73 research outputs found

    Lithium niobate RF-MEMS oscillators for IoT, 5G and beyond

    Get PDF
    This dissertation focuses on the design and implementation of lithium niobate (LiNbO3) radiofrequency microelectromechanical (RF-MEMS) oscillators for internet-of-things (IoT), 5G and beyond. The dissertation focuses on solving two main problems found nowadays in most of the published works: the narrow tuning range and the low operating frequency (sub 3 GHz) acoustic oscillators currently deliver. The work introduced here enables wideband voltage-controlled MEMS oscillators (VCMOs) needed for emerging applications in IoT. Moreover, it enables multi-GHz (above 8 GHz) RF-MEMS oscillators through harnessing over mode resonances for 5G and beyond. LiNbO3 resonators characterized by high-quality factor (Q), high electromechanical coupling (kt2), and high figure-of-merit (FoMRES= Q kt2) are crucial for building the envisioned high-performance oscillators. Those oscillators can be enabled with lower power consumption, wider tuning ranges, and a higher frequency of oscillation when compared to other state-of-the-art (SoA) RF-MEMS oscillators. Tackling the tuning range issue, the first VCMO based on the heterogeneous integration of a high Q LiNbO3 RF-MEMS resonator and complementary metal-oxide semiconductor (CMOS) is demonstrated in this dissertation. A LiNbO3 resonator array with a series resonance of 171.1 MHz, a Q of 410, and a kt2 of 12.7% is adopted, while the TSMC 65 nm RF LP CMOS technology is used to implement the active circuitry with an active area of 220×70 µm2. Frequency tuning of the VCMO is achieved by programming a binary-weighted digital capacitor bank and a varactor that are both connected in series to the resonator. The measured best phase noise performances of the VCMO are -72 and -153 dBc/Hz at 1 kHz and 10 MHz offsets from 178.23 and 175.83 MHz carriers, respectively. The VCMO consumes a direct current (DC) of 60 µA from a 1.2 V supply while realizing a tuning range of 2.4 MHz (~ 1.4% tuning range). Such VCMOs can be applied to enable ultralow-power, low phase noise, and wideband RF synthesis for emerging applications in IoT. Moreover, the first VCMO based on LiNbO3 lateral overtone bulk acoustic resonator (LOBAR) is demonstrated in this dissertation. The LOBAR excites over 30 resonant modes in the range of 100 to 800 MHz with a frequency spacing of 20 MHz. The VCMO consists of a LOBAR in a closed-loop with two amplification stages and a varactor-embedded tunable LC tank. By the bias voltage applied to the varactor, the tank can be tuned to change the closed-loop gain and phase responses of the oscillator so that Barkhausen’s conditions are satisfied for the targeted resonant mode. The tank is designed to allow the proposed VCMO to lock to any of the ten overtones ranging from 300 to 500 MHz. These ten tones are characterized by average Qs of 2100, kt2 of 1.5%, FoMRES of 31.5 enabling low phase noise, and low-power oscillators crucial for IoT. Owing to the high Qs of the LiNbO3 LOBAR, the measured VCMO shows a close-in phase noise of -100 dBc/Hz at 1 kHz offset from a 300 MHz carrier and a noise floor of -153 dBc/Hz while consuming 9 mW. With further optimization, this VCMO can lead to direct RF synthesis for ultra-low-power transceivers in multi-mode IoT nodes. Tackling the multi-GHz operation problem, the first Ku-band RF-MEMS oscillator utilizing a third antisymmetric overtone (A3) in a LiNbO3 resonator is presented in the dissertation. Quarter-wave resonators are used to satisfy Barkhausen’s oscillation conditions for the 3rd overtone while suppressing the fundamental and higher-order resonances. The oscillator achieves measured phase noise of -70 and -111 dBc/Hz at 1 kHz and 100 kHz offsets from a 12.9 GHz carrier while consuming 20 mW of dc power. The oscillator achieves a FoMOSC of 200 dB at 100 kHz offset. The achieved oscillation frequency is the highest reported to date for a MEMS oscillator. In addition, this dissertation introduces the first X-band RF-MEMS oscillator built using CMOS technology. The oscillator consists of an acoustic resonator in a closed loop with cascaded RF tuned amplifiers (TAs) built on TSMC RF GP 65 nm CMOS. The TAs bandpass response, set by on-chip inductors, satisfies Barkhausen's oscillation conditions for A3 only. Two circuit variations are implemented. The first is an 8.6 GHz standalone oscillator with a source-follower buffer for direct 50 Ω-based measurements. The second is an oscillator-divider chain using an on-chip 3-stage divide-by-2 frequency divider for a ~1.1 GHz output. The standalone oscillator achieves measured phase noise of -56, -113, and -135 dBc/Hz at 1 kHz, 100 kHz, and 1 MHz offsets from an 8.6 GHz output while consuming 10.2 mW of dc power. The oscillator also attains a FoMOSC of 201.6 dB at 100 kHz offset, surpassing the SoA electromagnetic (EM) and RF-MEMS based oscillators. The oscillator-divider chain produces a phase noise of -69.4 and -147 dBc/Hz at 1 kHz and 1 MHz offsets from a 1075 MHz output while consuming 12 mW of dc power. Its phase noise performance also surpasses the SoA L-band phase-locked loops (PLLs). The demonstrated performance shows the strong potential of microwave acoustic oscillators for 5G frequency synthesis and beyond. This work will enable low-power 5G transceivers featuring high speed, high sensitivity, and high selectivity in small form factors

