
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 1

MLCAD: A Survey of Research in
Machine Learning for CAD

Keynote Paper

Martin Rapp, Student Member, IEEE, Hussam Amrouch, Member, IEEE, Yibo Lin, Member, IEEE,
Bei Yu, Member, IEEE, David Z. Pan, Fellow, IEEE, Marilyn Wolf, Fellow, IEEE, and Jörg Henkel, Fellow, IEEE

Abstract—Due to the increasing size of integrated circuits (ICs),
their design and optimization phases (i.e., computer-aided design,
CAD) grow increasingly complex. At design time, a large design
space needs to be explored to find an implementation that fulfills
all specifications and then optimizes metrics like energy, area,
delay, reliability, etc. At run time, a large configuration space
needs to be searched to find the best set of parameters (e.g.,
voltage/frequency) to further optimize the system. Both spaces
are infeasible for exhaustive search typically leading to heuristic
optimization algorithms that find some trade-off between design
quality and computational overhead. Machine learning (ML) can
build powerful models that have successfully been employed in
related domains. In this survey, we categorize how ML may
be used and is used for design-time and run-time optimization
and exploration strategies of ICs. A meta-study of published
techniques unveils areas in CAD that are well-explored and
underexplored with ML, as well as trends in the employed
ML algorithms. We present a comprehensive categorization and
summary of the state of the art on ML for CAD. Finally, we
summarize remaining challenges and promising open research
directions.

Index Terms—Machine Learning, Computer-Aided Design,
Deep Learning, Electronic Design Automation

I. INTRODUCTION

THE complexity of ICs continues to increase, mainly en-
abled by technology advances [1]. Therefore, the design

and optimization of such systems for metrics like energy,
area, delay, reliability, etc., both at design time and run time
become more and more difficult. Still following Moore’s law,
the number of transistors per design increases exponentially
and doubles every two years. Consequently, the corresponding
design space, which needs to be searched for an implementa-
tion that fulfills all specifications and then optimizes the above-
mentioned metrics, explodes. Analogously, the number of pos-

M. Rapp and J. Henkel are with the Department of Computer Sci-
ence, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany (e-mail:
{martin.rapp, henkel}@kit.edu.

H. Amrouch is with the Department of Computer Science, University of
Stuttgart, 70174 Stuttgart, Germany (e-mail: amrouch@iti.uni-stuttgart.de).

Y. Lin is with the Department of Computer Science, Peking University,
Beijing, China, 100871 (e-mail: yibolin@pku.edu.cn).

B. Yu is with the Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong, Hong Kong (e-mail:
byu@cse.cuhk.edu.hk).

D. Z. Pan is with the Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, Austin, TX 78705, USA (e-mail:
dpan@ece.utexas.edu).

M. Wolf is with the Department of Computer Science & Engineer-
ing, University of Nebraska-Lincoln, Lincoln, NE 68588, USA (e-mail:
mwolf@unl.edu).

sible management actions at run time increases. Applications
execute on an increasing number of processor cores that each
needs to be operated at a certain voltage/frequency (v/f)-level
– leading to more degrees of freedom that need to be exploited
by run-time management to optimize the IC [2]. Both the
design-time and run-time spaces are too large for exhaustive
search. This has led to the development of a plethora of
heuristic algorithms. However, such algorithms tend to suffer
from low adaptability, and tend to either oversimplify the prob-
lem, leading to a low decision quality, or result in excessive
computational complexity. The existing algorithms are not able
to keep up with the high pace of technology advances, which
manifests itself as the design productivity gap.

ML techniques have been employed in many domains with
great success because of their ability to build powerful models
from data [3], [4]. Consequently, ML has also been applied
in computer engineering, such as in CAD [5], where ML
promises to fill the gaps left by heuristic algorithms and open
new possibilities. Employing ML techniques allows designers
to raise the abstraction level by focusing on the objective itself
and leave the technical details on how to reach the objective
to the ML model. For example, when optimizing lithographic
masks with sub-resolution assist features (SRAFs) with ML,
the designer specifies the goal (desired geometric pattern) but
does not need to specify rules for where to place SRAFs.
Another example is run-time management with reinforcement
learning (RL), where the designer expresses the goals (e.g.,
high performance) with the reward function but does not to
specify rules for when which management action is to be
executed.1 This allows designers to handle more complex
designs – mitigating the design productivity gap.

This survey provides a comprehensive summary of how
ML techniques may be used and are used for CAD at var-
ious abstraction levels. We discuss both offline, design-time
and online, run-time aspects of CAD and online (run-time)
techniques because both are necessary to achieve design goals
such as low-energy operation. We demonstrate the similarities
in problems that are solved at design time and run time, as
well as similarities in the employed ML models. Furthermore,
many open challenges apply to both domains.

It is important to notice that we only focus on techniques
that use ML to design and optimize the IC itself. We ex-
plicitly do not include techniques that optimize ML training

1These examples are described in more details in Sections IV and V.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 2

or inference for a user-application (e.g., accelerators), or ML
techniques that solve a user-task (e.g., stroke detection).

Structure of this survey: We first present a meta-study that
analyzes all publications in five key conferences and journals
in the area of CAD. This meta-study shows how many works
employ ML for CAD and further breaks down these works to
unveil trends in ML for CAD. We then present general patterns
in how ML models can be employed in CAD. The identified
patterns apply to both design-time and run-time techniques and
demonstrate that similar ML models are applicable for both
domains. The main part of this study gives an overview of all
areas of design-time and run-time CAD to discuss the recent
progress. Finally, we discuss open challenges and promising
directions.

II. TRENDS IN MACHINE LEARNING FOR CAD

This section presents a meta-study of how ML has been
employed in CAD in the recent years. We analyzed all
publications in the following venues: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
(TCAD), International Conference on Computer-Aided Design
(ICCAD), Design Automation Conference (DAC), Asia and
South Pacific Design Automation Conference (ASP-DAC),
and the CAD conferences included in the Embedded Sys-
tems Week (International Conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems, CASES, and
International Conference on Hardware/Software Codesign and
System Synthesis, CODES+ISSS). We consider the criteria
explained in the introduction, i.e., ML is used for CAD. This
criterion excludes a large number of works that use ML as
an application (accelerators, approximate computing, etc.).
Only regular papers are considered while invited papers are
excluded. We study the years from 2016 to 2020. This meta-
study answers the following main questions:

• Which are the areas in CAD that are well-explored / not
yet explored with ML?

• Which ML algorithms have been used?
• Which are the observable trends?
We divide CAD for ICs into the following six major design

steps:
1) System-level design space exploration (DSE) and

high-level synthesis (HLS) transform a high-level spec-
ification of the IC to a register-transfer level (RTL) de-
scription. Thereby, HLS focuses on functional properties
and system-level DSE optimizes non-functional proper-
ties. These steps determine the system architecture like
decision which functions to implement in hardware or
software, processor configurations, allocation of function
units, scheduling, and binding of operations.

2) Logic Synthesis transforms the RTL description of
a circuit to a gate-level representation in the target
technology.

3) Physical Design includes placement of the logic gates
on the die, routing of the connecting nets, design of the
clock trees, and building a power/ground network. The
output of physical design is a geometrical representation
of the circuit.

2016 2017 2018 2019 2020
0%

5%

10%

(10)
(11)

(16)

(19) (33)

(24)
(15) (19)

(53) (66)

Fr
ac

tio
n

of
Pu

bl
ic

at
io

ns
E

m
pl

oy
in

g
M

L
fo

r
C

A
D

Design-Time Run-Time (Absolute Numbers in Brackets)

Fig. 1. The fraction of publications that employ ML for CAD among all
regular papers published in IEEE TCAD, ICCAD, DAC, ASP-DAC, and
ESWeek is growing strongly, increasing by almost 2× from 2016 to 2020.

2016 2017 2018 2019 2020
0%

20%

40%

60%

80%

100%

R
el

.N
b.

of
Pu

bs
.

Veri./Test Manufacturing Physical Des.
Logic Synth. System-Level DSE, HLS

Fig. 2. The recent years show a trend towards physical design and lithography,
reaching 65% in 2020 among all works that employ ML for design-time CAD.

4) Manufacturing the integrated circuit involves creating
lithographic masks and the fabrication steps. Only a
certain fraction of fabricated devices are functional due
to process variations. This fraction is denoted as the
yield.

5) Verification and Test ensures that fabricated devices
adhere to the specifications. This involves testing of
fabricated devices, but also verification techniques at
earlier design steps to verify the correctness of the
intermediate representations w.r.t. the specifications.

6) Run-Time Management dynamically adjusts parame-
ters of the design like voltage or frequency according to
the operating conditions.

Fig. 1 shows the fraction of publications that employ ML
for CAD among all regular papers in the studied venues. It
is apparent that ML techniques are gaining attraction. The
fraction of publications increased by about 2× from 2016
to 2020 and reached 11% of all regular papers. Accordingly,
the absolute numbers of publications increased. Around two
thirds of these publications target the design-time steps 1 to 5,
one third target run-time management. The following analyses
further break down these publications to answer our main
questions.

Fig. 2 shows how many publications target individual
design-time steps. Some works target several steps. In these
cases, we assign them to the step by which the work is
most extensively evaluated. In 2020, about 65% of works
targeted physical design and manufacturing. In contrast, these
areas accounted for only about 40% in 2016. Physical design
and manufacturing work on geometrical representations of the
chip, which can be represented as images. ML algorithms

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 3

2016 2017 2018 2019 2020
0%

20%

40%

60%

80%

100%

R
el

.N
b.

of
Pu

bs
.

Several Graph-NN GAN
Other NN Other Decision-Tree
Linear Gaussian Proc. Clustering

Fig. 3. A strong trend towards NN-based algorithms can be observed for
design-time techniques. Recently, generative (GAN) approaches and Graph-
NN gain more attention.

2016 2017 2018 2019 2020
0%

20%

40%

60%

80%

100%

R
el

.N
b.

of
Pu

bs
.

Several NN Other
Table-based RL Decision-Tree Linear
Clustering

Fig. 4. Run-time techniques also show a strong trend towards NN-based
algorithms. Table-based RL is the algorithm that has declined the strongest.

that work on images are most extensively explored and,
hence, most advanced, which facilitates their usage. Early
design steps like DSE, HLS, and logic synthesis, are often
combinatorial problems and are relatively underrepresented.
We conclude that physical design steps are well-explored with
ML and future research should focus on earlier design steps.

We next explore the range of ML algorithms applied to
CAD. First, we study design-time steps. We divide the plethora
of used algorithms into the categories listed in Fig. 3. Clus-
tering algorithms are unsupervised algorithms that identify
groups of examples based on a similarity metric. The most
prominent algorithm of this group is k-means clustering [6].
Gaussian process models learn continuous functions based on
prior knowledge (mean, variance, covariance between sam-
ples) and observations [7]. Notably, Gaussian process models
are capable to cope with noisy data and even inherently model
noise. Linear models fit parameters of a linear kernel [6].
Decision-tree-based models represent knowledge as a tree,
where every node represents a decision based on the features
and threshold values that leads to a specific branch [6]. This
category also includes ensemble models of decision trees
such as random forests or XGBoost. Neural networks (NNs)
consist of neurons that perform a linear transformation if their
inputs followed by a nonlinear activation function [6]. Usually,
neurons are aligned in layers. We extract two special types of
NNs: Graph-NNs [8] where the input is represented as a graph
consisting of vertices and edges, and generative adversarial
networks (GANs). GANs combine two NNs that are trained in

a zero-sum game, where the generator learns to create realistic
data, and the discriminator NN learns to distinguish generated
from real data [9]. Some works implement several models. For
instance, [10] and [11] implement and compare both classical
and NN models for IR drop prediction and power prediction,
respectively. We assign works that implement several types of
models to a separate class.

