nodes produce avail-

able information on the network. Subscribers listen to the specific nodes that

provide the information. This model offers greater scalability compared to the

server-client model due to the existence of multiple parallel publishers and is

adopted in protocols such as WorldFIP, Foundation Fieldbus, CAN, CAN open,

Device Net, Control Net, KNX, and Lon Works.

This study focuses on the use of a CAN network protocol, which is found in

integrated mining automation systems.

Characteristics of CAN protocol

The Controller Area Network (CAN) protocol is a carrier sense multiple access pro-

tocol with collision detection. All CAN transmissions are broadcast in nature, which

means nodes receive all the transmissions on the CAN Bus. Bus arbitration, i.e.,

the resolution of which message gets transmitted next if a collision occurs, is decided

by the message priority. Priority is selected based on the so-called identifier field in

the message header. A lower identifier corresponds to a higher priority, which means

messages with lower identifiers will be transmitted earlier than messages with higher

identifiers if both are ready to be sent in the transmission buffer or if arbitration is

triggered by collision during the transmission.

Each message transmitted using the CAN protocol is accompanied by 11-bit au-

thentication fields, which do not relate to the message information but are used as

control fields, which indicate who is transmitting to whom or what, what kind of
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message is being sent, and with what priority. The CAN message packet starts with

the total Start of Frame (SOF) with 1 bit and follows the standard identity or arbi-

tration field, with 11 bits, which determines the message’s priority. The structure of

a CAN message is illustrated in Figure 2.3. It has the following important fields:

(i) Identifier: It represents the priority of a message. A lower-value identifier indi-

cates a higher priority on the CAN bus.

(ii) Data Length Code (DLC): It represents the length of the data field in a CAN

message.

(iii) Data: Data is the actual payload of the message. A total of 64 bits of data can

be transmitted in the message.

(iv) Cyclic Redundancy Check (CRC): This field contains the checksum of the data

field for error detection.

(v) Acknowledgment (ACK): The ACK bit is used to check the integrity of data.

The receiving node overwrites the recessive bit to the dominant bit for an error-

free mess- age. In the case of any error, the recessive bit is not overwritten, and

the sending node retransmits the message.

Figure 2.3: CAN Bus network topological basic structure, based on Al-Aani (2020)

CAN is a serial data communication protocol with high performance, reliability,

ease of development and a low-cost field bus. It consists of CAN H and CAN L
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lines; the transmission medium can be an unshielded twisted pair, cable and fiber,

the communication can rate up to 1Mb/s, and its transmission can distance up to 10

km (Li et al., 2017). Every ECU transmits and receives data over the same lines. The

CAN Bus is commonly used in embedded control applications, including in mining

equipment controls. By switching to CAN-bus architecture, electrical components

can be daisy-chained, which dramatically reduces the amount of wiring required on

the vehicle. Figure 2.4 shows a generic CAN bus configuration of the studied roof-

bolting system.

CAN networks are often divided in different subnetworks according to their func-

tion and specific needs, such as high-speed CAN (CAN-C) for motor management,

and low-speed CAN (CAN-B), for climate control. As a result, a major part of infor-

mation about the inner workings of a vehicle can be learned by examining CAN bus

traffic. Users can now navigate through display screens to gather status information

on how the engine is running, as well as error messages, more efficiently and intu-

itively. This information is useful to track driver behavior, the status of equipment,

etc.

How does CAN communication work?

In a CAN Bus system, multiple nodes communicate with each other through trans-

mitting messages to target nodes based on specified identifiers. All nodes function as

masters. This configuration means there is no master controller that supervises the

bus. This configuration ensures more robust connection as well as fault reduction.

The bus network topology of the CAN Bus reduces the points of failure since a sin-

gle data line is used to handle all communications. Furthermore, nodes branch out

from the main line; this means if one node fails it does not affect any other nodes

in the system nor does it affect the functionality of the main bus. Such topology

makes it easier to monitor faults and diagnose specific problems, rather than hav-

ing to manually query numerous sub-controllers distributed throughout the system.

CAN protocol includes bit wise arbitration messages that are arbitrated through the

ECU- priority embedded controller. Transmitted messages are not assigned from one

node to another, instead, all units on the network communicate with each other.
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This arbitration structure in the linking system allows high priority messages to be

transmitted before low priority messages; it also prevents time delays (Etschberger,

2001; Pfeiffer et al., 2008).

Figure 2.4: Generic model of a roof-bolter CAN bus. Multiple sub-networks with
different functionalities are interconnected through gateways

Benefits of CAN Bus system

There are benefits of using the CAN bus as a serial communication protocol, par-

ticularly in reducing wired interconnections in a vehicle. Some of the benefits in

implementing the CAN protocol in automobiles are:

(i) Reduced wired interconnections,

(ii) low-cost implementation,

(iii) speed, reliability, and error resistance, and
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(iv) worldwide acceptance

2.4 Autonomous Mining Equipment

Automation is currently being utilized in nearly all phases of mining including ex-

traction and drilling. Some examples are presented in the following paragraphs. For

example, LASC Longwall Automation technology has been used to increase produc-

tivity in underground mines and to remove the employees from exposure to high

respirable dust levels (Tyuleneva et al., 2021). Other examples include the use of

autonomous haul and dump trucks to transport materials in mines. Scheding et al.

(1999), using results of field trials conducted in an underground mine in Queens-

land, Australia created a navigation system capable of making large heavy industrial

machinery much safer and more efficient in uneven terrain. Roberts et al. (2002),

introduced the term opportunistic localization, a technique that allows the vehicle

to make appropriate decisions when driving through intersections. This implies that

the vehicle is travelling while knowing the segment of the route and at the same

time identifying the next node. Larsson et al. (2006) proposed a fully automated

navigation system using the fuzzy behavior-based approach to navigate underground

Load-Haul-Dump (LHD) vehicles. Additionally, Marshall et al. (2016) presented an

automated way to load materials using draglines and shovels.

2.5 Robotic Miners

Automation capabilities continue to increase as a result of advances in machine sens-

ing and vision which aids in balancing the scales between humans and machines.

Hardware and software advances have greatly expanded the opportunities for adopt-

ing automation to many human-machine systems, resulting in much more complicated

decisions about choosing levels of automation for different machine functionalities.

The mining industry is currently in a stage of adopting more automation, and with-it

robotics. The area of development being researched, which concerns the content of

this review, includes the automated installation of ground, roof, and rib supports, as

well as robotic rock cutting machines.
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Localization

The underground environment in miners is particularly challenging when it comes

to improving positioning accuracy. Several methods have been proposed to ad-

dress this problem in the longwall context. One method is based on measuring the

three-dimensional shearer path directly through an inertial navigation-based system

(Billingsley and Brett, 2015). Xu and Wang (2010) implemented a shearer working

path system based on three-machine position and dynamic-static fusion. This ap-

proach collects dynamic data of the shearer, static data of the conveyor shearer, and

data from the hydraulic supports, in order to acquire the shearer’s three-dimension

location information.

Horizontal position information is collected using the Inertia Navigation System

(INS) technology (Reid et al., 2011).This system provides high short-time accuracy

and robust autonomy, but it shows increasing error growth over time (Ruiz, 2009).

To solve this problem Fan et al. (2014) developed the wireless sensor network. Even

though their approach showed a decrease in the position drift error, the position coor-

dinates of the anchor nodes could not be determined in an accurate manner because

of the movement of the roof support system. Wang (2022) installed tilt sensors on

the shearer body and armored face conveyor (AFC). The main disadvantage of this

method was that it demonstrated one-dimensional positions of the shearer instead of

three-dimensional positions. In yet another approach, Wang and Wang (2020) used

a shearer positioning system based on an INS and added an axial encoder, which

was used to calculate the shearer’s moving trajectory. They also used shearer motion

constraints to improve the accuracy of positioning.

Navigation of commercial Automated Guided Vehicles (AGVs) is currently accom-

plished through inertial navigation, magnetic navigation, electromagnetic navigation,

lidar navigation, visual navigation, as well as other navigation methods. Localiza-

tion methods that are available on AVGs, to include laser triangulation methods,

ceiling mounted bar codes, range, or camera-based wall-following, using floor mark-

ers or magnets as guidance while the vehicle updates its exact location as it follows

the magnetic tape. Houshangi and Azizi (2006) integrated the robot’s position and
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orientation using a fiber optic gyroscope and the Unscented Kalman Filter (UKF),

which estimates a probabilistic distribution using small range of numbers taken from

specifically chosen test points. This approach assures better position and orientation

accuracy in comparison with the Extended Kalman Filter (EKF) approach.

Motion planning and control

There are many aspects of the operation of a typical industrial manipulator or vehicle

that must be planned and coordinated. Planning includes the determination of an

optimum and safe no-collision path that the vehicles will have to follow, while ensur-

ing high precision docking with conveyors or other equipment. Advanced planning

operations include the positions of tools and material in specific locations. Until re-

cently, vehicles modified their trajectories in order to enable coordinate motions and

ensure obstacle avoidance using an offline approach. However, future research should

focus on enabling the vehicle to modify its trajectory while operating. This implies

highly intelligent control architectures and suitable sensor feedback.

Planning coordination using centralized computation methods are not suitable

for AGVs and mobile robots used in the mining industry, wherein the environment is

less structured and the tasks are not known in advance. The decentralized estimation

schema, or distributed approach seems to be more appropriate in such locations. Be-

cause the paths that are planned in this environment are not fixed, special attention

must be taken for high-accuracy docking maneuvers, in order to increase the flexi-

bility and adaptability of robotic configuration modifications (Herrero et al., 2013).

For manipulators, appropriate joint planning configurations are needed to fulfill cer-

tain coordination tasks. In order to operate the robotic manipulator with absolute

precision even at higher speed, the control strategy has to be well defined. Robot

dynamics, payload and, operating environment are the main challenges in designing

the control system. The control design of a manipulator depends greatly upon the

studied application scenario. Recent advances in manipulator control have been cat-

egorized into three sub-domains: Intelligent Proportional–Integral–Derivative (PID)

control, robust control and adaptive control.

There is a continued interest in modifying a simple PID control to improve control
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performance and functionality (Blevins, 2012). Some of the possible ways to modify

a PID control are presented by the study of Fei and Wu (2006), where they cascaded

through multiple controllers. Advancements in PID control include the combination

of PID control with modern control techniques and algorithms to achieve optimum

performance, improvements on tuning methods (Foley et al., 2005; Nagaraj and Mu-

rugananth, 2010), and modifications with non-linear and adaptive control approaches

(Iqbal et al., 2014).

Regarding the robust trajectory tracking techniques, Ullah et al. (2014) used

Computed Torque Control (CTC) (Fei and Wu, 2006) algorithm in a 6 Degree of

Freedom robotic arm with 5 revolute joints. This control technique cancels out possi-

ble nonlinear behaviors of the studied system and then uses linear modelling dynamics

to accomplish the desired position and orientation. Literature has been reported in

Piltan et al. (2012), combining Computed Torque Control with PD and PID. Nguyen-

Tuong et al. (2008) demonstrated a comparison between Locally Weighted Projection

Regression (LWPR) and Gaussian Process Regression (GPR).