    On the design of high-efficiency RF Doherty power amplifiers

    Get PDF
    Power amplifiers (PAs) are one of the most crucial elements in wireless standards becasue they are the most power hungry subsystems. These elements have to face an important issue, which is the power efficiency, a fact related with the output back-off (OBO). But the OBO depends on the kind of modulated signal, in proportion to the modulated signal peak-to-average power ratio (PAPR). The higuer is the data rate, the higer is the OBO, and consequently the lower is the efficiency. A low efficiency of PAs causes the waste of energy as heat. Furthermore, the trade-off between linearity and efficiency in PAs is another major issue. To cope with the undesired circumstances producing efficiency degradation, the Doherty power amplifier (DPA) is one of the useful techniques which provide high efficiency for high PAPR of modern communication signals. Nevertheless, the limited bandwidth (BW) of this kind of PAs (about 10% of fractional bandwidth) and its importance (in modern wireless systems such as LTE, WiMAX, Wi-Fi and satellite systems) have encouraged the researchers to improve this drawback in recent years. Some typical BW limiting factors effect on the performance of DPAs: i) quarter-wave length transformers, ii) phase compensation networks in/output matching circuits, iii) offset lines and device non-idealities; The quarter-wave length transformers performs as an inverter impedance in the load modulation technique of DPAs. The future objective in designing DPAs is to decrease the impact of these issues. In this context, this PhD-thesis is focused on improving fractional bandwidth of DPAs using the new methods that are related to impedance transformers instead of impedance inverters in the load modulation technique. This study is twofold. First, it is presented a novel DPA where a wideband GaN DPA in the 2.5 GHz band with an asymmetrical Wilkinson splitter. The impedance transformer of the proposed architecture is based on a matching network including a tapered line with multi-section transformer in the main stage. The BW of this DPA has ranged from 1.8 to 2.7 GHz. Plus, the obtained power efficiency (drain) is higher than 33% in the whole BW at both maximum and OBO power levels. Second, based on the benefits of the Klopfenstein taper, a promising DPA design is proposed where a Klopfenstein taper replaces the tapered line. In fact, this substitution results on reducing the reflection coefficient of the transformer. From a practical prototype realization of this novel Doherty-like PA in the 2.25 GHz band, this modification has demonstrated that the resulting DPA BW is increased in comparison to the conventional topology while keeping the efficiency figures. Moreover, this study also shows that the Klopfenstein taper based design allows an easy tuning of the group delay through the output reactance of the taper, resulting in a more straightforward adjustments than other recently published designs where the quarter-wave transformer is replaced by multi-section transmission lines (hybrid or similar). Experimental results have shown 43-54% of drain efficiency at 42 dBm output power, in the range of 1.7 to 2.75 GHz. Concretely, the results presented in this novel Doherty-like PA implies an specific load modulation technique that uses the mixed Klopfenstein tapered line together with a multi-section transformer in order to obtain high bandwidth with the usual efficiency in DPAs.Los amplificadores de potencia (PAs) son uno de los elementos más importantes para los transmisores inalámbricos desde el punto de vista del consumo energético. Un aspecto muy importante es su eficiencia