Fig. 3 shows how the used algorithms in the design-time
steps changed in recent years. Several trends are clearly
visible. First, there is a strong trend towards neural networks,
accompanied by a decline in classical ML methods. The ma-
jority are feedforward networks (such as fully-connected and
convolutional neural networks) and recurrent networks (such
as long-short-term memory (LSTM)), denoted “Other NN” in
the figure. Generative approaches based on GANs also have
been explored since 2018. 2020 has shown a trend towards
Graph-NNs that exploit the graph-based representations of
circuits for instance in logic and physical design steps. Finally,
while in 2016 a significant fraction of works (about 20%) train
and compare different ML algorithms for their problem, fewer
works still do this in 2020. It appears that more works will use
NNs in the near future, with an increasing use of Graph-NNs.

Fig. 4 shows the algorithms used for run-time management.
These are mostly the same algorithms also used in design-
time techniques. One exception is table-based RL, i.e., Q-
learning [12]. Q-learning simply stores learned values in a
lookup table. Many trends that we observed in design-time
techniques are also valid here. NNs are increasing, classical
algorithms are declining. Unlike the design-time steps, GANs
and Graph-NNs have not been used for run-time management.
A large fraction of run-time works (45% in 2017) used table-
based RL. This algorithm is strongly declining and replaced
by deep reinforcement learning (DRL), i.e., NN-based RL.
The approach that several ML algorithms are implemented
and compared, is also decreasing in run-time techniques. It
appears that NN-based techniques will account for the majority
of techniques in the near future.

III. PATTERNS IN MACHINE LEARNING FOR CAD

Approaches that employ ML for CAD can be classified
according to three main criteria:

• The problem type to be solved with ML: make predic-
tions, suggest actions, generate data

• The design step
• The ML algorithm

The three main alternatives of the first criterion, the problem
type, are illustrated in Fig. 5. This section presents an overview
of the type of problems and corresponding ML algorithms to
lay the foundation for a detailed discussion of techniques in
the next section.

A. Prediction of System Properties

The first pattern to employ ML for CAD is predicting
properties of various aspects of the system: the design itself;
the run-time platform; or the environment in which it operates.
At design time, these can be properties arising in the following
design steps (e.g., routing congestion) or properties of the final

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 4

Design-Time Run-Time

IR
Intermediate
Representation

..
.

Design Step

IR

. .
.

Final Design
(IC)

B

C

Prediction

A

Environment

Platform
(IC)

Observation
/ Event Action

Control

B

Model of Platform/Env.

A

Traditional Flow / Algorithms Machine Learning

A

B

C

Design-Time: Make Predictions about Later Steps / Final Design
Run-Time: Learn Models of Platform and Environment

Design-Time: Directly Make Decisions in the Design Flow
Run-Time: Learn Platform Management Policies

Generate Data

Fig. 5. Patterns how ML can be used for CAD: design-time (left) run-time
management (right).

design (e.g., power, performance, area). At run time, these
can be properties of the platform (e.g., power) or models of
the environment (e.g., workload). The ML models are also
sometimes called surrogate models. At both design time and
run time, the output of the model is used in an optimization
loop that explores the design space or action space.

Since the underlying mechanisms are very similar, the same
ML algorithms are employed in design-time and run-time
techniques. The employed algorithms belong to supervised
learning, where training data is present in the form of input-
output pairs of the model. The problem can be a regression
problem (the outputs are continuous values), or a classification
problem (the output is one out of a finite set of classes).
There exist a plethora of different algorithms [6] ranging from
simple linear regression models and tree-based models, to deep
NNs [13]. Since these algorithms are most commonly known,
we omit a detailed explanation here.

The output of such models contains little information as to
how to optimize the design or run-time management. How-
ever, these models provide input to a traditional optimization
algorithm that repeatedly calls the model. The repetitive use of
these models means that maintaining a low inference overhead
is key, limiting the complexity of employed models.

B. Decisions for Design-Time and Run-Time

The second pattern is to use ML models to directly make de-
cisions in the design flow or run-time management: schedules,
placements, v/f-level settings, etc. In contrast to Section III-A,
where the ML model would for example answer the ques-
tion “If this net would be routed here, what would be the

implications?”, such a technique would answer the question
“Where should this net be routed?”. The ML models replace
the traditional methods.

This form of modeling can be tackled with both supervised
and semi-supervised algorithms. This can be for instance
classifiers that classify between a discrete set of actions.
Physical design and lithography are image-based design steps,
where solutions can be expressed as images (e.g., routing path,
lithographic mask). Therefore, inputs and outputs to the ML
algorithm may be images. Convolutional autoencoders (AEs)
are NNs that transform one image into another and, therefore,
are well-suited [6]. An AE comprises two NNs, an encoder
and a decoder. The encoder learns an efficient encoding of
the input data to a lower-dimensional latent space, whereas
the decoder learns either to reconstruct the original data from
the encoding or to transform the encoding to a target image.
Simple classifiers and AEs are still trained in a supervised
manner with a unique output for every input pattern. This is
not always the case in CAD problems. Different solutions may
have a very similar quality of result. In these cases, training
an ML model in a supervised manner requires unnecessary
effort to learn the single solution represented in the training
data instead of any good solution.

As a solution, RL-based techniques [12], [14] can be
employed that let the ML agent take actions on the design,
such as transforming a logic circuit. After every action, the
RL agent is given a reward that reflects the current quality
of solution. The goal of the agent is to maximize its long-
term reward. The agent learns by exploring the potential
actions and observing the reward. RL can easily cope with
several actions leading to a similar quality of result. There are
many different implementations of RL ranging from table-
based Q-learning [12] to NN-based DRL [14]. RL-based
techniques have the additional advantage that they perform
online learning, which is especially useful for adaptive run-
time management.

Finally, GANs have been proposed to circumvent the prob-
lem of non-unique model outputs [9]. As explained earlier, two
NNs are used, a generator and a discriminator. The generator
creates data from random noise, whereas the discriminator
distinguishes generated from real data. Both NNs are trained
alternately in a zero-sum game. Training the generator teaches
it to create data that is indistinguishable from real data for the
current discriminator. Analogously, the discriminator learns
to detect generated data. By repeating this training cycle,
both get better until, at some point, the generator is capable
of creating deceptively real-looking data without ever having
seen real data. Conditional GAN (CGAN) is an extension of
GAN where both generator and discriminator additionally are
provided with partial information of data. The generator learns
to reconstruct the missing parts, whereas the discriminator
learns to distinguish reconstructed data from real data. Finally,
the trained generator is employed for the CAD problem. An
advantage of this approach over supervised learning is the
capability to cope with non-unique solutions. This capability
comes from not training the generator with concrete labels
that it tries to reproduce, but instead training the generator

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 5

with the help of the discriminator that can learn to classify
several solutions as valid (real).

C. Data Generation

Some processes require a lot of data to be able to perform
analyses. This data may be expensive to collect – either
financially or time-wise. There are two fundamental ways on
how to generate data that follow the same underlying distri-
bution as the training data. First, the underlying probability
density function can be explicitly estimated (learned) [6], and
new data can simply be drawn from it. However, such an
approach works if correlation between different features is
easy to capture, but fails if features show high and complex
correlation, such as individual pixels in images. Therefore,
recent algorithms only implicitly learn the data distribution.
Examples are AEs, variational autoencoders (VAEs) [15] and
GANs [9]. New data can be created with an AE by adding a
small perturbation to the encoding of a valid sample from the
training data before decoding. However, such an approach may
be limited to only creating data that is similar to individual
training samples. VAEs are extensions of the AE topology
that enforces that the encodings use the full latent space in
a continuous manner. Therefore, new data can be generated
by passing random noise to the decoder. GANs also comprise
two NNs. The generator is trained explicitly to create new
valid data from noise, while the discriminator is trained to
distinguish real from generated samples. The two NNs are
mutually trained in a zero-sum game.

Creating new data is only required for design-time processes
like early technology evaluation [16]. This approach is not
employed in run-time techniques.

IV. RECENT WORK ON MACHINE LEARNING FOR
DESIGN-TIME CAD

This section provides a summary of how ML can support
the design phase of an IC. It covers system-level design, logic
synthesis, physical design, device and circuit design (both
analog and digital), and testing. Table I presents an overview
of common problems in different steps of the design process.
The details for each step are presented in the corresponding
subsection.

A. System-Level DSE and HLS

System-level DSE and HLS are the first steps when design-
ing an IC from abstract specifications. The two are comple-
mentary. System-level DSE determines the overall architec-
tural parameters, while HLS performs logic design.

System-level DSE determines the overall parameters of
the design, e.g., cache sizes, processor core configurations
of a multi-core processor. Assessing individual configurations
usually requires expensive simulations. Surrogate models can
be used to replace simulations with a faster, yet less accurate
approximation. An important property of such a model is to
be able not only to rate a single configuration, but to actively
steer the optimization towards the optimum. Mariani et al.
[17] use Bayesian optimization as a surrogate model to speed

up design space exploration of a multi-core processor design.
Every synthesized design accounts for one training example.
Bayesian Optimization assumes a continuous objective func-
tion (e.g., power) with respect to the design parameters. Under
this model, the objective function is accurately known close to
an already synthesized configuration, and uncertainty increases
with distance from a known configuration. Joardar et al. [18]
use local search to find good parameters of a 3D network-on-
chip from a given starting point. They use ML (demonstrated
with regression trees) to learn the objective function. The
objective function is in turn used to find promising starting
candidates. The main difference as compared to Mariani et al.
[17] is the local optimization. Deshwal et al. [19] improve the
scalability of DSE by learning simpler tree-based models to
narrow down the design space towards the optimal configura-
tion of a 3D many-core processor. Powell et al. [20] predict
the power and execution time of applications on FPGA soft
processors. The application is represented by coarse statistics
about instructions and memory accesses. This technique aims
at speeding up early DSE of FPGA soft processors, which are
defined by parameters such as cache organization, presence of
floating-point hardware, and clock speed.