Robotic arms for underground mining

Robots equipped with robotic arms can improve the performance of human workers

in harsh working environments like underground mines. Lösch et al. (2018) show-

cased a robotic system that has a UR5 robotic arm and a 3-Finger Adaptive Robot

Gripper from Robotiq with which the system can then install, rearrange and remove

Smart Sensor Boxes (SSBs) of an Internet of Things (IoT) infrastructure. Robotics

researchers also work together with mining experts to autonomize existing machines

in the mining industry. For example, Bonchis et al. (2013) adapted a mechanical

manipulator from a Palfinger truck crane for explosive charging tasks. They designed

an end-effector that carries the laser rangefinder for detecting the location of the

blast holes, and they used a number of video cameras and LED lights to support the

automatic and manual host insertion process. To insert the tool into the blast hole,

the manipulator is first controlled by a planning algorithm and then teleoperated by

a human operator to refine the position and direction of the end-effector. To per-

form different tasks underground, the robotic manipulator can be very different from
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traditional robotic arms. To replace human coal miners in Korea, Huh et al. (2011),

designed a tele-operated mining robot that has a boom, an arm and a bucket.

Hydraulic actuators can be direct drive for linear or rotary motions. Lu (2009)

shows how a bucket wheel reclaimer can be converted into a robotic arm and can

be controlled automatically. In his work, he first modelled three joints of a typical

BWR, based on which the kinematics and dynamics are modelled. In the study of

Peshkin and Colgate (1999), the authors conclude that Lagrangian dynamics models

and Newton-Euler dynamics based models for hydraulic robotic manipulators, provide

superior control performance and give solution to highly nonlinear behavior of energy

inefficient hydraulic systems. An example of a mobile robotic manipulator is displayed

in Figure 2.5. Based on the study of Grehl et al. (2017), the Julius robot consists of

an articulated three-finger hand mounted on a robotic arm. The preliminary survey

explores co-working scenarios, where Julius is deployed to assist the miner using its

robotic and the three-finger gripper with demanding, precise or risky tasks. To achieve

its goals, Julius carries wi-fi stations and uses its gripper to place them on the floor

to extend the network range when the wi-fi signal becomes weak. Its arm is used in

various applications, such as collecting water samples in abandoned areas, handling

the mine ventilation system and investigating the underground area for loose rocks

debris using its gripper’s camera.

2.6 Human-Robot Interaction on Underground Mines

The term Human-Machine Interaction (HMI) is attributed to the low level of auton-

omy and complexity of interaction with industrial robots (Vaughan et al., 2012). The

introduction of autonomous machines and robots on large scale mines is a new trend

in the mining industry (Grehl et al., 2015; Thrybom et al., 2015). Robotic systems

and mine automation applications have already been well developed in open mines

(Rizos et al., 2011; Boulter and Hall, 2015; Dadhich et al., 2016; Lindmark and Servin,

2018), while in underground mines, robots are used primarily on well-developed in-

frastructures (Plotnikov et al., 2020), the majority of them including the development

of automobile vehicles (Polotski and Hemami, 1997; Roberts et al., 2002). On a mine
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Figure 2.5: An articulated three-finger gripper allows Julius to operate devices de-
signed for human hands. The precision and endurance of the robotic gripper increase
the measurement quality. Figure retrieved from Güth et al. (2018)

site, there is a large number of independent equipment and systems. Each has its

own information and interface. These machines complement human capabilities and

relieve them of arduous tasks, as well as reduce energy costs in remote locations while

limiting safety issues.

It is becoming more common for human and robot co-workers to work on a ded-

icated workstation as collaborators, in order to accomplish tasks in industrial envi-

ronments. An industrial robotic system may include one or several robots and one

or several humans collaborating in conjunction to accomplish tasks. Moulières-Seban

et al. (2017) asserts that the design of a robotic system involves a clear understanding

of the possible humans, tasks, robots and system interactions.

This has led to the need for advanced human-robot communication that can com-

bine cognitive skills, intelligence, flexibility and decision-making of humans (Modares

et al., 2015; Djuric et al., 2016). The goal is to combine robotic strength, endurance

and accuracy with human intelligence and flexibility (Krüger et al., 2009; Müller

et al., 2016). Argall et al. (2011) proposed a method of teaching in which primitive
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components of motions are learned by a robot through teleoperation. This method

can be used to help robots perform a complete task without the operator having to

determine all aspects. Farry et al. (1996) respected the principles of the detailed

myoelectric signal processing approaches in order to create a complex robot hand

that reproduces the motions of the operator’s hand in realtime. According to Ped-

ersen et al. (2012), a mobile manipulator can use gestures to determine whether to

pick up and where to place an object. This method requires the definition of ges-

tures. These must be easily distinguishable by the sensors on the mobile robot, as

well as communicable by humans. Other researchers have tried to improve human

safety by creating robots that determine where and who can ask for help (Rosenthal

and Veloso, 2021; Veloso et al., 2015). Sisbot et al. (2007) presented a solution for

safeguarding the workforce near robot locations. The approach consisted of a path

algorithm that computes the comfort and expectations of people that may be near

the robot. This path-planning technique assures a safer distance between the robot

and the workforce, and it positions the robot in a clear and wide field of view to

prevent surprise appearances.

2.7 Safety Issues Related to Underground Industrial Robots

Safety and security issues related to industrial robots should always be addressed

upon control development. Vasic and Billard (2013) identified a range of different

threats to all humans surrounding robots. Guiochet (2016) studied the catastrophic

consequences of a failure or extreme environmental conditions and how life threaten-

ing those situations can be. According to Pedrocchi et al. (2013), safety tactics can

be broken down into the following:

(i) Intrinsic safety.

(ii) Preventative collision techniques (pre-collision).

(iii) Techniques activated when a collusion occurs (post-collisions).

The authors in Colgate et al. (2008) study addressed that it is almost impossible

for heavy conventional industrial robots to behave in a gentle and safe manner when
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realistic conditions are taken in consideration. The following paragraphs are assigned

to the various attempts of authors to design an intrinsically safe robot based on the

aforementioned conditions.

As specified by Bicchi et al. (2008), the first step in increasing safety performances,

is to introduce compliance at the level of mechanical design. Other researchers have

proposed increasing the robot’s sensorial apparatus in order to mitigate the risk of

an accident (Colgate et al., 2008).

Some researchers have proposed increasing the robot’s sensorial apparatus to mit-

igate the risk of accident (Zhou, 1995; Cirillo et al., 2013). The first lightweight arm

named whole-arm manipulator (WAM) was proposed in Salisbury et al. (1988). Re-

cent examples of human-safe robots are the ABB YuMi (ABB, 2015), the Rethink

Robotics Baxter and Sawyer (Robots, 2015; Robotics, 2015) and the KUKA LBR

(KUKA, 2016). Note, however, that safety in human-robot interaction extends be-

yond physical contact. In fact, previous work (Butler and Agah, 2001; Mumm and

Mutlu, 2011; Lasota et al., 2017) has shown that a robot’s appearance, embodiment,

gaze, speech, and posture can have negative psychological effects. It is necessary to

achieve higher safety standards by preventing unexpected collisions between humans

and robots. Those collisions must be determined and avoided before any injury oc-

curs. Current practice in industrial robots is the use of proprioceptive/exteroceptive

robot sensors to detect the presence of moving obstacles or humans and stop task

execution to avoid contact. Based on real-time detection techniques and reactive

planning algorithms, researchers have allowed a higher degree of coexistence and in-

teractions between humans and robots (Djuric et al., 2016; Ferrara et al., 2019; Safeea

et al., 2019).

2.8 Tele-operation and Shared Autonomy

The human-robot communication interface is crucial for safe deployment of robots

in underground mining because of its environmental complexity and variety. Ideally,

humans should be able to monitor and interrupt the working progress of robots re-

motely in a safe place. In Huh et al. (2011), a tele-operation system is implemented
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via remote-control station where humans can control the robot with joysticks. It is

also important to inform humans the status of the robot and the working progress in

a human-friendly way. The remote-control station has two monitors that show the

robot, as well as obstacles in the work area. To enable a equipment sharing scenario,

(Wilkinson, 2004) suggests a new, cooperative approach to teleoperation in mining

environments.

Wilkinson (2004) also proposes an interactive telemining simulator to help quan-

tify the interaction between operators in a dual operator configuration. In direct

teleoperation, users provide inputs that are then directly converted to robot actions.

However, direct tele-operation is often tedious and time-consuming, especially for

robotic arms that have various degrees of freedom. Previous approaches on shared

autonomy have combined teleoperation with autonomous assistance, where the sys-

tem predicts the goal of the operator and then assists the operator in that goal

(Abbink and Mulder, 2009; Passenberg et al., 2011; Rakita et al., 2019). Haptic

interfaces have been particularly effective in adapting the automation to allow the

user to regulate the control authority delegated to the system (Abbink et al., 2012).

Researchers have regulated the stiffness of the control system so that the user can

opt to delegate control or initiate taking back control (Javdani et al., 2018; Nikolaidis

et al., 2017).

2.9 Conclusions

An integral part of the study was reflected in the pages of this chapter. With reference

to the aforementioned literature, mining environments are difficult to alter to suit the

simple and easy application of automated systems. So far, there is little familiarity

with robotics implementation potential in mines. Acceptance by mine owners and

miners, integration of robotic selection, design and application in mining operations,

robotic equipment reliability and productivity, prevention of mining fatalities and

injuries without changing the mining methods, and development of optimum fail-

safe engineering controls are all factors that need to be considered and addressed

coincidentally. Few more issues and challenges related to industrial robotic systems
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are briefly outlined in the following enumeration:

(i) develop robust detection of human movement to build good predictive models,

(ii) ensure robust detection of contact between robots and workforce in multiple

points,

(iii) develop fast responsive controllers for real-time local trajectory replanning for

complex underground mining environment,

(iv) ensure satisfactory real-time constraints, and

(v) develop a reliable system structure for fault tolerance, by including three main

principles: error detection, error diagnosis and recovery.

The development and utilization of autonomous vehicles have obtained great at-

tention in many engineering and scientific applications. Such applications include,

but are not limited to, underground/surface mining, intelligent transportation, agri-

culture, marine and extraterrestrial environment exploration, disaster reconnaissance,

and rescue. The necessity of autonomous heavy machines lies in the insufficiency of

humans to carry out desired tasks due to inaccessibility (e.g., deep water excavation,

planetary exploration, confined areas) or the prevalence of hazardous conditions (e.g.,

nuclear radiation, toxic gases). In terms of mining, mining automation is used for

monotonous jobs. The necessity of precision and speed that a human cannot perform

is essential for such tasks. The benefit is that those jobs can now be executed faster

and more precisely by using autonomous mining equipment, while at the same time,

the risk for the operators is reduced as they are removed from active and potentially

hazardous areas.