energética, un concepto relacionado con el back-off de salida (OBO), que a su vez viene condicionadpo por el PAPR de la señal modulada a amplificar. Una baja eficiencia de los PA hace que la pérdida de energía se manifieste en forma de calor. De hecho, esta cuestión conduce al incremento de los costes y tamaño, esto último por los radiadores. Además, el compromiso entre la linealidad y la eficiencia en los PA es otro problema importante. Para hacer frente a las circunstancias que producen la degradación de la eficiencia, el amplificador de potencia tipo Doherty (DPA) es una de las técnicas más útiles que proporcionan una buena eficiencia incluso para los altos PAPR comunes en señales de comunicación modernos. Sin embargo, el limitado ancho de banda (BW) de este tipo de PA (alrededor del 10% del ancho de banda fraccional) y su importancia (en los sistemas inalámbricos modernos, tales como LTE, WiMAX, Wi-Fi y sistemas de satélites) han animado a los investigadores para mejorar este inconveniente en los últimos años. Algunos aspectos típicos que limitan el BW en los DPA son: i) transformadores de longitud de cuarto de onda, ii) redes de compensación de fase y circuitos de adaptación de salida, iii) compensación de las líneas y los dispositivos no ideales. Los transformadores de cuarto de onda actuan como un inversor de impedancia en la técnica de modulación de carga de la DPA "("load modulation"). Concretamente, el objetivo futuro de diseño de DPA es disminuir el impacto de estos problemas. En este contexto, esta tesis doctoral se centra en mejorar el ancho de banda fraccional de DPA utilizando los nuevos métodos que están relacionados con el uso de transformadores de impedancias en vez de inversores en el subcircuito de modulación de carga. Este estudio tiene dos niveles. En primer lugar, se presenta una novedosa estructura del DPA de banda ancha usándose dispositivos de GaN en la banda de 2,5 GHz con un divisor Wilkinson asimétrico. El transformador de impedancias de la arquitectura propuesta se basa en una red de adaptación, incluyendo una línea cónica con múltiples secciones del transformador en la etapa principal. El BW de este DPA ha sido de 1,8 a 2,7 GHz. Además, se obtiene una eficiencia de drenador de más del 33% en todo el BW, tanto a nivel de potencia máxima como a nivel del OBO. En segundo lugar, aprovechando los beneficios de un adaptador de Klopfenstein, se propone un nuevo diseño del DPA. Con la sustitución de la lina conica por el Klopfenstein se reduce el coeficiente de reflexión de transformador de impedancias. Sobre un prototipo práctico de esta nueva estructura del Doherty, en la banda de 2,25 GHz, se ha demostrado que el BW resultante se incrementa en comparación con la topología convencional mientras se mantienen las cifras de eficiencia. Por otra parte, en este estudio se demuestra que el diseño basado en el Klopfenstein permite una afinación fácil del retardo de grupo a través de la reactancia de salida del taper, lo que resulta en un ajuste más sencillo que otros diseños publicados recientemente en el que el transformador de cuarto de onda se sustituye por multi-líneas de transmisión de la sección (híbridos o similar). Los resultados experimentales han mostrado un 43-54% de eficiencia de drenador sobre 42 dBm de potencia de salida, en el intervalo de 1,7 a 2,75 GHz. Concretamente, los resultados presentados en esta nueva estructura tipo-Doherty implican una técnica de modulación de carga que utiliza una combinación de un Klopfenstein junto con un transformador de múltiples secciones con el fin de obtener un alto ancho de banda con la eficiencia habitual en DPAs.Els amplificadors de potència (PA) són un dels elements més