HLS is a form of logic design one level above register-
transfer design. While register-transfer design requires the
sequential behavior of the logic to be fully specified, HLS
schedules operations to create a sequential machine; it also al-
locates operations to function units, a step that cannot be taken
in a specification that does not bind operations to particular
sequential time steps. Like in DSE, surrogate models can be
used to obtain fast estimates of area, performance, or power.
Liu and Carloni [21] employ a surrogate model to optimize
HLS knobs, such as loop manipulations or array implementa-
tions. They present transductive experimental design to select
a representative set of knob settings, which are used for initial
training of the model. They then use the surrogate model to
select the next candidate knob setting to iteratively refine the
current best solution. Zhong et al. [22] also use a surrogate
model to find a near-optimal set of HLS parallelism options.
They put a strong focus on fast design space exploration,
and parse and analyze a C/C++ software implementation of
the kernel with different settings such as loop unrolling using
LLVM without invoking HLS. These traces are fed into an ML
model for area and performance estimations to find the best
settings for an FPGA implementation. HLS is only performed
once for the chosen settings. By using an abstract intermediate
representation, this approach is capable of generalizing across
many different designs. Zennar et al. [23] learn the resource
requirements of control register interfaces of regular SoC
components when implemented on an FPGA. They describe
the interface using high-level features such as the number of
readable registers. Dai et al. [24] train and compare several ML
models to predict resource requirements from HLS reports.
They also explore multi-taks learning to exploit correlations
between the target metrics.

Ustun et al. [25] predict the circuit delay in HLS. They
identify that the mapping of operations to hardened structures
on an FPGA like DSPs significantly affects the delay. Such
mapping mostly depends on local structures in the data-flow

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 6

TABLE I
COMMONLY OBSERVED PROBLEMS IN DESIGN-TIME CAD AND SUITABLE ALGORITHMS.

Step Problem Algorithms

Common for all steps Prediction of properties (power, etc.) Linear regression, regression trees, NN, etc.
Tool parameter tuning RL, surrogate models (supervised learning)
Directly perform optimization actions RL
Augment incomplete solution Conditional generative adversarial network (CGAN)

System-Level DSE and HLS Steer exploration Bayesian optimization, surrogate models

Logic Synthesis Netlist optimization Graph-NN

Physical Design Netlist as an input Graph-NN
Geometrical optimization Convolutional NN (CNN, conv. CGAN, conv. AE, etc.)

Lithography and Manufacturing Mask generation and optimization Convolutional NN (CNN, conv. CGAN, conv. AE, etc.)

Testing Anomaly detection Clustering, Dimensionality reduction

Device / Technology Modeling Physical modeling Combination of domain knowledge with (small) ML models for fitting

graph. They present a prediction technique based on Graph-
NNs, which captures the local neighborhood of nodes (local
structures) to predict the delay.

Another branch of work uses ML models to directly select
the optimizations to perform. Chen et al. [26] target the
problem of scheduling in HLS for FPGAs. A model repeatedly
selects a shift operation of a node of the data flow graph to
earlier or later cycles based on the current schedule. They train
the model once but also propose to use RL to further train the
model during usage.

B. Logic Synthesis

Logic synthesis transforms the RTL description of a design
to an optimized gate-level representation in the target technol-
ogy. In this process, a number of transformations are applied to
the design for logic optimization and minimization, mapping
to entities of the target technology, and post-mapping opti-
mization. These optimizations are performed on a representa-
tion of the design as a netlist, which is commonly represented
as a graph of components and connections. Graph-NNs have
been proposed recently to directly operate on graphs, allowing
to directly make use of the underlying structure of connections.

The majority of works targeting logic synthesis use ML
as surrogate models to estimate properties of the design.
These estimations can be used to guide optimization. Zhang
et al. [27] use a Graph-NN to propagate average toggle
rates through combinational logic for power estimation. By
operating on a per-gate granularity, they achieve generalization
between different workloads and circuits. All these works
only develop the estimation technique in isolation and do not
perform any optimization. Pasandi et al. [28] predict the error
rate of an approximate circuit with the help of an NN. They
also develop an iterative optimization algorithm for power/area
minimization based on the predicted error rates.

A smaller set of works uses ML to perform the optimization
itself. Hosny et al. [29] use RL to perform logic optimization
on And-Inverter graphs in order to minimize the area under a
timing constraint. They represent the state of the network as
a 7-dimensional vector and select in each step one of seven
possible actions. The state design allows reusing a policy

trained on one design on another design. The RL agent is
implemented using an actor-critic NN.

Finally, some works employ the classical synthesis tools and
use ML at a higher level. Kwon et al. [30] use an NN-based
recommender system to tune parameters of the design flow
(logic synthesis and physical design). They demonstrate that
their approach generalizes to different technology nodes.

C. Physical Design

Physical design transforms a design from a graph-based
representation (consisting of components and connections)
after logic synthesis to a geometrical representation consisting
of shapes of materials. Again, Graph-NNs are well-suited to
parse graph-based representations. The geometrical represen-
tation can be depicted as images. Computer vision (image
classification and transformation) is a mature application for
ML [31], [4], [32], hence developed algorithms for computer
vision are prime candidates to be adapted to physical design, as
well. Prominent examples are convolutional NN and variants
thereof, such as convolutional CGAN, or convolutional AE. A
typical physical design flow involves multiple stages, including
placement of components on the die, routing of connections,
clock network synthesis, and power/ground network synthesis.
We describe these steps in the following.

1) Placement: Providing the significance of placement on
chip, a mass of research achievements have been made in the
past several decades. However, researchers are still not satis-
fied with the efficiency of previous chip placement algorithms.
Due to the massive scale of modern designs, the placement
process is usually complicated, tedious, and time-consuming.

Mirhoseini et al. [33] propose macro block placement as an
RL problem and train an agent to place all macros of a given
chip onto the placement canvas. The general motivation for
leveraging RL is to learn from past experience and improve
the ability to place macros. Specifically, such an agent should
be well-trained over extensive chip blocks in order to gain as
much experience as possible and further improve generaliza-
tion ability. In fact, the deep RL approach does not require
the agent to place nodes directly. Instead, at each step, the
agent sequentially places the macros, and once all macros
are placed, a force-directed method is applied to generate a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 7

Features from
Placed Design

...

CNN

Number of DRVs

... ...

FCN

DRV
Hotspots

Fig. 6. Physical design has many similarities to image classification, which
is the reason why CNNs are suitable models. RouteNet [36] proposes two
CNNs, a conventional CNN to predict the number of design rule violations
(DRVs) for routability forecast, and a fully-convolutional network (FCN) to
predict the location of DRV hotspots. Figure is based on [36].

rough placement of all standard cells. This RL-based approach
outperforms state-of-the-art baselines and the produced results
comparable to manual designs from experts. Liu et al. [34]
use a GAN to create noise maps from limited samples. These
noise maps are fed into an optimization algorithm to find a
placement for noise sensors. Barboza et al. [35] predict the
post-routing delay at the placement phase. They use hand-
crafted features in combination with classical ML algorithms
like lasso regression or random forest to predict the delay of
a single net without performing routing itself.

Placement has to be done considering the later routing
steps, as routability is mainly influenced by the placement. To
enable fast and accurate routability prediction, deep learning
is introduced for its high performance in computer vision
and other related tasks. Xie et al. [36] predict the number
and position of design rule violations after routing given a
placed design before actually performing the routing (see
Fig. 6). They exploit the similarity of the well-studied image
classification problem to the 2D placement, which also can
be represented as an image. This allows them not only to
use a similar model (CNN), but even to perform transfer
learning from a different domain. A CNN is pre-trained on
the ImageNet [3] dataset, which contains many photos of real-
world objects, i.e., is unrelated to CAD, and then finetuned
for the task at hand. The resulting predictions are used during
placement to proactively avoid placements that are difficult to
route. Tabrizi et al. [37] also support the placement phase by
predicting routing short violations given a placed design. They
train an NN but put a strong focus on feature engineering in
contrast to [36], where raw images of the placed designs are
fed to the NN.

It is an open challenge to automatically generate datapath-
aware layout, since most conventional placers are designed to
handle general-purpose placement and pay very little attention
to such datapath layouts. However, some significant improve-
ments have been made in the past few years. Ward et al. [38]
propose a new unified placement flow that simultaneously
handles random logic and datapath standard cells. Specifically,
graph-based and physical features are extracted from the
netlist and fed into some effective classifiers (e.g., NNs) to
classify the required datapath related patterns. Based on that,

a datapath-aware placer, PADE, is proposed to handle datapath
patterns and perform datapath-aware detailed placement.

Recently, some milestone studies have been proposed to
maximize the use of GPU resources for accelerating global
placement. Lin et al. [39] implement DREAMPlace placer to
simulate the optimization of global placement as an NN train-
ing problem, so that it is able to leverage the widely-adopted
deep learning toolkit PyTorch with customized kernels and
operators, and further make use of GPUs for extreme accel-
eration. DREAMPlace is designed based on the electrostatic-
based placement algorithm, proposed by Lu et al. [40], which
models the layout and netlist as an electrostatic system and
attempts to find the balancing state with the lowest electrical
energy via solving a Possion’s equation by applying discrete
cosine transformations. DREAMPlace can achieve over 30×
speedup without quality degradation compared to state-of-the-
art multi-threaded placers.

Some works employ ML to select the tool parameters. Ag-
nesina et al. [41] target FPGA place&route and build several
models with the goal of accelerating compilation time. These
models classify netlists into easy and hard classes, predict the
best tool parameters, or predict compile time. This work uses
stacked models that combine the output of various models with
different algorithms by linear regression. Agnesina et al. [42]
later target ASIC placement where they tune tool parameters
with actor-critic deep RL. The state comprises the netlist and
the current tool parameters. The netlist is represented both with
hand-crafted features and with learned encodings by using a
Graph-NN, which both are passed to a multi-head actor/critic
NN. The goal (reward) is to reduce the wire length. Xie
et al. [43] also automatically select tool parameters. Their
technique starts with clustering-based sampling that exploits
knowledge from prior designs to train a tree-based surrogate
model, which is then further refined iteratively.

Lu et al. [44] target the problem of partitioning 3D inte-
grated circuits. They first perform conventional 2D placement
with relaxed constraints (smaller footprints) and then use
clustering to assign nodes to 3D layers. Similar to Agnesina et
al. [42], they use a combination of hand-crafted and learned
features, which are obtained with a Graph-NN.

2) Clock Network Synthesis: Clock skew is the fundamental
metric for estimating clock performance. It has been shown
that modifying the latch placement locations is an effective
method to reduce overall local clock tree capacitance, which
affects the clock skew. At the same time, there were three prior
latch placement modification techniques, latch shifting, latch
clustering, and latch banking. Since the packed latch cluster
placements are produced in the previous physical design flows,
Ward et al. [45] identify better solutions for the technology
library and provided the physical design flow a choice of
templates to choose from.

Lu et al. [46] propose GAN-CTS, which employs GAN and
RL for clock tree prediction. They take flip flop distribution,
clock net distribution, and trial routing results as input images.
They also leverage a pre-trained ResNet-50 on the ImageNet
dataset and add fully-connected layers for feature extraction.
The framework utilizes CGAN to optimize the clock tree syn-
thesis, of which the generator is supervised by the regression

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 8

model. The policy gradient algorithm is leveraged for the RL-
based clock tree synthesis optimization.

3) Routing: The routing step establishes physical connec-
tions between endpoints of the already placed devices that
belong to the same signals. Yu et al. and Alawieh et al. apply a
generative adversarial network (GAN) to learn the correlation
between FPGA placement and routing congestion [47], [48].
Tao et al. propose a pin accessibility prediction model to
refine the placement results [49]. They propose to find the best
spacing by brute-force search for the patterns between every
two pins. Hung et al. [50] and Liang et al. [51] customize
the network architectures for the prediction of design rule
violation maps after global routing stage and placement stage,
respectively.

