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ABSTRACT 

 

 Software defined radio, a highly digitized wireless receiver, has drawn huge 

attention in modern communication system because it can not only benefit from the 

advanced technologies but also exploit large digital calibration of digital signal processing 

(DSP) to optimize the performance of receivers. Continuous-time (CT) bandpass sigma-

delta (ΣΔ) modulator, used as an RF-to-digital converter, has been regarded as a potential 

solution for software defined ratio. The demand to support multiple standards motivates 

the development of a broadband CT bandpass ΣΔ which can cover the most commercial 

spectrum of 1GHz to 4GHz in a modern communication system. 

Clock generation, a major building block in radio frequency (RF) integrated 

circuits (ICs), usually uses a phase-locked loop (PLL) to provide the required clock 

frequency to modulate/demodulate the informative signals. This work explores the design 

of clock generation in RF ICs. First, a 2-16 GHz frequency synthesizer is proposed to 

provide the sampling clocks for a programmable continuous-time bandpass sigma-delta 

(ΣΔ) modulator in a software radio receiver system. In the frequency synthesizer, a single-

sideband mixer combines feed-forward and regenerative mixing techniques to achieve the 

wide frequency range. Furthermore, to optimize the excess loop delay in the wideband 

system, a phase-tunable clock distribution network and a clock-controlled quantizer are 

proposed. Also, the false locking of regenerative mixing is solved by controlling the self-

oscillation frequency of the CML divider. The proposed frequency synthesizer performs 

excellent jitter performance and efficient power consumption. 
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Phase noise and quadrature phase accuracy are the common tradeoff in a 

quadrature voltage-controlled oscillator. A larger coupling ratio is preferred to obtain good 

phase accuracy but suffer phase noise performance. To address these fundamental trade-

offs, a phasor-based analysis is used to explain bi-modal oscillation and compute the 

quadrature phase errors given by inevitable mismatches of components. Also, the ISF is 

used to estimate the noise contribution of each major noise source. A CSD QVCO is first 

proposed to eliminate the undesired bi-modal oscillation and enhance the quadrature phase 

accuracy. The second work presents a DCC QVCO. The sophisticated dynamic current-

clipping coupling network reduces injecting noise into LC tank at most vulnerable timings 

(zero crossing points). Hence, it allows the use of strong coupling ratio to minimize the 

quadrature phase sensitivity to mismatches without degrading the phase noise 

performance. The proposed DCC QVCO is implemented in a 130-nm CMOS technology. 

The measured phase noise is -121 dBc/Hz at 1MHz offset from a 5GHz carrier. The 

QVCO consumes 4.2mW with a 1-V power supply, resulting in an outstanding Figure of 

Merit (FoM) of 189 dBc/Hz.  

Frequency divider is one of the most power hungry building blocks in a PLL-based 

frequency synthesizer. The complementary injection-locked frequency divider is proposed 

to be a low-power solution. With the complimentary injection schemes, the dividers can 

realize both even and odd division modulus, performing a more than 100% locking range 

to overcome the PVT variation. The proposed dividers feature excellent phase noise. They 

can be used for multiple-phase generation, programmable phase-switching frequency 

dividers, and phase-skewing circuits. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation 

Over the past several decades, the rapid development and growth of wireless 

communication engineering have significantly changed and influenced our daily lives. 

With the advances of the los-cost CMOS technology and the progress in the fields of radio 

frequency (RF) integrated circuit (IC) design, wireless communication engineering has 

tremendously been applied in the area of wireless networks, mobile phones, television, 

data transferring and identification, positioning, and sensors. A lot of studies and 

developments keep focusing on improving the communication quality, reducing the cost, 

and enhancing the power efficiency [1, 2]. Although most RF IC design stressed on 

narrow-band systems in the past, nowadays the design techniques for broadband wireless 

systems are drawing a huge attention. For example, the high-level integration of multiple 

wireless standards which requires broadband spectrums becomes one of major trends of 

the modern wireless communication engineering. These changes and demands lead to the 

abrupt desire to developing the advanced wireless transceiver architectures. 

Digital-IF receivers [3] and software radio receivers [4] are known as a potential 

architecture for highly-integrated wireless broadband systems. The extensive use of 

digitals and signal processing makes these software-oriented receivers capable to comply 

with the requirements of cost-efficient, multi-standards, broadband, and reconfigurability. 

High-resolution wide-bandwidth analog-to-digital converters (ADCs) and broadband 
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frequency synthesizer are one of the most critical building blocks in the development of 

the software-oriented receivers. Continuous-time (CT) sigma-delta (ΣΔ) ADCs have been 

found to be a promising architecture for these applications [5, 6, 7, 8]. However, the fact 

that the purity of clock crucially influences the performance of continuous-time ΣΔ ADCs 

makes it more challenging to design a broadband frequency synthesizer for the receivers 

employing a continuous-time ΣΔ ADC. 

A frequency synthesizer, the core of clock generation, usually uses a phase-locked 

loop (PLL) to provide the required clock frequency to modulate/demodulate the 

informative signals. Ideally, the clock signal is expected to be a clean and sharp impulse 

tone in an output frequency spectrum. However, in practical the intrinsic 

device/component noise unpredictably and instantaneously changes the clock period and 

appears to be a skirt in the output spectrums. For most wireless applications, the phase 

noise requirement is defined according to the system signal-to-noise ratio (SNR) that 

heavily depends on the purity of the clock. Furthermore, the power consumption, spur 

tones, silicon area and circuit complexity are also the emphasis of developing a frequency 

synthesizer. These issues inspire a lot of studies and innovation on designing the building 

blocks and architectures of frequency synthesizers. 

This dissertation explores the design of clock generation in RF ICs. A wideband 

frequency synthesizer architecture is proposed for the use in a broadband software radio 

receiver based on a programmable continuous-time band-pass ΣΔ modulator. Also, 

innovative techniques in critical building blocks such as quadrature voltage-controlled 
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oscillator (QVCO) and injection-locked frequency divider (ILFD) are also presented to 

achieve better noise performance and lower power consumption. 

  

1.2 Research Contribution 

This research investigates the design of high-performance broadband clock 

generation. A 2–16 GHz frequency synthesizer is proposed to generate the sampling clock 

for a programmable broadband continuous-time band-pass ΣΔ modulator, which is 

utilized in a software radio receiver to digitize the RF signals. The wide frequency range 

is achieved by a single-sideband (SSB) mixer that combines feed-forward and 

regenerative mixing techniques. A phase-tunable clock distribution network and a novel 

two-bit quantizer design are presented to manage the excess loop delay of the CT ΣΔ 

modulator over the wide operating frequencies. With the proposed dynamic current-

clipped (DCC) QVCO, the broadband frequency synthesizer exhibits excellent jitter 

performance, less than 0.6ps when phase noise integrated in 10KHz – 20MHz. The spur 

tones are under -42dBc across the 1 – 8GHz range. Fabricated in a 0.13-μm CMOS 

technology, the core active area of the frequency synthesizer occupies 1.08mm2 and the 

power consumption of the frequency synthesizer operated at maximum frequency is 

64mW with 1.2/1.8V power supplies. The proposed architecture is a very cost-efficient 

approach for emerging broadband RF transceivers. 

Quadrature voltage-controlled oscillators are recognized to be a low-power 

solution to generate the quadrature signals, usually a must in transceivers. However, 

QVCOs exhibit inferior phase noise performance and their inherent quadrature phase error 
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due to device mismatch leads to the problem of sideband image during mixing operation. 

Two QVCO topologies are proposed in this work. The first QVCO employs the capacitive 

source degeneration (CSD) techniques to achieve excellent quadrature phase accuracy. 

The second QVCO uses the dynamic current-clipped (DCC) technique to reduce the 

current/noise injection at the most vulnerable zero-crossing timings in order to minimize 

the phase noise contribution from the coupling network. The DCC QVCO allows a large 

coupling ratio to improve the quadrature phase accuracy and also reduce the sideband 

images of SSB mixer. Fabricated in TSMC 130-nm technology, the current-clipped 5GHz 

QVCO perform a phase noise of -121dBc/Hz at 1MHz offset while consuming 4.2mW 

with a 1V power supply. Monte-Carlo simulations show that quadrature phase error 

standard deviation is around 0.15 degree. The QVCO shows excellent performance while 

compared with previously reported works. 

High-speed frequency dividers are the most power-hungry building block in the 

frequency synthesizers. Injection-locked frequency dividers are found to be one low-

power solution but the narrow frequency locking range usually limits their extensive use. 

A complementary injection technique is proposed to enlarge the locking range to 

overcome the PVT variations. The complementary injection-locked frequency dividers 

(CILFDs) can be implemented to have even and odd division ratios. CILFDs can not only 

used for the frequency conversion and multi-phase clock generation but also for the phase-

skewing or phase alignment as well. Fabricated in TSMC 180-nm technology, the 5GHz 

CILFDs have a more than 100% locking range while consuming less than 1mW power. 

Because of their low noise and small phase mismatch properties, CILFDs are very 
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potential for time-to-digital conversion. One example shows the CILFD is implemented 

in a 3-bit time-domain quatizer of a continuous-time lowpass ΣΔ modulator. The other 

example shows the excellent power consumption performance while constructing a multi-

modulus phase-switching divider based on the CILFD.  

 

1.3 Organization 

A brief introduction and review of wireless communication systems are presented 

in Chapter II. The wireless communication standards, the major trends of wireless 

communication, RF receiver architectures and frequency synthesizers are discussed. 

Chapter III introduces the 0.5 – 4 GHz software radio receiver based on a core continuous-

time bandpass ΣΔ modulator. The design issues and requirements of frequency synthesizer 

for the specific wireless system are emphasized and demonstrated by examples. A low-

power 2 – 16 GHz frequency synthesizer is proposed to satisfy the requirements of jitter 

and spurious tones. A phase-tunable clock distribution network is presented for providing 

the clocks to the 2-bit quantizer where a timing-control technique is implemented to meet 

the requirement of excess loop delay.  

The design of quadrature voltage-controlled oscillators is discussed in Chapter IV.  

The models of bimodal oscillation and phase accuracy based on the effective current 

phasor diagram are presented. The phase noise is modeled by a simplified time-variant 

analysis. Two QVCOs are presented where the first one employs the capacitive source 

degeneration technique to improve the quadrature phase accuracy and the second one use 

an innovative coupling elements to improve phase noise and phase accuracy.  
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Chapter V discusses the proposed complementary injection-locked frequency 

dividers. Two circuit implementation examples are given to demonstrate the excellent 

performance of the CILFDs. The final chapter draws the conclusion and summary of this 

research work, together with the possible future implementation and design related to this 

work.  
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CHAPTER II 

CLOCK GENERATION IN WIRELESS COMMUNICATION RECEIVERS 

 

2.1 Wireless Communication Standards and Applications 

The most often used wireless standards with their occupied spectrum are shown in 

Fig. 2.1. It illustrates that the rapid growth of wireless communication crowds the limited 

spectrums. Thus, efficiently using the limited resource of spectrums has become an urgent 

issue. Also, preventing a good communication quality from the interference of other 

standards is extremely critical. Usually, each standard has its own specific requirements 

of data rate, coverage range and mobility as shown in Fig. 2.2. Several most important 

wireless standards and their applications will be introduced in the following sections. 

 

 

Fig. 2.1 The spectrum used in popular wireless standards.  
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Fig. 2.2 Data-rate and coverage range of major wireless standards. 

 

2.1.1 Mobile Phones 

Mobile phones use the term “generation” to describe the status and evolution of 

wireless network standards. The standards of mobile phones can be categorized into 1G 

(first generation), 2G, 2.5G, 3G, 3.5G, 3.75 and 4G. The rise and success of mobile phones 

start from the 2G standards, dominated by GSM (Global System for Mobile 

Communication) in the early nineties. The 2G standards provide limited data rates, up to 

14.4 kbps. The 2.5 G standards, such as GPRS (General Packet Radio Service) and EDGE 

(Enhanced Data Rates for Global Evolution), provide higher data rates than 2G standards. 

The fact that the 2.5G standards have good compatibility with the existing GSM networks 

reduces the cost of implementing 2.5G standards. This low-cost advantage of 2.5G 

standards deferred the growth and success of 3G standards. The 3G standards, such as 

CDMA2000 (Code Division Multiple Access 2000) and UMTS (Universal Mobile 

Telecommunications System), were launched between 2001 and 2003. The 3G standards 
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require expensive infrastructure costs of base station, mobile phones and new design to 

access modes based on CDMA.  

In 2009, the 4G standards, such as mobile WiMAX and LTE (Long Term 

Evolution), are expected to provide the peak downstream over 100 Mbps. However, based 

on the IMT-Advanced (International Mobile Telecommunications Advanced) the future 

goal of the 4G standards requires a peak speed up to 100 Mbps for high mobility 

communication and 1 Gbps for low mobility communication. The 4G candidate systems 

able to satisfy this requirement are LTE advanced and IEEE 802.16m, both still being 

under development. The 4G standards also feature providing high-level reconfigurability, 

a flexible interoperability of various wireless networks, such as satellite, cellular, wireless 

local area network (WLAN) and wireless personal area network (WPAN). The 

reconfigurability which communicates with different standards and operates at different 

spectrums increases the difficulty of designing the 4G systems. 

 

2.1.2 Wireless Local Area Network 

 A wireless local area network (WLAN) is a network which links two or more 

devices without wires/cables within a local coverage range. The WLAN devices can 

communicate not only via base stations but also through the peer-to-peer operation. Most 

WLANs are based on IEEE 802.11 standards. For avoiding the long name, 802.11 

standards are also labeled as Wi-Fi (Wireless Fidelity). The currently used 802.11 a/b/g/n 

can cover a distance up to 100m. The wireless access method of 802.11n standard uses 
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MIMO (Multiple In Multiple Out) so the date rate can be enhanced up to 100 Mbps. The 

most frequently used WLANs are listed and compared in Table 2.1. 

 

Table 2.1 Comparison of major WLAN standards. 

Wireless Local Area Network (WLAN) 

Standard 802.11a 802.11b 802.11g 802.11n 

Release Year 1999 1999 2003 2009 

Frequency Band 5 GHz 2.4 GHz 2.4 GHz 2.4/5 GHz 

Max. Range 50 - 100 m ~ 100 m ~ 100 m ~ 160m 

Max. Data Rate 54 Mbps 11 Mbps 54 Mbps 248 Mbps 

Modulation OFDM DSSS OFDM OFDM 

MIMO Streams 1 1 1 4 

 

2.1.3 Wireless Personal Area Network 

Similar to WLANs, a wireless personal area networks (WPANs) is a wireless 

network to communicate between devices with a shorter coverage range of less than 10 

meters. Bluetooth, a low-cost and low-power WPAN technology, provides a secure way 

to communicate information between devices such as computers, phones, electronic 

accessories, GPS receivers, and video game consoles with a date rate of 3 Mbps. The 

Ultra-Wideband (UWB) standard utilizes a high bandwidth (> 500MHz) to increase the 

data rate while the transmit power has to be low because the spectrum used in UWB has 
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to be shared with other wireless standards. Based on the rules regulated by Federal 

Communication Commission (FCC), the bandwidth of UWB spans from 3.1 to 10.6 GHz 

and the maximum emitted power spectral density has to be lower than -41.3 dBm/MHz. 

Recently, millimeter wave (mmWave) band is proposed for the use of WPAN in order to 

further increase the date rate in the short-distance wireless applications. The 802.15.3c 

standard, an mmWave WPAN, operates at 57 – 64 GHz and aims to allow the data rate 

over 1 Gbps for the applications of file transferring, HDTVs and video downloading. In 

contrast, ZigBee standard features a low data rate of 250 Kbps with lower power, cost and 

complexity than the other WPANs. A comparison table for most WPAN standards is 

summarized in Table 2.2. 

 

Table 2.2 Comparison of major WPAN standards. 

Wireless Personal Area Network (WPAN) 

Standard Bluetooth UWB 802.15.3c ZigBee 

Release Year 2002 2003 NA 2003 

Frequency 
Band 2.4 GHz 3.1 - 10.6 GHz 60 GHz 868, 915 MHz 

2.4 GHz 

Max. Range ~ 10 m ~ 10 m ~ 10 m ~ 100m 

Max. Data Rate 3 Mbps 1 Gbps 2 Gbps 250 Kbps 

Modulation FHSS DS-UWB/ 
OFDM SC/OFDM DSSS 
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2.1.4 Worldwide Interoperability for Microwave Access 

WiMAX (Worldwide Interoperability for Microwave Access), a wireless digital 

communications system, refers to interoperable implementations of the IEEE 802.16 

family. WiMAX can provide broadband wireless access up to 30 miles for fixed stations 

and 3 - 10 miles for mobile stations. Based on 802.16m, WiMAX is expected to provide 

a peak data rate of at least 1 Gbps for fixed stations and 100Mbps to mobile users. 

 

2.1.5 Global Positioning System 

GPS (Global Positioning System) is a spaced-based global navigation satellite 

system which provides users the information of location, velocity and time in all weather 

conditions, anywhere in the world. The satellites broadcast two frequencies, 1.5754 GHz 

(L1 signal) and 1.2276 GHz (L2 signal) with a CDMA spread-spectrum technique. 