importants per els sistemes ràdio ja que sone ls principals consumidors d'energía. Un aspecte molt important és l'eficiència de l'amplificador, aspecte relacionat amb el back-off de sortida (OBO) que a la seva vegada ve condicionat pel PAPR del senyal modulat. Una baixa eficiència dels PA fa que la pèrdua d'energia en manifesti en forma de calor. De fet, aquesta qüestió porta a l'increment dels costos i grandària, degut als dissipadors de calor. A més, el compromís entre la linealitat i l'eficiència en els PA es un altre problema important. Per fer front a les circumstàncies que porten a la degradació de l'eficiència, l'amplificador de potència Doherty (DPA) és una de les tècniques més útils i que proporcionen una bona eficiència per als alts PAPR comuns en senyals de comunicació moderns. No obstant això, l'ample de banda limitat (BW) d'aquest tipus de PA (al voltant del 10% de l'ample de banda fraccional) i la seva importància (en els sistemes moderns, com ara LTE, WiMAX, Wi-Fi i sistemes de satèl·lits) han animat els investigadors per millorar aquest inconvenient en els últims anys. Alguns aspectes tipicament limitadors del BW en els DPA son: i) transformadors de longitud d'quart d'ona, ii) xarxes de compensació de fase en circuits / adaptacions de sortida, iii) compensació de les línies i els dispositius no ideals. Els transformadors de quart d'ona s'utilitzen com a inversors d'impedàncies en la tècnica de modulació de càrrega del DPA ("load modulation"). Concretament, l'objectiu futur de disseny d'DPA és disminuir l'impacte d'aquests problemes. En aquest context, aquesta tesi doctoral es centra en millorar l'ample de banda fraccional dels DPA utilitzant nous mètodes que estan relacionats amb l'ús de transformadors d'impedàncies, en comptes d'inversors, en el subcircuit de modulació de càrrega. Aquest treball té dos nivells. En primer lloc, es presenta un DPA novedós que fa servir dispositus GaN DPA a la banda de 2,5 GHz amb un divisor Wilkinson asimètric. El transformador d'impedàncies de l'arquitectura proposada es basa en una xarxa d'adaptació, incloent una línia cònica amb múltiples seccions del transformador en l'etapa principal. El BW d'aquest DPA ha mostrat ser d'1,8 a a 2,7 GHz. A més, s'obté una eficiència de drenador de més del 33% en tot el BW, tant a nivell de potència màxima com de OBO. En segon lloc, sobre la base dels beneficis del adaptador de Klopfenstein, un proposa un nou disseny on un Klopfenstein substitueix la anterior línia cònica. Aquesta substitució repercuteix en la reducció del coeficient de reflexió de transformador d'impedàncies.Des d'una realització pràctica (prototipus) d'aquest nou amplificador tipus Doherty a la banda de 2,25 GHz, s'ha demostrat que el BW resultant s'incrementa en comparació amb la topologia convencional mentre es mantenen les xifres d'eficiència. D'altra banda, en aquest estudi es demostra que el disseny basat en el Klopfenstein permet una afinació fàcil del retard de grup a través de la reactància de sortida de la forma cònica, el que resulta en un ajust més senzill que altres dissenys publicats recentment en què el transformador de quart d'ona es substitueix per multi-línies de transmissió de la secció (híbrids o similar). Els resultats experimentals han mostrat un 43-54% d'eficiència de drenador en 42 dBm de potència de sortida, en l'interval de 1,7-2,75 GHz. Concretament, els resultats presentats en aquest nou amplificador tipus Doherty impliquen una tècnica de modulació de càrrega específic que utilitza una combinació del Klopfenstein juntament amb un transformador de múltiples seccions per tal d'obtenir un alt ample de banda amb la usual eficiència en DPAs.Postprint (published version