The routing process is a very complicated and time-
consuming task that would be difficult, if not impossible, to
be solved by pure machine learning methodologies. Therefore,
combining ML models and traditional algorithms is promising,
such as that in [52], where a traditional algorithm is guided
by the soft decisions made by ML models. In this way,
better guarantees could be obtained given the soundness of
the traditional algorithm. We also observe that, in the CAD
flow, there usually exist different implementations of the same
design that achieve similar performance. Therefore, supervised
learning approaches are often infeasible, since there is hardly
a one-to-one mapping from inputs to outputs. This is the
reason for the wide usage of generative approaches (e.g., with
GANs), which account for such degrees of freedom in the
implementation.

In addition to congestion prediction, Qu et al. [53] observe
that the order of nets to be routed in a sequential router
[54] can significantly impact the routing quality, especially
the number of DRC violations. They propose an RL-based
algorithm to learn the ordering policy that minimizes the DRC
violations from the net features. While in RL each input design
is regarded as one distinct environment, they customize the
network architecture of the RL agent such that it is applicable
to different designs.

Not only the classical design flow can benefit from ML,
but also security measures like split manufacturing can be at-
tacked. Li et al. [55] and Zeng et al. [56] aim at reconstructing
higher metal layer connections from full information about the
lower layers. Both techniques predict the likelihood that two
pins are connected by the higher metal layers and thereby help
in reconstructing the whole chip.

4) Power/Ground Network: Power delivery network (PDN)
design is a complex iterative optimization task, which strongly
influences the performance, area, and cost of a chip. To reduce
the design time, recent studies have paid attention to ML-
based IR drop estimation, a time-consuming sub-task. Previous
work usually adopts simulation-based IR analysis, which is
challenged by the increasing complexity of chip design. IR
drop can be divided into two categories, static and dynamic.
Static IR drop is mainly caused by metal wire resistance in
the power grid, while dynamic IR drop is caused by signal
switchings and local current fluctuations. In IncPIRD [57], the
authors employ XGBoost to conduct incremental prediction
of static IR drop, specifically, IR value changes caused by the

modification of the floorplan. For dynamic IR drop estimation,
Xie et al. [58] propose PowerNet, which aims to predict the
IR drop values of different locations and models IR drop
estimation as a regression problem. This work introduces a
“maximum CNN” algorithm to solve the problem. Besides,
PowerNet is designed to be transferable to new designs, while
most previous studies train models for specific designs. A re-
cent work [59] proposes an electromigration-induced IR drop
analysis framework based on CGAN. The framework regards
the time and selected electrical features as input images and
outputs the voltage map. Another recent work [60] focuses
on PDN synthesis in floorplan and placement steps. This
paper designs a library of stitchable templates to represent the
power grid in different layers. In the training phase, simulated
annealing is adopted to choose a template. In the inference
phase, fully-connected NN and CNN are used to choose the
template for floorplan and placement steps, respectively. Cao
et al. [61] train several ML models to predict the quality of the
power delivery network (bump inductance) in order to fill the
gap between inaccurate, but fast estimation tools and accurate,
but slow signoff tools.

D. Analog Physical Design
Physical design of analog circuits is considerably more

complicated than design of digital circuits because there exists
more diverse set of constraints that need to be satisfied. In
addition, performance control at the analog physical design
level is extremely challenging. As a result, automated design
of analog circuits is not as mature as its digital counterpart.
Nevertheless, ML has been employed also for analog design
[62], [63].

Chen et al. [63] propose an analog physical design frame-
work, whose main steps comprise parametric device genera-
tion, layout constraint extraction, placement, and routing. The
constraint extraction searches for symmetries in the circuit
at different abstraction layers. Wang et al. [64] propose a
customized Graph-NN approach for analog placement per-
formance prediction, which helps analog IC placer to obtain
a solution similar to manual designs. Zhu et al. [52] use a
variational autoencoder to learn the probability that an analog
net is routed in certain areas. The resulting probability heatmap
guides a heuristic routing algorithm, which guarantees that
certain requirements like symmetry for specific nets are ful-
filled. Training is performed using human-routed designs, i.e.,
they learn from human designers. Xu et al. [65] use a CGAN
to create well regions in analog designs. The generator is
trained to augment placed designs with well regions, while
the discriminator is trained to distinguish machine-generated
and human-generated well regions. Therefore, similar to the
previous approach, this approach learns from human designers.
Li et al. [66] propose a transferable automatic transistor
sizing method leveraging both Graph-NN and RL. Benefiting
from the transferability of RL, they transfer the knowledge
between different technology nodes and even different topolo-
gies. Meanwhile, Graph-NN is utilized to involve topology
information into the RL agent.

Shook et al. [67] predict the parasitics (interconnect resis-
tance and capacitance) at the pre-layout step. They extract

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 9

Mask
Synthesis

Lithography
Simulation

Layout Design Mask Design Printed Pattern

Fig. 7. Typical mask synthesis and verification flow.

features such as the number of connections for each net
and use a random forest regression model to estimate its
parasitics. Ren et al. [68] target the problem of predicting
layout parasitics and device parameters and train a Graph-NN
that exploits local structure in the netlist. They train several
models in a hierarchical way to cope with the large range
of parasitics values. Hakhamaneshi et al. [69] describe an
evolutionary algorithm with deep learning to tune parameters
of an analog design. An NN-based discriminator is used to
pre-filter new specimen of the population without having to
perform expensive SPICE simulations. The NN compares two
specimen and outputs probabilities that the first design out-
performs the second one w.r.t. different metrics. The inherent
symmetry of this problem is reflected by the network design
(i.e., by restricting weights).

E. Lithography and Manufacturing

In modern VLSI manufacturing, lithography plays a critical
role, as it determines the printing resolution and robustness
of the manufacturing process. Fig. 7 shows a typical flow for
mask synthesis and verification, consisting of mask synthesis
and lithography simulation. Mask synthesis takes a layout
design as input and produces the mask design with better
printability. Lithography simulation then takes the mask design
as input and computes the printed pattern with lithography
models. Since mask designs can be naturally represented as
images, ML techniques like CNN are suitable to tackle lithog-
raphy problems like mask synthesis, lithography modeling, and
lithography hotspot detection. In addition, we also cover ML
applications in other manufacturing tasks like yield estimation.

1) Mask Synthesis: Mask synthesis typically contains in-
verse lithography optimization steps like SRAFs generation
and optical proximity corrections (OPCs). In SRAF gener-
ation, small rectangular features are inserted into the mask
to assist the patterning of target features. These features are
too small to be actually printed, but they can improve the
patterning robustness of the target ones. In OPC, the edge
segments of target features are adjusted for light compensation.
The quality of mask synthesis is usually measured with two
metrics, edge displacement errors (EPEs) and process variation
bands (PVBands).

The early attempt of ML for SRAF generation formulates
the problem into a classification task [71]. By dividing the
mask into pixels, Xu et al. propose to use logistic regression
and support-vector machine (SVM) to predict the probability
of an SRAF being present at each pixel. They demonstrate
comparable EPE and PVBand with 3-10× speedup on a
10µm × 10µm mask clip compared with model-based ap-
proaches in a commercial tool [72]. The drawbacks of such an

Model-based SVM-based CGAN-based

Fig. 8. Comparison of SRAF results between model-based, SVM-based, and
CGAN-based approaches [70].

…

0.2 0.8

Fake Real

D
iscrim

inator

1.62 3.83 … 3.15

…

G
enerator

Figure 3: Conventional GAN architecture.

comprises a deconvolutional architecture that casts 1D vectors back
to 2D images through stacked deconvolution operations, as shown in
Figure 3.

Our framework, however, is expected to perform mask optimization
on given target circuit patterns and obviously violates the deconvo-
lutional architecture. To resolve this problem, we design a generator
based on auto-encoder [21] which consists of an encoder and a decoder
subnets. As depicted in Figure 4, the encoder is a stacked convolutional
architecture that performs hierarchical layout feature abstractions and
the decoder operates in an opposite way that predicts the pixel-based
mask correction with respect to the target based on key features ob-
tained from the encoder.

3.2 Discriminator Design
The discriminator is usually an ordinary convolutional neural networks
that perform classification to distinguish the generated samples from
the given data samples as shown in Equation (5):

maxEx∼pd [log(D(x))] + Ez∼pz [log(1 − D(G(z)))]. (5)

In this work, the discriminator predicts whether an input instance is the
generated mask M or the reference mask M∗. However, the discrimina-
tor in Equation (5) is necessary but not sufficient to ensure generator to
obtain a high quality mask (Figure 3). Consider a set of target patterns
Z = {Zt,i , i = 1, 2, . . . ,N } and a corresponding reference mask set
M = {M∗i , i = 1, 2, . . . ,N }. Without loss of generality, we use Zt,1 in
the following analysis. Suppose the above GAN structure has enough
capacity to be well trained, the generator outputs an mask G(Zt,1)
that optimizes the objective function as in Equation (4). Observe that
log(D(G(Zt,1))) reaches its maximum value as long as

G(Zt,1) = M∗i ,∀i = 1, 2, . . . ,N . (6)

Therefore, an one-one mapping between the target and the reference
mask cannot be guaranteed with current objectives. To address above
concerns, we propose a new classification scheme that predicts pos-
itive or negative labels on target-mask pairs that inputs of the dis-
criminator will be either (Zt ,G(Zt)) or (Zt ,M∗), as illustrated in Fig-
ure 4. Claim that G(Zt) ≈ M∗ at convergence with new discrimi-
nator. We still assume enough model capacity and training time for
convergence. The discriminator now performs prediction on target-
mask pairs instead of masks. Because only pairs {Zt,i ,M∗i } are labeled
as data, the generator can deceive the discriminator if and only if
G(Zt,i) ≈ M∗i ,∀i = 1, 2, . . . ,N , where N is the total number of training
instances.

…

0.2 0.8

Bad
Mask

Good
Mask

D
iscrim

inator

G
enerator

…

Encoder
D

ecoder

Target

Mask

Target & Mask

Figure 4: The proposed GAN-OPC architecture.

3.3 GAN-OPC Training
Based on the OPC-oriented GAN architecture in our framework, we
tweak the objectives of G and D accordingly,

maxEZt∼Z[log(D(Zt ,G(Zt)))], (7)

maxEZt∼Z[log(D(Zt ,M∗))] + EZt∼Z[1 − log(D(Zt ,G(Zt)))]. (8)

In addition to facilitate the training procedure, we minimize the dif-
ferences between generated masks and reference masks when updating
the generator as in Equation (9).

minEZt∼Z | |M
∗ − G(Zt) | |n , (9)

where | |·| |n denotes the ln norm. Combining (7), (8) and (9), the objective
of our GAN model becomes

min
G

max
D
EZt∼Z[1 − log(D(Zt ,G(Zt))) + | |M∗ − G(Zt) | |nn]

+ EZt∼Z[log(D(Zt ,M∗))]. (10)

Previous analysis shows that the generator and the discriminator
have different objectives, therefore the two sub-networks are trained
alternatively, as shown in Figure 5(a) and algorithm 1. In each training
iteration, we sample a mini-batch of target images (line 2); Gradients of
both the generator and the discriminator are initialized to zero (line 3); A
feed forward calculation is performed on each sampled instances (lines
4–5); The groundtruth mask of each sampled target image is obtained
from OPC tools (line 6); We calculate the loss of the generator and the
discriminator on each instance in the mini-batch (lines 7–8); We obtain
the accumulated gradient of losses with respect to neuron parameters
(lines 9–10); Finally the generator and the discriminator are updated
by descending their mini-batch gradients (lines 11–12). Note that in
Algorithm 1 we convert the min-max problem in Equation (10) into
two minimization problems such that gradient ascending operations
are no longer required to update neuron weights.