 

2.2 Major Trends of Wireless Communication 

Although wireless communication has been developed for more than 30 years, the 

desire and demand for more advanced high-performance wireless communication systems 

have never been stopped. The development of wireless communication closely depends 

on the applications of commercial products and marketing. In this section, the major trends 

on the path of current wireless communication technology development will be discussed. 
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2.2.1 High-Level Integration of Multiple Communication Standards 

Recently some personal electronics, for example smart phones, have included 

several wireless standards in one device for approaching various applications. Moreover, 

integrating multiple wireless standards in a single device can fully exploit the 

advantageous properties of each standard. For example, Wi-Fi would be chosen for the 

condition of low coverage range and low mobility, and LTE would be selected for the 

desire of high data rate and high mobility. Currently smart phones aim to at least integrate 

some of GSM, LTE, WiMAX, Wi-Fi, Bluetooth, and GPS but the future goal would be 

integrating all standards in one electronic device. High-level integration of multiple 

wireless standards dramatically increases the design difficulty and complexity. The major 

concerns include fast switching and settling between standards, cross-talk and mutual 

interference between standards, and extensive reusing and sharing the circuitry for 

different standards. 

 

2.2.2 Broadband 

Two reasons bring the broadband wireless communication into a great demand. 

First, a wider bandwidth has a better capability to support a higher data rate. Second, a 

broadband system has better potential to accommodate multiple wireless standards. 

   

2.2.3 High Data Rate 

Twenty years ago, a data rate of tens Kbps was enough for transmitting a voice by 

cellular phones. With the advances of technologies, the demand for a higher data rate has 
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never been stopped. Several wireless applications, such as mobile TV and cloud 

computing, have required a data rate more than 100 Mbps and 1 Gbps data rate is seeable 

in applications such as HDTVs, home entertainment/theater, and mass data transferring in 

the very near future.  

 

2.2.4 Low Power 

Most portable wireless electronic devices are powered by batteries. The up-time 

and standby-time of these portable devices mainly relies on the length of batter lives and 

the power consumption of these portable devices. Hence, low power consumption is 

always desired for extending the on-time of portable devices. Also, low power 

consumption favors generating less heat, hence improving the reliability of these 

electronic devices. 

      

2.2.5 Highly Digitalized 

The CMOS technology scaling brings the advantages of low cost, fast speed and 

less power consumption. However, since the power supply voltage decreases with the 

technology scaling severely challenges the performance and design complexity of analog 

circuits. Therefore, a trend that digital circuits replace analog parts as more as possible is 

developing. In addition, digital circuits occupy smaller area and perform more robust 

functionality. The calibration and mass computing is easier to be realized by digital 

circuitry as well. As an example, the all-digital phase-locked loop has been successfully 



 

15 
 

implemented in various products. It would not be far to see the day that the digital circuits 

prevails in RF front-ends.  

 

2.2.6 Low Cost 

Cost is a dominating factor to influence the development of a wireless technology. 

Cost is the expense spent from planning a product to delivering the product to markets. A 

lower cost is always favorable. From the perspective of integrated circuits, low cost means 

less chip area, less design complexity, less power consumption and cheaper technology. 

Current wireless communication systems intend to minimize the number of ICs. To save 

cost, there have been a lot of researches working on reuse or sharing circuits between 

multiple wireless standards. 

 

2.2.7 Cognitive 

Cognitive radio [9] is an intelligent radio transceiver which can use the RF 

spectrum dynamically based on the communication quality and environment. If multiple 

wireless standards are achievable or multiple frequency bands are allowed to use, the 

cognitive radio will judiciously select the wireless standard or frequency band which can 

provide best communication quality. 

 

2.3 RF Receiver Architecture 

The function of wireless receivers is to demodulate RF signals down to baseband 

in the presence of undesired interferences and noise. Since the wanted RF signals are weak 
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to process in the digital domain after the attenuation of wireless transmission, the wireless 

receivers must provide strong signal amplification to strengthen the signal. Noise, 

linearity, gain, signal bandwidth, and power consumption are the critical specifications in 

wireless receiver design. In this section, several most important and popular receiver 

architectures will be introduced and compared. 

 

2.3.1 Super-Heterodyne Receivers with Single-IF and Dual-IF 

The super-heterodyne receiver, which was proposed in 1917, is still used in a lot 

of wireless communication systems. Fig. 2.3 shows the simplified architecture of super-

heterodyne receiver with single IF (intermediate frequency) conversion. The RF signal 

ωRF is received by an antenna and then an off-chip band-pass filter (can be a SAW filter 

with a high quality factor more than 1000) preserves the RF signal and attenuate the 

unwanted signals to avoid that strong interferences saturate the receiver. The following 

low-noise amplifier (LNA), which compromises the gain, noise figure and linearity, 

amplifies the RF signal. Then, a mixer down converts the RF signal ωRF into the IF signal 

ωIF with a LO signal ωLO generated by a local oscillator (LO). The frequency of LO signal 

is tuned for RF frequencies to have a fixed IF frequency. An image-rejection filter and 

channel-selection filter are placed before and after the mixer, respectively. In most cases, 

the image-rejection filter is an off-chip filter due to the requirements of excellent filtering. 

The IF signal is then resolved into the digital domain by an analog-to-digital converter. 

Finally, the information is reconstructed by the digital signal processing. There is a 

compromise to determine the frequency of IF signal in the super-heterodyne architecture. 
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For example, a higher IF frequency simplifies the design complexity of the image-

rejection filter because the image frequency is farer away from the frequency of the RF 

signal. However, a higher IF frequency complicates the design of channel-selection filter 

because the channel-selection filter needs a better selectivity [10, 11].  

In order to mitigate this tradeoff, the super-heterodyne with dual-IF conversions 

is proposed in Fig. 2.4. The first mixer converts the RF signal to a high IF signal to ease 

the design complexity of image-rejection filter. The second mixer subsequently converts 

the high IF signal to a low IF signal so the requirements of channel-selection filter are 

relaxed. This approach relaxes the requirements of both image-rejection filter 

 

 

Fig. 2.3 Simplified architecture of super-heterodyne receiver with single IF conversion. 
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Fig. 2.4 Simplified architecture of super-heterodyne receiver with dual-IF conversion.  

 

and channel-selection filter but one additional IF BP filter, which is mostly high-Q and 

off-chip, and double mixers and local oscillators required increase the cost, design 

complexity and power consumption. 

The super-heterodyne receivers mostly designed for one single wireless standard 

are generally used in the narrow band systems. Therefore, paralleling several super-

heterodyne receivers in needed for using the super-heterodyne architectures in broadband 

or multi-standard wireless communications.  

 

2.3.2 Image-Reject Receivers 

The image-rejection receivers were developed to eliminate the problem of image 

rejection to avoid using expensive and complex band-pass filters. Image rejection 

receivers also relax the design requirements of band-pass filter [10, 11, 12]. The image-

rejection receivers use two signal paths to sum the RF signals at the IF frequencies but 

cancel the image tone by manipulating quadrature phases. Fig. 2.5(a) shows the Hartley 

architecture uses the quadrature phase shifter to cancel the image tones. The 90 degree 
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phase shifter can be replaced by the approach using a 45 degree phase shift in one signal 

path and -45 degree in the other signal path. These phase shifters can be realized by RC 

or LC filters. On the other hand, the Weaver architecture uses one additional mixer pair 

and quadrature LO clocks to replace the phase shifter for reconstructing the signal and 

canceling the image signal as shown in Fig. 2.5(b). The Weaver architecture provides 

better capability to drive a larger bandwidth and achieve better image rejection.  

The performance of image-rejection significantly depends on the phase and 

amplitude mismatches between the two signal paths in the image-rejection receivers which 

rely on using quadrature phases to remove the image tone. These mismatches due to 

process variations are inevitable in current modern technologies. Therefore, the image-

rejection receivers usually provide more than 40 dB image rejection.   

 

 

(a) 

Fig. 2.5 Image-rejection receivers: (a) Hartley architecture; (b) Weaver architecture. 
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(b) 

Fig. 2.5 Continued. 

   

2.3.3 Direct Conversion Receiver 

The demands for image rejection and high-level chip integration motivate the 

development of the direct conversion receivers, which is also referred to homodyne or 

zero-IF receiver [13]. Fig. 2.6 shows the simplified architecture of direct conversion 

receiver. The frequency of LO signal ωLO is tuned by an LO to match the frequency of RF 

signal ωRF so no image frequency occurs and the frequency of IF signal ωIF locates at DC. 

Direct conversion receivers remove the need of external expensive image-rejection filter. 

Moreover, the implementation of the low-pass channel-selection filter is less expensive 

than that of a band-pass filter. Consequently, the direct conversion receiver performs high-

level on-chip integration. 
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Fig. 2.6 Simplified architecture of direct conversion receiver. 

 

 

Fig. 2.7 Simplified architecture of direct conversion receiver with I/Q mixing. 

 

In order to acquire the information of both sidebands allocated around the carrier 

frequency, the quadrature mixing with in-phase (I) and quadrature (Q) signals are used in 

direct conversion receivers as shown in Fig. 2.7. The quadrature mixing can preserve the 

information in both sidebands and separate the information into two paths to avoid losing 
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information. Therefore, the quadrature mixing provides more efficient modulation 

schemes.  

Though the direct conversion performs excellent image rejection and high-level 

integration, several practical problems limit the widespread use of direct conversion 

receivers. The LO leakage, a leakage from local oscillator to the RF signal input of mixer, 

and the interferer leakage, a type of leakage from the interferers at the output of LNA to 

the path of local oscillator, generate the DC offsets at output of mixer. The DC offsets 

occurred after mixing operation would corrupt the signal quality and saturate the baseband 

circuitries so the bit error rate of the system would be degraded. Furthermore, because the 

power spectral density of flicker noise of MOS transistors, which is inversely proportional 

to frequency, is significant at low frequencies, the performance of direct-conversion 

receivers are vulnerable to the flicker noise of MOS transistors. The intermodulation from 

harmonics would directly locate at DC, where the signal locates, so these intermodulation 

tones can hardly be reduced by the filtering techniques.  

  

2.3.4 Low-IF Receiver 

As for mitigating the DC offset and flicker noise of direct conversion and keeping 

all its advantages, low-IF receiver was proposed [14]. Low-IF architecture compromises 

between direct conversion and super-heterodyne architectures. As shown in Fig. 2.8, a 

quadrature mixer directly converts the RF signal down to IF frequencies which can be as 

low as one or two channel bandwidths away from DC. The use of IF frequency not only 

m a k e s  t h e  l o w - I F  r e c e i v e r  n o t  s o  s e n s i t i v e  t o  t h e  D C  o f f s e t s  a n d 



 

23 
 

Fig. 2.8 Simplified architecture of low-IF receiver. 

 

fliker noise but also allow the IF signals to be easily sampled by ADC. The image rejection 

can be implemented in the digital domain. Since all the filtering can be realized on-chip, 

low-IF receivers perform high-level on-chip integration.   

 

2.3.5 Digital-IF Receiver 

Digital-IF receivers are also referred to as software defined radio. The aim of 

digital-IF receivers is to use robust and low-cost CMOS digital circuitries and digital 

signal processing as more as possible. The extensive use of digital circuitries and signal 

processing makes the digital-IF receiver reconfigurable for various systems, wireless 

standards, and modulation schemes. The communication signal quality can be tuned and 

calibrated through the DSP.  

Fig. 2.9 shows a simplified architecture of digital-IF receiver. The signal received 

from the antenna is filtered by a band-select band-pass filter to remove unwanted 
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spectrum. After amplified by the high-linearity LNA, the RF signal is then filtered by the 

image rejection band-pass filter to attenuate the interference around the image frequency. 

Then, the RF signal mixed by the LO signal converts down to the IF frequency (100 – 200 

MHz) for which there is no specific standard.  Followed by the VGA to amplify the signal 

large enough to be processed by the IF bnad-pass ADC, the IF band-pass filter attenuates 

the unwanted spectrums to avoid saturating the input of ADC. The use of IF frequency 

mitigates the problems of DC offset and flicker noise. The channel filtering, channel 

image-rejection, DC offset cancellation and calibration, standard configuration, and 

system adaptive tuning can be realized in digital domain by means of DSP. The digital-IF 

receivers are able to support for multi-standard receiver and perform excellent single-chip 

integration. However, the digital-IF receivers require an ADC with high resolution, 

usually 12 – 16 bits, and a sampling rate around several hundred MHz. These ADC 

requirements are very challenging for current CMOS technologies. 

 

 

 

Fig. 2.9 Simplified architecture of digital-IF receiver. 
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2.3.6 Software Radio Receiver 

The software radio was first introduced by Joseph Mitola III in 1991 [4]. The 

terminology of “software radio” means that the modulation and demodulation of signals 

is realized by the DSP and software and the radio operations can be reconfigured by the 

software programs. The ideal software radio architecture is shown in Fig. 2.10. The T/R 

(transmit/receive) switch multiplexes the RF signal between transmitting path and 

receiving path. In the receiving path, the RF ADC directly samples and digitizes the RF 

input signal received from antenna. The digitized data stream is then processed by the DSP 

to demodulate and reconstruct the information. The software radio receivers perform the 

analog-to-digital conversion as close to antenna as possible to use the digitals as more as 

possible. The approach matches the trends that digital circuits is getting prevailing analog 

ones in the modern and future development of CMOS technologies. 

In ideal software radio architecture, the signals received from antenna are 

 

 

Fig. 2.10 Simplified architecture of ideal software radio. 

RF

ADC

DSP

Antenna

ωRF

DAC      PA

Reconfigurable

Program

T/R Switch



 

26 
 

usually very small (μW – mW range). Consequently, the RF ADC needs a resolution of 

more than 20 bits at sampling frequency to satisfy the requirement of receiver’s dynamic 

range. The stringent requirements of RF ADCs are impossible to achieve in current CMOS 

technologies. Thus, signal amplification is needed before the ADC. 

The practical realization of a software radio receiver is shown in Fig. 2.11. After 

filtered by RF band-pass filter, the RF signal is amplified by the LNA to relax the dynamic 

range requirement of RF ADCs. The ADC digitizing the amplified RF signal allows DSP 

to implement the demodulation, protocols and equalization in digital domain. The DSP 

can be reconfigured by the software programs to support multiple standards. It is also 

feasible to adapt the channel coding technique to suppress particular interferences. Key 

parameters such as data rate, channel and source coding, modulation schemes, and 

multiple access schemes can be adaptively tuned by software to obtain better 

communication quality. Thus, the software radio can cover broadband spectrums and 

support multiple wireless standards. The high digitization, excellent adaptive flexibility, 

and superior on-chip integration make software radio receiver a potential for the future 

broadband multi-standard communication.  

 

Fig. 2.11 Practical realization of software radio receiver. 
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2.4 Frequency Synthesizer 

As presented in the previous section, a clock generator is a must in most wireless 

communications to up-convert or down-convert an informative signal. Frequency 

synthesizers that generate the programmable frequency to select the desired channel are 

ubiquitous in wireless transceivers. Usually, the core of frequency synthesizers is formed 

by a phase-locked loop (PLL). With a certain input reference frequency, usually provided 

by an off-chip temperature-controlled crystal oscillator (TCXO), a PLL can generate a 

programmable output frequency, rational times to the reference frequency. 

 

2.4.1 Phase-Locked Loop 

Oscillators are mostly utilized to provide a high performance clock in wireless 

transceivers. However, the clock frequency and phase of stand-alone oscillators can hardly 

be controlled and locked at a desired value. Therefore, a phase-locked loop (PLL), a 

negative feedback system, is used to solve the frequency and phase ambiguities of clock 

generation. Nowadays, PLLs have been widely used in almost all wireless transceivers. 

Fref

DIV (1/N)

LPF VCO

CPPFD
FoutVCtrl

Fdiv

 

Fig. 2.12 Block diagram of a typical phase-locked loop. 
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Fig. 2.12 shows the block diagram of a charge-pump-based analog phase-locked 

loop which consists of a phase/frequency detector (PFD), charge pump (CP), low-pass 

filter (LPF), voltage-controlled oscillator (VCO), and frequency divider (DIV). The PFD 

senses the phase error (the phase difference between the input reference clock and the 

output clock of dividers) and generates an analog signal proportional to the phase error. 

The charge pump converts the analog signal to charges integrated by the loop filter. The 

control voltage of the loop filter varies with the integrated charges based on the phase error 

continuously integrated; therefore, adjusts the output frequency of the VCO. The 

frequency dividers convert the VCO output frequency down and feedback the output clock 

of dividers to the PFD for comparing the frequency and phase with the reference clock. 

Ideally, when a PLL system is locked, phase difference between the reference clock and 

feedback clock should be a zero or fixed phase error existing. Usually, the reference clock 

is provided by an off-chip crystal oscillator (OSC). The output frequency of the oscillator 

(Fout) is a multiplication of the reference frequency (Fref): 

 refout FNF   (2.1) 

where N is the division ratio of dividers. It should be noticed that N can be integer or 

fractional and in most wireless communication applications N has to be programmable.  

Although the practical behavior of PLLs is non-linear and time-variant, time-invariant 

linear models are usually capable enough to describe the PLL system performance. 

However, the time-domain simulation, a time-consuming approach, would be necessary 

to accurately demonstrate the performance of a PLL system and each building block. The 
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more detail of PLL system design and system behavior model simulation can be found in 

[15, 16]. 

 

Table 2.3 Comparison of major WLAN standard specifications. 