Copyright© Anastasia Xenaki, 2021.
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Chapter 3 Research Hypothesis and Methodology

3.1 Introduction

Over the last decades, the utilization of autonomous heavy mining equipment has

resulted in the mining industry increasing the health and safety of mine personnel

by lessening their exposure to adverse conditions (e.g., hazardous dust particles gen-

erated during underground mining activities). Automation strives to remove the

operators from unsafe conditions present in active mining sites and place operators in

a more convenient and safer settings at a distance from the active mining face. Each

section of this chapter defines the purpose of the discussed automation system and

specifically demonstrates the feasibility of incorporating the autonomous roof-bolter

in the underground coal mining cycle. Parameters to be studied are:

(i) Network communication between roof-bolter and robotic arm,

(ii) mechanism and design guidelines for autonomous roof-bolting cycle,

(iii) drill bolt size,

(iv) drill bolt length, and

(v) drill bolt spacing/coupling.

The automation objective is explained in the context of the respective mining

system. Thus, the control problem is related to specific issues of safety or protection

of the surrounding working environment and, in general, optimal use of the particular

system.

3.2 Background

The robotic arm installation project requires re-imagining the bolt installation pro-

cedure on the dexterity of the human operator. Locating the installation assembly

will rely on the operator or an automated machine-positioning system. The basis of
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the project is to use a 6-axis anthropomorphic robot in place of a human to handle

the drill steels, bolts and other consumables. This robotic assembly will carry out

the entire sequencing of the roof-bolting. The hydraulic system will be synchronized

with the robot’s operations. A human operator will be required to approve major

operations, while the operator also maintains the ability to operate the robot and the

hydraulic system.

Overview of the roof-bolting cycle

Roof-bolters operate a bolting rig that uses pneumatic or hydraulic power to install

roof support bolts in underground mines, preventing cave-ins. Soon after coal is

extracted, the roof’s rock strata must be promptly secured. Drill bits, extension

steels, resin roof bolts, and cable bolts are used to safely support the roof. Dowels,

shotcrete, mesh and steel sets can be generally used for rock support. The positioning

of the holes follows specific safety rules, and; then, the bolt is installed. The end of

the bolt is tightened using a turnbuckle tool. Each bolt is tested for the specified

tension using a torque wrench. The type of support installed in a specific underground

mine relies upon the ground conditions, such as the extend of fractured or jointed

rocks encountered near the excavation. Rock support installation is carried out as

an integral part of the excavation cycle to secure the roof rock mass self-support.

This process is crucial to the operator’s safety and the ventilation of the mine. After

installation, the roof-bolter needs to be re-positioned and inserting the next bolt

continues.

Underground mining involves repetitive processes in confined and hostile environ-

ments. Roof-bolter operators are prone to exposure to hazardous conditions, due to

their proximity to the unsupported roof as well as dust and noise exposure. This

confined work environment forces the operator into uncomfortable postures for tasks

that require quick reactions to avoid contact with moving machine components. After

hand tools, the roof-bolter machine is responsible for the second-highest number of

nonfatal lost-time injuries, where the average injury incurs several months away from

work. Physically demanding job over extended periods in unfavorable environments

also increase the probability of unsafe actions, leading to accidents or near misses.
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For instance, the operator needs to maintain an arm’s reach distance of 20 to 30

inches from the moving boom arm since their primary job is to handle the hydraulic

controls and place the drill steels and bolts near the drill head. Other factors are, but

not limited to, wet or muddy conditions, uneven floor, and the required mining gear

(Ducarme et al., 2010). This research aims to develop automated processes within

the roof-bolting process with the ultimate goal of removing humans from hazardous

environments. An overhead view of the robotic arm alongside a simulated roof-bolter

is shown in Figure 3.1.

Figure 3.1: Overhead view of a robotic arm alongside a simulated roof-bolter

The robotic arm movements will involve the following actions:

(i) Insert the drill steel in the chuck,

(ii) add extension steels (if required),

(iii) add resin,

(iv) spin to mix resin/torque the installed bolt, and
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(v) remove the steel.

This bolting sequence repeats until the unsupported area of the roof is secured

and the requirements of the roof control plan are met. Then the remote operator

moves the machine to a new location and begins the process again. Roof-bolting is a

fairly structured and repetitive process.

Overview of the laboratory roof-bolter set up

Carlson’s Software three-dimensional (3-D) scanning laser system is an underground

laser cavity monitoring system that was used to digitize the roof-bolter module. The

purpose was to have a machine model that allows the research team at UKY to

have accurate 3D access to the machine for their modeling efforts. The machine

was scanned on a medium-high detail density, and the point cloud was stitched and

simplified before being delivered back to the research team from Carlson Software,

shown in Figure 3.2.

3.3 Limitations

A method for installing roof bolts in a mine passage using an autonomous roof-bolter

poses several challenges. The established work cycle is often altered due to external

influences, such as changes in geology (i.e., mine layout, work in confined space,

interruption by co-workers or interaction between humans and mining equipment),

machine malfunctions (i.e., wireless technologies with severe line-of-sight limitations),

and supply problems (i.e., reload roof-bolter). A characteristic feature of the coal

mine that must be considered for the design of the methodology of the autonomous

roof-bolter during the development phase is the blind crossing intersections or entries

along a planned path when personnel is present. For this reason, proper regulations

of human-machine interaction must be introduced.

A protocol for human-machine interaction will determine how the operating per-

sonnel and the other mining engineers should cooperate and communicate with the

autonomous roof-bolter. In addition, the successful incorporation of the autonomous

roof-bolter in underground coal mines depends upon the acceptance by the mining
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Figure 3.2: Laser scanner point cloud, shown in Autodesk ReCap

operators. The employees involved must understand that the goal of the autonomous

roof-bolter is to:

(i) Assist workers in hazardous work conditions that jeopardize the miner’s health,

such as excessive heat, dust, toxic smoke, or soluble gases like hydrogen sulfide

(H2S), and

(ii) provide an opportunity to increase health and safety.

In comparison with the surface autonomous mining technologies, the underground

mine environment limits the functionality of sensors. And while wireless technolo-

gies can be implemented, they require additional appropriate infrastructure. Finally,

a fundamental mechanical concern that needs to be addressed is the robotic arm’s

electrical-powered trailing cable through the robot’s controller. This makes the ma-

neuverability of the roof-bolter a challenging process, because the power center should

be relocated in relation to the roof-bolter’s position, while at the same time, limits

the distance that the roof-bolter can move through a specific mine passage.
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Figure 3.3: Most significant changes to impact the roof-bolting cycle in the following
years

3.4 Association Amid Communications and Safety

Corporations have placed the most significant emphasis on the safety of underground

coal mining operations. More and more frequently, robotic autonomy has assisted

in operating in those inoperable environments for humans. Secure communication

is significantly crucial for the success of autonomous roof-bolting systems. A secure

communication system will allow the command center to guide the roof-bolter into the

desired position and manage the drilling cycle to track the whole mining operation.

Therefore, mining is in no way different than any other sector of technology; with the

introduction of such technological advancements in communications, operations are

prone to suffer from the vulnerabilities. In mining, the autonomous roof-bolter must

maintain continuous communication with the central control room, and communica-

tion failure will ultimately mean that the whole operation will stop, even when the

control room is focused on a single piece of equipment. Indeed, a stable wire and/or

wireless network infrastructure is critical to autonomous roof-bolter operations.
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3.5 Laboratory Analysis of Autonomous Roof-Bolter

Build and test the robot assembly

The robotic arm is designed to carry out roof-bolting with minimal human interven-

tion. This is built from individual components of the module, which are also tested

for their motion under different constraints. A human-computer interface is built to

enable the interaction of the operators with the machine. The operators will con-

stantly approve all actions of the hydraulic machinery and will have the authority to

overrule any actions that might be deemed unsafe.

Build an analog of bolt module

The Department of Mining Engineering at the University of Kentucky has a labo-

ratory space equipped with electrical power, compressed air, vacuum, heavy lifting

equipment, 3D-printers, and other relevant facilities to aid in research projects, in-

cluding building a prototype of the bolter module. This prototype can execute the

motions of a production bolt module without heavy-duty work, like actual drilling

of the rock mass. The purpose is to demonstrate the automation, not the cutting

and affixing. The Department also has access to the College of Engineering machine

shop manned by personnel experts in computer numerical control (CNC) and water

jet cutting. A confined space to mimic the mining conditions underground has been

designated in the Department of Mining Engineering for building the bolt module

envelope. This space is also appropriate to test the bolting procedure on the imme-

diate ceiling. The bolt module runs drill steel into these holes, places resin cartridges

(not real setting resin), and runs bolts into these holes. The Department also has

access to an underground research facility at a limestone mine operating nearby, if

underground work is necessary. The specific details of mechanical systems of the

roof-bolter which could be modified to suit the automation needs is studied. The

researchers specifically plan to design mechanisms to:

(i) Replace the carousel with a bolt pin that can pick the drill steel and place with

the arm,
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(ii) Enable the robot to pick and stack the resin cartridges in the same manner,

and

(iii) Enable grabbing the drill steels on the fly without having them to be stacked

together, minimizing the force required to decouple.

A Programmable Logic Controller (PLC) was developed to monitor drilling op-

erations. A Drill Control Unit (DCU) was also set up to automate the drilling and

bolting cycle. The display and control can be activated through a rugged touch screen

panel and the bolter module can be operated with a joystick. Figure 3.4 and Figure

3.5 show the CAN Bus interface that is integrated directly in the valve section for

connection to the master control unit and for controlling the roof-bolter’s hydraulic

system. The control cabinet, shown in Figure 3.6, consists of the following units. In

the first DIN rail, starting from left to right there is a IQAN-XA2 module, a costumer

connections and a power supply. In the second DIN rail, starting from left to right,

are the signal wires, the AnyBus Communicator - EtherNet/IP, the expansion block

and the power protection.

Figure 3.4: CAN Bus connected and integrated into the hydraulic system
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Figure 3.5: Control system installation process

Figure 3.6: Detailed control cabinet

Development and testing of motion patterns

Individual components of the robot model are tested. This includes testing the robot

model with all the assembled components. The assigned laboratory space, where

the bolt module will be built, also allows testing multiple trajectories of the robotic

assembly under confined conditions. Multiple obstructions of different sizes, shapes

and reflective properties are added to space and customized trajectories using defined
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waypoints. These obstructions are used to develop trajectories avoiding slip, trip and

fall hazards, and they finally mimic underground mining conditions with uneven sur-

faces, inadequate lighting and power cables running on the floor. The trajectories are

programmed into an appropriate computer simulation software (e.g., ABB Robot-

Studio). A high-level programming language called RAPID is used to control the

robotic arm. Suitable corrections using optimization techniques are built into the

algorithm to account for deviations encountered in real-life mining conditions. The

robotic model is scheduled to be tested in the nearby underground limestone quarry

in Georgetown, KY.