    Design and analysis of wideband passive microwave devices using planar structures

    Get PDF
    A selected volume of work consisting of 84 published journal papers is presented to demonstrate the contributions made by the author in the last seven years of his work at the University of Queensland in the area of Microwave Engineering. The over-arching theme in the author’s works included in this volume is the engineering of novel passive microwave devices that are key components in the building of any microwave system. The author’s contribution covers innovative designs, design methods and analyses for the following key devices and associated systems: Wideband antennas and associated systems Band-notched and multiband antennas Directional couplers and associated systems Power dividers and associated systems Microwave filters Phase shifters Much of the motivation for the work arose from the desire to contribute to the engineering o

    Reconfigurable Receiver Front-Ends for Advanced Telecommunication Technologies

    Get PDF
    The exponential growth of converging technologies, including augmented reality, autonomous vehicles, machine-to-machine and machine-to-human interactions, biomedical and environmental sensory systems, and artificial intelligence, is driving the need for robust infrastructural systems capable of handling vast data volumes between end users and service providers. This demand has prompted a significant evolution in wireless communication, with 5G and subsequent generations requiring exponentially improved spectral and energy efficiency compared to their predecessors. Achieving this entails intricate strategies such as advanced digital modulations, broader channel bandwidths, complex spectrum sharing, and carrier aggregation scenarios. A particularly challenging aspect arises in the form of non-contiguous aggregation of up to six carrier components across the frequency range 1 (FR1). This necessitates receiver front-ends to effectively reject out-of-band (OOB) interferences while maintaining high-performance in-band (IB) operation. Reconfigurability becomes pivotal in such dynamic environments, where frequency resource allocation, signal strength, and interference levels continuously change. Software-defined radios (SDRs) and cognitive radios (CRs) emerge as solutions, with direct RF-sampling receivers offering a suitable architecture in which the frequency translation is entirely performed in digital domain to avoid analog mixing issues. Moreover, direct RF- sampling receivers facilitate spectrum observation, which is crucial to identify free zones, and detect interferences. Acoustic and distributed filters offer impressive dynamic range and sharp roll off characteristics, but their bulkiness and lack of electronic adjustment capabilities limit their practicality. Active filters, on the other hand, present opportunities for integration in advanced CMOS technology, addressing size constraints and providing versatile programmability. However, concerns about power consumption, noise generation, and linearity in active filters require careful consideration.This thesis primarily focuses on the design and implementation of a low-voltage, low-power RFFE tailored for direct sampling receivers in 5G FR1 applications. The RFFE consists of a balun low-noise amplifier (LNA), a Q-enhanced filter, and a programmable gain amplifier (PGA). The balun-LNA employs noise cancellation, current reuse, and gm boosting for wideband gain and input impedance matching. Leveraging FD-SOI technology allows for programmable gain and linearity via body biasing. The LNA's operational state ranges between high-performance and high-tolerance modes, which are apt for sensitivityand blocking tests, respectively. The Q-enhanced filter adopts noise-cancelling, current-reuse, and programmable Gm-cells to realize a fourth-order response using two resonators. The fourth-order filter response is achieved by subtracting the individual response of these resonators. Compared to cascaded and magnetically coupled fourth-order filters, this technique maintains the large dynamic range of second-order resonators. Fabricated in 22-nm FD-SOI technology, the RFFE achieves 1%-40% fractional bandwidth (FBW) adjustability from 1.7 GHz to 6.4 GHz, 4.6 dB noise figure (NF) and an OOB third-order intermodulation intercept point (IIP3) of 22 dBm. Furthermore, concerning the implementation uncertainties and potential variations of temperature and supply voltage, design margins have been considered and a hybrid calibration scheme is introduced. A combination of on-chip and off-chip calibration based on noise response is employed to effectively adjust the quality factors, Gm-cells, and resonance frequencies, ensuring desired bandpass response. To optimize and accelerate the calibration process, a reinforcement learning (RL) agent is used.Anticipating future trends, the concept of the Q-enhanced filter extends to a multiple-mode filter for 6G upper mid-band applications. Covering the frequency range from 8 to 20 GHz, this RFFE can be configured as a fourth-order dual-band filter, two bandpass filters (BPFs) with an OOB notch, or a BPF with an IB notch. In cognitive radios, the filter’s transmission zeros can be positioned with respect to the carrier frequencies of interfering signals to yield over 50 dB blocker rejection

    Microelectromechanical Systems for Wireless Radio Front-ends and Integrated Frequency References.