Algorithm 1 differs from traditional GAN optimization flow on the
following aspects. (1) The generator plays as a mapping function from
target to mask instead of merely a distribution, therefore the gradient
of L2 loss is back-propagated along with the information from the
discriminator. (2) The discriminator functions as an alternative of ILT
engine that determines only the quality of generated masks without any
calibration operations. Besides, our combined input ensures that the
discriminator will make positive prediction if and only if the generated

Fig. 9. Generative techniques allow to cope with ambiguity in the design
process. Many different masks may result in similar quality. GAN-OPC [73]
uses two NNs following the GAN principle. The generator creates masks,
whereas the discriminator rates the quality of these masks.

approach include manual feature engineering, high prediction
complexity, and lack of global view in prediction, as each
pixel is treated separately and we need to make predictions
for each pixel. To overcome such drawbacks, Alawieh et al.
formulate the problem into an image-to-image translation task
that tries to obtain the entire solution with one prediction and a
legalization step [70]. They propose a multi-channel heatmap
encoding method to handle the SRAF size rules and leverage
a CGAN model to predict the SRAF results. Eventually, they
can achieve 144× speedup and closer PVBand compared
with the model-based approach [72]. Fig. 8 compares the
solution generated from the model-based approach (golden)
[72], SVM-based approach [71], and CGAN-based approach
[70]. We can see that the CGAN-based approach matches the
golden result much better globally.

While OPC can also be formulated as an image-to-image
translation task, the problem becomes more complicated to
manipulate the edge segments of features. Yang et al. [73]
propose a GAN-OPC framework to generate the initial OPC
solution. They develop the generator as an autoencoder and
the discriminator judges the quality of the generated mask, as
shown in Fig. 9. To bootstrap the training, the discriminator
is initially replaced with lithography simulation. Unlike SRAF
generation where we can obtain the final solution with a simple
legalization step, the initial solution can only serve as the
starting point for conventional OPC iterations. It eventually

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 10

can achieve similar solution quality with half of the conven-
tional iterations, i.e., around 2× speedup over a conventional
gradient-based OPC solver [74]. Recently, Jiang et al. [75]
propose to replace the backbone of the conventional OPC
solver with NN and GPU-accelerated lithography simulation
kernels. In this way, they can achieve 70× speedup with even
better solution quality than the conventional solver [74].

Most the previous studies focus on mask clips and require to
sweep the layout for full-chip mask synthesis. Chen et al. [76]
propose a full-chip mask optimization engine by multi-stage
clustering and clip generation. They demonstrate 5× speedup
and better solution quality even compared with the commercial
tool [72].

2) Lithography Modeling: Lithography modeling is a step
enabling lithography simulation of printed patterns given mask
clips. It is not simply a step next to mask synthesis, as shown
in Fig. 7. In practice, lithography simulation is a subroutine
iteratively called during mask synthesis to verify the printing
quality of masks. Lithography modeling consists of optical
modeling and resist modeling. The former computes the light
intensity map (aerial image), and the latter simulates the
slicing thresholds for patterning and determines the printed
shapes.

Watanabe et al. [77] discover that ML-based resist models
have the potential to outperform conventional compact models
[72] in accuracy and achieve much higher efficiency compared
with rigorous simulation [78]. They formulate the resist model-
ing problem into a regression task and develop CNN models to
predict the slicing thresholds on the aerial image. The printed
patterns can be computed with the slicing thresholds and the
aerial image. Since the printed patterns can also be viewed as
an image, Ye et al. [79] further formulate the entire lithography
modeling problem on contact layers into an image-to-image
translation task and develop a CGAN+CNN framework for
end-to-end modeling. The CGAN learns the shapes of patterns
and the CNN learns the locations. In this way, they can achieve
less than 1nm average edge displacement error with more than
1800× speedup over rigorous simulation [78]. Recently, they
further investigate the 3D structure of masks by considering
the mask topography effects, and formulate a multi-domain
image translation task to predict 3D aerial images [80].

To obtain accurate models, a large amount of labeled data
for training is required, which is often difficult to obtain. To
enable few-data learning, Lin et al. [81] propose to leverage
transfer learning and active data selection to reduce the amount
of training data. They utilize the data from old technology
nodes to build an initial CNN model and finetune with a few
labeled data from the target node. When selecting the data
from the target node, they perform K-Medoids clustering to the
features and choose the cluster centers to query their labels and
form the training dataset. In this way, 3-10× reduction on the
amount of data samples from the target node can be achieved
within an industrial-strength range of prediction errors.

3) Lithography Hotspot Detection: Different from lithog-
raphy modeling that simulates the printed patterns with op-
timized masks, lithography hotspot detection aims at early
detection of layout patterns that may cause printing failure
such as short or open. This problem is usually formulated into

a binary classification task taking a mask clip and determin-
ing whether it contains hotspot patterns. The key challenges
include high image resolution and data imbalance, as most
of the patterns are non-hotspots and hotspot patterns usually
only take a few percentage. Thus, it is a biased learning task
and we shoot for maximum prediction accuracy and minimum
false alarms.

Shin et al. [82] propose to use a CNN to predict the hotspot
probabilities and augment the training data by flipping the
mask clips. Yang et al. [83], [84] develop a dedicated discrete
cosine transformation (DCT) based feature representation to
reduce the mask image by omitting the high-frequency compo-
nents with custom CNN structures. They also suggest a biased
learning procedure to finetune the models taking advantage of
the ReLU property.

Despite the following-up studies to further improve the
model accuracy [85], [86], [87], researches have been con-
ducted to investigate data-efficient learning under various sce-
narios [88], [89], [90], [91]. That is, improve the accuracy with
as few training data as possible. For instance, Ye et al. [89] and
Yang et al. [90] introduce active learning to reduce the label
querying overhead by examining the prediction confidence
of models. They assume there are a pool of unlabeled data
samples whose labels can be queried at certain costs. Then,
they can gradually improve the model accuracy by selectively
adding samples into the training dataset with minmum costs.
Chen et al. [91] consider the scenario where a pool of labeled
samples for training and unlabeled samples for testing are
available, but there is no freedom to query for the labels of new
samples. They propose to leverage the distribution of unlabeled
samples to improve the generality of the model and introduce
a self-paced semi-supervised learning technique for few-data
learning.

Recent study further reveals that clip-based hotspot detec-
tion may require numerous predictions when it comes to a
full-chip scale. Thus, Chen et al. [92] reformulate the problem
into an object detection task given arbitrarily-sized mask
regions. They introduce a clip proposal network consisting
of a regression branch to predict the clip sizes and locations,
and a classification branch to detect whether the clip contains
a hotspot. They demonstrate 50× speedup over clip-based
hotspot detection [84] with even higher accuracy and lower
false alarms at full-chip scales.

4) Yield Estimation: ML can also help with yield estimation
and analysis. Ciccazzo et al. [93] build an SVM-based surro-
gate model to estimate the yield for given design parameters.
The surrogate model can then be used to speed up a heuristic
yield optimization technique.

There are also studies on systematic failure and defect
patterns for yield analysis [94], [95], [96], [97]. Nakata et
al. [94] help engineers finding the cause of failure (defective
manufacturing devices) from wafer failure map patterns and
manufacturing histories. They employ several ML algorithms.
K-means clustering is used to find groups of similar failures,
a pattern mining algorithm finds defective manufacturing de-
vices, and an NN for recurrence monitoring, where the NN
classifies known failures. Alawieh et al. [97] study the wafer
defect categorization problem. Given the locations of passing

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 11

(a) Center (b) Donut (c) Edge-Loc (d) Edge-Ring (e) Random

(f) Location (g) Near-Full (h) Scratch (i) None

Fig. 10. Wafer samples of different defect types [97].

and failing dies on a wafer, the problem is to classify the
wafer defect types like center or scratch, as shown in Fig. 10.
They formulate the problem into an image classification task
and propose a selective learning scheme leveraging CNN
and an integrated reject option to maximize the prediction
coverage and minimize misclassification risk. The selective
scheme employs a pair of models (f, g), where f is the
prediction model and g is the selection model serving as
the binary qualifier for f . When g = 0, the selective model
chooses to abstain from prediction. In this way, a trade-off
between misclassification risk and prediction coverage can
be achieved. To tackle the data imbalance issue, they also
propose a data augmentation technique with an AE to create
synthetic samples from underrepresented classes. Such kind of
wafer defect detectors can guide process engineers for yield
optimization.

F. Verification and Testing

Errors that prevent the design from adhering to its specifi-
cations may happen at every design step. The earlier such an
error is detected and fixed, the lower are the induced delays
and costs of the design process. Therefore, early detection is
indispensable to avoid design iterations and keep the design
process economical. As a result, verification and testing of
the design is performed after each step of the design and
manufacturing process.

Mostly, verification is performed using simulations [98].
The design is exercised with input stimuli and its outputs
are compared to golden outputs. Errors can only be detected
if a high coverage is reached, i.e., the fraction of functions
exercised in the test. High coverage can only be achieved
by many simulations with various stimuli. Two challenges
arise from this. Firstly, the required simulation time is high,
and secondly, creating stimuli to achieve a high coverage is
difficult.

ML has been employed to both these challenges. Towards
speeding up simulations, Li et al. [99] model the DRAM
access latency. They classify incoming requests based on fea-
tures about this and previous requests. These classes coarsely
correspond to DRAM states (e.g., row hit/miss). Each of the
classes is assigned with an average latency that is used as an
estimate for the request at hand. As the focus of this technique

is to speed up simulations, they use lightweight algorithms
like decision trees. Lee et al. [100] estimate power waveforms
of hardware accelerators at different levels of knowledge
about internals about the implementation. Cycle-, block-, or
invocation-level models are built accordingly. Finally, Chen et
al. [101] tackle the problem of increasing the test coverage.
They use unsupervised learning to detect additional test points
that improve an incomplete test plan. Ma et al. [102] target the
problem of test point insertion, where a minimal number of
observation points is added while maximizing fault coverage.
They formulate the problem as a graph operation, where nodes
in the netlist should be classified as suitable/non-suitable for
test point insertion. This problem is tackled with a multi-
stage Graph-NN, which can cope with large imbalance in the
classification problem.

After manufacturing, simulation is no longer required, as
the manufactured device can be tested directly. Works that
improve the coverage still apply. However, after manufac-
turing not one but many instances of the device exist with
ideally identical behavior. This forms an opportunity to detect
faulty devices by looking for outliers using anomaly detection
algorithms. Kim et al. [103] use anomaly detection after
every manufacturing process step to detect faulty wafers.
They compare different dimensionality reduction methods
and anomaly detection methods. Deorio et al. [104] also
use anomaly detection to detect the timestamp and signals
involved in intermittent failures during post-silicon validation.
They build clusters based on features from subsequent correct
executions. Erroneous executions are then classified cycle-by-
cycle to detect the timestamp and signals. This technique does
not require generalization across different designs, but work
by comparing many instances of the same design.