An experiment environment was developed in ABB RobotStudio, focusing on

validating the following aspects: (1) robot payload; and (2) maximum linear speed of

the tool. It was found that the current setup should be able to fulfill the requirements

induced in the roof-bolting task, and the robot model IRB 1600 with 10 kg payload

capacity and 1.45 m reach was selected (Figure 3.7).

The simulated roof-bolting scenario is constructed based on the real roof-bolter.

The dimensions of the model are based on measurements from the UKY lab, and

the operations are based on information from the visit with RRLA. The research

team validated that, with a 10 kg payload capacity, the robot is able to successfully

manipulate the common drills used for roof-bolting. Several payloads were tested

to determine the maximum payload the robot can move under different grasping

scenarios (Table 3.1). The results show that it is better to constrain the grasping

position near the middle point of the drill than try to use a larger robot. Furthermore,

the research team validated the maximum linear speed of the tool the robot can reach.

The linear velocity of the extended arm was tested since it is critical for the robot

to perform this dangerous task as fast as possible. The linear speed plot of the tool

is presented in Figure 3.8. It was also found that the maximum linear speed the

robot can reach is 3091.32 mm/s which was considered sufficient for the task. These

test results indicate that the current simulated setup does not exceed the robot’s

capabilities.

The robot-commanding interface is comprised of two parts: (1) socket server/-

client; and (2) modular robot commands. The socket server/client sends commands
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Figure 3.7: Simulated roof botlting environment

from one computer to another computer. In contrast, the modular robot commands

send different robot commands in a much more flexible manner. The interface is

programmed in C#. The interface consists of three modules: a server, a client, and a

module that implements the RobotStudio API, which is connected directly to either

the virtual robot in the simulation environment, or the actual ABB robot in the real

world.

(i) RobotStudio API module: The RobotStudio API module interfaces directly

with the RobotStudio controller; it runs on the computer that is physically con-

nected to the robotic arm. The interface sends commands of the form “Move-

ToStart”; when the RobotStudio controller receives the command, it executes a

function of the same name. The function is written in the RobotStudio RAPID

code, and it includes low-level commands. For instance, the “MoveToStart”

motion, includes the coordinates of the start position and velocity and acceler-

ation limits that the robot should follow throughout its motion. The controller

then computes a sequence of torque commands, sent to the robotic manipulator.

(ii) Server: The server connects with the RobotStudio API module, and it listens
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continuously for connections with a client through a static IP address. The

server also interfaces all the functions implemented in the RobotStudio API

module. This allows an external client to connect to the server and send com-

mands to the robot.

(iii) Client: The client contains a GUI interface. It allows the user to see the avail-

able functions and call the desired function by pressing a button. The client

will then send the command to the server, which in turn communicates it to

the client.

Table 3.1: The max load the robot can move for different grasping positions

Grasping Position Max Load (kg)

1/2 24
2/5 7.2
1/3 4.2

Figure 3.8: Linear speed plot of the tool for one task rollout

Development of HCI for machine operator

In this project, the development of a human-computer interface (HCI) has been the

primary goal. The geometry, position, and orientation of the drill steel, resin car-

tridges and obstacles are displayed to the operator. An interface that requires the

operator to approve every task before being executed by the robot has been devel-

oped. Provisions are made to let the operator override the computer programs in

case of emergency or unexpected actions.
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A robust failure detection protocol is built into all the programs. The protocol

continuously checks the vital parameters of robot operations. The operator is notified

via alarm systems should any abnormalities arise when compared against the expected

position and orientation of the robot. Virtual sensors are used in the computer sim-

ulation environment to simulate error/ failure events. The operator is provided with

options to rectify the errors and reset/ re-calibrate the machine. For more intuitive

and user-friendly human-robot interaction, a human-robot interface was designed and

developed, through which the user can send commands to the robot and monitor the

robot status in real-time, for both computer environments and flex pendant devices.

The human-robot interface for computer environments is targeted at providing an

easy-to-use interface for users to command the robot on desktop computers, smart-

phones or tablets, presented in Figure 3.9. It has three components: GUI client,

server, and video streaming server. The Qt cross-platform library is used to develop

the graphical interface. There are three components of the graphical interface: log-

ging area, command sender and real-time robot video streaming player. The logging

area is where the messages sent from the robot, e.g., the last command is finished,

are printed. The command sender has different buttons corresponding to different

robot motion modules. The real-time robot video streaming player is where the user

can monitor the robot’s movement in real-time.

The video streaming server is a program that can efficiently decode and trans-

mit images. It communicates with the client through the WebSocket protocol. The

server connects with the RobotStudio API module, which is connected directly with

the robot, and it listens continuously for connections with a client through a static

IP address. The server also interfaces all the functions implemented in the Robot-

Studio API module. This allows an external client to connect to the server and send

commands to the robot.

The FlexPendant is a handheld operator unit used to perform many of the tasks

involved when operating a robot system. In this project, the FlexPendant is used

when the human operator is required to work closely with the robotic arm in various

roof-bolting activities, or for maintenance. The human-robot interface for the Flex-

Pendant is developed using the ABB ScreenMaker software. The interface consists of
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different buttons corresponding to different motion modules.

Figure 3.9: Human-robot interface for computer environments

Integration of individual actions-HMI

The motion of individual components is integrated into the robotic assembly and

the software is updated accordingly. The trajectories of the robotic arm, including

the angle, velocities and acceleration of all joints have been studied. Attention is

directed to the coupling of the components since some of them are required to move

together (parallel events), while some operate once a preceding motion has been

executed (series events). Suitable buffer times were built into the computer software

for a smooth transition between motions of individual components. The computer

software was modified to realize the desired motion.

Time studies of the individual mechanisms were carried out, followed by time

studies of a complete cycle of roof-bolting. The researchers examined the mecha-

nism iteratively to minimize the time required for safe operation, towards reducing

the overall cycle time of the operations. The human-computer interface was fully

integrated and functional with the physical model of the robot at the end of this

stage.
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A human-machine interface has been integrated to enable a manual approval of

the tasks and override the system in the event of unpredicted or unsafe activities.

It is necessary to mention that an online in-situ drill monitoring system is needed

to evaluate the quality of the bolting process and provide information on rib and

roof integrity. The initial focus was on creating the analog of the bolt module.

Analytically, building an analog bolt module involves the following stages:

(i) Roof Bolt Ejection – the first stage of the installation process involves the

ejection of a roof bolt from the storage magazine. A series of robotic movements

that operate in turn assist the ejection process. The result is that a roof bolt

is dropped into the jaws of the bolt transverse device (chuck).

(ii) Roof Bolt Vertical Placement – once at the pod, a small hydraulic jack and

clamp arrangement rotates the roof bolt vertically.

(iii) Roof-Bolter Loading – the roof-bolter extends the drill motor up, so the roof bolt

sits in the chuck. Once the roof bolt is seated, the carousel releases the grippers

on the roof bolt so the roof-bolter can assume the next roof bolt installation

position.

(iv) Installation Position – the loaded roof-bolter assumes the next installation po-

sition with assistance from the strata profiling system, used to survey the strata

profile for optimum bolt placement in the support pattern being installed.

Specifically:

a) The roof bolt plate magazine located on the side of the bolting slide frame

ejects a plate on top of the head plate;

b) The head plate of the bolter extends up to the roofline, with the roof bolt

plate to secure the bolter to the roof strata;

c) Drill rotation and drill feed commence and operate under monitored rates

to ensure optimum drill performance;

d) Once the self-drilling roof bolt has been drilled, a set amount of chemical

resin is injected;
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e) The drill head retracts down the bolt slider, and the head plate retracts

of the roofline.

(v) Reload Roof-Bolter – the autonomous robotic arm returns to the original posi-

tion, where the bolter docks in position to load the next bolt.

3.6 Conclusions

The study shows that fully autonomous systems and semi-autonomous features can

be applied in a broader range of repetitive roof-bolting tasks. Tracking systems and

collision avoidance solutions need to be taken into consideration before employing the

operatorless roof-bolting equipment. Although, based on the findings of this chapter,

a proposed system that will allow each party on a job site to work independently,

without the disturbance of co-workers, is the optimal solution for enhancing miner

safety and increasing the productivity of site operation. That is, the robot movements

will not be halted upon detection of a miner’s motion. Instead, the miners will com-

municate their intention to the roof-bolter’s system without completely stopping the

drilling operation. On the other hand, the autonomous bolter will have to safeguard

the human operators working on the face. With the introduction of automated func-

tions and machines, soon, there will be a need to re-educate the mining workforce to

enable a more efficient and sophisticated collaboration with the autonomous bolting

system, allowing for safer operation.

Copyright© Anastasia Xenaki, 2021.
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Chapter 4 Concepts for the Development of the Autonomous Roof-Bolter

4.1 Introduction

A detailed study of human motion is carried out using computer software. The study

is based on the operator’s movement relative to the motion of a roof-bolting machine

boom arm. Results are used to guide the development of a robust remote calibration

diagnostics and self-monitoring system, to integrate a human-machine interface that

enables a manual approval of the tasks, and to override the system in the event of

unpredicted or unsafe actions. Although this project aims to provide a better working

environment for operators, productivity and the value of immediate roof observations

should not be discounted.

4.2 Description of the Autonomous Process

The construction of a robust autonomous roof-bolter, able to carry out required

tasks is based on an appropriate architecture that will enable it to make decisions

similar to those made by humans. The autonomous roof-bolter must be capable

of sufficient robotic spatial perception, robust remote calibration diagnostics, and

self-monitoring capabilities. Overall, the autonomous roof-bolter must successfully

perform the following functions: drill steel positioning, drilling, bolt orientation, and

placement, resin placement, and bolt securing.

The foundation of an autonomous roof-bolter is the control module. A Pro-

grammable Logic Controller is developed to monitor drilling operations. A Drill

Control Unit is also set up to automate the drilling and bolting cycle for improved

safety and productivity. The systems are tested in the Rock Mechanics laboratory at

the Mining Engineering Department, University of Kentucky. The display and control

can be activated through a rugged touch screen panel. A CAN Bus system interface

is integrated directly in the valve section to connect to the master control unit and

control the roof-bolter’s hydraulic system. The CAN Bus system has the bandwidth

to cope with real-time control and data collection, while significantly improving flexi-
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bility. A joystick controls the drilling operations of the roof-bolter. Sensors monitored

by this centralized system used for controlling or monitoring roof-bolting parameters

(temperature, pressure, height of roof) by using CAN interface, are connected to the

expansion block. This module continuously operates and is responsible for monitor-

ing the control module, assuring that is working correctly and that the robotic arm

does not deviate from the desired path.

The determination of contact incidents for each component resulted in the follow-

ing possible occurrences:

(i) In the case of a collision between the machine and the operator, the user can

immediately stop the operation and release the operator.