Standard 
RX Band 

(MHz) 

Channel 

Spacing 

Frequency 

Accuracy 

Phase Noise 

(dBc/Hz) 

GSM 925-960 200 KHz 0.1 ppm 
-118@0.6 MHz 
-128@1.6 MHz 
-138@3 MHz 

DCS1800 1805-1880 200 KHz 0.1 ppm 
-119@0.6 MHz 
-129@1.6 MHz 
-136@3 MHz 

WCDMA 2110-2170 5 MHz 0.1 ppm 
-108.8@7.6 MHz 
-120.8@15 MHz 
-150@130 MHz 

Bluetooth 2400-2484 1 MHz 75 KHz 
-81@1 MHz 
-111@2 MHz 
-121@3 MHz 

802.11a 
5170-5350 
5725-5850 20 MHz 20 ppm 

-90@10 KHz 
-100.2@20 MHz 
-116.2@40 MHz 

802.11b 2400-2483.5 25 MHz 25 ppm -90@10 KHz 
-121@14 MHz 

802.11g 2400-2484 25 MHz 25 ppm 
-90@10 KHz 

-100.2@20 MHz 
-116.2@40 MHz 
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2.4.2 Design Issues of Frequency Synthesizers 

The specifications of frequency synthesizer are different in various wireless 

standards. Table 2.3 listed the specifications of the frequency synthesizer in most common 

wireless communication standards. These specifications bring a lot of design issues, and 

this section will discuss the most common design issues of frequency synthesizers. 

 Phase noise:  

Phase noise is the most crucial and challenging specification in PLLs 

because worse phase noise would significantly degrade the receiver SNR. The 

definition of phase noise is the ratio between the total carrier power and the noise 

power found in a 1 Hz bandwidth at a frequency offset, fm, from the carrier. The 

expression of phase noise is 
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where L(fm) is the phase noise in units of decibel per hertz (dBc/Hz), and fo is the 

oscillating frequency. The phase noise spectrum in practical oscillators can be 

described in a first order approximation by Leeson’s model: 
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where F is the excess noise factor, K is the Boltzmann constant, T is the absolute 

temperature, Po is the power of carrier signal, Q is the quality factor of the LC tank, 

and f1/f is the corner frequency of flicker noise. The phase noise of oscillators can 
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be modeled by the impulse-response-based approach [17] or the phasor-based 

approach [18]. Fig. 2.13(a) shows the typical phase noise spectrum of oscillators 

while a phase noise spectrum of a PLL is shown in the Fig. 2.13(b). It should be 

noticed that the VCO noise contribution in a PLL is high-pass filtered but the PLL 

closed loop gain for the noise contributed from PLL reference clock, PFD, CP and 

DIVs is a low-pass characteristic. Thus, the PLL phase noise spectrum is 

dominated by VCO noise at the offset frequency much higher than the loop 

bandwidth while the PLL in-band (close-in) phase noise is mostly dominated from 

the PFD, CP, DIVs and crystal oscillator. Managing the bandwidth to compromise 

the contribution from various noise sources is important to optimize the jitter 

performance. 

 

 

(a) 

Fig. 2.13 Phase noise of (a) oscillator, (b) phase-looked. 
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(b) 

Fig. 2.13 Continued. 
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 Fig. 2.14 Reciprocal mixing. 
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Fig. 2.14 illustrates the SNR degradation of a receiver system due to the 

phase noise of a local oscillator (LO) clock. In an RF receiver, the desired signal 

at RF is down converted to a baseband or an intermediate frequency (IF) by a mixer 

driven by the LO. The phase noise appears as a skirt shape centered at the carrier 

signal in the frequency spectrum. Suppose a strong interference (blocker) is located 

at an offset frequency fm higher than the desired frequency (IF) by a mixer driven 

by the LO. The phase noise appears as a skirt shape centered at the carrier signal 

in the frequency spectrum. Suppose a strong interference (blocker) is located at an 

offset frequency fm higher than the desired signal in the receiving path. The 

interferer modulates the phase noise at the offset frequency fm higher than the clock 

center frequency and then the resulting product falls at the frequency the desired 

signal located; therefore, the desired signal would be corrupted by the phase noise. 

This effect is called reciprocal mixing and the phase noise has to be low enough to 

achieve a good system SNR [10, 19]. In RF transmitters, good phase noise will 

give a greater margin for the non-linearity in a PA. Also, the phase noise could 

increase the spectral emissions so the output spectrum of local oscillators must 

meet a mask requirement.  

 Lowering division ratio, increasing the charge current and fundamentally 

reducing the noise contribution from PFD, CP and DIV can improve the in-band 

phase noise of PLLs. To improve the phase noise at offset frequencies higher than 

PLL bandwidth, reducing the phase noise of oscillators is most critical. 
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Fig. 2.15 The effect of spur degrading the SNR. 

 

 Spur: 

Spurious tones can be observed at offset frequencies deviated from the LO 

carrier frequency in the frequency spectrum of the LO clock as shown in Fig. 2.15. 

The formation of spurious tones in the frequency spectrum is from the periodical 

patterns/ripples in time-domain at the control voltage of the loop filter. 

These time-domain periodical patterns modulate the VCO frequency and then 

reside at the offset frequencies. The generation of spurs could be due to reference 

clock feedthrough, charge pump current mismatch, charge injection, leakage 

currents, mismatched propagation delay in PFD/CP up and down signals, fixed 
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phase error in PFD, ripples coupled from any clocks at control voltage or at ground 

and power supply, and fractional division operation. The effect of spurs in wireless 

transceiver is very similar to the phase noise. The desired signal would suffer from 

the SNR degradation after mixing operation because the interferers could mix with 

spurs and then translate to the frequency band of interest. In a transmitter, the spur 

levels must be low enough to ensure not to interfere with users in the same or a 

nearby channels.  

The ratio of the power of the reference spur tone to the carrier power can 

be expressed as 

  
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



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KVdBcSpur

2
log20  (2.4) 

where ΔVCtrl is the peak amplitude of the ripple at the control voltage, KVCO (Hz/V) 

is the VCO gain, and the Fref is the reference frequency. A higher reference 

frequency and narrow PLL loop bandwidth gives a better spur performance. 

However, the higher reference usually leads to a larger frequency step and a narrow 

PLL bandwidth harms the settling time. 

 Frequency range:  

Although most wireless standards are not wideband, while integrating 

several standards in one single chip, the wide frequency tuning range may be 

required. In addition, TV-tuners require an over 800 MHz frequency range and 

ultra-wide-band transceivers may require an over 8 GHz clock span. It is 

challenging to perform excellent performance in a wide frequency range. 
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 Settling time (Locking time): 

The lock time, also called settling time, acquisition time, or tracking time, 

is the time for a PLL to jump from one specified frequency to another specified 

frequency within a given frequency or phase tolerance. The lock time has to be 

smaller than the specification under the testing with the maximum frequency step 

in the allocated frequency band. The lock time, used to achieve the frequency 

locked, is valuable time that cannot be used for transmitting or receiving data. 

Hence, the lock time reduces the effective data rate achievable. Most PLLs in RF 

communication are required to have a lock time in the 0.1 to 1ms range. A larger 

PLL loop bandwidth will shorten the lock time. The total acquisition time, 

combining phase acquisition time tphase and frequency acquisition time tfreq, can 

approximately be expressed as [15] 
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where ωn is the nature frequency, Δf is the frequency step, and ζ is the damping 

factor. The more detail and discussion of lock time can be found in [15]. 

 Bandwidth: 

The PLL loop bandwidth is a very important design parameter, 

significantly influencing the PLL performance. Bandwidth can compromise the 

phase noise contributed from additive noise sources. A larger bandwidth will 

shorten the locking time but increases the risk of loop instability. The reference 
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clock is usually 10 times higher than the bandwidth to ensure the loop stability. It 

should be noticed that the linear approach to analyze the nonlinear PLL system is 

effective when there is a high sampling ratio of reference clock frequency to the 

loop bandwidth. While the ratio is lower than 5, the linear approximation in system 

simulation may not accurately describe the real behavior of a PLL, accordingly, 

lead to errors to predict the stability of a PLL. 

 Integral and fractional division ratio: 

  The frequency step of an integral-N PLL is limited to the frequency of 

reference clock. While a small frequency step is required in a high-frequency PLL, 

a large division ration needed would increase the in-band noise because the noise 

at PFD/CP is multiplied to a ratio of 20logN to appear at the PLL output frequency 

spectrum. Also, a narrow bandwidth required for smaller reference frequency 

would pay for an intolerably lengthy lock time. Fractional-N PLLs not only allow 

a larger reference clock frequency but also provide finer frequency spacing. Thus, 

the lock time and reference spur performance can be better in fractional-N PLLs 

due to a larger reference clock used. However, the fractional-N PLLs cause the 

generation of fractional spurs, mostly larger than the typical reference spur. Giving 

a better spur performance, the sigma-modulator implemented in the fractional-N 

PLLs can provide the averaging function (randomize the periodical phase error) 

and shape the quantization noise to higher frequencies [20]. However, the heavy 

digital circuitry and shaped quantization noise could contribute significant phase 

noise.  
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 Stability: 

In a feedback system, phase margin is a key parameter to judge the loop 

stability. The phase margin is a function of bandwidth, pole locations and zero 

locations. In a type II PLL, to optimize the phase margin the bandwidth of loop 

gain can be designed as 

  zp ffBandwidth   (2.6) 

where fp is the non-DC first dominate pole and fz is the zero in a PLL. Fig. 2.16 

shows the Bode Diagram based on this design approach and the sensitivity of phase 

margin is minimized. Since the bandwidth, pole locations and zero location are 

process-dependent, the phase margin would vary drastically with key parameters 

as shown in Fig. 2.17. Therefore, it is better to design a phase margin at least larger 

than 60 degree to ensure the PLL stability. 

 

 

Fig. 2.16 Minimize the sensitivity of phase margin. 
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(a) 

 

(b) 

 Fig. 2.17 Phase margin varies with (a) charge pump current, and (b) VCO gain. 

 

 Cost: 

Low cost is always favorable in commercial RF IC design. Low cost means 

less power consumption, silicon area, and design complexity.  
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CHAPTER III 

WIDEBAND FREQUENCY SYNTHESIZER FOR RF-TO-DIGITAL CONVERTER 

 

3.1 Continuous-Time Band-Pass Delta-Sigma Analog-to-Digital Converter in  

Software Radio Receiver 

Software radio receiver has been introduced as a potential architecture for the 

multi-standard broadband communications. In software radio receivers, the analog-to-

digital conversion should occur as close to the antenna as possible to take the advantage 

of digital circuitry. The modulation/demodulation schemes, protocols, and equalization, 

are all determined in a software platform that runs in the digital signal processor (DSP). 

The ultimate goal is to digitize the RF signal at the output of the receive antenna at 

increasingly higher frequencies and wider bandwidths. The early digitization in the signal 

path eliminates the need for analog processing blocks, which theoretically results in 

significant reduction in power and silicon area. Software radio receivers not only perform 

the excellent ability of reconfiguration but also effectively minimize the cost. However, it 

is very challenging to digitize the RF signal received from an antenna and then processed 

by a BPF and an LAN at RF frequencies. The ADCs’ requirement of a more than 10-bit 

resolution at several-gigahertz sampling frequency is very difficult to achieve in current 

CMOS technologies. The Nyquist-rate ADCs, such as flash, pipeline and successive 

approximation, may support up to GHz range, but the power consumption and achievable 

resolution are not acceptable. The performance of ADCs has become the bottle-neck of 

developing the software radio receivers. 
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Continuous-time (CT) Band-pass (BP) Delta-Sigma (ΔΣ) analog-to-digital 

converters have been acknowledged as one potentially ideal architecture for software radio 

receivers [6, 21]. Fig. 3.1 shows the architecture of broadband multi-standards software 

radio receiver using the CT BP ΔΣ ADC for digitizing the RF signals. The RF signals 

received from an antenna are first processed by an off-chip band-pass filter to 

remove/attenuate the unwanted out-of-band interferences. A high-linearity broadband 

low-noise amplifier (LNA) amplifies the RF signal up to the level that the followed ADC 

can process. The broadband multi-standards system requires a high linearity of LNA for 

mitigating the intermodulation of RF signals and the modulation between desired signal 

and interferences because those intermodulation products could fall into the signal 

bandwidth to degrade the SRN of system. The CT BP ΔΣ modulator directly converts the 

RF signals to the digitized data stream which can be demodulated and filtered by the digital 

signal processor. The wideband frequency synthesizer provides the sampling clock for the 

CT ΔΣ modulator to acquire the desired standard and channel. 

 

Quantizer
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Programmable BP Filter

Programmable CT BP ΔΣ RF-ADC

Digital 

Signal

Processor
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Off-chip

BP Filter

Programmable

Linear LNA
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Fig. 3.1 RF Digitizer based on a band-pass continuous-time Sigma-Delta modulator. 
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The CT BP ΔΣ modulator consists of an Nth order continuous-time band-pass filter, 

a quantizer, and a DAC to form a closed feedback loop. The center frequency fo of the 

band-pass filter is programmable/tunable to meet the required input RF signal frequency 

fRF of various wireless standards. The desired information with a bandwidth fb is enveloped 

within the RF signal (fb << fRF) and located around the center frequency of the band-pass 

filter. The sampling clock frequency fs of the quantizer is just multiple times higher than 

the fRF but several hundred times higher than fb to obtain a high oversampling ratio of fs to 

fb in the CT BP ΔΣ modulator. The quantizer outputs a digitized data stream to DSP where 

the robust digital operations are executed. The DAC converts the digitized information 

back to analog domain and feedback the analog information into the input of CT BP ΔΣ 

modulator to form a closed loop. This negative feedback loop forms a band-pass transfer 

function for input signal while builds up a notch transfer function for quantization noise 

around the center frequency fo. 

The implementation of CT BP ΔΣ modulator in software radio receivers has 

several advantages. First, since the sampling operation is after the BP loop filter, the BP 

loop filter of CT BP ΔΣ modulator performs an inherent anti-alias filtering to relax the 

preceding filtering design of the ADC, to save both area and power consumption, and to 

minimize the effect of the out-of-band interferers. Second, the band-pass type signal 

transfer function and band-stop noise transfer function attenuate/shape the undesired noise 

and interference away from the band of interest to achieve excellent signal-to-noise ratio 

within the wanted narrow-band signal bandwidth. This unique feature is especially 

suitable for the wireless receiver where the narrow signal bandwidth is enveloped in the 
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high carrier frequency. Third, the receiver architecture avoids the use of analog mixing 

operations and base-band analog processors; instead, the robust digital operations 

dominate the signal processing. Besides, the continuous-time loop filter greatly improves 

the power consumption and enhances the signal bandwidth while compared with discrete-

time switched-capacitor filter whose operation speed is usually limited to the settling time 

of charge redistribution and power consumption is considerably huge due to the required 

large gain bandwidth product of amplifiers. 

 

3.1.1 Design Challenges of CT BP ΔΣ Analog-to-Digital Converter for Broadband 

Software Radio Receiver  

The performance of CT BP ΔΣ ADCs are limited to some non-idealities such as, 

clock jitter, comparator metastability, excess loop delay, element mismatches of the 

feedback DAC, linearity of DAC feedback charge, finite quality factor of the band-pass 

filter, spurious tone, and frequency and quality factor tuning range of the BP loop filter. 

Because of the more than GHz range sampling clock and the broadband property, clock 

jitter [22] and excess loop delay [23] are remarkably critical non-ideality to degrade the 

ADC’s performance when CT BP ΔΣ ADCs used for broadband software radio receivers. 

The clock jitter occurs at both sampling operation and feedback DAC output as 

shown in Fig. 3.2. The sampling uncertainty due to clock jitter is mostly shaped outside 

the signal bandwidth by the loop characteristic so the sampling uncertainty has ignorable 

influence on SNR. However, clock jitter at DAC clock edges causes random  
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Fig. 3.2 Jitter behavior model of CT BP ΔΣ ADCs. 

 

 

 

(a) 

 

(b) 

Fig. 3.3 DAC output waveform: (a) ideal case and (b) practical case with clock jitter. 
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variation of the integrated charge/voltage at the input of the loop filter. Fig. 3.3(a) shows 

an ideal two-bit DAC output waveform and Fig. 3.3(b) shows the practical DAC output 

waveform with clock jitter. Same as the input signal, the jitter-induced random variation 

of the integrated charge will be processed by the signal transfer function and presented at 

the output spectrum so the jitter noise results in the SNR degradation. It has been reported 

that a multi-bit non-return-to-zero (NRZ) DAC can relax the requirement of the clock 

accuracy. 

Ideally, a DAC starts to inject current pulse into CT BP filter exactly when the 

sampling operation occurs so there is no delay between the sampling instant and the DAC 

current pulse. However, because of the finite switching time of transistors and the RC 

delay in the feedback path, the practical DAC current pulse is delayed in time. The delay 

between ideal DAC current pulse and real DAC current pulse is referred to excess loop 

delay. The excess loop delay modifies the loop transfer function and most importantly 

degrades the SNR of CT BP ΔΣ ADCs. The excess loop delay which increases the order 

of modulator may lead to the stability issue. Usually, one clock period delay would be 

purposely designed in the feedback loop to absorb the excess loop delay and accordingly 

to modify the transfer function of the CT BP ΔΣ ADC as shown in Fig. 3.4. In the 

broadband CT BP ΔΣ ADC, the excess loop delay has to be flexibly tunable to satisfy the 

requirement of one clock period which varies drastically to meet different wireless 

standards. Also, the PVT variation results in the uncertainty of excess loop delay. Fig. 3.5 

shows the SNR vs. excess loop delay. It is evident that the excess loop delay can severely 

degrade the SNR and a design acquiring tunable excess loop delay to optimize the SNR  
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Fig. 3.4 One clock period delay in feedback loop. 