    Full text link
    Microelectromechanical systems (MEMS) have great potential in realizing chip-scale integrated devices for energy-efficient analog spectrum processing. This thesis presents the development of a new class of MEMS resonators and filters integrated with CMOS readout circuits for RF front-ends and integrated timing applications. Circuit-level innovations coupled with new device designs allowed for realizing integrated systems with improved performance compared to standalone devices reported in the literature. The thesis is comprised of two major parts. The first part of the thesis is focused on developing integrated MEMS timing devices. Fused silica is explored as a new structural material for fabricating high-Q vibrating micromechanical resonators. A piezoelectric-on-silica MEMS resonator is demonstrated with a high Q of more than 20,000 and good electromechanical coupling. A low phase noise CMOS reference oscillator is implemented using the MEMS resonator as a mechanical frequency reference. Temperature-stable operation of the MEMS oscillator is realized by ovenizing the platform using an integrated heater. In an alternative scheme, the intrinsic temperature sensitivity of MEMS resonators is utilized for temperature sensing, and active compensation for MEMS oscillators is realized by oven-control using a phase-locked loop (PLL). CMOS circuits are implemented for realizing the PLL-based low-power oven-control system. The active compensation technique realizes a MEMS oscillator with an overall frequency drift within +/- 4 ppm across -40 to 70 °C, without the need for calibration. The CMOS PLL circuits for oven-control is demonstrated with near-zero phase noise invasion on the MEMS oscillators. The properties of PLL-based compensation for realizing ultra-stable MEMS frequency references are studied. In the second part of the thesis, RF MEMS devices, including tunable capacitors, high-Q inductors, and ohmic switches, are fabricated using a surface micromachined integrated passive device (IPD) process. Using this process, an integrated ultra-wideband (UWB) filter has been demonstrated, showing low loss and a small form factor. To further address the issue of narrow in-band interferences in UWB communication, a tunable MEMS bandstop filter is integrated with the bandpass filter with more than an octave frequency tuning range. The bandstop filter can be optionally switched off by employing MEMS ohmic switches co-integrated on the same chip.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/109069/1/zzwu_1.pd

    Clock Generation Design for Continuous-Time Sigma-Delta Analog-To-Digital Converter in Communication Systems

    Get PDF
    Software defined radio, a highly digitized wireless receiver, has drawn huge attention in modern communication system because it can not only benefit from the advanced technologies but also exploit large digital calibration of digital signal processing (DSP) to optimize the performance of receivers. Continuous-time (CT) bandpass sigma-delta (ΣΔ) modulator, used as an RF-to-digital converter, has been regarded as a potential solution for software defined ratio. The demand to support multiple standards motivates the development of a broadband CT bandpass ΣΔ which can cover the most commercial spectrum of 1GHz to 4GHz in a modern communication system. Clock generation, a major building block in radio frequency (RF) integrated circuits (ICs), usually uses a phase-locked loop (PLL) to provide the required clock frequency to modulate/demodulate the informative signals. This work explores the design of clock generation in RF ICs. First, a 2-16 GHz frequency synthesizer is proposed to provide the sampling clocks for a programmable continuous-time bandpass sigma-delta (ΣΔ) modulator in a software radio receiver system. In the frequency synthesizer, a single-sideband mixer combines feed-forward and regenerative mixing techniques to achieve the wide frequency range. Furthermore, to optimize the excess loop delay in the wideband system, a phase-tunable clock distribution network and a clock-controlled quantizer are proposed. Also, the false locking of regenerative mixing is solved by controlling the self-oscillation frequency of the CML divider. The proposed frequency synthesizer performs excellent jitter performance and efficient power consumption. Phase noise and quadrature phase accuracy are the common tradeoff in a quadrature voltage-controlled oscillator. A larger coupling ratio is preferred to obtain good phase accuracy but suffer phase noise performance. To address these fundamental trade-offs, a phasor-based analysis is used to explain bi-modal oscillation and compute the quadrature phase errors given by inevitable mismatches of components. Also, the ISF is used to estimate the noise contribution of each major noise source. A CSD QVCO is first proposed to eliminate the undesired bi-modal oscillation and enhance the quadrature phase accuracy. The second work presents a DCC QVCO. The sophisticated dynamic current-clipping coupling network reduces injecting noise into LC tank at most vulnerable timings (zero crossing points). Hence, it allows the use of strong coupling ratio to minimize the quadrature phase sensitivity to mismatches without degrading the phase noise performance. The proposed DCC QVCO is implemented in a 130-nm CMOS technology. The measured phase noise is -121 dBc/Hz at 1MHz offset from a 5GHz carrier. The QVCO consumes 4.2mW with a 1-V power supply, resulting in an outstanding Figure of Merit (FoM) of 189 dBc/Hz. Frequency divider is one of the most power hungry building blocks in a PLL-based frequency synthesizer. The complementary injection-locked frequency divider is proposed to be a low-power solution. With the complimentary injection schemes, the dividers can realize both even and odd division modulus, performing a more than 100% locking range to overcome the PVT variation. The proposed dividers feature excellent phase noise. They can be used for multiple-phase generation, programmable phase-switching frequency dividers, and phase-skewing circuits