(ii) A complete analysis of the interaction allowed for analysis of situations where

no contacts or avoid incidents occurred.

This analysis provides information that helps make recommendations to reduce

the likelihood that roof-bolter operators are injured from contact with the robotic

arm and roof-bolter boom arm.

4.3 Controller Setup

iQAN

Parker Hannifin have developed a line of control system products under the name

IQAN, which are used for controlling the hydraulic systems in mobile machines. The

IQAN system allows the user to monitor different IQAN-units that are connected

together through a CAN-network. IQAN is usually used together with Parker Han-

nifin’s valves and other control systems in order to monitor and control the behavior

of the machine on which it is operating. It has the possibility to create its own con-

trol scheme, in a similar way with blocks as in Simulink; however, this is not used

for this project since it will not allow custom algorithms. The main reason for using

IQAN is the easy access communication protocol of CAN, which will be discussed

more thoroughly in the next subsection.
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CAN Communication protocol

To send the generated code to the ECU, a Controller Area Network protocol is used

to transmit and receive data. The generated Simulink code can be uploaded through

a USB CAN adapter and then be used by the ECU. The CAN protocol is a standard

for industrial communications, and it has its benefits of low cost, priority messages,

error capabilities and a lightweight network. The CAN protocol has primarily been

used in the automotive industry, but it is now very popular in hydraulic systems due

to its convenient properties. The CAN terminology can be explained as the CAN

device sending data across the CAN in packets called frames, referred to as messages.

In the CAN frame, each signal is contains 8 bits of data and each frame can contain

up to 64 individual signals and 8 bytes of data for the entire frame. For our system,

the main signals communicated by the CAN protocol are the measured pressure in

service ports A and B and the command signal from the operator. The monitored

signals can be chosen differently, depending on what the user is interested in, which

is calculated via the controller.

For this thesis, the main signals that can tell us how well the adaptive control

acts are the estimated frequency, estimated damping, the control signal, and how

well the effective load pressure is damped. Besides the signals used to monitor the

controller’s performance, the communication also allows the user to send parameters

to the controller for easy online tuning. This will be very convenient when tuning the

controller online. Since the CAN protocol is done in binary, each message received

will be encoded into a “real world” value. This is done by a module through Parker

Hannifin’s IQAN system, which supports CAN.

EtherNet/IP protocol

EtherNet/IP (EtherNet Industrial Protocol) - is a communication link connecting

industrial devices.The EtherNet/IP is managed by ODVA (Open DeviceNet Vendors

Association). It is a well-established industrial ethernet communication system with

good real-time capabilities. EtherNet/IP extends commercial off-the-shelf ethernet

to the CIP (Common Industrial Protocol) — the same upper-layer protocol and
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object model found in DeviceNet and ControlNet. CIP allows EtherNet/IP and

DeviceNet system integrators and users to apply the same objects and profiles for

plug-and-play interoperability among devices from multiple vendors and in multiple

sub-nets. Combined, DeviceNet, ControlNet and EtherNet/IP promote transparency

from sensors to the enterprise software. The configuration process is based on EDS

files (Electronic Data Sheet) which are required for each EtherNet/IP device. EDS

files are provided by the device manufacturers and contain electronic descriptions of

all relevant communication parameters and objects of the EtherNet/IP device.

Component description

The master controller of the system is a Parker MD4 with an X7 expansion module

running the iQAN interface, which includes a touchscreen and joystick. The iQAN

interface communicates to the programming panel and the ABB and PLC controller

through the AnyBus CAN to Ethernet/IP interface. A system block diagram is shown

in Figure 4.1.

This design will allow a typical automobile class PLC to run the system, and

therefore, it can immediately be placed on a vehicle. It also allows for sensors and

other input devices to be placed where it’s convenient. For instance, a sensor that

is on the CAN bus can communicate values to the robot controller and the value be

ignored completely by the PLC. Values that need to be passed between the systems

are mapped by the Anybus.This project is the integration of several technologies and

the communication between the devices is critical. However, during development,

several testing and prototyping communication methods have been developed.

C# scripts (.NET framework) have been developed that use the RobotStudio

API to control the robot directly. Other C# scripts have been developed to use the

Kvaser CAN interface (a USB to CAN connection) to communicate directly with

the PLC. The scripts can bypass the Anybus interface, and this allows the testing

and development to move forward before the final map between the two interfaces

is developed. Using CAN bus as the primary communication interface makes the

communication network more accessible to sensors and other devices. Industrial

ethernet protocols such as EtherNet/IP have a suite of sensors available, but the
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sensors tend to be for specialized purposes and are expensive. CAN bus interfaces

are available and common because of their use on vehicles, including in mining and

agricultural applications.

Figure 4.1: Block diagram and communication methods

Figure 4.2: PLC and ABB mounting options

Figure 4.2 shows two different mounting options for sensors that may need to

be included in the control of the system. Because of the communication architecture

sensors can be placed where they will be the most convenient. If they report their

values easily on CAN bus , as a bus-enabled sensor, but need to be consumed by the

robot, the values can be translated into EtherNet/IP signals that the robot controller
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can understand. Similarly, if the sensor would easily be placed on the arm, as a

distributed control, and uses the digital or analog signaling, it can be converted into

a CAN packet and communicated on the CAN bus with little delay.

4.4 3D Parts

After meeting with J.H. Fletcher, the research team decided to change the drill size to

one inch, while the machine was designed for a 1-1/2 inch drill. This requires multiple

modifications to the machine that are also an opportunity to add functionality and

sensors. Integration of the robot and the hydraulics requires a lot of fixtures and

tooling. Design flexibility, time savings, and the ability to print remotely and on-

demand were the main reasons for using the 3D technology. Also, the same models

used to 3D print the parts can be used in the UKY Innovation Center to machine

the parts or can be used by a local machinist to manufacture the parts. An example

part that has a limited lifetime use is the chuck wrench, shown in Figure 4.3.

The part pictured is the first iteration; it fits in the chuck and was designed to

engage the drill steel while spinning. As discussed below, the robot will put the drill

steel in the clamp and the chuck must engage the steel. The angle of the opening

on this wrench works very well for engaging the steel; however, this part is currently

being redesigned. This part must also allow room for the coupling nut and be open.

Eventually, this part must also engage with the resin injection system, which may

require another redesign.

The drill clamps and guides, Figure 4.4, are parts that also needed to be re-

designed for the smaller drill diameter. These parts will probably remain 3D-printed

because of the pliability of the plastic. The drill guides will be much quieter for our

purposes made from plastic; however, with a production machine, plastic may wear

too quickly with the full speed of the head. The design for the clamps was originally

modified specifically to grab the smaller diameter bolt and drill steel. With this de-

sign, adding a sensor to detect a successful clamp is possible. That modification may

be necessary as the project continues.

The robot shipped from ABB with a simple end-of-arm tool designed for stacking
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Figure 4.3: 3D-printed chuck wrench

Figure 4.4: 3D-printed clamp inserts and drill guides

aluminum pieces, and it did not survive picking and moving PVC pipes. The research

team worked closely with engineers at Fluidaire Automation to specify clamps for the

end-of-arm tooling. Two Schunk clamps were purchased, shown in Figure 4.5, that

were recommended to be used in tandem. These clamps are very heavy (approxi-
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mately 9 pounds each) and reduce the robot’s lift capacity at full extension if both

are installed. The research team believes that a single clamp will be sufficient as long

as the gripping area of the 8-foot bolts used for load testing is controlled carefully.

Also shown in Figure 4.5 is the 3D-printed fingers for the tooling. These are made

from I-beam style brackets attached to the sliders of the clamps. The gripping fingers

are a modified v-block design that grips the drill steel and bolt tightly. The v-block

design is efficient in gripping round objects and is commonly used in machining. This

design has held up very well to abuse during testing. Commonly, positioning is off

while programming the arm’s motions and small collisions have a large moment.

New finger designs incorporate reinforcements for weaknesses. The pictured fin-

gers have been very resilient in testing. These designs will eventually be made from

a more durable material when the design has been shown effective. There is a flexi-

bility in the plastic that is desirable, which is not available in most metal materials.

Traditional drill steel coupling using spring detents, or “wedding rings”, can often be

hard for human operators to separate. This project uses the new quick release design

from Fletcher that only requires an 1/8 turn to couple and decouple. Figure 4.6 is

an image of the drill steel coupler used in this project. Because of this coupling, the

robot does not need to turn the drill steel or pull the drill steel apart. The coupling

can be engaged by the chuck when the bottom of the first drill steel is aligned in the

drill guide and the second drill steel is placed into the first by the robot. When the

chuck wrench connects to the bottom drill steel, the coupler will be locked. To unlock

the coupler, the top drill needs only be held by the clamp, while the head reverses

rotation, forcing the pieces apart.

The Schunk clamp, like most of their clamps with this strength, is designed to

be fail-safe. Meaning, when the pneumatic line to the close side of the clamp loses

pressure, the clamp will not open. Because this is a double-action clamp, both the

open and close actions are powered, so the stock Air Control Unit on the robot was

insufficient (Figure 4.6a). A new unit that will over-ride the fail-safe was put on the

robot (Figure 4.6b). This air valve will push air to the close side of the clamp when

energized and will push air to the open side in all other cases. This means that if the

robot loses air pressure or power it will drop whatever it is holding. The hazard from

51



a falling bolt is less than the potential hazard from the bolt swinging and colliding

with pinning a person or limb. In the case of an accident the power can be cut, and

the robot will let go of the bolt or drill steel.

4.5 Bolt Module Setup

The descriptive study of the operator’s direct motion pattern and roof-bolter op-

erational stages is an important stage in specifying the level of autonomy of this

designed system. The level of autonomy of the robot needs to be tailored to the

requirements of the user. For this study, the robot executes tasks without continuous

human interaction. The control mode of supervised autonomy seems to be the best

strategy. Supervised autonomy makes it possible to modify the level of autonomy

of the robotic system. However, for some tasks, like preventing a collision, a shared

level of autonomy may be desirable. Shared-control methods can support the user

in performing complex tasks, by building up the tasks in phases, wherein each phase

has an individual set of controls.

To demonstrate the features of the roof-bolter environment, it is important to

identify and define the actual goals. The task of placing the drill steel is composed of

five parts. Inspired by observation of the strategies adopted by the roof-bolter oper-

ators, Table 4.1 shows all five possible motion patterns of the roof-bolter operator.

Analogous to the previous table, Table 4.8 shows all possible roof-bolter operational

stages, defined to plan the motion of the robot during task execution.
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State Description

Roof bolt ejection The first state of the installation process involves
the ejection of a roof bolt from the storage magazine

Roof bolt vertical placement This state occurs when the bolt is placed at the bolt
base. The robotic arm moves away.Once at the bolt
base a small hydraulic jack and clamp arrangement
rotates the roof bolt vertically.

