9,861 research outputs found

    A Reuse-based framework for the design of analog and mixed-signal ICs

    Get PDF
    Despite the spectacular breakthroughs of the semiconductor industry, the ability to design integrated circuits (ICs) under stringent time-to-market (TTM) requirements is lagging behind integration capacity, so far keeping pace with still valid Moore's Law. The resulting gap is threatening with slowing down such a phenomenal growth. The design community believes that it is only by means of powerful CAD tools and design methodologies -and, possibly, a design paradigm shift-that this design gap can be bridged. In this sense, reuse-based design is seen as a promising solution, and concepts such as IP Block, Virtual Component, and Design Reuse have become commonplace thanks to the significant advances in the digital arena. Unfortunately, the very nature of analog and mixed-signal (AMS) design has hindered a similar level of consensus and development. This paper presents a framework for the reuse-based design of AMS circuits. The framework is founded on three key elements: (1) a CAD-supported hierarchical design flow that facilitates the incorporation of AMS reusable blocks, reduces the overall design time, and expedites the management of increasing AMS design complexity; (2) a complete, clear definition of the AMS reusable block, structured into three separate facets or views: the behavioral, structural, and layout facets, the two first for top-down electrical synthesis and bottom-up verification, the latter used during bottom-up physical synthesis; (3) the design for reusability set of tools, methods, and guidelines that, relying on intensive parameterization as well as on design knowledge capture and encapsulation, allows to produce fully reusable AMS blocks. A case study and a functional silicon prototype demonstrate the validity of the paper's proposals.Ministerio de Educación y Ciencia TEC2004-0175

    Performance analysis of massively parallel embedded hardware architectures for retinal image processing

    Get PDF
    This paper examines the implementation of a retinal vessel tree extraction technique on different hardware platforms and architectures. Retinal vessel tree extraction is a representative application of those found in the domain of medical image processing. The low signal-to-noise ratio of the images leads to a large amount of low-level tasks in order to meet the accuracy requirements. In some applications, this might compromise computing speed. This paper is focused on the assessment of the performance of a retinal vessel tree extraction method on different hardware platforms. In particular, the retinal vessel tree extraction method is mapped onto a massively parallel SIMD (MP-SIMD) chip, a massively parallel processor array (MPPA) and onto an field-programmable gate arrays (FPGA)This work is funded by Xunta de Galicia under the projects 10PXIB206168PR and 10PXIB206037PR and the program Maria BarbeitoS

    MLCAD: A Survey of Research in Machine Learning for CAD Keynote Paper

    Get PDF

    RNA-seq transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis

    Get PDF
    Bovine tuberculosis, caused by infection with Mycobacterium bovis, is a major endemic disease affecting cattle populations worldwide, despite the implementation of stringent surveillance and control programs in many countries. The development of high-throughput functional genomics technologies, including gene expression microarrays and RNA-sequencing (RNA-seq), has enabled detailed analysis of the host transcriptome to M. bovis infection, particularly at the macrophage and peripheral blood level. In the present study, we have analyzed the peripheral blood leukocyte (PBL) transcriptome of eight natural M. bovis-infected and eight age- and sex-matched non-infected control Holstein-Friesian animals using RNA-seq. In addition, we compared gene expression profiles generated using RNA-seq with those previously generated using the high-density Affymetrix(®) GeneChip(®) Bovine Genome Array platform from the same PBL-extracted RNA. A total of 3,250 differentially expressed (DE) annotated genes were detected in the M. bovis-infected samples relative to the controls (adjusted P-value ≤0.05), with the number of genes displaying decreased relative expression (1,671) exceeding those with increased relative expression (1,579). Ingenuity(®) Systems Pathway Analysis (IPA) of all DE genes revealed enrichment for genes with immune function. Notably, transcriptional suppression was observed among several of the top-ranking canonical pathways including Leukocyte Extravasation Signaling. Comparative platform analysis demonstrated that RNA-seq detected a larger number of annotated DE genes (3,250) relative to the microarray (1,398), of which 917 genes were common to both technologies and displayed the same direction of expression. Finally, we show that RNA-seq had an increased dynamic range compared to the microarray for estimating differential gene expression

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Rakenteellisen tiedon johtaminen koodaamattomista ribonukleiinihapoista massaspektrometrialla