Analog designs have the property that inputs and outputs
are continuous. This allows to search in a continuous space
for the worst-case operating conditions w.r.t. certain specified
properties like common mode suppression. Hu et al. [105]
use Bayesian Optimization to identify the worst-case impact
of manufacturing variability on the properties of an analog
circuit. Bayesian Optimization iteratively builds up a new
model from scratch for every design that guides the testing
process towards the worst-case operating point.

G. Device and Technology Development

Employing ML for technology development and to generate
models of transistors and circuits have been initially started in
1996, when Meijer et al. investigated the possibilities of NNs
for circuit simulations [106]. One of their objectives was to
replace physics-based models, in which obtaining the needed
configuration parameters (geometry, dopant concentrations,
etc.) is typically very challenging, time-intensive and requires
sensitive information from the semiconductor manufacturers.
Additionally, their goal was to reduce the complexity of the
models, which in turn reduces the runtime of the circuit
simulations. The key limitation of the work, was the ML
technology and computational power available at that time,
as stated by: ”Some behaviour is beyond the representational
bounds of our present feedforward neural networks” [106].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 12

To overcome that challenge, domain knowledge was used
to enhance NNs (e.g., optimizing parameters and reducing
complexity to single equations). A combination of domain
knowledge and general ML techniques allows to build models
that conform known physical dependencies, while still being
flexible.

A recent approach in modeling transistors with NNs is
from Zhang et al. [107] which aimed at assisting designing
new technologies. Their work is on the material level where
transistor details like geometry and dopant concentrations and
other properties of the transistor are considered as a part of
the input of their NN. With that framework the work predicts
the characteristics of new transistors in emerging technologies
or different material properties.

An interesting approach was made by Lamamra et al. [108]
who used a genetic algorithm in addition to the NN. This
enhancement alters the training phase so that not only the
internal parameters of the NN (i.e., the weights) are changed
but additionally the structure of the NN (topology, number
of nodes, etc.). This structural change of the NN enables the
authors to obtain a model which minimizes the error further
than just regular training. Unfortunately, the authors tested
their framework only on one simple MOSFET transistor and
only inferred the drain source current.

Another approach comes from Zhang et al. [109] where
methods are presented to develop a transistor model with an
NN and to minimize the needed data set for the training.
The used NN is quite small (less than 15 nodes). In order to
get satisfying results with the small network, authors heavily
optimized the NN by employing domain knowledge to develop
the network. For example, each node was connected manually
to consider the physical dependencies between the input
parameters and the electrical behavior of a transistor. This
domain knowledge also resulted in the existence of specific
nodes, carefully chosen to model the sub-threshold current
and nodes solely modeling the current above the threshold
voltage. Additionally, the authors applied preprocessing to
scale the input parameters. To reduce the minimum needed
data, they used a sparse non-uniform data set. The approach
does not model the temperature dependencies, but use more
architecture-dependent parameters. A disadvantage of this
small optimized network is the adaptability to new parameters
and dependencies. Adding new parameters (such as ferroelec-
tric parameters in recent emerging technologies) results in a
need to adapt the layout of the NN with adding additional
nodes in the hidden layers. This is in contrast to larger, more
generic NNs, which can generalize such properties.

A similar approach to the work from Zhang et al. is the
approach from Li et al. [110] which also tries to build the NN
based on the device physics. The employed NN is tiny with
less than 10 nodes. A difference to other approaches is the use
of different activation functions for different nodes. The small
number of nodes enables the authors to train the NN with up
to 5,000,000 epochs.

When it comes to emerging technologies, in which physics-
based models are not fully developed or even available,
ML can play a major role to replace traditional modeling
and provide accurate estimations based on “learning from

available measurement data”. Recently, Klemme et al. [111]
employed ML to model the Negative Capacitance Field-
Effective Transistor (NCFET), demonstrating the ability to
predict with a high accuracy (> 90%) the behaviour of steep-
slope transistors. They show that ML can be even employed
to replace standard cell library characterization. This enabled
for the first time fast predictions of how changes in the
underlying technology can impact the figure of merits of
circuits. Hence, design-space exploration to determine the
best configuration for the ferroelectric material has become,
as a result, possible. Such a design-space exploration can
provide guidelines to material scientists on how the different
material parameters in their emerging technology should be
tuned towards maximizing the efficiency of circuit [112].

V. ML FOR RUN-TIME MANAGEMENT

This section gives an overview of ML-based techniques that
support run-time management of ICs. The criteria are that
inference is performed at run time and that the ML model
is used to optimize the physical characteristics of computing
platform operation such as power, performance, or reliability.
As explained earlier, we explicitly do not consider techniques
that use ML to solve a user task (such as stroke detection),
or that improve the performance of the inference itself, e.g.,
ML accelerators). Training can either be performed at design
time, at run time, or a combination of the design-time training
and run-time refinement. We consider two categories of run-
time management: those that directly learn platform policies to
manage platform characteristics; and those that estimate char-
acteristics of the computing platform and/or its environment
for use by other management techniques. Table II gives an
overview of common problems and suitable algorithms.

A. Learn Platform Management Policies

The first category of techniques directly learns policies
that manage platform operation—for example, learning power
management policies. The two most important methods for
policy learning are RL and imitation learning (IL).

RL relies on defining the objective in the form of a single
scalar value, the reward signal. Table-based centralized Q-
learning is the simplest form of RL. Ebi et al. [113] reduce
thermal gradients across a multi-core processor and increase
the performance through dynamic voltage and frequency scal-
ing (DVFS). Shen et al. [114] perform power management
with Q-learning. They accelerate training convergence by
updating several virtual state transitions for each real state
transition by exploiting system knowledge. Additionally, they
build a high-level controller to determine the desired trade-
off between power and performance, which internally relies
on an NN model to predict the power consumption. Shafik
et al. [115] use Q-learning for DVFS. The learned policy is
not intended to generalize across different workloads. Instead,
workload changes are detected and the policy is updated
through re-exploration. They use a small table (coarse quanti-
zation) to speed up the (repeated) exploration. Kim et al. [116]
improve the lifetime of a processor using DVFS and power
gating. Dinakarrao et al. [117] use Q-learning for temperature

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 13

TABLE II
COMMONLY OBSERVED PROBLEMS IN RUN-TIME MANAGEMENT AND SUITABLE ALGORITHMS.

Problem Algorithms

Simple action learning RL (table-based, NN), IL (linear, decision tree, NN)
Large state space Deep RL, IL (linear, decision tree, NN)
Large action space Distributed RL

Estimate current platform / environment state Linear regression, regression trees, NN, etc.
Time series forecasting Recurrent NN, ARMA (and variants)
Stochastic input / system behavior MDP

and reliability management of a multi-core processor. Gupta et
al. [118] use RL to decide the number of active cores and their
v/f-levels in a heterogeneous multi-core processor in order to
minimize the energy consumption. They use NN-based deep
Q-learning (DQL) to manage the large state and action space.

Even with DQL, state and action spaces might become too
large if the number of cores gets too large, which reduces
or prohibits convergence of the policy. In such a case, it is
beneficial to split the centralized agent into many distributed
agents. However, global convergence and cooperativeness be-
tween agents may be difficult to achieve. Chen et al. [119]
maximize the performance under a global power budget. The
individual agents are coordinated using a global heuristic
power budget reallocation algorithm. Li et al. [120] manage
power states and control voltage regulators to minimize the
energy-delay product (EDP). In their case, each agent is able to
operate independently, since there is no global joint constraint.
The techniques described so far use value-learning. Mao et
al. [121] use policy-based RL to decide when to schedule jobs
with the goal of maximizing the performance. They penalize
the agent (negative reward) for every job in the system, which
indirectly rewards finishing a job.

While it is intuitive to learn the direct actions to take (e.g.,
v/f-levels), this ignores that many heuristic algorithms perform
well in certain scenarios. Ul Islam et al. [122] use RL to switch
between a set of pre-implemented heuristic control policies at
run time based on the workload.

RL-based techniques may suffer from high storage or com-
putational overhead. This comes from the fact that learning
is performed continuously at run time and all information
required to continue learning must be retained. In contrast,
imitation learning learns an optimal control policy at design
time, based on training data that captures a set of system states.
IL reduces run-time overhead at the cost of adaptability. Park
et al. [123] train classical ML models to control the v/f-settings
of CPU and GPU for performance and energy optimization.
Training examples from the optimal control policy are created
at design time by brute-forcing all possible settings for differ-
ent execution phases. Mandal et al. [124] decide the number
of active cores and their v/f-settings in order to minimize the
energy consumption (with/without performance constraint).
Kim et al. [125] control v/f-levels of voltage/frequency is-
lands. They compare their IL-based technique to an RL-based
technique and demonstrate a significantly lower overhead.

All these IL-based techniques employ simple models such
as decision trees to keep the run-time overhead low. Fur-
thermore, all techniques use the DAgger algorithm [126] to

make the learned policy more robust towards recovering from
suboptimal decisions and unexpected system behavior.

The main advantage of learning actions directly is the
possibility to abstract from detailed system behavior and
focus on the design objectives instead. While this seems
straightforward, there are several pitfalls. With IL, an optimal
policy has to be generated. In easy cases, brute-force trying
all possible actions works, but more complicated cases require
heuristics, as well. With RL, defining the reward function is
a challenge on its own. If the reward is not defined carefully,
the agent might find a policy that results in high rewards but
does not reflect the goal that the designer intended [127]. This
effect is known as reward hacking [128].

B. Estimate Platform and Environment Properties
An alternative approach is to train an ML model to estimate

physical properties of the computing platform and the envi-
ronment in which it operates. The models are used to predict
future system changes, or to predict the impact of management
actions before executing them. The results of this estimation
are presumably fed to other subsystems, either automatic or
manual, for use in system management.

Several studies develop methods to reconstruct the cur-
rent, partially observable system state. Analog sensors for
power or temperature are costly to implement and, therefore,
usually are rare with only a few sensors per chip. Bircher
et al. [129] propose a simple linear model to estimate the
current processor power from performance counter readings.
Sagi et al. [130] augment a linear model for processor power
estimation with nonlinear transformations of the features to
achieve a higher accuracy while maintaining a low overhead.
Sadiqbatcha et al. [131] use a recurrent NN to estimate the
current temperature of thermal hotspots at run time from
processor performance counter measurements. Kim et al. [132]
present an automated technique to create run-time power
models for arbitrary integrated circuits that first selects signals
to be monitored by clustering and then trains a regression
model for run-time power inference based on the monitored
switching activity. Rapp et al. [133] present a processor
boosting technique that internally builds on top of an NN
model to estimate the sensitivity of the power and performance
of running applications on v/f-level changes. They exploit the
relation of these two metrics by building a multi-task NN that
simultaneously estimates them from performance counters.

While reconstructing the current system state already gives
important information about the system to the control al-
gorithm, predictions about the impact of potential actions

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 14

Core Executing a Task
Idle Core

Current Mapping

. . .

Migration Candidates

Performance Prediction ModelExecute Best Migration

. . .