Roof-bolter loading This occurs when the roof-bolter extends the drill
motor up so the roof bolt sits in the chuck. The
robotic arm remains in the previous state. Once the
roof bolt is seated, the bolt base releases the clamps
on the roof bolt so the roof-bolter can assume the
next roof-bolting installation process

Next installation position The loaded roof-bolter assumes the following instal-
lation process. The robotic arm moves towards the
storage magazine and grabs the specified chemical
resin. The chemical resin is injected. The chemical
resin can go off before the drill head rotates

Reload roof bolt The robotic arm returns to its original position.
Then moves towards the storage magazine and
grabs a new bolt. Once in the bolt base the bolter
docks in position to load the bolt

Table 4.1: Descriptive study of the roof-bolter operator’s motion pattern
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(a)

(b)

Figure 4.5: Drill steel quick coupling
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(a) Primary air control unit

(b) New air control unit

Figure 4.6: Available air control units
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State Description

Broken This state occurs when the bolter is recovering from a failure that will
stop the bolter from operating

Delayed This state occurs when an outside influence has prevented the bolter
from operating

Bolting This occurs when the bolter has completed bolting an area

Tramming This occurs when the bolter has arrived at a new place to bolt

Waiting This occurs when the bolt supposes that it will be able to tram to a
place that requires bolting

Table 4.2: Descriptive study of the roof-bolter operational stages

4.6 Simulation Environment

A roof-bolting scenario is set (Figure 4.7) in the ABB Robot Studio (robot simula-

tor developed by ABB). The simulated roof-bolting scenario is constructed based on

the actual roof-bolter at the University of Kentucky shown in Figure 4.8. The sim-

ulation phase of the automated roof-bolting project provides a representation of the

planned autonomous roof-bolter lab structure. The simulation environment, incorpo-

rated by the IRB 1600 robotic arm and drill steel, is based on actual evaluations to

develop the roof-bolter structure and other functional components. Combined with

the specification, i.e., robot’s arm reach and actual payload, the research team was

able to define the limits for the system capabilities.

Development infrastructure

Aiming to facilitate the communication between the user and the developer, and

considering the advantage of the familiarity that current developers have with them,

Git and GitHub were used. For operators, usage, performance and installation of the

updated libraries matter the most. The usage of the packages has been simplified by
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(a) (b)

(c) (d)

Figure 4.7: Localization based on the 3D model of the roof bolt environment. The
robot is picking up a drill bolt and placing it into the chuck

relying on program syntax similar to the movement patterns that the robot follows.

Furthermore, good optimization is achieved by careful optimization of the package

and by RAPID and C# implementation. The ease of installation lies in the use of a

local repo from the central repo (git pull origin master).

4.7 Translating Human Picking Skills into Robotic Motion Patterns

Different motion patterns are developed and tested for the roof-bolting tasks. This is

done by setting important waypoints as targets for the robot. Consequently, the robot

follows the waypoints automatically. Once the motion patterns are set, the robot

accurately and repeatedly executes the tasks. These motion patterns are implemented

in RAPID (Figure 4.9). It is crucial to analyze how different levels of the location

of the robotic arm affect the performance of the roof-bolting cycle. The algorithm

uses the whole roof-bolting motion to generate a process (line 1). First, two positions
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Figure 4.8: Actual roof-bolter located at the University of Kentucky, Rock Mechanics
lab

are specified for the robot to reach. Then, the robot moves to the initial position

(line 2) and grabs the drill steel (line 3), and finally it retracts the drill steel towards

the drill head (line 4). Notably, the retract motion must be carefully designed to

avoid the potential collision between the robot and the roof-bolter. Subsequently, the

robot places the drill steel into the drill head (line 5). The robot reaches the positions

only when the relative distance between the robot and the roof-bolter is correct. The

program implements a general picking and placing drill-steel process, corresponding

to Figure 4.9, and it is straightforward, extending to other processes in the whole

task.

4.8 Implementation and Verification of Robot Motions

For validation, the simulation results are run on the actual roof-bolting system. The

currently implemented robot motions include self-positioning, drill grabbing and drill

plugging. The successful execution of commands by the robot generates feedback

signals delivered to the HMI system. Upon completion of a task, a green light indica-
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tor is activated on the user interface. After the robot executes assigned commands,

feedback information can be transmitted to the human operator to inform them of

the task’s status. It is possible to verify that the robot is at the correct position with

self-positioning before performing the task.

Figure 4.9: The pseudo-code for generating roof-bolting human motions

4.9 Discussion

One of the most challenging tasks of automating the operation of the roof-bolter is

that the manipulator should perform the specified operations while in limited space.

So, the placement of the robotic manipulator in the vehicle is crucial. The robotic

arm should also be able to pick up and install longer-than-seam-height-bolts, both
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resin and mechanical, with the various ancillary parts required of roof-bolting. Its

storage needs not be kept in the module, but arrangements are made to provide the

module from onboard storage and minimize onboard storage re-provisioning.

4.10 Critical Milestones

The robotic arm installation project requires re-imagining the bolt installation pro-

cedure in terms of the dexterity of the human operator. Historically, locating the

installation assembly relied on the operator. The basis of this project is to use an

automated machine-positioning system, which is a 6-axis anthropomorphic robot in

place of a human to handle the drill steels, bolts and other consumables. This robotic

assembly will carry out the entire sequencing of the roof-bolting. The hydraulic sys-

tem will be synchronized with the robot’s operations. A human operator will be

required to approve major operations, while also maintaining the ability to operate

the robot and the hydraulic system. The only human interaction with the autonomous

roof-bolter should be re-provisioning the onboard storage, maintenance and supervi-

sory control of the machine (Jobes, 1990). A list of functional requirements that a

picking-placing system should match is reported in the flowcharts of Figure 4.10.

The complete developed system layout set at the University of Kentucky, Rock Me-

chanics laboratory, is presented in Figure 4.11. Observing student-human operators

at the laboratory, and analyzing the video recording of skilled human operators, led

to the design of a preliminary flowchart of the semi-autonomous roof-bolting cycle

(Figure 4.12) and to the design of a schematic representation of the roof-bolter and

robotic arm shared activities (Figure 4.13).

4.11 Conclusions

Mining is a rapidly growing industry and recent advances in engineering automation

can substantially improve the safety of operations while increasing operational effi-

ciency and production capabilities. This requires combining expertise from mining

operations with control methods in robotics. Future work will focus on enabling au-

tomated equipment to dynamically adapt to changes in the environment, rather than
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executing pre-planned motions. It will also expand the proposed capabilities to tasks

beyond roof-bolting, such as autonomous navigation and tool delivery.

Figure 4.10: Flowchart of the human motion states (left) and the robotic arm con-
trollers (right)

Copyright© Anastasia Xenaki, 2021.
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Figure 4.11: Schematic developed system layout at the University of Kentucky, Rock
Mechanics laboratory
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Figure 4.12: Preliminary flowchart of the semi-autonomous roof-bolting cycle
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Figure 4.13: Schematic representation of the roof-bolter and robotic arm shared tasks
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Chapter 5 Performance Evaluation

5.1 Project Overview

The primary goal of this prototype solution is to develop typical motions the robot

will perform while in operation. The author verified and implemented the core robot

motions by clearing the area of potential collisions. The implemented robot motions

include steel manipulation. As described in previous chapters, navigation is limited

to following a pre-defined path and collision avoidance while operating in fully au-

tonomous mode rather than mapping and path-planning. The operator can easily

switch into manual mode whenever necessary. One of the most challenging tasks

of automating the bolting cycle of a roof-bolter is testing the control algorithms, as

it proves to be a progression from simple scenarios to more complicated ones. In

this chapter, the functionality of the prototype of the autonomous roof-bolter will be

demonstrated.

5.2 Testing Scenarios

Test Pattern 1: Grasping Drill

The drill steels are placed within a prototyped drill steel holder (Figure 5.1) at the

designated locations, such that the robot can easily manipulate them in the confined

space. The waypoints on the robot trajectories are carefully specified to avoid different

obstacles of different sizes and shapes, like roof-bolter, power cables, etc. To close

and open the robot gripper, a customized air valve is installed, and a signal is defined

in the robot controller. Signals on the robot controller are the equivalent of tags

on typical PLCs. Once the drill steel is grasped, the robot will follow a predefined

trajectory to lift the drill steel up and plug the drill steel into the drill head.

During the development, the plastic gripper fingers may introduce noise into the

grasp point. The author was uncertain that the current finger design will work for all

operations and plans to manufacture metal fingers that will flex less. However, the
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flexibility in the prototype is required to account for the deviations in the algorithm.

It is reasonable to expect that a machine in mining conditions will experience the

deviations even with rigid fixtures.

Test Pattern 2: Drill Placement

The initial plan to imitate human motions, placing the drill directly in the chuck,

destroyed several plastic gripper fingers. Additionally, variations in location and

orientation of the steel when grasped resulted in the drill missing the chuck. Moreover,

the chuck is moving, and using the hydraulics alone, it is difficult to put into a

perfectly repeatable position. The research team found it significantly more robust

to position the drill on the holder (Figure 5.2). While this motion would be complex

for a human, since it requires targeting a point in space between two moving jaws, it

is ideal for the robot. The grip location along the length of the drill is still a variable

because collisions must be avoided with the roof.

However, once in the clamps, the hydraulics alone can chuck the steel. While the

robot is accurate in positioning, its joint actuators are not pliable via outside forces.

In this case, the robot is handing the steel to a clamp, which is much like handing a

broom (or any long rigid bar) to someone else. Humans will adjust the angles of their

wrists, elbows, shoulders, etc. based on the force exerted by the other human when

they grasp the same object. The outside forces will not move the robot’s joints, and if

the force exceeds the robot’s holding strength, the robot will move and be damaged.

The research team plans to replace the plastic customized gripper with a metal one;

one challenge will be making sure the clamps of the roof-bolter can safely grasp the

drill steel while held by the robot. The research team is still determining where the

point of failure should be located. The current 3D-printed fingers will break much

sooner than the servo motors. As will be discussed later, the metal clamps in the

hydraulics are replaced with 3D-printed inserts. Either the inserts or the fingers are

the logical points of failure, but this will be determined in further testing.
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(a)

(b)

Figure 5.1: A side view of the prototype drill steel holder and coupled bolts
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Figure 5.2: The robot accurately places the drill steel into the clamps. On the
contrary, the robot cannot accurately place the drill steel into the chuck

Test Pattern 3: Drill Replacement

The last step is to remove the drill-steel from the drill area. This trajectory is

the reversed installation trajectory. Yet, because of the mentioned variation in the

location of the hydraulic head, there is variation in the grasp point on the steel. This

variation needs to be accounted for in the drill-steel storage, allowing the arm to

“drop” the steel into storage. For this reason, storing the drill-steels vertically in the

prototype holders was chosen.

The other motions that the robot will perform are variations on these motions.