 

 

Fig. 3.5 SNR vs. excess loop delay. 

 

of ADC is necessary.  

The output spectrum of clock generator usually has unwanted spurious tones. 

Those spurious tones would be from the non-linearity of clock signals, the PLLs’ reference 

and fractional spurs and the coupling/modulating from the unwanted clocks. In the CT BP 
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ΔΣ ADC, these spurious tones modulates the input RF signals or interference and the 

intermodulation product could fall into the signal band and thus degrade the ADC’s 

performance as shown in Fig. 3.6. Minimizing the spurious tones is essential for a 

broadband CT BP ΔΣ ADC. 

 

Blocker Clock

Phase 

Noise

SpurRF Signal

 

Fig. 3.6 The convolution product falling in signal bandwidth and degrading ADC SNR 
due to that spurious tones and phase noise convolve with quantization noise and blocker.  

 

3.1.2 Design, Motivation and Objective of wideband Frequency Synthesizer in CT BP 

ΔΣ RF-to-Digital Converter  

The frequency synthesizer acting as the sampling clock generation is the 

substantially critical building block in the CT SD ADC-based software radio receiver. For 

the broadband multi-standards software radio receiver, the frequency synthesizer has to 

output the frequencies several times higher than the signal frequencies, cover a frequency 

range more than a decade for multi-standards, and perform low-jitter and excellent SFDR. 

A tunable excess loop delay is also required optimizing the SNR and assuring the stability. 

These issues motivate the exploration and development of frequency synthesizer design. 

The objectives of the research are listed as below. 
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 Design a frequency synthesizer which can cover the frequency range more than a 

decade to support the software radio receiver used for multi-standard applications. 

 Improve the purity of sampling clock to achieve excellent SJNR of CT BP ΔΣ 

ADCs and make the BP ΔΣ ADCs less sensitive to clock jitter. 

 Design a delay-tunable clock generation/distribution network to adjust the excess 

loop delay to achieve optimized SNR for broadband system.  

 Remove/attenuate the spurious tones to avoid the intermodulation products 

degrading the system SNR. 

 Minimize the power consumption, circuit complexity and cost of frequency 

synthesizer.  

 

3.2 2 – 16 GHz Broadband Frequency Synthesizer in BP ΔΣ RF-to-Digital Converter 

Fig. 3.7 shows the architecture of a broadband software radio receiver realized by 

an LNA, a programmable ΔΣ modulator and a wideband frequency synthesizer. In the BP 

CT ΔΣ modulator, the programmable band-pass filter is implemented by two resonators 

(LC tanks) in which channel selection can be done by varying the resonance frequency of 

the resonators. As shown in Fig. 3.8, the inductors are fixed and programmable banks of 

capacitors are used for this channel selection. A 2-bit flash ADC is used as the 2-bit 

quantizer since this approach reduces the quantization noise by 6 dB and improves system 

stability. 



 

49 
 

 

Fig. 3.7 RF Digitizer based on a band-pass continuous-time Sigma-Delta modulator. 
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Fig. 3.8 CT BP  ADC system Level block diagram. 
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A frequency synthesizer provides the sampling clock for the quantizer to select the 

desired channel. Choosing the clock frequency four times higher than the input RF carrier, 

the digitization of channels in the range of 0.5 – 4 GHz require the clock frequency to be 

in the range of 2 – 16 GHz. Based on system simulation, the clock jitter of this frequency 

synthesizer must be under 0.6ps to achieve 10-bit resolution in a 20MHz channel 

bandwidth. Since the loop filter provides limited blocker attenuation, the clock spurious 

tones convolve with the out-of-band channels. Parts of the resulting signals fall in-band 

and then degrade the system SNR. Therefore, the ratio of the power of the main clock 

signal to the power of the spurious tones must be > 40dB. 

Fig. 3.9 shows the proposed 2 – 16 GHz integer-N frequency synthesizer. The 

type-two fourth-order charge-pump-based PLL outputs 10 – 12.8 GHz quadrature clocks. 

A single-sideband (SSB) mixer is used to expand the clock frequency range by means of 

the feed-forward and regenerative mixing techniques to get more than 100% frequency 

range while maintaining low jitter performance. In order to generate a low-jitter clock, a 

low-noise quadrature voltage-controlled oscillator with low I/Q phase mismatch is 

developed as the core of the phase-locked loop (PLL)-based frequency synthesizer to 

covering around 25% frequency tuning range. The QVCO design will be discussed in the 

next chapter. 
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Fig. 3.9 Architecture of the proposed 2 – 16 GHz frequency synthesizer. 

 

3.2.1 SSB-Mixer-Based Frequency Expansion Technique  

It is known that a wider VCO frequency tuning range leads to a worse VCO phase 

noise due to the lower quality factor of LC tank. Thus, considering the fundamental trade-

offs between the frequency range and noise performance in clock generation systems, SSB 

mixers would be attractive and show potential benefits for widening the frequency tuning 

range without sacrificing the phase noise/jitter performance. As shown in Fig. 3.10, a SSB 

mixer can add or subtract the fundamental or the harmonic frequency of any two clocks 

due to the frequency mixing operation to generate and expand the wanted output clock 

frequency which is usually selected by an analogy filter. Fig. 3.10(a) shows a feed-forward 

mixing by which the frequency output can be expressed as 
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(a)                                                                        (b) 

Fig. 3.10 Frequency conversions by (a) feed-forward mixing and (b) regenerative 

mixing. 
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where M is the division ratio in the feed-forward mixing path. And the frequency generated 

by regenerative mixing can be expressed as 
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where N is the division ratio in the regenerative mixing.  
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A continuously wide frequency range more than a decade can be realized by a 

100% frequency-range clock generator covering the high-end frequencies which can be 

translated and expanded to lower frequencies by frequency dividers. By means of 

combining the feed-forward and regenerative mixings, the 100% frequency range can be 

obtained as shown in Fig. 3.11. A and B are the ratios to expand the frequency range to 

higher and lower domains, respectively. α is the percentage that a VCO frequency range 

should be able to cover to satisfy the 100% frequency range. The requirements of A, B 

and α to avoid uncovered frequency gaps can be obtained by the following set of equations, 

 

Fig. 3.11 100% frequency range generation. 
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where Fre is the lowest frequency the synthesizer has to cover and fvco is the lowest 

frequency the VCO can cover. Since divide-by-two frequency blocks are usually easy to 

design and more efficient in terms of power consumption, area, and speed, it is better to 

use binary numbers for M and N ratios. Given M and N equal to 4, ratio A and ratio B will 

be 5/4 and 4/5 and then the required VCO tuning range α will be 25.9%. In current CMOS 

technologies, VCOs can cover this frequency range with good enough phase noise 

performance even though the very pessimistic process variation is given. It should be 

noticed that one SSB mixer can be shared by both feed-forward mixing and regenerative 

mixing. 

Fig. 3.12 shows the simplified block diagram of the SSB mixer-based frequency 

band expansion architecture. The proposed QVCO integrated in a PLL-based frequency  
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Fig. 3.12 Simplified block diagram of band expansion architecture. 

 

synthesizer outputs a mid-frequency band, 10 – 12.8 GHz. The regenerative and feed-

forward mixings are incorporated with the frequency synthesizer to achieve 100% 

frequency range. The low-frequency band, 8 – 10 GHz, is generated by the regenerative 
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mixing path which converts the input (mid-band) frequency to the low-frequency band by 

a ratio of 0.8. The high-frequency band, 12.5 – 16 GHz, is generated by the feed-forward 

mixing path which performs a frequency conversion by a ratio of 0.8. Current-mode-logic 

(CML) dividers are used to generate the required mixing frequency in either feed-forward 

or regenerative mixing path. A tri-state buffer works as the multiplexer to select either 

regenerative or feed-forward mixing path or act as a switch to turn off the mixing operation 

to allow the SSB mixer exhibits as a BP filter/buffer to output the mid-band. 

The building block level of the entire band expansion architecture is shown in Fig. 

3.9. Both the SSB mixer and band-pass (BP) LC-buffer provide the band-pass filtering 

and attenuation for the interference, spurs or phase noise at unwanted frequency range 

while amplify the clock signal at required frequency band. This band-expansion circuit 

design relaxes the concerns regarding the possible convolution between the blockers, 

spurs, and noise, so the ADC system is less influenced and vulnerable to the non-idealities 

from the frequency synthesizer. The dividers in the regenerative path are used for the 

further frequency extension to lower frequencies so the band-expansion circuits can output 

a frequency range from 2 to 16 GHz. The design of band expansion block saves 

considerable power and boosts the robustness of the ADC system. 

 

3.2.2 False Frequency Locking in Regenerative Mixing  

It is well known that the active feedback load of CML divider would lead to a self-

oscillation.  In the regenerative mixing path the first CML frequency divider would be 

also used as the first divider to down-convert the highest clock frequency generated from 
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the feedforward mixing, this CML divider has to be designed to have a self-resonant 

frequency at the half of the highest clock frequency to guarantee the functionality of this 

CML divider over temperature and voltage variation. However, when the regeneratative 

mixing is required, the divider which oscillates at its high resonant frequency would cause 

false locking issue. For example, when the frequency range from 6.4 to 8 GHz is required, 

the feed-forward mixing path is active and the first CML divider in the regenerative 

mixing path has to convert the output frequency range from 12.5 to 16 GHz into its half 

so ideally the self-resonate frequency of the CML divider should be designed as 8 GHz. 

However, when the regenerative mixing is active to generate an 8GHz output frequency 

from a 10GHz VCO clock as shown in Fig. 3.13, the CML divider could oscillate at the 8 

GHz self-resonate frequency and then the second following divider translates 

 

 

Fig. 3.13 False frequency locking in regenerative mixing path. 
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(a)                                                                       (b) 

Fig. 3.14 (a) Tunable self-resonate oscillation frequency of CML frequency divider; (b) 
schematic of CML divider with tunable resistor loading.  

 

the frequency to 4 GHz. Therefore, the 6GHz output frequency of the SSB mixer would 

far deviate from an 8GHz pass-band of the SSB mixer and the output amplitude of SSB 

mixer would be too small to activate the division operation of the CML divider so the band 

expansion system would remain in the false locking condition as shown in Fig. 3.13. 

In order to solve this problem, the CML frequency divider with tunable self-

oscillation frequency is designed as illustrated in the Fig. 3.14(a). The resistive load of the 

latch in the CML divider consists of a resistor in parallel with a triode-region transistor as 

shown in Fig. 3.14(b). When the CML divider is required operating at high frequency, the 

triode-region MOS transistor provides a high self-resonate frequency. However, when the 

divider is operated forming the regenerative path, the triode-region MOS transistor is 

turned off and the CML divider operates with a lower self-resonate frequency would 

Input CLK Amp

Input CLK 

Freq
16 GHz8 GHz

CtrlCtrl

D

CLK



 

58 
 

oscillate at a frequency closer to the required frequency under proper frequency locking 

condition to avoid the false locking condition as shown in the Fig. 3.15.   

 

 

Fig. 3.15 Self-oscillation frequency of CML divider is tuned to avoid false locking. 

 

3.2.3 Excess Loop Delay Control  

The clocks generated by the proposed frequency synthesizer are used at the two-

bit quantizer as the sampling clock at full frequencies which span from 4GHz to 16GHz, 

4 times higher than the RF input signal. The excess loop delay has to be exactly one clock 

period TCLK to ensure loop stability; accordingly, spanning from 62.5ps to 250 ps. The 

summation of loop delays given by quantizer, DAC, band-pass filter and routings should 

be close enough to TCLK. This requirement of a wide and tunable excess loop delay is very 

challenging.  
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Fig. 3.16 shows the simplified block diagram of the two-bit NRZ quantizer. The 

pre-amplifier stage senses and amplifies the difference between the differential signals 

and reference voltages before the quantizer. It can also reduce the kickback noise from 

the output of the latched comparator. The latched comparator senses the output voltage of 

the pre-amplifier and regenerates it to logic voltage. The following latch stages are 

  

 

Fig. 3.16 Two-bit quantizer design. 

 

 

 

Fig. 3.17 Schematic design of quantization unit cell. 
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introduced to decrease the metastability issues and to make tunable the excess loop delay. 

The 2-bit quantization is recognized by the three unit bits in which a reference voltage is 

given in each pre-amplifier. Fig. 3.17 shows the design of each unit bit. The pre-amplifier 

is composed of two input differential pairs, load resistors and series peaking inductor. The 

differential pairs connect to the differential input signals and differential reference 

voltages directly. The pre-amplifier provides a finite DC gain to reduce the offset effect. 

However, the gain cannot be too high because of the Miller effect reducing the operation 

bandwidth. The bandwidth of the pre-amplifier should be high enough to reduce the signal 

delay. A series peaking inductor which improved the bandwidth by 50% is added at load 

to improve the bandwidth as shown in Fig. 3.17. A series peaking inductor is also added 

to increase the bandwidth in the first latch L1 while second latch L2 and third latch L3 do 

not use peaking inductors to extend the bandwidth. 

 The clocks CLK1, CLK2, CLK3, and CLK4 are the used in L1, L2, L3 and L4, 

respectively. The clocks CLK1 and CLK3 are in-phase but out of phase of CLK2 and 

CLK4. Define the total delay from DAC, band-pass filter and signal routing path as TD 

so the excess loop delay will be TCLK + TD. Since TD is impossible to be zero delay, the  
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Fig. 3.18 Delay of quantizer without tunable delay control. 

 

excess loop delay is definitely larger than the desired one clock period TCLK as shown in 

Fig. 3.18.   

In order to satisfy the requirement of excess loop delay, tunable delay control is 

implemented in L1 and L4. When the sampling clock frequency is low, 2GHz – 10GHz, 

a timing delay ∆T1 is given in CLK1 and a timing advance ∆T4 is given in CLK4 as shown 

in Fig. 3.19. The excess loop delay in this case can be expressed as 

 TDTTTDelayLoopExcess CLK  41  (3.4) 

The excess loop delay can be equal to one clock period TCLK when ∆T1 + ∆T4 = TD. 

Usually, TD is around several tens ps so ∆T1 and ∆T4 are around 10 – 20 % of TCLK. 
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Fig. 3.19 Delay of quantizer with tunable delay control for low frequency operation. 

 

However, when the sampling frequency is even higher, beyond 10GHz, ∆T1 and 

∆T4 would not be acceptably small compared to TCLK. While ∆T1 + ∆T4 = TD is met, the 

quatizer cannot function well to properly recognize and amplifier the input signal. To 

satisfy the excess loop delay requirement beyond 10GHz sampling clock frequency, the 

active feedback part of L4 is turned off to obtain additional half clock period timing for 

the loop delay TD. As shown in Fig. 3.20, the excess loop delay can be expressed as 

 TDTTDelayLoopExcess CLK  1  (3.5) 

It should be noticed that ∆T1 can be either positive or negative depending on a timing 

delay or timing advance is required to meet the excess loop delay of one clock period. To 

satisfy this requirement, TD is equal to TCLK/2 + ∆T1.  
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Fig. 3.20 Delay of quantizer with tunable delay control for high frequency operation. 

 

 

 

Fig. 3.21 Tunable delay cell with replica bias. 
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Fig. 3.21 shows the tunable delay cell with replica biasing circuitry. The delay can 

be controlled by the Vbias while the output swing amplitude of each delay cell can be 

controlled by VAmp the replica bias circuit. This design can give ± 15% phase tuning.  

 

 

Fig. 3.22 Image sideband generation due to the I/Q mismatch 

 

3.2.4 Low-noise Precise I/Q Phase Accuracy QVCO 

The quadrature voltage-controlled oscillator (QVCO) generates the I/Q phases for 

the SSB mixing. As shown in the Fig. 3.22, the phase and amplitude mismatches of the 

I/Q signals would produce the sideband image during the mixing operation and this 

sideband image can potentially convolve with the blockers to degrade the resolution of the 

ADC system, so a QVCO with low I/Q mismatch is desired. The sideband rejection can 

be expressed as 
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where A represents the signal amplitude and θ represents the phase. According to Eq. 

(3.6), a 1% phase mismatch and 1 % amplitude mismatch can generate a -40 dBc image 

sideband. Usually, I/Q phase mismatch results from the inherent device/component 

mismatch and asymmetric layout. Due to the limitation of process fabrication, the fact that 

a phase mismatch in a multi-gigahertz QVCO is more than several degrees usually 

produces considerable sideband image during the SSB mixing.   

In a QVCO system, increasing the coupling factor, a ratio of the coupling 

transconductance, Gmc, to the negative-resistance transconductance, Gm, can better tolerate 

the mismatches between the two LC-VCOs. However, increasing the coupling factor to 

improve the phase mismatch comes with the phase noise penalty because the Gm and Gmc 

have 90 degree phase shift and this 90 degree phase shift causes a maximum current/noise 

of Gmc injecting into the oscillator at its most vulnerable zero-crossing timing. Fig. 3.23 

shows the typical trade-off between the phase noise and phase mismatch in a QVCO 

system. 
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(a) 

    

                                 (b)                                                                (c) 

Fig. 3.23 (a) A simplified block diagram of a QVCO; (b) phase noise vs. coupling factor; 
(c) phase mismatch vs. coupling factor. 