    Frequency Synthesizers and Oscillator Architectures Based on Multi-Order Harmonic Generation

    Get PDF
    Frequency synthesizers are essential components for modern wireless and wireline communication systems as they provide the local oscillator signal required to transmit and receive data at very high rates. They are also vital for computing devices and microcontrollers as they generate the clocks required to run all the digital circuitry responsible for the high speed computations. Data rates and clocking speeds are continuously increasing to accommodate for the ever growing demand on data and computational power. This places stringent requirements on the performance metrics of frequency synthesizers. They are required to run at higher speeds, cover a wide range of frequencies, provide a low jitter/phase noise output and consume minimum power and area. In this work, we present new techniques and architectures for implementing high speed frequency synthesizers which fulfill the aforementioned requirements. We propose a new architecture and design approach for the realization of wideband millimeter-wave frequency synthesizers. This architecture uses two-step multi-order harmonic generation of a low frequency phase-locked signal to generate wideband mm-wave frequencies. A prototype of the proposed system is designed and fabricated in 90nm Complementary Metal Oxide Semiconductor (CMOS) technology. Measurement results demonstrated that a very wide tuning range of 5 to 32 GHz can be achieved, which is costly to implement using conventional techniques. Moreover the power consumption per octave resembles that of state-of-the art reports. Next, we propose the N-Push cyclic coupled ring oscillator (CCRO) architecture to implement two high performance oscillators: (1) a wideband N-Push/M-Push CCRO operating from 3.16-12.8GHz implemented by two harmonic generation operations using the availability of different phases from the CCRO, and (2) a 13-25GHz millimeter-wave N-Push CCRO with a low phase noise performance of -118dBc/Hz at 10MHz. The proposed oscillators achieve low phase noise with higher FOM than state of the art work. Finally, we present some improvement techniques applied to the performance of phase locked loops (PLLs). We present an adaptive low pass filtering technique which can reduce the reference spur of integer-N charge-pump based PLLs by around 20dB while maintaining the settling time of the original PLL. Another PLL is presented, which features very low power consumption targeting the Medical Implantable Communication Standard. It operates at 402-405 MHz while consuming 600microW from a 1V supply

    Integrated RF oscillators and LO signal generation circuits

    Get PDF
    This thesis deals with fully integrated LC oscillators and local oscillator (LO) signal generation circuits. In communication systems a good-quality LO signal for up- and down-conversion in transmitters is needed. The LO signal needs to span the required frequency range and have good frequency stability and low phase noise. Furthermore, most modern systems require accurate quadrature (IQ) LO signals. This thesis tackles these challenges by presenting a detailed study of LC oscillators, monolithic elements for good-quality LC resonators, and circuits for IQ-signal generation and for frequency conversion, as well as many experimental circuits. Monolithic coils and variable capacitors are essential, and this thesis deals with good structures of these devices and their proper modeling. As experimental test devices, over forty monolithic inductors and thirty varactors have been implemented, measured and modeled. Actively synthesized reactive elements were studied as replacements for these passive devices. At first glance these circuits show promising characteristics, but closer noise and nonlinearity analysis reveals that these circuits suffer from high noise levels and a small dynamic range. Nine circuit implementations with various actively synthesized variable capacitors were done. Quadrature signal generation can be performed with three different methods, and these are analyzed in the thesis. Frequency conversion circuits are used for alleviating coupling problems or to expand the number of frequency bands covered. The thesis includes an analysis of single-sideband mixing, frequency dividers, and frequency multipliers, which are used to perform the four basic arithmetical operations for the frequency tone. Two design cases are presented. The first one is a single-sideband mixing method for the generation of WiMedia UWB LO-signals, and the second one is a frequency conversion unit for a digital period synthesizer. The last part of the thesis presents five research projects. In the first one a temperature-compensated GaAs MESFET VCO was developed. The second one deals with circuit and device development for an experimental-level BiCMOS process. A cable-modem RF tuner IC using a SiGe process was developed in the third project, and a CMOS flip-chip VCO module in the fourth one. Finally, two frequency synthesizers for UWB radios are presented

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems
    • …
    corecore