They are to grasp from a predictable position, hand off to the hydraulics, clear obsta-

cles, and return fixtures to holders. Major, yet to be developed, patterns are installing

the resin-injection system and grasping the bolts. The resin-injection system, and the

other fixture that needs to be returned will also be stored vertically. The research

team did investigate magnetic mounts and other clamping fixtures. These fixtures all

have similar problems to the clamps on the hydraulics. The main goal is to minimize

the amount of and opportunity for outside forces to act on the robot, especially while

it is in motion.
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Using time series analysis to identify poor hydraulic performance

In this experiment, time series analysis was used to identify issues associated with

poor hydraulic performance. A laser distance meter was placed under the roof-bolter

pod, calculating the vertical distance between the floor and the pod for each drilling

cycle. Here, the drilling cycle is divided into the Insert Bolt cycle and Couple Bolt

cycle. Each cycle is completed every 15 seconds. The distance was measured in inches.

Table 5.1 summarizes the acquired data. The set of data consists of n = 32 total

measurements. Indications of complex, non-stationary behavior can be visualized on

Figure 5.3, as the mean and standard deviation are not constant over time.

Table 5.1: Summary of studied data-sets

Insert Bolts (in) Couple Bolts (in)
10/25/2021 8.875 8.875

8.625 9.062
8.437 8.812
7.750 8.062
7.250 7.687
6.937 7.000
6.125 6.314
6.000 6.000

10/27/2021 8.875 8.875
8.687 9.062
8.500 8.625
7.937 8.187
7.273 7.750
6.812 7.273
6.314 6.437
5.875 5.937

The trend present in the data set must be carefully examined. Validation mea-

surement formulas were used to provide an evaluation of the statistical behavior of

the system. The tested equation was the Pearsons’s correlation coefficient (rs). The

Pearson’s correlation is frequently used to measure the degree to which two variables

are correlated. The closer the Pearson’s product is to 1 or -1, the more accurate
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the linear fit (Figure 5.5). Figure 5.4 provides another indication that there is no

apparent pattern in the data points, and therefore, there is little correlation between

data points.

Figure 5.3: Plot of the measured vertical distance (in) as per bolting cycle, respec-
tively. Trends are present for each group of data

The fact that vertical distance between the floor and the pod decreases over

the course of time for each drilling cycle indicates serious issues associated with

inadequate hydraulic performance. Those problems can be attributed to (a) poor

resistance of working fluids, and associated decreased load-bearing ability, (b) the

presence of leakage, (c) the hydraulic unit is sensitive to temperature changes, and

(d) a pump not suitable for long-distance transition, hence requiring a higher applied

hydraulic energy.
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Figure 5.4: Scatter plot of the vertical distance (in) original and estimated values.
The estimated value is 8.875 in, which is the position where the pod needs to be for
every drilling cycle to begin

Figure 5.5: Pearson’s correlation chart
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5.3 Developing HCI for Machine Operator

The Parker iQAN touch screen is the primary Human-Computer Interaction (HCI)

device for the machine operator. The integration of iQAN and the ABB robot con-

troller allows the operator to send commands both to the robot arm and the roof-

bolter (Figure 5.6 - Figure 5.13). Two HCIs are being developed in parallel tracks.

The first HCI is the C# based system that is purely for development purposes, run-

ning on the computer and bypassing much of the communication. The second HCI

is an interface for the research team. This interface isolates specific CAN messages

and robot signals to particular buttons and screens with information about current

actions and communication. The primary purpose of this display is for development,

demonstration, and timing. As the development total sequence progresses, groups of

individual commands from the research team’s interface are transferred to the au-

tomatic interface (Figure 5.8). An example in this grouping is “Place Drill”; this

performs the following actions:

(i) Open the upper clamp and drill guides.

(ii) Move the drill chuck to the bottom position.

(iii) Pick the drill steel from the holder and move it to the center of the clamp.

(iv) Close the top clamp.

(v) Move the robot safely away.

(vi) Close the guide clamp.

(vii) Rotate and lift the chuck slowly.

(viii) Open the top clamp.

As discussed in the previous report, the human operator will be needed to autho-

rize the next grouping of actions. This interface is developing to give the operator

the flexibility with the hydraulics and the robot, while not overgenerating options.
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5.4 Integrate Individual Actions, Bolt Module and HCI

The robot actions need to coordinate closely with the roof-bolter’s hydraulic actions.

The HCI is implemented on the PLC to control both the robot and the roof-bolter

through IQAN. There are several ongoing communications that are not seen by the

user. One example is a “handshake” communication between the robot and the

PLC. The handshake works similarly to a heartbeat that is typically used when

integrating two systems. Heartbeats typically work by one system creating a message

that is viewable by the second system, and the second system keeps track of the

time between signals. If the time between signals exceeds a threshold, then the first

system is no longer available. Because both systems have control of various functions

in this application, both the robot controller and the PLC would have to implement

heartbeats and track the other system. The heartbeat cannot be made only via the

robot controller because the robot tasks could take longer than a reasonable timeout.

The handshake works in a slightly different way. A CAN message is generated by

the PLC, and this is translated by the Anybus into a signal on the robot controller.

The robot controller has a subroutine that triggers on the signal change, and it toggles

the signal back to the original state. That toggle is translated by the Anybus into

a CAN message. Similarly, that CAN messages toggles an internal digital input in

the PLC and the messages continue being passed back and forth, rather than blindly

reporting.

The robot controller is setup with a listing of different signals for triggering RAPID

code, causing the robot to do different tasks, e.g., grabbing the drill, lifting, plugging

the drill. The signals correspond to different mappings on the IQAN message frame.

Figure 5.14 shows frames of a demonstration video of delivering the drill to the

roof-bolter and performing a drill motion.

All commands of the operation are controlled by the HCI. As this development

progresses, more communication channels between the robot and the PLC are being

added. For example, the PLC needs to know when the robot has finished its particular

task. But this cannot be done with a generic “completed” signal; the signals need

to be specific to each task to avoid confusion between the robot controller and the
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PLC. Furthermore, more information between the robot and the roof-bolter needs to

be added, e.g., the robot positions, velocities, and acceleration.

5.5 System Integration Development

Practical software integration activities started with lower-level integration practices.

This approach allowed for verification of the correctly implemented software code

development and validation of the significant system functionalities. Later in the

integration phase, test plans and procedures were developed to test the designed

autonomous roof-bolting cycle. When necessary, integration tests were rerun. From

an academic standpoint, the execution of the integration plans was responsive to the

project’s needs. Each step was reviewed and updated to reflect the altering project

priorities and requirements.

A critical element of this thesis was the development of the Gateway component,

which provides the user interface and central location of admission into the system

for operators. Figure 5.15 shows an example of the function groups that have been

developed to control the functions from the HCI using the Anybus Configuration

Manager. In order to exchange data signals, the Ethernet network reads and writes

the data into memory addresses. Those addresses have been first specified by the

Anybus Configuration Manager - Communicator RS232/422/485. Finally, the as-

signed memory addresses are exchanged with the subnetwork. This example group is

broken into consuming and production CAN messages that are either causing direct

action from the PLC or are communicating action to procedures that are written

in ABB’s RAPID language, stored in the robot controller. Here, the Anybus Com-

municator - EtherNet/IP, a hardware created by HMS, is used to connect and map

non-networked industrial devices and equipment to EtherNet/IP. The Communica-

tor can transform a majority of serial protocol (i.e, ModBus RTU, ASCII, etc.) to

proprietary Query/Response or Produce/Consume protocol. The product consists of

a connector and a communication processor. This device requires no hardware or

software changes for the connected automation device.
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5.6 Discussion

Modern mining industries are currently adopting the innovative idea of developing

and implementing intelligent autonomous systems: modern learning algorithms (i.e.,

hybrid-neural, deep learning, and convolution networks), advanced computer hard-

ware, and software aid in automating complex tasks and operations. In the last

few decades, the U.S. coal industry has been more interested than ever in employing

fully autonomous, semi-autonomous face equipment and tele-operated vehicles. All of

these technological advancements encourage the idea of creating an efficient, effective,

safer, and sustainable mine.

Amid the recent advancements in underground machine operation automation

(i.e., LHD automation) is roof-bolter automation. Drilling and installing bolts in

the underground coal roof is a highly cost-intensive process in terms of capital and

operational cost per ton with equipment, making the ergonomic critical (efficient de-

sign and real-time performance evaluation). Modern roof-bolter models are required

to understand the nearby environment, recognize and interact with neighbor face

equipment, and overall enhance operational automation (Peng et al., 2019).

Ensuring the miner’s safety is the pivotal factor in adopting autonomous solutions

in underground mines. Deep underground mining is becoming the trend, not only of

coal but of the metal mines as well. Therefore, it is important to overcome the dis-

advantages of traditional underground mining methods, such as frequently changing

geological and geomorphic environment, high safety risks (i.e., tunnel collapse, roof

falls, land subsidence, machine collision, etc.), and severe health risks (i.e., respiratory

diseases such as silicosis, pneumoconiosis, etc. (Rahimi et al., 2021)). An increasing

number of countries, such as Canada, Finland and Sweden, are currently collaborating

with autonomous solution companies to develop customized autonomous heavy min-

ing equipment to operate intelligent and autonomous mines. More and more mining

companies are developing a serious interest in autonomous technology. For example,

according to the Canadian government’s 2050 long-range plan, Canada is planning on

transforming one of its underground mines in the northern part of the country into

an autonomous mine, meaning that all devices will be controlled from Sudbury via
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satellite (Walker, 2012). Another example is the Grountecknik 2000 strategic plan

that is carried out in Finland. According to the program, veteran mining companies

like Atlas Copco are actively developing a series of intelligent underground mining

equipment and their related control systems Ralston et al. (2014). Furthermore, com-

panies like Rio Tinto in Australia have already incorporated self-driving vehicles in

their operations. In the U.S., J.H. Fletcher Co. is designing custom roof-bolter

models for various underground conditions.

Yet, autonomous drilling requires that the software and hardware solution adapt

itself to unexpected situations as such that can be found in an underground coal

environment. Moreover, the functions to be automated require careful consideration

of the capabilities and limitations of humans (Lynas and Horberry, 2011).

The robotic arm installation project requires re-imagining the bolt installation

procedure on the dexterity of the human operator. Locating the installation as-

sembly relies on the operator or the automated machine-positioning system. This

robotic assembly will be able to carry out the entire sequencing of the roof-bolting.

The hydraulic system will be synchronized with the robot’s operations. A human

operator will be required to approve major operations, while also maintaining the

ability to operate the robot and the hydraulic system. The only human interaction

in the autonomous roof-bolter should be the re-provisioning of the onboard storage,

maintenance, and supervisory control of the machine. There are enough literature

publications concerning the future of the mining sector. However, these publications

are limited in covering only specific aspects of implementing a robotic system into a

heavy hydraulic machine. This research offers an opportunity for the mining commu-

nity to gain information about the elements of developing and testing the autonomous

roof-bolter in a lab-scale setup.