 

As shown in the Fig. 3.24, a new QVCO is proposed to solve the dilemma of 

designing the coupling factor to manage the trade-off of the phase accuracy and phase 
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noise. In the proposed QVCO, since the coupling transconductance is out-of-phase 

controlled by a cascode topology which minimizes the injection current/noise of the Gmc 

during the zero-crossing of the oscillation to improve the phase noise. The design allows 

a larger coupling factor to improve the phase noise while not degrading the phase noise 

performance. Fig. 3.25 shows the simulated phase noise and phase accuracy vs. the 

coupling factor of the proposed and conventional QVCOs. Both phase noise and phase 

mismatch are improved in our proposed QVCO while increasing the coupling factor. The 

Monte-Carlo simulation shows the standard variation of the phase mismatch is less than 

0.16 degree in our proposed QVCO. The more details of QVCO theory and design will be 

discussed in the next chapter.  

 

  

Fig. 3.24 Proposed quadrature voltage-controlled oscillator. 
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(a) 

 

(b) 

Fig. 3.25 (a) phase mismatch vs. coupling factor; (b) phase noise vs. coupling factor. 
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3.3 Experimental Results and Concluding Remarks 

The 2–16 GHz frequency synthesizer was fabricated in a 0.13-μm CMOS 

technology. A die microphotograph of the chip is shown in Fig. 3.26. The chip area is 

2.125 mm2 while the active core area occupies 1.08 mm2. Fig. 3.27 shows the simulated 

phase noise of the frequency synthesizer; as expected the high frequency noise is 

dominated by QVCO noise, ranging -114dBc at 1 MHz offset frequency. To relieve the 

signal attenuation from package, PCB, and parasitics, the phase noise is measured at lower 

frequency after halving the clock frequency. The measured phase noise is -119.7 dBc/Hz 

at 1 MHz offset when operating at 6 GHz. Clock jitter when phase noise is integrated from 

1 KHz to 20 MHz yields 0.55ps. The measured SFDR is better than -41 dBc across 1–8 

GHz. The maximum power consumption is 64mW. Table 3.1 compares the proposed 

architecture with previously reported broadband frequency synthesizers. This architecture 

shows the broadest frequency range. The proposed architecture is very cost-efficient and 

suitable for the modern emerging broadband communications RF transceivers. 
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Fig. 3.26 Chip photomicrograph. 

 

 

 

Fig. 3.27 Simulated close-loop phase noise. 
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Table 3.1 Performance comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  RFIC `09 [4] JSSC `11 [3] This Work 
Technology 45-nm CMOS 0.13-μm CMOS 0.13-μm CMOS 
Power (mW) 21 - 31 36 – 53 32 - 64 
Area (mm2) 0.41 1.86 1.08 

Frequency Range (GHz) 0.1 - 5 1.8 - 6 2 - 16 
Phase Noise 

@1 MHz (dBc/Hz) 
-112 

(LO:7.2GHz) 
-115 

(LO:5.2GHz) 
-120 

(LO:6GHz) 
SFDR (dBc) NA < -42.4 < -41 
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CHAPTER IV 

LOW PHASE NOISE AND PRECISE QUADRATURE PHASE ACCURACY 

VOLTAGE-CONTROLLED OSCILLATOR* 

 

4.1 Introduction 

Recently, quadrature (I/Q) phase clock generation has been widely investigated 

and increasingly used in the modern wireless and wireline communication systems. In 

wireless communications, the low-cost fully integrated wireless transceivers mostly use 

the low intermediate frequency (IF) or zero-IF architecture; both architectures require 

quadrature signals for modulation/demodulation and superior image rejection [24]. Also, 

clock and data recovery (CDR) system applies the quadrature clocks to the half-rate phase 

sampling for lowering the maximum operation speed and power consumption [25]. 

Besides, the quadrature signals can be employed in single-sideband mixing to expand the 

frequency coverage of wideband frequency synthesis [26]. Quadrature phases can be 

generated by RC poly-phase filters, frequency dividers, ring oscillators, delay-locked 

loops, and LC quadrature voltage-controlled oscillators (QVCOs). Compared with the 

other approaches, LC QVCOs usually outperform in power consumption with the penalty 

of larger silicon area. 

                                                 
* Part of this chapter is reprinted with permission from Yung-Chung Lo et. al., “A 5-GHz CMOS LC 
Quadrature VCO With Dynamic Current-Clipping Coupling to Improve Phase Noise and Phase 
Accuracy,” in IEEE Transactions on Microwave Theory and Techniques, pp. 2632-2640, July 2013, and 
Haitao Tong et. al., “An LC Quadrature VCO Using Capacitive Source Degeneration Coupling to 
Eliminate Bi-Modal Oscillation,” in IEEE Transactions on Circuits and Systems Part I: Regular Papers, 
pp. 1871-1879, Sept. 2012. Copyright 2013 IEEE. Copyright 2012 IEEE.
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Conventional QVCOs are formed by two identical cross-coupled LC oscillators 

where the LC oscillators are connected though passive components (passive coupling) [27, 

28] or active devices (active coupling) [29]. The QVCOs using passive coupling, either 

inductive or capacitive, perform better phase noise because the passive components are 

almost noiseless. However, when component mismatches occur between the two LC 

oscillators, the passive coupling featuring a weak coupling strength commonly leads to a 

significant I/Q phase error. In contrast, the active coupling can be usually strong to well 

suppress the quadrature phase error due to the mismatches. However, strong active 

coupling usually degrades phase noise [30]. Several studies have analyzed how the 

coupling mechanism relates to phase noise and phase accuracy [30, 31, 32, 33, 34, 35]. As 

a conclusion, phase accuracy and phase noise have been recognized as a tradeoff in 

QVCOs [33, 34]. 

Inserting a phase shift in the coupling path has been used for improving the 

performance of phase noise and phase accuracy [34]. This approach was first proposed for 

improving phase noise because the optimum phase shift in the coupling path can make the 

LC resonators reach their peak effective quality factor [31]. Furthermore, Li et al [36] 

demonstrated that implementing the phase-shifted coupling helps eliminate the undesired 

bi-modal oscillation. In [34], a comprehensive analysis further proved that 90 degree phase 

shift in the coupling path not only improves phase noise, but also desensitizes the accuracy 

of quadrature phases to any mismatch between the two LC oscillators. Most reported 

phase-shift techniques utilize either cascode coupling structures [32, 35] or RC networks 

[31, 34, 35]; however, the cascode topologies provide an insufficient and limited phase 
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shift, and RC networks usually attenuate the coupling signals, add noise, and increase the 

solution’s power consumption. Usually, the effective quality factor degrades when the LC 

oscillators are loaded with RC networks. 

In this chapter, the approach to analyze bi-modal oscillation and phase accuracy is 

based on the phasor diagram of effective currents. This approach is simple and 

straightforward to model the conditions of bi-modal oscillation and analyze the sensitivity 

of phase accuracy to component mismatches. Moreover, a simplified time-variant 

approach based on the Impulse Sensitivity Function (ISF) is used to analyze the phase 

noise contribution from additive noise sources. The performance of phase accuracy and 

phase noise significantly depends on two critical parameters, the phase shift in coupling 

path and the coupling ratio. It will be shown that increasing the coupling ratio is a more 

effective way to assure excellent quadrature phase accuracy. However, a large coupling 

ratio usually results in higher power consumption and worse phase noise.  

In this chapter, two QVCO topologies are proposed. The first QVCO applies the 

phase shift technique by using capacitive source degeneration (CSD). The capacitive 

degenerated differential pairs are used to couple the LC tanks to implement a phase-shifted 

transconductance and negative input resistance to compensate resonator losses, and to 

minimize the flicker noise contributions. The CSD technique not only introduces excess 

phase shift to eliminate undesired bi-modal oscillation, but inherently provides a large 

coupling ratio to improve quadrature phase accuracy. The second QVCO uses dynamic 

cascode coupling (DCC) technique to have more efficient phase-shifted coupling and 

avoid noise injection at the most vulnerable timings (around zero crossing points). The 
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DCC QVCO employs a large coupling ratio to improve phase accuracy without degrading 

phase noise; therefore, the general tradeoff between phase noise and phase accuracy is 

eliminated. The DCC QVCO coupling mechanism exhibits outstanding performance in 

power consumption, phase noise and phase accuracy. 

 

4.2 Bi-Modal Oscillation, Quadrature Phase Accuracy and Phase Noise 

The active-coupled quadrature LC oscillators usually consist of two stages, each 

of which is composed of a LC tank and a cross-coupled differential pair. The two coupling 

transconductors connect the two LC oscillators to form a closed feedback loop. The 

equivalent linear behavior model of conventional QVCOs is illustrated in the Fig. 4.1 

where Gmr and Gmc represent the cross-coupled (regenerative) and coupling 

transconductances, respectively. The LC resonator is modeled as a parallel RLC circuit 

where Rp, Cp, Lp are the equivalent resistance, capacitance and inductance, respectively. 

The impedance of the LC resonator can be expressed as 

  
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where Q is the quality factor of the LC resonator (Q = ωoRpC = Rp/ωoL) and ωo is its 

resonant frequency (ωo = (LpCp)-1/2). A phase-shifter is placed in front of the coupling 

transconductor on the coupling path. The phase shifter model presented in the polar form 

can be expressed as 

 
 jePS   (4.2) 
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Fig. 4.1 QVCO linear model. 

 

where α is the absolute gain of the phase shifter and φ is its phase shift. For a QVCO 

without the phase shifter, α is unity and φ is zero degree. IGmr, IGmc, IR, and ILC are the 

effective currents flowing through the regenerative transconductance, coupling 

transconductance, tank equivalent resistance, and LC network at node-I, as shown in the 

Fig. 4.1. The current components can be expressed as 

 mrIGmr GVI   (4.3) 
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   j
mcQGmc eGVI   (4.4) 

 
p

IR R
VI 1
  (4.5) 
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where VI and VQ are signals at node-I and node-Q, respectively. If stage-I perfectly 

matches stage-Q, VI and VQ are equal and the oscillation is stable. In order to satisfy the 

Barkhausen stability criteria, the phase shift of each I/Q stage has to be ± 90 degree and 

Gmr be equal to 1/Rp. Although the linear small signal model may not precisely represent 

the real behavior of QVCOs, it helps to understand the operation of QVCOs and provide 

useful design insights. 

 

4.2.1 Bi-modal Oscillation 

A quadrature oscillator may have two different stable oscillations [36]. A QVCO 

could oscillate at one of two possible oscillation frequencies with one of two opposite 

quadrature phase sequences. Because the quadrature phases are usually used for image-

rejection in wireless receiver, the ambiguity of two quadrature phase sequences would 

lead to an uncertainty on the selection of upper or lower sideband. The quadrature phase 

ambiguity could be also problematic while using the SSB mixer for clock frequency 

synthesis [26]. 

Because both ±90 degree phase shift in each I/Q stage can satisfy the Barkhausen 

criteria, the stage-I may either lead or lag the stage-Q by 90 degree. The two solutions  
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Fig. 4.2 Bi-modal oscillation interpretation by using a current phasor diagram with ideal 
LC tank and PS = 1. 

 

lead to the bi-modal oscillation. The bi-modal oscillation can be illustrated by the current 

phasor diagrams shown in Fig. 4.2. If the oscillation is stable at the frequency ωosc, the 

effective currents IGmr, IGmc, IR, and ILC at node-I can be plotted in a complex plane 

according to equations (4.3) – (4.6). The net effective current flowing out from the node-

I must be zero to observe the Kirchhoff's current law. Assuming that Gmr and Gmc are both 

positive, the oscillation mode when stage-I leads stage-Q by 90 degree (VI = i·VQ) is shown 

in the Fig. 4.2(a). The net zero current condition leads to 
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Based on equation (4.7) and ωo >> Gmc/Cp, ωosc is lower than ωo, and ωosc can be 

approximated as 

 
p

mc
oosc C

G
2

   (4.9) 

Similarly, Fig. 4.2(b) shows the case when stage-I lags stage-Q by 90 degree (VI = -i·VQ), 

ωosc is higher than ωo, and accordingly ωosc can be approximated as 

 
p

mc
oosc C

G
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   (4.10) 

Equations (4.9) and (4.10) show that two oscillation frequencies with the respective 

quadrature phase sequence would exist in QVCOs. It should be noticed that the sign of 

Gmc in (4.9) and (4.10) depends on the coupling transconductor topology. 

IGmc injected into the LC tank is in quadrature phase with the output of each I/Q 

stage. Hence, this imaginary injection current IGmc induces the responding imaginary LC 

tank current and leads to a phase shift from the phase at resonant frequency. This phase 

shift of the LC tank can be expressed as 

 m
G
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where m is the coupling ratio of coupling transconductance to regenerative 

transocnductance. The positive and negative sign in (4.11) is from the uncertainty of the 

bi-modal oscillation. A larger coupling ratio m will result in more phase shift and 

meanwhile pull the oscillation frequency far away from the nature resonant frequency. 

Accordingly, the impedance magnitude of the LC tank will reduce. 
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(a)                                                                   (b) 

Fig. 4.3 Frequency response of (a) ideal LC tank, and (b) practical LC tank. 

 

Fig. 4.3(a) shows that the frequency response of an ideal parallel RLC network is 

symmetric at the resonant frequency. Therefore, the same magnitude of the LC tank 

impedance with a phase shift ±θTank leads to the ambiguity of the bi-modal oscillation. 

However, in reality the unequal inductor series loss and capacitor series loss result in an 

asymmetric magnitude/phase response of an LC tank at the resonant frequency as shown 

in Fig. 4.3(b). With the ±θTank induced by the coupling transconductor, the magnitude of 

the LC tank impedance is different. The phase shift condition with a larger magnitude 

provides a larger loop gain to grow the oscillation and suppress the other condition. 

Therefore, the asymmetric frequency response of LC tank would overcome the bi-modal 

oscillation [37]. The inductor series loss and capacitor series loss of a practical LC tank 

can be modeled as an ideal parallel RLC network, adding a phase shift on the path of the 

coupling transconductor Gmc and the regenerative transconductor Gmr [35]. The effective 
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Fig. 4.4 A bi-modal oscillation interpreted by effective current phasor diagram with 
practical LC tank. 

 

phase shifts ϕl and ϕc contributed by inductive loss and capacitive loss, respectively, can 

be approximated as 
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where rL and rC are the series resistance of the inductor and capacitor, and QL and QC are 

the quality factors of inductor and capacitor in an LC tank, respectively. The total effective 

phase shift is then 

 clLC    (4.14) 

Fig. 4.4(a) and (b) show the phasor diagrams with a coupling ratio m > tan-1(ϕLC), 

and ϕLC > 0. This condition is usually the case if the quality factor of the inductor is lower 
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than that of the capacitor. Fig. 4.4 illustrates that the asymmetric magnitude/phase 

response, modeled as an effective phase shift, can guarantee a single oscillation mode. The 

oscillation frequency is closer to the resonant frequency and the LC tank impedance is 

larger at oscillation frequency (Fig. 4.4(b)). Fig. 4.4 also reveals that if the coupling ratio 

m is small, the LC tank impedances at oscillation frequencies in both (a) and (b) condition 

are very close, so two possible modes could occur due to PVT variations and non-

idealities. If the series inductor loss dominates, it is recommended that the coupling ratio 

m is at least two or three times larger than 1/QL to avoid bi-modal oscillation. It should be 

also noticed that an inductor with a quality factor contributes with ϕl of 5.7 degrees.  

A large effective phase shift ϕLC can resolve the bi-modal oscillation. However, 

there are several issues in relying on the asymmetric frequency response of an LC tank. 

First, various delays due to the coupling transconductor, regenerative transconductor, and 

the RC effects of interconnect, parasitics, and gate resistance may cancel the effective 

phase shift ϕLC. Second, in order to improve phase noise, higher quality factors of inductors 

and capacitors are always preferred. Higher quality factors of the passive components lead 

to a smaller ϕLC and consequently increase the possibility of bi-modal oscillation. Third, 

the trends of QVCOs towards wide tuning range, higher oscillation frequency, and lower 

power supply voltage result in lower the quality factor of the capacitor bank and varactor. 

On the other hand, the quality factor of the inductor keeps improving in modern CMOS 

technologis. Therefore, ϕc would be comparable to ϕl, and a large phase shift of ϕLC is no 

longer used for resolving the bi-modal oscillation in many situations. 
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Fig. 4.5 Phase shift added to guarantee the oscillation mode. 

 

Adding a phase shifter in the coupling path has been reported as an effective way 

to resolve the bi-modal oscillation and assure/select one of the four possible oscillation  

models [36]. Fig. 4.5 is an example of phasor diagram showing that adding a phase shift 

φ in the coupling path leads to an impedance magnitude difference between the two 

opposite quadrature phase sequences. Consequently, the oscillation will favor the mode 

which has a larger impedance/loop gain to grow the oscillation. Since the delays and non-

idealities on the coupling and regenerative paths can be referred to an effective phase shift 

ϕGmc in the coupling path and an effective phase shift ϕGmr in the cross-coupled path, the 

boundaries of four QVCO oscillation modes are 
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where 

 GmrGmcLC mm
m


11




  (4.16) 

According to (4.15) and (4.16), implementing an optimized phase shift of ±90°-Δϕ 

in the coupling path makes the QVCO oscillate at the resonant frequency with its peak 

effective quality factor [34]. It should be noticed that ϕLC = 5° and m = 0.5 contribute with 

15 degrees to Δϕ. Aslo, ϕGmr and ϕGmc can be around 10–20 degrees in practical QVCOs. 