Fig. 11. Prediction-based resource management (here: task migration) selects
the next action by predicting the impact of many candidate actions [134].

are more meaningful. The majority of work has therefore
focused on such problems. Fig. 11 visualizes this approach
using an example of task migration [134]. The control loop
traverses three phases. First, many action candidates (here: task
migrations) are created. Then, the impact of each of these
action candidates is predicted (here: performance after the
migration). Finally, the action with the best predicted outcome
is executed. The future state of system metrics such as power
or performance depends on both the selected actions and the
future characteristics of the workload and environment. To
avoid the challenge of predicting workload and environment,
many techniques predict how the system metrics would be now
if another action would have been selected. Selecting the next
action based on such predictions inherently assumes that the
workload and the environment will not change within the next
control step. While this is a strong assumption, it holds as long
as control steps are short enough.

Gupta et al. [135] learn a linear model at run time that
predicts the frequency sensitivity of workloads. They put a
strong emphasis on adaptive learning rate (adaptive forgetting
factor) to be able to quickly adapt to workload changes. Kim
et al. [136] take traces from an application that is running
on a certain core. They use an NN to predict the power
and performance of this application if it would be executed
on another core with different microarchitecture. They use a
cascaded NN to learn individual problems separately: change
of performance counters, impact of the frequency, impact of
the microarchitecture. Rapp et al. [134] predict the perfor-
mance of an application if it would be executed on another
core in a thermally-constrained many-core processor with
heterogeneous last-level cache (LLC) access.

For some metrics, such as temperature, it is not reasonable
to assume that they do not change within the next control step.
Therefore, predictions about temperature always target future
time steps. Zhang et al. [137] predict how the temperature
of a processor will behave if a certain application is started.
They use application characteristics, as well as CPU-specific
features. Abad et al. [138] use an NN to predict the temper-
ature in the next seconds in a multi-core processor based on

information about the workload, as well as information about
the frequency and cooling fan speed. Sagi et al. [139] predict
future power due to workload changes with an LSTM NN.

The techniques discussed so far model properties of the
platform and environment in a deterministic manner. How-
ever, especially in stochastic environments, it is important to
model such stochastic behavior. Markov decision processes
(MDPs) can be used to adapt operational characteristics of
computing systems. A great deal of work has concentrated
on the use of MDPs to model channel characteristics in
communication systems. Li et al. [140] developed a framework
for the design of digital predistortion systems that optimize
the communication based on the MDP models created at
design time. The group also used hierarchical MDPs [141]
to efficiently model both the communication environment and
the computing system platform. Bhuiyan et al. [142] describe
a probabilistic approach to energy-optimized scheduling of
multi-criticality systems. Their multi-criticality model includes
two criticality levels, HI and LO. Each task is guaranteed to
execute to completion; processor mode switches are performed
as necessary to increase clock speed so as to allow all tasks
to complete their worst-case execution. They characterize the
execution time of each task using an empirical cumulative
distribution function derived from a set of measurements or
simulations. They iteratively solve for a minimum speed sLO

that guarantees schedulability along with a minimum-energy
static schedule.

VI. OPEN CHALLENGES

This section discusses open challenges when employing ML
for CAD, as well as promising directions on how to solve
them. Some challenges arise from the ML algorithms, some
arise from the existing constraints in the CAD process.

A. Combinatorial Optimization Problems

Machine learning can be incorporated into combinatorial
problems either by approximating some heavy computation via
surrogate models, or by acquiring better heuristics to solve a
problem [143]. Combinatorial problems are often theoretically
hard to solve, and machine learning approaches do not give any
guarantee in terms of optimality. That is, we can never easily
know how far away the output solution is from an optimal
solution.

Despite the optimality issue, even generating a feasible
solution itself is not trivial. Especially when using neural
networks, which are trained with gradient methods, it is
important to carefully design operations that are differentiable
to keep the whole model end-to-end trainable. As examples,
pointer networks [144], attention layers [145], and sinkhorn
layers [146] are complicated mechanisms for a neural network
to output a permutation. In practical problems, there could
be more cumbersome rules and constraints to be satisfied,
which greatly brings about the difficulty in machine learning
algorithm design.

Another issue is that many useful machine learning tech-
niques are not established for combinatorial problems. One of
the reasons might be due to the importance of introducing prior

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 15

knowledge to the machine learning approach. For instance,
it is commonly believed that CNNs can better extract useful
features from image data than other NN models. Therefore,
designing dedicated models for combinatorial problems might
be critical to boost the performance.

Finally, scalability is a great challenge. Current methods
usually experience performance degradation when applied to
problems of larger size than what was used in training. It seems
that using larger models and training on larger instances are
the way to go, but it is at the cost of higher computational
efforts. More importantly, it is nearly impossible to know a
priori that how complex the model or how large the training
samples should be, because we do not know the exact problem
we are trying to solve [143] (i.e., the true data distribution).

B. Employ in Practice

There are some challenges involved with ML techniques
managing the leap from research to employing them practice.
The first challenge concerns the CAD flow. The existing
CAD flow and corresponding tools have been developed and
established in a process lasting several decades. It is mostly
seen as rigid and immutable. As a result, techniques that do
not fit the classical tool flow are less likely to be successful
in the CAD community. This makes sense from the point of
view that lots of optimization has been put into the existing
flow and reinventing it may be a waste of effort. Instead,
techniques are mostly developed as drop-in solutions to replace
or enhance existing algorithms and tools. However, this also
forms a limitation that potentially unnecessarily restricts new
techniques and may capture the CAD flow itself in a local
optimum.

A second challenge arises from intellectual property (IP)
rights and licenses. Most functionality of a modern chip comes
from licensed IP packages that need to be bought first. The
most common types are hard IP, i.e., at the layout level, and
soft IP, i.e., at the netlist level. ML models require training
data to create, which, consequently, also to a large fraction
originates in IP. This may lead to two problems. Firstly, IP
vendors may claim (partial) ownership of any model created
with their IP, which may not be feasible in practice. Secondly,
and more severely, complex NN models like deep NNs, may
memoize certain input patterns and allow extraction of parts of
the training data. This has been demonstrated in image models
that allowed extracting individual training examples [147]
(membership inference attack). As an example, we consider a
model that is trained to detect lithographic hotspots in layout
images. The layout of a memory array is highly regular and
therefore repeats often in the training data. Additionally, the
layout of the memory array may be protected as IP. When the
trained lithographic model is released, it may be possible to
extract common patterns in the training data, i.e., the protected
memory layout. While there are technical solutions to these
problems that make extracting training data more difficult, this
is mostly a regulatory problem.

The third challenge comes from the portability of models
and training. In an ideal world, an ML model trained with
data from one tool flow and one technology node would be

applicable to designs created in other tool flows and for other
technology nodes. In practice, this is less likely to be the case.
For instance, Chan et al. [148] study the noise and chaos
inherent in commercial place&route tools, and importantly
also show that different tools show different susceptibility to
small changes in the input. Research on models and training
methods that increase retargetability, if successful, would
increase the utility and longevity of ML-based CAD tools.

C. Limited Availability of Training Data

A key challenge when employing ML for CAD is the
creation of training data. Especially deep NNs require lots of
data. However, not only the amount of data is important, but
it is crucial that the training data reflects the data observed
at inference time. This can only be solved by obtaining
training data from a large variety of different designs. Data
imbalance, where most of the data belongs to one or few
classes, exacerbates the problem. This is for instance the case
in testing where defects happen rarely. Therefore, available
data is often limited, which is circumvented by performing
training data augmentation, i.e., create variants of the available
data. This may create a false sense of accuracy. A recent
case was presented by Reddy et al. [149]. They revisited
the ICCAD’12 benchmark that is widely used to train and
test lithographic hotspot detection [150]. They showed that
the high accuracy that was achieved by many state-of-the-art
techniques reduces drastically if more examples from a larger
variety of designs are introduced. There are several directions
to cope with limited training data that are explained in the
following.

1) Distributed Learning from Customer Data: Lots of data
are created when customers use the CAD tools on their
designs. This data may be used to refine the models during
usage of the CAD tool via online learning. However, this
is only beneficial if data from many customers can be used
to train a single model. As outlined earlier, most of these
data are subject to IP licenses or confidential, which means it
cannot be sent to the developer of the CAD tool for training.
Distributed learning (e.g., federated learning[151]) can be a
solution, where every customer performs re-training of the tool
with its data, and only updated models are exchanged with the
tool developer and other customers.

2) Semi-Supervised Learning and Transfer Learning: An-
other way to cope with scarcity in training data is to make
use of other available data. This could be unlabeled data
(semi-supervised learning), or data from another but related
problem (transfer learning). Semi-supervised learning har-
nesses unlabeled data to learn the underlying data distribution.
First works have successfully followed this approach [91].
Transfer learning exploits the relatedness of problems, where
a model is first trained on a related problem (source domain)
to serve as a starting point for re-training in the actual problem
(target domain). For instance, a model can be trained for one
technology and retrained for another [64].

3) Domain Knowledge: CAD looks back on decades of
heuristic algorithms that were designed based on domain
knowledge of designers. When switching to ML models, this

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 16

domain knowledge should be harnessed [152]. This is done
in parts by deciding which problems to address with ML,
but also the design of the models themselves should involve
the existing domain knowledge to alleviate the limitedness
of training data. Different techniques may be employed to
generating the training data itself (e.g., data augmentation),
to building the model structure (e.g., restraining NN weights
to guarantee monotonicity), and to the postprocessing model
outputs (e.g., plausibility checks) [127]. Another option to
make use of domain knowledge, is to directly learn from
designs that have been implemented by human designers.
Some techniques have already been proposed that imitate
human designers [52], [65].

D. Interpretability and Adversarial Attacks

ML models, especially NN models, are difficult to debug.
While there exist techniques to reverse-engineer an NN, this is
only possible to some degree. This opens up some challenges.

Firstly, wrong predictions are difficult to explain and also
difficult to prevent. This has been demonstrated by Reddy et
al. [149] as discussed earlier. Secondly, such models are sus-
ceptible to small perturbations in the input. Such perturbations,
if selected cleverly, can trick the model to a completely wrong
prediction. Gu et al. [153] demonstrated adversarial attacks on
lithographic hotspot detection. They consider an IP vendor
that sells fully-placed and routed IP. The customer checks
the IP on lithographic hotspots using an ML classifier. The
vendor may for instance aim to trick the classifier to detect no
hotspots to make fast profit from low-quality IP. Preventing
such attacks can only be done if attacks are already considered
during the training to obtain a more robust model. However,
more research is still required to achieve (or even guarantee)
robustness in models.

Finally, another challenge rises if the model is provided
by an untrustworthy source. This is also the case when
many users of a CAD tool cooperatively train a model in a
distributed setting. A malicious model might work fine at first
glance but might have a secret trigger embedded to make it
malfunction [154]. An adversary can exploit this to control
the output of the model. An IP vendor may train the model to
give a seeming advantage to its IP, or may even sabotage the
model to work badly on IP from competitors.