Copyright© Anastasia Xenaki, 2021.
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Figure 5.6: Touchscreen HCI for the Automatic Processes - Menu

Figure 5.7: HCI Overview - Press Hydraulics to activate the roof-bolter’s functions
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Figure 5.8: HCI Engine - Control and monitor the robotic and hydraulic tasks

Figure 5.9: HCI Engine - Press Yes if coupling is required. Press No to continue with
the bolting cycle

78



Figure 5.10: HCI Joystick - Control and monitor the hydraulic function manual. The
user can use the designed push buttons or, alternatively, use the joystick (LC5)

Figure 5.11: HCI Camera - View of the autonomous roof-bolter. Press START to
begin a fully autonomous bolting cycle. Press STOP to end task. Camera is at wait
state
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Figure 5.12: HCI Menu - The user can overview the system properties, adjust and
select desired preferences

Figure 5.13: HCI Event Log - Display module log
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(a) Pick Drill

(b) Place Drill on the roof-bolter

(c) Raise Base

(d) Perform Drill Operation

Figure 5.14: Drill operation performed by the ABB robot arm and roof-bolter
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(a) Network IP Adress: 192.168.130.40 and Subnet Mask: 255.2555.255.0

(b) Bit Rate: 250kbits/s and 11-bit CAN identifier

Figure 5.15: Example of the function group in the Anybus Configuration Manager
architecture
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Chapter 6 Conclusions and Recommendations

6.1 Conclusions

In conclusion, this thesis has presented the need to develop the autonomous roof-

bolter that can enhance the miner’s safety, aid in the continuing increase in pro-

ductivity, and reduce operational costs for the current and future mining conditions.

Based on the conclusions mentioned in previous chapters of this thesis, the following

overall conclusions are drawn:

(i) The autonomous roof-bolter presented, has two main objectives: to reflect cur-

rent underground roof-bolter practices and provide an insight on how the au-

tonomous roof-bolter can enhance miner safety.

(ii) A user center GUI has been developed for a human user to control and monitor

the autonomous roof-bolter by implementing the Parker MD-4 touchscreen.

Visual alert signals will pop-up every time the hydraulic system will complete

a bolting cycle. Other visual and auditory signals have been omitted from the

HMI since the whole system is still operating in a lab-setup.

(iii) Once the failure detection systems have been found to be robust, they will be

made more complex and autonomous. Efforts would be made to incorporate

preventive actions and actively check for impending failures. These computer

programs will also allow the operator to edit the operational parameters on the

fly without having the system go out of operation.

(iv) Laboratory tests have been carried out in a mock mine environment to assess

the performance of the developed system; several different scenarios, simulating

joint missions that a roof-bolter needs to undertake in an underground coal

mine, have been considered.

(v) Results of this prototype design of the autonomous roof-bolter show great op-

erational potential for future employment in underground coal mines.
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6.2 Limitations and Recommendations

The autonomous roof-bolter design will require several different areas of future re-

search and continued development. Developing a suitable and consistent architec-

ture has significant implications for the future employment of proficient and reliable

autonomous roof-bolting system that provides the foundation for more rapid and

efficient development. With the modern advances on the level of autonomy, the un-

certainty of problems in the present system should be solved in advance to achieve

different and more robust functionalities.

On the other hand, due to the increasingly complex performance of the hardware

and software in the system, the system is prone to numerous malfunctioning system

failures that have not been considered in advance. With the continuous improvements

of artificial intelligence technology, the mining industry has been trying to employ

equipment that is going to be able to make smart decisions on their own based on

the changing environment. Future mining systems, including the autonomous roof-

bolter, should establish new mining-suitable computer models that will actively learn

from the surrounding underground environment and generate a scenario optimization

mechanism, suitable for the continuously changing face.

Recommendations for the lab-scaled autonomous roof-bolting system are listed

below:

(i) Improving the currently developed GUI would ultimately guarantee the secure

control of the autonomous system. In addition, advanced collision-avoidance

algorithms need to be included to enhance safety. Finally, vision cameras cou-

pled on the front of the robotic arm and the roof-bolter, will eventually improve

the bolting cycle by allowing the user to navigate the roof-bolter, providing it

with real-time position, allowing for manual control when necessary.

(ii) Further complex trials of the various bolting scenarios need to be thoroughly

studied to better understand the issues modern roof-bolter operators face while

on the job. Those additional experimental tests will enable debugging and

spotting mechanical problems in the system, while at the same time identifying

potentially dangerous scenarios.
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(iii) Investigate the possibility of a robust human-machine integration mechanism

design based on collaboration. A robust safety human-machine interface design

should be fostered to avoid completely uncontrollable situations.

(iv) The robotic arm bolter installation project requires re-imagining the bolt in-

stallation procedure on the dexterity of the human operator. This means that

it is necessary to provide awareness of the benefits of using the autonomous

roof-bolter, while providing specified training for roof-bolter operators.

Copyright© Anastasia Xenaki, 2021.
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Güth, F., Wolf, F., Grehl, S., Lösch, R., Varga, S., Rezaei, N., Mischo, H., Jung, B.,

Benndorf, J., Rehkopf, A., et al. (2018). Autonomous robots and the internet of

things in underground mining. In Conference on Smart Systems Integration, no.

April, Dresden, pages 215–222.

Hattingh, T. and Keys, O. (2010). How applicable is industrial engineering in mining.

In The 4th International Platinum Conference, Platinum in Transition ‘Boom or

Bust’, The Southern African Institute of Mining and Metallurgy, pages 205–210.

Helander, M. G., Krohn, G. S., and Curtin, R. (1983). Safety of roof-bolting opera-

tions in underground coal mines. Journal of Occupational Accidents, 5(3):161–175.
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Appendix A: iQAN Modules

Figure A1: Figure retrieved from Parker-Hannifin (2016b)
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Figure A2: Figure retrieved from Parker-Hannifin (2016b)
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Figure A3: Figure retrieved from Parker-Hannifin (2018)
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Figure A4: Figure retrieved from Parker-Hannifin (2018)
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Figure A5: Figure retrieved from Parker-Hannifin (2016a)
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Figure A6: Figure retrieved from Parker-Hannifin (2016a)
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Figure A7: Figure retrieved from Parker-Hannifin (2016a)
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Figure A8: Figure retrieved from Parker-Hannifin (2016a)
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Appendix B: IQANdesign (D6) Software Developed Logic
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Appendix C: Data Structure

All algorithms for statistical and spatial analysis as well as the algorithms for the

estimation of missing values in data, were developed and run in R environment.

##############################################

#R packages used f o r the time s e r i e s a n a l y s i s

##############################################

l ibrary ( ggp lo t )

l ibrary ( ggp lot2 )

l ibrary ( g s t a t )

l ibrary ( imputeTS )

l ibrary ( t i m e S e r i e s )

l ibrary ( x l sx )

l ibrary ( r eadx l )

##############################################

#Import data from e x c e l f i l e

##############################################

RoofBolterExperiment <− read e x c e l ( ”C: /Users/Owner/Desktop/

RoofBolterExperiment . x l sx ” )

View ( RoofBolterExperiment )

Bolt1<−matrix ( RoofBolterExperiment$

‘1 s t Day−I n s e r t Bolt (mm) ‘ [ 1 : 8 ] )

Bolt2<−matrix ( RoofBolterExperiment$

‘2nd Day−I n s e r t Bolt (mm) ‘ [ 1 : 8 ] )
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Coupling1<−matrix ( RoofBolterExperiment$

‘1 s t Day−Coupling Bolt (mm) ‘ [ 1 : 8 ] )

Coupling2<−matrix ( RoofBolterExperiment$

‘2nd Day−Coupling Bolt (mm) ‘ [ 1 : 8 ] )

Est imatedPos i t ion<−matrix ( RoofBolterExperiment$

‘ O r i g i na l Pos i t i on (mm) ‘ [ 1 : 8 ] )

##############################################

#Format data i n t o time s e r i e s

##############################################

TSBolt1<−ts ( Bolt1 , start=c (1 , 1 ) ,end = c ( 8 , 1 ) )

TSBolt2<−ts ( Bolt2 , start=c (1 , 1 ) ,end = c ( 8 , 1 ) )

TSCoupling1<−ts ( Coupling1 , start=c (1 , 1 ) ,end = c ( 8 , 1 ) )

TSCoupling2<− ts ( Coupling2 , start=c (1 , 1 ) ,end = c ( 8 , 1 ) )

TSStartPos i t ion<−ts ( Est imatedPos it ion , start=c (1 , 1 ) ,end = c ( 8 , 1 ) )

CompleteTS<−c ( TSBolt1 , TSBolt2 , TSCoupling1 , TSCoupling2 )

CompleteEstimatedTS<−c ( TSStartPos it ion , TSStartPos it ion ,

TSStartPos it ion , TSStartPos i t ion )

Or i g i na l . data<−CompleteTS

Estimated . data<−CompleteEstimatedTS

##############################################

#Set graph s i z e

##############################################

x11( width=8, he ight = 9 , p o i n t s i z e =15)

par ( mfrow=c ( 1 , 1 ) , mar=c ( 3 , 3 , 3 , 3 ) )

##############################################
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#Graph f u n c t i o n groups

##############################################

make . s c a t t e r . function<−function ( Or i g i na l . data , Estimated . data )

{

data<−data . frame ( x=Or i g ina l . data , y=Estimated . data )

ggp lo t (data , aes (x , y))+geom point ()+theme l i g h t ( )

+xlab ( ”Observed V e r t i c a l Distance ( in ) ” )

+ylab ( ” Estimated V e r t i c a l Distance ( in ) ” )

+geom smooth ( method=”lm” , col=” red ” )

+theme ( axis . t i t l e . y=element text ( s i z e =14))

+theme ( axis . t i t l e . x = element text ( s i z e =14))

+theme ( axis . text . x=element text ( s i z e =14))

+theme ( axis . text . y=element text ( s i z e =14))

}

make . hist . function<−function ( Or i g i na l . data , Estimated . data )

{

p1<−hist ( Or i g i na l . data , breaks =30, col=alpha (rgb ( 0 . 9 , 0 . 1 , 0 ) ,

0 . 7 ) , x lab=”” , ylab=”” , main=”” , cex . lab =1.5 , cex . axis =1.5)

p2<−hist ( Estimated . data , breaks =30, col=alpha (rgb ( 0 , 0 , 0 . 6 ) ,

0 . 7 ) ,add=T, cex . lab =1.5 , cex . axis =1.5)

legend ( ” t op r i gh t ” , legend = c ( ” Or i g i na l ” , ” Estimated ” ) ,

col=c ( alpha (rgb ( 0 . 9 , 0 . 1 , 0 ) ,

0 . 7 ) , alpha (rgb ( 0 , 0 , 0 . 6 ) ,

0 . 7 ) ) , pt . cex = 2 , pch = 15 , lwd = 3 )

}
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