The value of Δϕ, which depends on QVCO topology, LC resonator, large-signal switching 

operation of Gmr and Gmc, and delays in Gmr and Gmc, has to be taken into account when 

designing the phase shifter. 

 

4.2.2 Quadrature Phase Accuracy 

Ideally, a QVCO generated the output waveforms that have 90 degrees phase 

difference. However, the device mismatches, unbalanced parasitics, and layout 

asymmetries between I/Q stages would lead to the quadrature phase/amplitude errors in 

the output waveforms. Several works have been dedicated to improving or calibrating the 

quadrature phase/amplitude error [38]. To understand the quadrature phase error due to 

various mismatches, an approach using the effective current phasor diagram is employed. 

Fig. 4.6(a) is the phasor diagram with an inserted phase shift in the coupling path. The 

effective coupling ratio meff is then rewritten as 
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



sin1
cos

sin
cos

m
m

II
Im

GmcGmr

Gmc
eff





  (4.17) 

and the phase shift of LC tank is 
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(a)                                                                     (b) 

Fig. 4.6 Phase error analysis by effective current phasor diagram. 

 

 effTank m1tan  (4.18) 

Since the net current is zero in the phasor diagram, the oscillation frequency is accordingly 

computed as 

 





sin1
cos

2 m
m

Q
o

oosc


  (4.19) 

Assume the mismatches +ΔIGmr/2 and -ΔIGmr/2 are considered in stage-I and stage-Q, 

respectively, they produce a variation of θTank in each stage. Because the mismatches are 

symmetric, the oscillation frequency remains invariant after introducing the mismatches. 

A phase error ɛ between I/Q outputs will appear to compensate the variation of θTank 

induced by the IGmr mismatches and keep meff the same as shown in Fig. 4.6(b). This 

condition leads to the following equation: 
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The phase error ɛGmr is small so as to approximate sin(ɛGmr) = ɛGmr, and cos(ɛGmr) = 1. 

Rearranging Equation (4.20) gives the phase error due to the mismatch of IGmr  
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I I

I
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
  (4.21) 

Therefore, the phase error due to ΔIGmr decreases for larger m. Similarly, this approach 

can be applied to the phase error from mismatches in IGmc, leading to the following result: 
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The phase error induced by the mismatches in IGmc is 

 
Gmc

Gmc
I I

I
mGmc 2sin

cos 


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


  (4.23) 

As shown in the Fig. 4.6, the effect of the mismatch ΔIR is similar to that of -ΔIGmr. Hence, 

substituting -ΔIR and -IR = IGmr + IGmcsinφ into (4.21) leads to the equation for the phase 

error from the mismatch of IR 

  

R

R
I I

I
m

m
R 2sin

sin1cos 









  (4.24) 

The mismatches in capacitance and inductance of LC tank result in a variation in 

the imaginary part of tank impedance and accordingly a shift of resonant frequency. 

Consequently, these mismatches can be modeled as ΔILC. Based on the phasor diagram 

analysis, the expression of effective coupling ratio is 
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Thus, the phase error due to ΔILC can be expressed as 
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I mI
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m
LC 2sin
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According to (4.1), the variation of reactance from the variation of resonant frequency can 

be expressed as 
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The variation in reactance of LC tank is equivalent to the variation in ILC. Substituting 

(4.19) into (4.27) yields 
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Substituting ILC = IGmccosφ and (28) into (26) give the phase error due to the mismatch in 

the resonant frequency 
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I mm

mQ
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


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 (4.29) 

Equations (4.21), (4.23), (4.24), and (4.29) agree with those expressions reported in [34] 

(based on the generalized Adler’s equation and hard-limiting model) and [39] (dynamic 

equations established by the method of multiple time scales). However, the analysis based 

on the current phasor diagram provides more insights for understanding how those 
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mismatches induce the phase error. This approach can be extensively used for calculating 

phase error due to various mismatches and non-idealities.   

The phase error expressions show that inserting a phase shift in the coupling path 

can desensitize the quadrature phase error to mismatches. A 90° degree phase shifter can 

achieve the minimum sensitivity to device mismatches. It can be explained by the phasor 

diagram in Fig. 4.7(a). While a 90° phase shift is given in the coupling path, IGmc aligns  
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GmcIGmrI

VQ+

VQ˗

VI- VI+
RI

0,0  TankLCI 

GmcI

GmrI

VQ+

VQ˗

GmrLC  

GmrLC  
90

(a)                                                                    (b) 

Fig. 4.7 Optimized phase shift to minimized phase error. 

 

with IGmr and θTank is 0 degree. Therefore, the mismatches in IGmr, IGmc and tank impedance 

would only produce variations on the output amplitude. Also, at θTank = 0, the oscillation 

frequency is equal to the nature resonate frequency and ∂θTank /∂ωo reaches maximum 

value. The phase variation in θTank induced by any perturbation or component mismatch 

that can result in the variation of resonant frequency is minimized at θTank = 0. Hence, a 

minimum phase error will be produced accordingly. 

However, this argument of inserting a 90° phase shift is based on an ideal LC tank. 

Also, the large signal behavior and the possible delays in the coupling and regenerative 

paths were ignored. These non-idealities can be modeled as adding the effective phase 
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shift ϕLC + ϕGmr in IGmr and ϕLC + ϕGmr in IGmc as shown in the Fig. 4.7(b). The optimized 

phase shift is then 

   90opt  (4.30) 
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Fig. 4.8 Parallel-QVCO with ideal phase shifter. 

 

where Δϕ is given in (4.16). A parallel-QVCO [29] has been simulated to verify (4.30) 

with a 0.5% mismatch between two tank capacitors, and 2% mismatches in the coupling 

currents and regenerative currents, respectively. The 2% mismatch means that the W/L 

ratio of the crossed-coupled transconductor or coupling transconductor and the DC biasing 

tail current are increased by 1% in one stage and decreased by 1% in the other stage. An 

ideal phase shifter is implemented in front of the coupling transconductor as shown in the 

Fig. 4.8. Fig. 4.9(a) – (c) show the simulated phase errors from mismatches as function of 

the phase shift φ and coupling ratio m. The simulation results agree with (29) and show 
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that a phase shift φ around 65° minimize the phase error sensitivity to the mismatches. 

More importantly, although optimizing the phase shift can improve the phase error, Fig. 9 

shows that implementing a large coupling ratio m (m > 0.5) would be a more promising 

way to maintain low phase error sensitivity to mismatches. However, a large coupling 

ratio costs more power consumption and more importantly degrades the phase noise 

performance [30, 34]. 

 

 

 
(a) 

Fig. 4.9 Simulated phase error due to (a) 0.5% capacitor mismatch in LC tank, (b) 2% 
mismatch in cross-coupled transconductor and (c) 2% mismatch in coupling 

transconductor. 
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Fig. 4.9 Continued 
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4.2.3 QVCO Phase Noise 

It is reported that quadrature oscillators have worse noise/power tradeoff than a 

stand-alone LC oscillator [33]. For example, if the power consumption of a QVCO is twice 

more than that of a stand-alone LC oscillator, the phase noise of a QVCO will not be 6-

dB better than a stand-alone LC oscillator. While the optimized phase shift in the coupling 

path can improve the phase noise of a QVCO, the figure of merit (FoM) of a quadrature 

oscillator is worse than a stand-alone LC oscillator. Hence, it is necessary to analyze 

further the additive noise sources. 

The impulse sensitivity function (ISF) is a useful linear-time-variant tool to 

calculate the phase noise [40]. The approximated ISF expressions for QVCOs have been 

already reported in [30]. Also, since the QVCO is symmetric and fully differential, the 

half-circuit analysis is used for calculating the total phase noise. The ISF for one branch 

of the parallel-QVCO with ideal phase shifters shown in the Fig. 4.8 can be expressed as 

  
 

 Tank
TankN




  cos
cos

1  (4.31) 

where N = 4, ϕ = ωosct, and θTank is given in (4.18). The node voltage at the output of that 

branch can be expressed as 

      sinsin1 mVV o   (4.33) 

where Vo is the output amplitude of a QVCO when the phase shifter in the coupling path 

is removed. Since the noise source can be treated cyclo-stationary, the phase noise 

contributed by a noise source current in can be expressed as 
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where qmax = CV is the peak dynamic charge loaded onto C, and 

     




dinn
22

0

22

2
1

  . (4.35) 

2
n  is defined as the effective integrated ISF noise power. Based on (4.35), the noise 

sources of tank loss RLC, cross-coupled transconductor Gmr, coupling transconductor Gmc 

and tail transistor Gtr of cross-coupled differential pair and tail transistor Gtc of coupling 

differential pair are analyzed in the following section. 

 

A. Tank Loss 

The loss of LC tank can be presented by a parallel resistor RLC whose noise current 

power spectral density can be expressed as 

 
LC

Rn R
kTi 142

,   (4.36) 

where k is the Boltmann’s constant and T is the absolute temperature. As shown in Fig. 

4.10(a), the ISF function would vary with the phase shift of LC tank θTank, while the noise 

current power is invariant with θTank. Combining (4.35) and (4.36) gives the effective 

integrated ISF noise power of tank loss 
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Fig. 4.10 Phase noise analysis by simplified linear-time-variant approach (a) 

approximated ISF, (b) noise of LC tank, (c) noise from cross-coupled differential pair, 
(d) noise from coupling differential pair, (e) noise from tail transistor of cross-coupled 

differential pair, (f) noise from tail transistor of coupling differential pair. 
Substituting (4.37) into (4.34) gives the phase noise expression contributed from tank loss 
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where 

   )sin1(4sin1 


 mRImVV LCTailo  . (4.39) 

Equation (4.38) gives the same result reported in [34]. If a 90 degree phase shift is given, 

the phase noise contributed by the tank loss will be minimized. Also, in terms of 

considering the tank loss only, QVCOs with optimized phase shift can perform equivalent 

phase noise performance as the stand-alone LC oscillators. In the case, increasing the 

coupling ratio m will not affect the noise contribution from the tank loss but increases the 

amplitude of the oscillation. 

 

B. Noise from Cross-coupled Differential Pairs MGmr and Coupling Differential Pairs 

MGmc 

In order to simplify the calculation, a couple of assumptions are made while 

computing the phase noise contributed by the cross-coupled differential pair noise. First, 

the differential pairs are operated at the hard-switching condition. Second, the noise 

appears at QVCO output only when both transistors of the differential pair are in the 

saturation region. When one of the two transistors is off, no noise from differential pair 

contributes to the output. Fig. 4.10(c) shows the simplified noise current power model 

when analyzing the crossed-coupled differential pair. For this case, 

 mrGmrn gkTi 42
,   (4.40) 
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and 
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where IGmr is the tail current of the cross-coupled differential pair, μn is the electron 

mobility, Cox is the gate oxide capacitance per unit area and WGmr and LGmr are the width 

and length of the cross-coupled differential pair, respectively. Equation (4.41) is used to 

define the operation regions of differential pair [41]. Therefore, the effective integrated 

ISF noise power due to the cross-coupled differential pair is computed as 
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Since the energy compensated by the cross-coupled and coupling transconductors is equal 

to the loss of the LC tank while the oscillation is stable, gmr can be expressed as 
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Thus, (4.42) can be rewritten as 
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Substituting (4.44) into (4.34) gives the phase noise expression contributed from cross-

coupled differential pairs 
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Equation (4.45) shows that the phase noise contributed by the differential pair can be 

minimized when a 90-degrees phase shift is given. 
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Similarly, the noise generated by the coupling differential pairs is assumed 

contributing to the LC tank only when both transistors are in saturation region. Fig. 4.10(d) 

shows the noise current power of coupling differential pairs with a phase shift φ in the 

coupling path. Thus, the expression for the effective integrated ISF noise power of 

coupling differential pair is 
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where gmc is the transconductance of the coupling transistor MGmc. In this design, the W/L 

ratio of MGmc is scaled with the coupling ratio m (IGmc/IGmr) so ϕsat is unchanged. By using 

the integration by part, (4.46) is computed as 
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Similarly to (4.43), gmc must satisfy 
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After combining (4.47), (4.48) and (4.34), the phase noise expression contributed from 

coupling differential pairs is computed as 
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where noise factor F can be defined as 
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It should be noticed that when φ is zero and 90 degrees, F will be m3 and m/(1+m), 

respectively. The 90-degrees phase shift does not help improve the phase noise when m is 

small (i.e., 0 < m < 0.6) but shows significant improvement in phase noise when m ≥ 1. 

Also, F increases with a larger m. 

 

C. Noise from Tail Transistors 

The noise of tail transistors affects the phase noise performance mainly when one 

of the differential pair transistors is on and the other one is off. When both differential pair 

transistors are in the saturation region, the noise of tail transistor is canceled and then it is 

ignored in this analysis. The assumption of a hard-switching operation in differential pairs 

is used in this case as well. Fig. 4.10(e) shows the noise current power of the tail transistor 

providing the biasing current for the cross-coupled differential pair where gtr is the 

transconductance of the tail transistor. The effective integrated ISF noise power of the tail 

transistor for the cross-coupled transconductor can be written as 
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Similarly, as shown in the Fig. 4.10(f), the effective integrated ISF noise power of the tail 

transistor of the coupling transconductor can be expressed as 
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where gtc (gtc = m·gtr) is the transconductance of the tail transistor providing the biasing 

current for the coupling differential pair. Solving (4.52) gives the expression: 
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Equations (4.49) and (4.53) reveals that even though an optimized phase shift is given in 

the coupling path, while increasing the coupling ratio m, the effective noise contributed 

from the coupling network will increase. Hence, a large coupling ratio m leads to worse 

phase noise performance and power consumption, degrading the figure of merit (FoM) 

where the conventional FoM is defined as 

       mWPLFoM osc log10log10/log20    (4.54) 

It should be noticed that most phase shifters would generate additional noise and their 

limited bandwidth attenuates the strength of coupling transconductors, furthermore 

degrading the performance of QVCOs. 
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4.3 Capacitive Source Degeneration Coupling QVCO 

The usage of capacitive source degeneration differential pairs not only delivers 

necessary phase shift to improve the phase noise, but also provides a phase-shifted 

coupling transconductance and negative input resistance to sustain the oscillation. The 

CSD QVCO has better phase accuracy due to its inherent large transconductance coupling 

ratio. An additional benefit of the proposed architecture is that the low-frequency noise 

present at the gates of the transistors implementing the negative resistor (due to noisy LO-

signals and transistors) is inherently rejected since the capacitive source degeneration 

presents a high-pass like noise transfer function. 

 

4.3.1 CSD-QVCO Design 

A capacitive source degeneration QVCO (CSD-QVCO), shown in Fig. 4.11, is 

proposed to suppress bi-modal oscillation. The capacitive source degeneration provides 

the required amount of phase shift in the transconductance of the coupling pair, which can 

be derived as follows.  

 









 




m

gss

s
mc

g
CC

s

sCG
1

 (4.55) 

At high frequencies, the overall transconductance, Gmc, of the capacitive degeneration 

differential pair is approximated as where Cs is twice the source degeneration capacitance 

between the two source nodes plus the AC-grounded parasitic capacitors at the source of 

M1, Cgs is the gate-to-source capacitance and gm is the transconductance of the input 

transistor M1. The phase shift in the coupling pair is computed as, 



 

101 
 

 
Fig. 4.11 Proposed CSD-QVCO. 
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 (4.56) 

where ωT is the input transistor’s transition frequency expressed approximately as ωT = 

gm/Cgs. According to (4.56), the phase shift is between 0◦ and 90◦, and it is determined by 

the ratios ωT /ω and Cs/Cgs. Notice that the source degeneration capacitor Cs is noiseless 

and does not contribute any phase noise. The placement of the source degeneration 

capacitance between the two source nodes instead of from each source node to ground is 

chosen for the following reasons: (i) in the latter case, each  
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Fig. 4.12 Phasor diagram of the proposed CSD QVCO.  

 

capacitance has to be doubled with area penalty, (ii) the oscillator would be subject to 

common-mode oscillation [42]. 

Fig. 4.12 shows the phasor diagram of the proposed CSD QVCO. The positive 

and smaller than 90° phase shift β allows only one oscillation, Stage-I lags Stage-Q and 

the oscillation frequency is lower than the resonance frequency. Intuitively, the current 

provided by the complex coupling transconductance can be decomposed as the effective 

negative transconductance current, IGmr,eff , and the effective coupling transconductance 

current, IGmc,eff , which can be expressed as 

  sin,  GmceffGmr II  (4.57) 

  cos,  GmceffGmc II  (4.58) 

Similarly, according to (4.55), the effective negative transconductance, Gmr,eff, and the 

effective coupling transconductance, Gmc,eff, can be expressed as 
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Gmr,eff in (4.59) helps to compensate the loss of the LC tank. The input impedance Zin seen 

at the gate of M1 can be obtained by 
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The input impedance can be regarded as a capacitance Ceq series with a resistance Req, 

and the quality factor of the input impedance can be approximated as 
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The quality factor can be presented as the cotangent of phase shift β in equation (4.56). 

With the series-parallel transformation, the equivalent negative input resistance Rin, which 

serves as 1/Gmr for the preceding stage, is expresses as, 
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The equivalent parallel input capacitance Cin is expressed as 
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Fig. 4.13 Small signal model of the proposed CSD QVCO. 