    Get PDF
    The purpose of this study is to describe the development of application of mass spectrometry for the structural analyses of non-coding ribonucleic acids during past decade. Mass spectrometric methods are compared of traditional gel electrophoretic methods, the characteristics of performance of mass spectrometric, analyses are studied and the future trends of mass spectrometry of ribonucleic acids are discussed. Non-coding ribonucleic acids are short polymeric biomolecules which are not translated to proteins, but which may affect the gene expression in all organisms. Regulatory ribonucleic acids act through transient interactions with key molecules in signal transduction pathways. Interactions are mediated through specific secondary and tertiary structures. Posttranscriptional modifications in the structures of molecules may introduce new properties to the organism, such as adaptation to environmental changes or development of resistance to antibiotics. In the scope of this study, the structural studies include i) determination of the sequence of nucleobases in the polymer chain, ii) characterisation and localisation of posttranscriptional modifications in nucleobases and in the backbone structure, iii) identification of ribonucleic acid-binding molecules and iv) probing of higher order structures in the ribonucleic acid molecule. Bacteria, archaea, viruses and HeLa cancer cells have been used as target organisms. Synthesised ribonucleic acids consisting of structural regions of interest have been frequently used. Electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI) have been used for ionisation of ribonucleic analytes. Ammonium acetate and 2-propanol are common solvents for ESI. Trihydroxyacetophenone is the optimal MALDI matrix for ionisation of ribonucleic acids and peptides. Ammonium salts are used in ESI buffers and MALDI matrices as additives to remove cation adducts. Reverse phase high performance liquid chromatography has been used for desalting and fractionation of analytes either off-line of on-line, coupled with ESI source. Triethylamine and triethylammonium bicarbonate are used as ion pair reagents almost exclusively. Fourier transform ion cyclotron resonance analyser using ESI coupled with liquid chromatography is the platform of choice for all forms of structural analyses. Time-of-flight (TOF) analyser using MALDI may offer sensitive, easy-to-use and economical solution for simple sequencing of longer oligonucleotides and analyses of analyte mixtures without prior fractionation. Special analysis software is used for computer-aided interpretation of mass spectra. With mass spectrometry, sequences of 20-30 nucleotides of length may be determined unambiguously. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Sequencing in conjunction with other structural studies enables accurate localisation and characterisation of posttranscriptional modifications and identification of nucleobases and amino acids at the sites of interaction. High throughput screening methods for RNA-binding ligands have been developed. Probing of the higher order structures has provided supportive data for computer-generated three dimensional models of viral pseudoknots. In conclusion. mass spectrometric methods are well suited for structural analyses of small species of ribonucleic acids, such as short non-coding ribonucleic acids in the molecular size region of 20-30 nucleotides. Structural information not attainable with other methods of analyses, such as nuclear magnetic resonance and X-ray crystallography, may be obtained with the use of mass spectrometry. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Ligand screening may be used in the search of possible new therapeutic agents. Demanding assay design and challenging interpretation of data requires multidisclipinary knowledge. The implement of mass spectrometry to structural studies of ribonucleic acids is probably most efficiently conducted in specialist groups consisting of researchers from various fields of science

    Complex VLSI Feature Comparison for Commercial Microelectronics Verification

    Get PDF
    Shortcomings in IC verification make for glaring vulnerabilities in the form of hardware backdoors, or extraneous operation modes that allow unauthorized, undetected access. The DARPA TRUST program addressed the need for verification of untrusted circuits using industry-standard and custom software. The process developed under TRUST and implemented at the AFRL Mixed Signal Design Center has not been tested using real-world circuits outside of the designated TRUST test cases. This research demonstrates the potential of applying software designed for TRUST test articles on microchips from questionable sources. A specific process is developed for both transistor-level library cell verification and gate-level circuit verification. The relative effectiveness and scalability of the process are assessed

    Enabling Artificial Intelligence Analytics on The Edge

    Get PDF
    This thesis introduces a novel distributed model for handling in real-time, edge-based video analytics. The novelty of the model relies on decoupling and distributing the services into several decomposed functions, creating virtual function chains (V F C model). The model considers both computational and communication constraints. Theoretical, simulation and experimental results have shown that the V F C model can enable the support of heavy-load services to an edge environment while improving the footprint of the service compared to state-of-the art frameworks. In detail, results on the V F C model have shown that it can reduce the total edge cost, compared with a monolithic and a simple frame distribution models. For experimenting on a real-case scenario, a testbed edge environment has been developed, where the aforementioned models, as well as a general distribution framework (Apache Spark ©), have been deployed. A cloud service has also been considered. Experiments have shown that V F C can outperform all alternative approaches, by reducing operational cost and improving the QoS. Finally, a migration model, a caching model and a QoS monitoring service based on Long-Term-Short-Term models are introduced

    Constraint-driven RF test stimulus generation and built-in test

    Get PDF
    With the explosive growth in wireless applications, the last decade witnessed an ever-increasing test challenge for radio frequency (RF) circuits. While the design community has pushed the envelope far into the future, by expanding CMOS process to be used with high-frequency wireless devices, test methodology has not advanced at the same pace. Consequently, testing such devices has become a major bottleneck in high-volume production, further driven by the growing need for tighter quality control. RF devices undergo testing during the prototype phase and during high-volume manufacturing (HVM). The benchtop test equipment used throughout prototyping is very precise yet specialized for a subset of functionalities. HVM calls for a different kind of test paradigm that emphasizes throughput and sufficiency, during which the projected performance parameters are measured one by one for each device by automated test equipment (ATE) and compared against defined limits called specifications. The set of tests required for each product differs greatly in terms of the equipment required and the time taken to test individual devices. Together with signal integrity, precision, and repeatability concerns, the initial cost of RF ATE is prohibitively high. As more functionality and protocols are integrated into a single RF device, the required number of specifications to be tested also increases, adding to the overall cost of testing, both in terms of the initial and recurring operating costs. In addition to the cost problem, RF testing proposes another challenge when these components are integrated into package-level system solutions. In systems-on-packages (SOP), the test problems resulting from signal integrity, input/output bandwidth (IO), and limited controllability and observability have initiated a paradigm shift in high-speed analog testing, favoring alternative approaches such as built-in tests (BIT) where the test functionality is brought into the package. This scheme can make use of a low-cost external tester connected through a low-bandwidth link in order to perform demanding response evaluations, as well as make use of the analog-to-digital converters and the digital signal processors available in the package to facilitate testing. Although research on analog built-in test has demonstrated hardware solutions for single specifications, the paradigm shift calls for a rather general approach in which a single methodology can be applied across different devices, and multiple specifications can be verified through a single test hardware unit, minimizing the area overhead. Specification-based alternate test methodology provides a suitable and flexible platform for handling the challenges addressed above. In this thesis, a framework that integrates ATE and system constraints into test stimulus generation and test response extraction is presented for the efficient production testing of high-performance RF devices using specification-based alternate tests. The main components of the presented framework are as follows: Constraint-driven RF alternate test stimulus generation: An automated test stimulus generation algorithm for RF devices that are evaluated by a specification-based alternate test solution is developed. The high-level models of the test signal path define constraints in the search space of the optimized test stimulus. These models are generated in enough detail such that they inherently define limitations of the low-cost ATE and the I/O restrictions of the device under test (DUT), yet they are simple enough that the non-linear optimization problem can be solved empirically in a reasonable amount of time. Feature extractors for BIT: A methodology for the built-in testing of RF devices integrated into SOPs is developed using additional hardware components. These hardware components correlate the high-bandwidth test response to low bandwidth signatures while extracting the test-critical features of the DUT. Supervised learning is used to map these extracted features, which otherwise are too complicated to decipher by plain mathematical analysis, into the specifications under test. Defect-based alternate testing of RF circuits: A methodology for the efficient testing of RF devices with low-cost defect-based alternate tests is developed. The signature of the DUT is probabilistically compared with a class of defect-free device signatures to explore possible corners under acceptable levels of process parameter variations. Such a defect filter applies discrimination rules generated by a supervised classifier and eliminates the need for a library of possible catastrophic defects.Ph.D.Committee Chair: Chatterjee, Abhijit; Committee Member: Durgin, Greg; Committee Member: Keezer, David; Committee Member: Milor, Linda; Committee Member: Sitaraman, Sures
    corecore