 

The proposed CSD-QVCO architecture can be modeled as shown in Fig. 4.13, 

where Rp, Cp and L are the equivalent parallel resistance, capacitance and inductance in 

the standalone LC tank, respectively. Using the CSD technique, the effective load 

resistance and capacitance, and the quality factor of the resonator can be expressed as 

 inpeff RRR //  (4.66) 

 inpeff CCC   (4.67) 
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Note that Reff is usually positive because it is very difficult to design Rin to compensate the 

loss of LC tank by itself. Besides, Cin is small compared to Cp, so the CSD-QVCO presents 

a large frequency tuning range. 

The remarkable benefit present in the proposed architecture is that the commonly 

used positive feedback pairs are removed whereas the capacitive source degeneration 

differential pairs provide negative input impedance and phase shift for the coupling 

transconductance to compensate the energy loss in the LC tank. 

Since the phase shift in both I and Q stage has to be 90◦ to meet the Barkhausen’s 

phase criteria, the phase shift from the coupling transconductance and the resonator are 

complementary. Hence, the resonator phase shift can be written as 
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Equation (4.69) shows that making β closer to 90◦ reduces the resonator phase shift, so the 

oscillation frequency will be closer to the resonance frequency, and the effective quality 

factor of the LC tank will be larger, as long as the loop has enough gain to support the 

oscillation. The effective quality factor of the LC resonator can be approximated as 
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where ωosc is the QVCO oscillation frequency. Equations (4.69) and (4.70) reveal that the 

effective quality factor of LC resonator is higher with β approaching 90◦. 

A major advantage of the proposed QVCO is that it has low sensitivity to flicker 

noise present at the gate of transistors M1 in Fig. 4.11. The capacitive degeneration makes 
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the differential pair to inherently reject the low frequency signals; the noise is shaped by 

an intrinsic high-pass filtering. In [43,44], it is found that flicker noise in bias transistors 

could be a main source for 1/f3 close-in phase noise. To reduce this noise, Rbs is inserted 

as source degeneration resistor in Fig. 4.11 to each bias transistor. Therefore, the noise 

current at bias transistor output is reduced by a factor of (1+gmb/Rbs)2. Although increasing 

bias transistor size helps to reduce flicker noise also, the drain capacitance is increased 

with the penalty of smaller β and being more prone to common mode oscillation. 

 

4.3.2 Phase Error 

In the proposed CSD-QVCO, there is no negative cross-coupled transconductance 

but the coupling transconductance with capacitive source degeneration forms an active 

feedback to produce a negative transconductance Gin (=1/Rin) as shown in Fig. 4.13. The 

effect of the negative Gin is equivalent to that of the negative cross-coupled 

transconductance. Therefore, according to [34] the phase errors from the mismatch of 

resonant frequency (∆ω) and the mismatch of coupling transconductance (∆Gmc) in the 

CSD-QVCO can be approximated as 
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Equation (4.73) shows that if a fixed magnitude of Gmc is given for comparison, the 

coupling ratio mcsd of CDS-QVCO is much larger than mc of conventional QVCOs 

because the magnitude of negative transconductance in CSD-QVCO is smaller than the 

required Gmr in conventional QVCOs. Therefore, the quadrature phase accuracy of CSD-

QVCO is less sensitive to mismatches in both tanks and coupling transconductances.  

Table 4.1 shows the comparison of simulated phase errors between CSD-QVCO 

and the conventional QVCO with an ideal phase shifter (θTank = 0◦) with no signal 

attenuation, and a coupling ratio mc = 1 (strong coupling ratio). A 1% mismatch is given 

to the capacitance, coupling transconductance Gmc and negative cross-coupled 

transconductance Gmr between two LC oscillators. The simulation results show that CSD-

QVCO has better phase accuracy even though an optimized phase shift and strong 

coupling are used in the conventional QVCO. It reveals that while most QVCOs burn 

more power to have a larger coupling ratio mc to improve the phase accuracy, the inherent 

large coupling ratio of CSD-QVCO can achieve excellent phase accuracy without paying 

the penalty of power consumption. Hence, in terms of performing good phase accuracy, 

CSD-QVCO is a very power-efficient solution. 

The simulated phase errors of CSD-QVCO caused by mismatches in devices such 

as varactors, differential pairs and source degeneration capacitors are shown in Figs. 4.14, 

4.15 and 4.16. If the phase error, for example, is required to be below 1◦, the mismatch of 
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Table 4.1 Phase accuracy comparison between conventional QVCO and CSD-QVCO. 

 

 

the varactor and differential pair cannot surpass 4%, which can be easily achieved in this 

technology. The phase error resulting from the source degeneration capacitor mismatch is 

almost one order less than others. 

 

 

 
Fig. 4.14 Simulated phase error versus varactor size mismatch.  
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Fig. 4.15 Simulated phase error versus core transistor W/L mismatch.  

 

 

 

 
Fig. 4.16 Simulated phase error versus source degeneration capacitor mismatch.  
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4.3.3 Measurement Results 

The simulated quality factor of the inductor is around 12 at 5 GHz. Fig. 17 shows the 

micro photograph of the 5-GHz CSD-QVCO with buffers, fabricated using TSMC 0.18-

μm CMOS process. The CSD-QVCO is powered by a 1.2-V supply and consumes 5.2-

mA current. The total chip area is 930 × 2000 μm2 including the contact pads. The 

oscillator occupies 550 × 1100 μm2. The measurement was performed on a standard FR4 

PC board. One of the four CSD-QVCO outputs was picked up by a SMA connector, with 

other outputs each terminated with a 50 resistor. A voltage regulator was mounted to 

provide clean supply voltage. The CSD-QVCO presents a phase noise of -120 dBc/Hz at 

3-MHz offset from 5-GHz center frequency, with a power consumption of 6.4 mW from 

a 1.2-V supply. Compared to existing phase shift LC QVCOs, the CSD-QVCO presents 

excellent phase accuracy and power efficiency. 

 

 
Fig. 4.17 5-GHz CSD-QVCO chip microphotograph. 
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4.4 QVCO Using Dynamic Current-Clipping Coupling 

It has been shown that implementing a larger coupling ratio can reduce the 

sensitivity of the quadrature phase error with respect to the mismatches between the two 

oscillator stages. However, as aforementioned, a larger coupling ratio usually makes the 

coupling network increase more noise, harming the phase noise performance. Therefore, 

a coupling element design to break the tradeoff between phase noise and phase accuracy 

is desirable. Since a phase shift around 90 degree is needed in the coupling to not only 

improve the phase noise performance but also minimize the quadrature phase sensitivity 

to mismatches, as shown in the Fig. 4.18(a), the ISF should be shifted by 90 degree as 

well. Hence, if the noise generated by the coupling element can be confined at the less 

ϕ
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Fig. 4.18 Minimized noise from coupling network.  
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sensitive VCO timings as shown in the Fig. 4.18(b). As a result, increasing the coupling 

ratio will has less impact on VCO phase noise performance. 

 

4.4.1 Dynamic Current-clipping Coupling QVCO Design 

Fig. 4.19 shows the proposed QVCO which has two conventional LC oscillators 

with dynamic current-clipped coupling branches. The coupling branch is built up by two 

cascoded transistors and a source degeneration resistor. The gate terminal of the transistor 

MCup and MCdn are connected to the outputs of the other oscillator stage such that this 

branch is active during the crossing times of the signals connected to the gates. The 

operation of the coupling network can be roughly divided into four regions as  
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Fig. 4.19 Proposed QVCO with dynamic current-clipping coupling technique. 
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shown in the Fig. 4.20. In the Region I, the upper transistor connected to IP is on but the 

bottom transistor connected to IN is off so no coupling current IGmcp in the left branch will 

inject into the LC oscillator. Meanwhile, in the right branch, the upper transistor connected 

to IN is off block the coupling current IGmcn flowing into the LC oscillator. Similarly, with 

the condition reversed, no current injects into LC tank in the Region III. The coupling 

network only injects the current into the LC oscillator in the region II and  
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Fig. 4.20 Operation regions of coupling element. 
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IV where both transistors are on. In the Region II, the QP reaches its maximum voltage so 

large IGmcp injects into LC tank through the left branch while QN approaches its lowest 

voltage and little IGmcn appears. Similarly, the major current injecting into the LC tank in 

the Region IV is from IGmcn. Hence, as shown in Fig. 4.21, the coupling network injects 

the differential current around the peaks of the oscillator outputs and shifts the coupling 

current by around 90 degrees to enhance both phase noise and phase accuracy 

performance. The proposed coupling topology also exhibits better power-efficiency 

because the 90-degree phase-shifted coupling transconductance assists the regenerative 

transconductance to compensate the loss of LC tank and only dynamic power is dissipated. 

Unlike that some RC phase shifters would load a resistor at LC tank, the proposed coupling 

architecture does not significantly degrade the quality factor of LC tank. In this design, the 

coupling ratio is defined as the ratio of the power consumption dissipated by the coupling 

network to that dissipated by the LC oscillator. 

The noise mechanism of the coupling branch is illustrated in Fig 4.22. In Region 

I, MCdn is off, so MCup seems to tie with a huge source degeneration resistor. The noise of 

MCup will circulate in MCup itself and output almost zero noise current into the LC tank. 

On the other hand, while MCup is off in the Region III, MCup blocks the noise current 

generated by MCdn. Therefore, almost no noise current flows into the LC tank at the most 

vulnerable timings, the zero-crossing points of the oscillator’s differential outputs. The 

noise contribution from coupling network only occurs at the region II; however, the noise 

has less impact on the phase noise according to the ISF of the oscillator. The source 

degeneration resistor RS is used to further reduce the flicker noise and assist 
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Fig. 4.21 The simulated output voltages (top trace) and coupling currents (bottom trace). 
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Fig. 4.22 Noise behavior of coupling element. 
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turning off the MCdn faster when in Region I. Thus, the noise from the coupling network  

does not drastically degrade the phase noise performance. This sophisticated coupling 

network not only provides a phase shift around 90 degree to make the QVCO less sensitive 

to noise and mismatches, but also allows the use of large coupling ratio to improve the 

phase accuracy without suffering the phase noise penalty. The proposed coupling network 

consuming only dynamic power make it a low-power solution for quadrature signal 

generation. 

 

4.4.2 DCC QVCO Measurement Results 

The proposed QVCO was fabricated 0.13-μm CMOS technology. The die 

microphotograph of the chip is shown in Fig. 4.23. The core area of the QVCO is 0.27 

mm2. The simulation results show a center-tapped inductor quality factor of around 15. A 

4-bit capacitor bank and a 125-fF varactor are implemented in the QVCO to achieve a 

frequency tuning range from 4.4 GHz to 5.4 GHz. The coupling ratio m is designed as 0.8 

to suppress the sensitivity to mismatches. Monte-Carlo simulations show that quadrature 

phase error standard deviation is around 0.1 degree. The coupling network provides at 

least around 75 degrees phase shift over the PVT variations. 

The power consumption of the QVOC is 4.2 mW with a 1-V power supply. Fig. 

4.24 shows the measured phase noise response measured at a frequency of 5 GHz. The 

phase noise is -120.9 dBc/Hz at 1MHz offset. The flicker noise corner is around 20 KHz, 

showing that the flicker noise contribution is confined to very low frequencies; phase noise 

is around -70 dBc at 10KHz offset frequency. Fig. 4.25 shows the measured output 
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waveforms of quadrature signals. Table 4.2 compares the proposed QVCO with prior 

works using various phase shift techniques. The proposed QVCO shows outstanding phase 

noise performance and power consumption, reaching an excellent FoM of 189 dBc. 

 

0.9 mm

0.3 mm

 
Fig. 4.23 Chip microphotograph. 

 

 
Fig. 4.24 Measured phase noise. 
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Fig. 4.25 Measured quadrature signals. 

 

 

Table 4.2 Comparison with previously reported QVCOs. 

  

Technology 
(μm) 

Frequency 
(GHz) 

Supply Voltage 
(V) 

Power 
(mW) 

Phase Noise 
(dBc/Hz) 

FoM 
(dBc) 

2008 MWCL [45] CMOS 0.18 7 1 2.2 -111.2@1MHz 185 

2011 JSSC [26] CMOS 0.13 5.2 1.2 7.7 -115@1MHz 179.5 

2012 TCAS [46] CMOS 0.18 5 1.2 6.4 -120@3MHz 176 
This work CMOS 0.13 5 1 4.2 -121@1MHz 189 
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CHAPTER V 

COMPLIMENTARY INJECTION-LOCKED FREQUENCY DIVIDERS* 

 

5.1 Introduction 

Frequency dividers (FDs) are a basic but critical building block of phase-locked 

loops (PLLs) in various high-speed wireline and wireless communication systems. In 

addition to frequency transition, FDs may have to provide various division moduli and 

multiple phases for certain applications. Conventional flip-flop-based FDs are robust and 

broadband but their power consumption are excessive especially for high-speed 

operations. Injection-locked frequency dividers (ILFDs) [47, 48] are a low-power 

alternative for applications in the range of several tens of gigahertz. The concept of 

injection locking was originated from the phenomenon of VCO pulling. It is illustrated in 

Fig. 5.1 where an injection signal whose frequency is close to the oscillation signal’s 

frequency. The injection would disturb the oscillation signal and generate spurious tones. 

If the injection frequency is close to the oscillation frequency or its harmonic, and the 

injection signal is large enough, the oscillation frequency can be pulled away by the 

injection signal and locked at the frequency of the injection signal. 

The injection-locking phenomenon was used to implement frequency division 

[48]. The operation of injection-locked frequency dividers can be illustrated by Fig. 5.2. 

An injection signal fin and a feedback signal generated by the divider output were given 

                                                 
*Part of this chapter is reprinted with permission from Yung-Chung Lo et. al., “A 1.8V, sub-mW, over 
100% locking range, divide-by-3 and 7 complementary-injection-locked 4 GHz frequency divider,” in 
IEEE Custom Integrated Circuits Conference, pp. 259-262, Sept. 2009. Copyright 2009 IEEE.
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 Fig. 5.1 Illustration of injection-locking phenomenon. 

 

 

 
Fig. 5.2 Injection-locked frequency divider. 

 

in the mixer inputs. The mixer would generate the combination (summation or subtraction) 

of the harmonics of the injection signal and divider output signal.  A filter is implemented 

after the mixer to select the desired signal and attenuate the unwanted signals. The output 

frequency of the injection-locked frequency divider can be expressed as 

 inout f
m

nf



1

 (5.1) 

Injection-locked dividers can be classified into LC-based ILFDs and Ring-

oscillator-based ILFDs. LC-based ILFDs (LC-ILFDs) can usually operate at very high 

speed [49, 50] and they have more optimal noise performance due to their band-pass LC 

filtering characteristic. However, the area penalty is significant due to the inductor used; 
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furthermore, the division ratio cannot be large within one LC tank load. Small division 

ratio implies that several LC-ILFDs are needed for converting very high frequency down 

to the desired frequency. Also, the low quality factor Q of the LC tank to widen the locking 

range costs additional power consumption. Even if a low-Q LC tank is used, the locking 

range usually cannot cover the PVT variations; thus, some additional control or feedback 

circuits are required to adjust the free running frequency to ensure the LC-ILFDs locked. 

These expensive and complicated controls make the LC-ILFDs unfavorable for practical 

applications. 

Ring-oscillator-based ILFDs (Ring-ILFDs) feature wider locking ranges, smaller 

silicon area and larger division moduli [51, 52, 53, 54]. Ring-ILFDs’ operation frequencies 

are mainly determined by the dimension of the devices and the power consumption. 

Although the phase noise of the conventional ring-oscillator is poor, the noise performance 

of ring-ILFDs can be further improved by injecting a clean signal [55]. In order to widen 

the locking range, to overcome PVT variations, the multiple-input injection technique for 

Ring-ILFDs with even division ratios has been proposed [52, 53]. However, the locking 

range of Ring-ILFDs with odd division ratios can rarely overcome the PVT variations. 

Usually when the number of ring-oscillator stages increases, the locking range shrinks 

drastically [56]. Since large division ratios can relax the speed and power in the following 

building blocks, to widen the locking range of large odd-division-moduli Ring-ILFDs is 

still desired. Table 5.1 summarizes the comparison between LC –ILFDs and Ring-ILFDs.  

In this chapter, a new ring-oscillator-based complementary-injection-locked 

frequency divider (CILFD) is presented. The multiple-input complementary-injection 
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achieves large odd division ratios and wide enough locking range to overcome the process 

variations without tuning the free running frequency. The power consumption overhead is 

negligible for larger division modulus. The CILFDs provide differential outputs due to the 

cross-connected inverters. 

 

Table 5.1 Comparison between LC-ILFDs and Ring-ILFDs. 

  
Power 

Consumption 
Speed 

Locking 
Range 

Area Noise 
Odd 

Modulus 

Multiple 
Phases 

LC Type Low High Smaller Large Better No No 

Ring Type High Low Small Small Worse Yes Yes 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

123 
 

5.2 Complementary Injection-Locked Frequency Dividers 

It is extremely difficult to have an odd-modulus Ring-ILFDs whose locking range 

can overcome PVT variations. When an ILFD is under locking, the ILFD has to satisfy 

“Barkhausen Criteria” 

      180,1 injinj jHjH   (5.2) 

From small signal analysis perspective, the Ring-ILFD can be expressed as 

    


















p

inj

n
n

inj j
AjH






1
1 0  (5.3) 

It can be observed that if a wider locking range is required, the pole location in equation 

(5.3) has to be tunable for satisfying the phase criteria of the Barkhausen Criteria under 

different injection signal frequency. It can be also interpreted from a large signal 

perspective. The delay of each ring oscillator stage has to be varied with the injection 

signal frequency.   

 

 

(a) 

Fig. 5.3 (a) even-modulus CILF; (b) odd-modulus CILFD; (c) unit delay cell. 
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(b) 

 
(c) 

Fig. 5.3 Continued. 

 

The proposed over 100% locking range complimentary injection-locked frequency 

dividers are shown in Fig. 5.3. Fig. 5.3(a) shows CILFD with even -modulus.  

2N-stage unit delay cell is needed for the division operation of 2N. The odd-modulus 

CILFD is shown in Fig. 5.3(b). The unit delay cell is shown in Fig. 5.3(c). 

The operation of odd-modulus CILFD can be simply explained in Fig. 5.4. Fig. 

5.4 shows the proposed divide-by-3 complementary-injection-locked frequency divider. 

The divide-by-(2N+1) CILFD can be realized by using (2N+1) ring-oscillator stages (N 

is a prime number). Every ring-oscillator stage (delay cell) has an upper tail-injection  
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Fig. 5.4  Divide-by-3 complementary injection-locked frequency divider. 
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Fig. 5.5  Simplified circuit model of a CILFD. 
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transistor, MTP,n, and a bottom-injection transistor, MTN,n. The inverter, MP,n and MN,n, is 

placed between the upper and bottom tail transistors. The free-running frequency of the 

ring-oscillator is controlled through the DC bias voltage at the gate terminals of tail 

transistors. Increasing the |Vgs| of tail transistors draws more tail current and hence reduces 

the delay of each ring-oscillator stage to increase the oscillating frequency. The injection 

signal is coupled by the capacitors connected to the gate terminals of the tail transistors. 

The conceptual circuit model of a divide-by-(2N+1) CILFD is shown in Fig. 5.5 

Each ring-oscillator stage consists of a transconductor, an effective current-controlled 

resistor Rf that discharges the load capacitor C and an effective Rr that charges the load 

capacitor. In order to simplify the analysis, the time-variant characteristic of Rr and Rf is 

ignored. Instead, Rr and Rf stand for the effective time-average resistance values during 

the rising and falling transitions; this approximation allows us to obtain simpler expression 

for propagation delay computations. Iinj,n and Iinj,p represent the injection currents from a 

bottom NMOS tail transistor and an upper PMOS tail transistor, respectively. The 

injection through NMOS and PMOS is named complementary injection. Notice that the 

equivalent values of Rr and Rf vary with the tail currents. If the loop gain satisfies the 

Barkhausen criteria, the free-running frequency of the (2N+1)-stages ring-oscillator can 

be approximated as 

 )])(12/[(1 pdfpdrosc ttnf   (5.4) 

where tpdr and tpdf are the rising and falling propagation delays and can be modeled as RrC 

and RfC, respectively.  
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Fig. 5.6  The output waveforms of injection signal and each ring stage when CILFD is 
under locking. 

 

While the signal is injected, it produces both amplitude and phase variations at the 

outputs of CILFD and alters the load impedance of each stage. If the negative-feedback 

loop is able to reach steady state, the CILFD will be locked to a sub-harmonic of the 

injection signal. Since the division ratio is usually the same as the number of ring-

oscillator stages, the fixed phase shift ∆φ is between each ring oscillation stage output and 

injection signal as shown in Fig. 5.6. Also, an equal phase shift Φ exists between each 

inverter and its tail transistor as shown in Fig 5.7. 

Also, an equal phase shift Φ exists between each inverter and its tail transistor as 

shown in Fig 5.6. If IT is defined as the tail current in free-running state, IINJ as the current 

drawn by the injection signal and IOSC as the effective tail current while the system is 

locked. The phase shift Φ can increase or decrease the effective upper or bottom tail 

currents as shown in Fig. 5.7. The variation of the effective tail currents  
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Φ Φ

(a) (b)  
Fig. 5.7  Geometrical interpretation of complementary injection. A phase shift (a) to 

increase oscillation frequency (b) to decrease oscillation frequency. 
 

changes the effective Rr and Rf, or equivalently the rising and falling propagation delay to 

meet the injection frequency. Intuitively, the boundaries of locking range can be obtained 

from the geometrical interpretation. The existing smallest and largest phase shifts 

determine the maximum and minimum locking oscillation frequencies, respectively. Fig. 

5.7 also illustrates how increasing the ratio of IINJ to IT widens the percentage of locking 

range. Since the amplitude of injection signal is limited, a proper selection of IT optimizes 

the tradeoff between the locking range and operating frequency. Due to the characteristic 

of ultra-wide locking range, the CILFD is able to cover PVT variations with a small IINJ 

to save power on the buffer stages. Fig. 5.8 shows the operation of CILFD under maximum 

and minimum oscillation frequencies. The peak tail current is given at maximum 

oscillation frequency and the minimum current is given at minimum oscillation frequency. 

In order to realize a differential-input and output CILFD structure and to take full 

advantage of the differential nature of LC VCOs, auxiliary cross-connected inverter pairs 

are used to couple two CILFDs as shown in the Fig. 5.9. The cross-connected inverters  
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(a)                                                                 (b) 

Fig. 5.8 CILFD is operated at (a) maximum frequency and (b) minimum frequency. 

 

provide current injection to each other to vary the phases and force the two CILFD outputs 

to stay out of phase during steady state conditions. 

The CILFDs’ wide locking range is a result of the use of complementary and 

multiple-input signal injection. The N-and-P complementary-injection scheme not only 

increases the effect of the injected signal into the ring-oscillator but also simultaneously 

drives both the rising and falling propagation delays, unlike the conventional injection 

mechanisms that vary the falling propagation delays only [56, 57]. Therefore, the 

complementary injection offers the advantages of more control on the ring-oscillator 

oscillation frequency and wider locking range. Simulations results for a divide-by-7 

CILFD are shown in Fig. 5.10; notice that the injection currents complement each other 

and occur only during rising and falling transitions.   

      The combination of the complementary injection and multiple-input injection points 

avoids the interference from stage to stage, attenuates the injection signal at the  
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Fig. 5.9  A divide-by-(2n+1) differential CILFD. 
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Fig. 5.10  Simulated waveforms from top to bottom (a) injection signal, (b) voltage in 
one of the nodes of the ring-oscillator, (c) NMOS tail transistor current, (d) PMOS tail 

transistor current. 
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unwanted timings, blocks the crosstalk between upper and bottom tail transistors, and 

allows us to control both transition times tpdr and tpdf. As a result, wider locking range is 

achieved even in the case of large-division-ratios CILFDs. 

The CILFD consumes dynamic power only due to the nature of the complementary 

injection locking scheme. The power consumption of a single ring-oscillator stage under 

locking with a divide-by-(2n+1) ratio can be approximated as 

 )12/(2 2  nfCVP injDDstage  (5.5) 

Equation (5.5) multiplied by the number of ring-oscillator stages gives the total power 

consumption of the CILFD: 

 injDDtotal fCVP 22  (5.6) 
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Fig. 5.11.  Simulated phase noise. From top to bottom (a) free running CILFD, (b) 

injection signal, and (c) locked CILFD. 
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Expression (5.6) shows that the power consumption of the CILFD is independent 

of its division ratio (the number of ring-oscillator stages) but proportional to the frequency 

of the injected signal. The CILFDs are then favorable for the use of large division ratios. 

It is well known that the ring-oscillators present poor phase noise due to their inherent 

low-Q of each stage. However, Ring-ILFDs’ internal stages phase noise is high-pass 

filtered by the loop dynamics. When locked, the phase noise of Ring-ILFDs is mainly 

determined by the phase noise of the injection signal [55]. The close-in phase noise of a 

CILFD can then be approximated as 

  212log10)()(  nInjectionPNILFDPN  (5.7) 

This equation fits well with the simulated phase noise of a modulus-7 CILFD shown in 

Fig. 5.11. The phase noise under free running condition is -97 dBc/Hz at 1MHz frequency 

offset. Locked by an injection signal generated from a 6-GHz LC VCO with a 

 

 
 

Fig. 5.12 Simulated phase noise (from top to bottom): free running CILFD,  
injection signal (LC VCO), and locked CILFD. 
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phase noise of -112 dBc/Hz at 1MHz offset frequency, the modulus-7 CILFD shows a 

phase noise of -130 dBc/Hz at 1MHz offset. 

The more detail phase noise behavior of CILFDs can be expressed as the sum of 

the phase noise of the free-running CILFD with high pass-filtering characteristic and the 

phase noise of the injection signal with low-pass filtering characteristic: 

 22

2

,22

2

,,

)/(
)()()(

p

p
ext

p
freeCILFD

M
LLL









 







  (5.8) 

 where M is the division ratio and ωp is the pole frequency of the CILFD. The above 

equation indicates that the noise filtering characteristic significantly depends on the 

location of ωp. A wider locking range gives rise to a higher ωp in the injection-locked 

dividers and a better noise performance because the noise coming from the injection signal 

is filtered for a larger extent of offset frequencies as depicted by equation (5.8). Therefore, 

the proposed wideband CILFD can fully take advantage of the high-purity clock generated 

by the LC VCO and lower the noise floor. Fig. 5.12 shows the phase noise plots of a free-

running CILFD, the injection signal generated with the LC VCO, and a CILFD locked by 

LC VCO injection. The simulated noise floor is at least 12 dB lower than that with the 

conventional CML dividers used. 
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5.3 Applications of Complementary Injection-Locked Frequency Dividers 

CILFDs can be used in various applications. Because of the nature of frequency 

division and multiple phase generation, CILFDs can be used in a programmable multi-

modulus phase-switching frequency divider as shown in Fig. 5.13. The use of CILFD will 

lower the power consumption and give better far-out phase noise.  

 

 

Fig. 5.13 Programmable multi-modulus phase switching divider based on CILFD. 

 

 

Fig. 5.14 3-bit time-domain quantization based on a divide-by-7 CILFD. 
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The CILFD can be also used in time-interleave ADC and multiple-phase sampling. Fig. 

5.14 shows an example that CILFD used for time-to-digital quantization [58]. Also, as 

shown in Fig. 5.4 and 5.6, the CILFD can be used as a phase tuning or phase alignment 

circuits by controlling the DC bias of Vbp and Vbn.  

 

5.4 Measurement Results 

Two differential CILFDs with division moduli of three and seven were 

implemented in a standard TSMC 0.18-µm technology. Two-stage buffers are used for 

driving the 50-Ω external loads. Fig. 5.15 shows the microphotogragh of the CILFDs and 

their buffer stages. The chip area is 1×1 mm2 including all testing pads; the core of the 

divide-by-3 and divide-by-7 differential CILFDs occupies 40×120 µm2 and 90×120 µm2, 

respectively.  

 

 
Fig. 5.15  Micorphotograph of the fabricated CILFDs. 
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The measured average free-running frequency of the divide-by-3 and divide-by-7 

CILFDs is 1.15 GHz and 540 MHz, around 10% below the simulated values. The injection 

signal is generated from a HP 8673C synthesized signal generator. Fig. 5.16 shows the 

output spectrum of the divide-by-7 CILFD locked by an input frequency of 1.4 GHz. The 

output frequency of the CILFD is center at 200MHz. When the CILFD is locked, the 

output signal tone is much sharper and the skirt of the output signal tone in free-running 

oscillation state is eliminated. 

 

 

Fig. 5.16.  Measured output spectrum of a divide-by-7 CILFD locked by a 1.4 GHz input 
frequency. 

 

The measured input sensitivity curves of divide-by-3 and divide-by-7 CILFDs are 

shown in Fig. 9. With an input injection power of -4 dBm, the measured locking range of 

the divide-by-3 CILFD spans approximately from 1.2 to 4.9 GHz, while the frequency 

locking range of the divide-by-7 CILFD spans from 1.4 to 4.4 GHz. The measured locking 

ranges are around 20 % smaller than the ones predicted by schematic simulations. The 

power consumption of the divide-by-3 and divide-by-7 CILFDs locked by an input 
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frequency of 4.5 GHz is 0.74 and 0.88 mW, respectively. The performance of the 

measured CILFDs is summarized in Table 5.2. Table 5.3 presents a comparison of this 

work with previously published Ring-ILFDs. The proposed CILFD performs excellent 

power consumption and wide locking range. It resolves the difficulty of generating odd 

division ratios and exhibits robust functionality over PVT. 

 

 

 

Fig. 5.17. Measured input sensitivity curves of (a) top divide-by-7 and (b) bottom 
divide-by-3 CILFDs. 
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Table 5.2 Summary of measured performance 
 

 Divide-by-3 Divide-by-7 

Free Running Frequency 1.15 GHz 540 MHz 

Locking Range@ -4 dBm Input Power 1.2 ~ 4.9 GHz 1.4 ~ 4.4 GHz 

Power Consumption@4.5 GHz Input Frequency 0.74 mW 0.88 mW 

Power Consumption@1.5 GHz Input Frequency 0.31 mW 0.36 mW 

Core Area 40 × 120 µm2 90 × 120 µm2 
 
 

 

Table 5.3 Performance comparison of existing works 

Ref Technology Div. 
Ratio 

Input Power 
(dBm) 

Locking Range 
(GHz) 

Power 
(mW) 

This Work 0.18µm 
CMOS 

3 
7 -4 1.2 ~ 4.9 

1.4 ~ 4.4 
0.74 
0.88 

[6] 0.18µm 
CMOS 

2 
4 0 15 ~ 22 

37.4 ~ 38.6 24 

[7] 0.13µm 
CMOS 

2 
6 NA 0.05 ~ 1.65  

0.25 ~ 1.22 
0.9 
2.7 

[8] 0.18µm 
CMOS 8 3 9.2 ~ 12.3 3.6 

 

 

 

Fig. 5.18 shows the chip photos with odd-modulus single-ended and differential 

CILFDs and even-modulus CILFDs. 
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Fig. 5.18  Micorphotograph of the even-modulus and odd-modulus CILFDs. 
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5.5 Conclusion 

This chapter presents low-power ring-oscillator-based complimentary injection-

locked frequency dividers (CILFDs) which employ a complimentary delay-tuned injection 

technique to widen the frequency locking range. The proposed complimentary injection-

locked frequency dividers (CILFDs) are composed by a current-starved inverter-based 

ring oscillator whose delay of each current-starved inverter can be effectively tuned by the 

injection signal to achieve a wide frequency locking range. The wide locking range 

characteristic of CILDs inherently excels at the robustness to overcome the PVT variation, 

a large jitter tracking bandwidth for low jitter filtering, less influence from power supply 

noise, and a more flexible phase tuning of deskewing. The pseudo-differential structure 

can be realized using cross-coupled inverters to couple each two opposite phases of the 

two ring oscillator. The CILFDs can accomplish both odd and even division ratios and 

generate a multi-phase output. The phase mismatch improved by injection locking The 

divide-by-2, 3, 4, 5, 7, 8, and 15 CILFDs have demonstrated a locking range from 0.8 to 

4 GHz with an input incident power of -5 dBm in a 0.18-μm CMOS technology while the 

power consumption is less than 1 mW from a 1.8-V power supply. 
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CHAPTER VI 

CONCLUSIONS 

 

This dissertation first discusses the design and implementation of clock generation 

for a programmable continuous-time bandpass ΣΔ modulator in a software radio receiver 

system. A continuously 2-16 GHz wideband frequency synthesizer is proposed, using a 

single-sideband mixer combines feed-forward and regenerative mixing techniques to 

achieve the wide frequency range. Only one VCO with a reasonable and achievable 

frequency tuning range is needed to obtain good phase noise. In order to well control the 

excess loop delay in the wideband system, a phase-tunable clock distribution network and 

a clock-controlled quantizer are implemented. A replica bias circuitry is used in the phase-

tunable cell to maintain appropriate swing. Also, the false locking in the regenerative 

mixing path is resolved by controlling the self-oscillation frequency of the CML divider. 

The proposed frequency synthesizer performs 0.6ps rms jitter and consumes lower power 

compared to the other existing works. 

Phase noise and quadrature phase accuracy are the major concerns while using the 

quadrature voltage-controlled oscillator to generate the quadrature signals. To eliminate 

these issues, a dynamic current-clipped QVCO is proposed. The sophisticated coupling 

network reduces injecting noise into LC tank at most vulnerable timings (zero crossing 

points). Hence, it allows the use of strong coupling ratio to minimize the quadrature phase 

sensitivity to mismatches without degrading the phase noise performance. The proposed 

DCC QVCO is implemented in a 130nm CMOS technology. The measured phase noise is 
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-121 dBc/Hz at 1MHz offset from a 5GHz carrier. The QVCO consumes 4.2mW with a 

1-V power supply, resulting in an oustanding FoM of 189 dBc/Hz. In order to achieve 

excellent phase accuracy, a capacitive source degeneration QVCO is proposed. Removing 

the conventional cross-coupled transconductor gives inherently large coupling ratio to 

obtain excellent phase accuracy. 

Frequency divider is one of the most power hungry building blocks in a PLL-based 

frequency synthesizer. The complementary injection-locked frequency divider is proposed 

to be a low-power solution. With the complimentary injection schemes, the dividers can 

realize both even and odd division modulus, performing a more than 100% locking range 

to overcome the PVT variation. The proposed dividers feature excellent phase noise. They 

can be used for various applications such as multiple-phase generation, programmable 

phase-switching frequency dividers, and phase-skewing circuits. 
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