VII. CONCLUSION

This work has given a summary of ML in CAD of ICs. ML
promises to fill several gaps in the CAD domain that is still
dominated by heuristic algorithms. First, we performed a meta-
study of how ML has been used for CAD in the recent five
years. We identified several trends, the main ones being a trend
towards physical design and manufacturing steps, and a trend
towards NN-based models. We presented a categorization of
ML in CAD, that is based on how models are used, and
discussed state-of-the-art techniques for both design-time and
run-time aspects of CAD. Finally, we highlighted the key
challenges that need to be solved when employing ML in CAD
and outlined directions on how to solve them.

ACKNOWLEDGMENT

This work was partly funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – Project
Number 146371743 – TRR 89 Invasive Computing. Wolf’s
work was supported by U.S. National Science Foundation
grant 2002853. Pan’s work was supported by U.S. Na-
tional Science Foundation grants 1704758, 1718570, and
2112665, and the DARPA IDEA program. Yu’s work was
supported by the Research Grants Council of Hong Kong
SAR (No. CUHK14209420). We thank Victor van Santen and
Jannik Prinz for their help in Section IV-G.

REFERENCES

[1] “International Technology Roadmap for Semiconductors (ITRS) Re-
ports,” http://www.itrs2.net/itrs-reports.html.

[2] S. Pagani, S. M. PD, A. Jantsch, and J. Henkel, “Machine Learning for
Power, Energy, and Thermal Management on Multi-Core Processors: A
Survey,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2018.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A Large-Scale Hierarchical Image Database,” in Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, 2009,
pp. 248–255.

[4] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks
for Semantic Segmentation,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 3431–3440.

[5] I. A. M. Elfadel, D. S. Boning, and X. Li, Machine Learning in VLSI
Computer-Aided Design. Springer, 2019.

[6] I. Kononenko and M. Kukar, Machine Learning and Data Mining.
Horwood Publishing, 2007.

[7] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard, “Gaus-
sian Process Model Based Predictive Control,” in American Control
Conference, vol. 3. IEEE, 2004, pp. 2214–2219.

[8] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The Graph Neural Network Model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2008.

[9] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta,
and A. A. Bharath, “Generative Adversarial Networks: An Overview,”
IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 53–65, 2018.

[10] Y.-C. Fang, H.-Y. Lin, M.-Y. Sui, C.-M. Li, and E. J.-W. Fang,
“Machine-Learning-Based Dynamic IR Drop Prediction for ECO,” in
International Conference on Computer-Aided Design (ICCAD). IEEE,
2018, pp. 1–7.

[11] Y. Zhou, H. Ren, Y. Zhang, B. Keller, B. Khailany, and Z. Zhang,
“PRIMAL: Power Inference Using Machine Learning,” in Design
Automation Conference (DAC), 2019.

[12] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[13] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S.
Nasrin, B. C. Van Esesn, A. A. S. Awwal, and V. K. Asari, “The History
began from AlexNet: A Comprehensive Survey on Deep Learning
Approaches,” arXiv preprint arXiv:1803.01164, 2018.

[14] V. R. Konda and J. N. Tsitsiklis, “Actor-Critic Algorithms,” in Ad-
vances in Neural Information Processing Systems (NIPS), 2000, pp.
1008–1014.

[15] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in
International Conferenceon Learning Representations (ICLR), 2013.

[16] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu, “DeePattern:
Layout Pattern Generation with Transforming Convolutional Auto-
Encoder,” in Design Automation Conference (DAC). ACM, 2019.

[17] G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano, “OSCAR: An
Optimization Methodology Exploiting Spatial Correlation in Multicore
Design Spaces,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 31, no. 5, pp. 740–753,
2012.

[18] B. K. Joardar, R. G. Kim, J. R. Doppa, P. P. Pande, D. Marculescu,
and R. Marculescu, “Learning-based Application-Agnostic 3D NoC
Design for Heterogeneous Manycore Systems,” IEEE Transactions on
Computers (TC), vol. 68, no. 6, pp. 852–866, 2018.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 17

[19] A. Deshwal, N. K. Jayakodi, B. K. Joardar, J. R. Doppa, and P. P.
Pande, “MOOS: A Multi-Objective Design Space Exploration and
Optimization Framework for NoC Enabled Manycore Systems,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 18, no. 5s,
pp. 1–23, 2019.

[20] A. Powell, C. Savvas-Bouganis, and P. Y. Cheung, “High-Level Power
and Performance Estimation of FPGA-based Soft Processors and its
Application to Design Space Exploration,” Journal of Systems Archi-
tecture, vol. 59, no. 10, pp. 1144–1156, 2013.

[21] H.-Y. Liu and L. P. Carloni, “On Learning-Based Methods for Design-
Space Exploration with High-Level Synthesis,” in Design Automation
Conference (DAC), 2013.

[22] G. Zhong, A. Prakash, S. Wang, Y. Liang, T. Mitra, and S. Niar,
“Design Space Exploration of FPGA-based Accelerators with Multi-
Level Parallelism,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2017, pp. 1141–1146.

[23] E. Zennaro, L. Servadei, K. Devarajegowda, and W. Ecker, “A Machine
Learning Approach for Area Prediction of Hardware Designs from
Abstract Specifications,” in Digital System Design (DSD). IEEE, 2018,
pp. 413–420.

[24] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Young, and Z. Zhang,
“Fast and Accurate Estimation of Quality of Results in High-Level
Synthesis with Machine Learning,” in International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE,
2018, pp. 129–132.

[25] E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang, “Accurate Operation
Delay Prediction for FPGA HLS Using Graph Neural Networks,” in
International Conference on Computer-Aided Design, 2020.

[26] H. Chen and M. Shen, “A Deep-Reinforcement-Learning-Based Sched-
uler for FPGA HLS,” in International Conference on Computer-Aided
Design (ICCAD). IEEE, 2019.

[27] Y. Zhang, H. Ren, and B. Khailany, “GRANNITE: Graph Neural
Network Inference for Transferable Power Estimation,” in Design
Automation Conference (DAC). IEEE, 2020, pp. 1–6.

[28] G. Pasandi, M. Peterson, M. Herrera, S. Nazarian, and M. Pedram,
“Deep-PowerX: A Deep Learning-Based Framework for Low-Power
Approximate Logic Synthesis,” in International Symposium on Low
Power Electronics and Design (ISLPED), 2020, pp. 73–78.

[29] A. Hosny, S. Hashemi, M. Shalan, and S. Reda, “DRiLLS: Deep
Reinforcement Learning for Logic Synthesis,” in Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2020, pp. 581–586.

[30] J. Kwon, M. M. Ziegler, and L. P. Carloni, “A Learning-Based
Recommender System for Autotuning Design FIows of Industrial High-
Performance Processors,” in Design Automation Conference (DAC).
IEEE, 2019, pp. 1–6.

[31] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-Column Deep Neural
Networks for Image Classification,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2012, pp. 3642–3649.

[32] J. Fu, H. Zheng, and T. Mei, “Look Closer to See Better: Recurrent At-
tention Convolutional Neural Network for Fine-Grained Image Recog-
nition,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 4438–4446.

[33] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, S. Bae et al., “Chip Placement
with Deep Reinforcement Learning,” arXiv preprint arXiv:2004.10746,
2020.

[34] J. Liu, Y. Ding, J. Yang, U. Schlichtmann, and Y. Shi, “Generative Ad-
versarial Network Based Scalable On-Chip Noise Sensor Placement,”
in System-on-Chip Conference (SOCC). IEEE, 2017, pp. 239–242.

[35] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine Learning-
Based Pre-Routing Timing Prediction with Reduced Pessimism,” in
Design Automation Conference (DAC). ACM, 2019, pp. 1–6.

[36] Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen,
and J. Hu, “RouteNet: Routability Prediction for Mixed-Size Designs
Using Convolutional Neural Network,” in International Conference on
Computer-Aided Design (ICCAD). IEEE, 2018, pp. 1–8.

[37] A. F. Tabrizi, N. K. Darav, L. Rakai, I. Bustany, A. Kennings, and
L. Behjat, “Eh? Predictor: A Deep Learning Framework to Identify
Detailed Routing Short Violations from a Placed Netlist,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 2019.

[38] S. I. Ward, M.-C. Kim, N. Viswanathan, Z. Li, C. Alpert, E. E. Swart-
zlander Jr, and D. Z. Pan, “Keep it Straight: Teaching Placement how
to Better Handle Designs with Datapaths,” in International Symposium
on Physical Design (ISPD), 2012, pp. 79–86.

[39] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany,
and D. Z. Pan, “DREAMPlace: Deep Learning Toolkit-Enabled GPU

Acceleration for Modern VLSI Placement,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2020.

[40] J. Lu, P. Chen, C.-C. Chang, L. Sha, J. Dennis, H. Huang, C.-C.
Teng, and C.-K. Cheng, “ePlace: Electrostatics Based Placement using
Nesterov’s Method,” in Design Automation Conference (DAC), 2014.

[41] A. Agnesina, E. Lepercq, J. Escobedo, and S. K. Lim, “Reducing
Compilation Effort in Commercial FPGA Emulation Systems Using
Machine Learning,” in International Conference on Computer-Aided
Design (ICCAD). IEEE, 2019.

[42] A. Agnesina, K. Chang, and S. K. Lim, “VLSI Placement Parameter
Optimization using Deep Reinforcement Learning,” in International
Conference on Computer-Aided Design (ICCAD), 2020, pp. 1–9.

[43] Z. Xie, G.-Q. Fang, Y.-H. Huang, H. Ren, Y. Zhang, B. Khailany,
S.-Y. Fang, J. Hu, Y. Chen, and E. C. Barboza, “FIST: A Feature-
Importance Sampling and Tree-Based Method for Automatic Design
Flow Parameter Tuning,” in Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2020, pp. 19–25.

[44] Y.-C. Lu, S. S. K. Pentapati, L. Zhu, K. Samadi, and S. K. Lim, “TP-
GNN: A Graph Neural Network Framework for Tier Partitioning in
Monolithic 3D ICs,” in Design Automation Conference (DAC). IEEE,
2020.

[45] S. I. Ward, N. Viswanathan, N. Y. Zhou, C. C. Sze, Z. Li, C. J. Alpert,
and D. Z. Pan, “Clock Power Minimization using Structured Latch
Templates and Decision Tree Induction,” in International Conference
on Computer-Aided Design (ICCAD). IEEE, 2013, pp. 599–606.

[46] Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, “GAN-CTS:
A Generative Adversarial Framework for Clock Tree Prediction and
Optimization,” in International Conference on Computer-Aided Design
(ICCAD). IEEE, 2019.

[47] C. Yu and Z. Zhang, “Painting on Placement: Forecasting Routing
Congestion Using Conditional Generative Adversarial Nets,” in Design
Automation Conference (DAC), 2019.

[48] M. B. Alawieh, W. Li, Y. Lin, L. Singhal, M. A. Iyer, and D. Z.
Pan, “High-Definition Routing Congestion Prediction for Large-Scale
FPGAs,” in Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 2020, pp. 26–31.

[49] T.-C. Yu, S.-Y. Fang, H.-S. Chiu, K.-S. Hu, P. H.-Y. Tai, C. C.-F. Shen,
and H. Sheng, “Pin Accessibility Prediction and Optimization with
Deep Learning-Based Pin Pattern Recognition,” in Design Automation
Conference (DAC), 2019, pp. 1–6.

[50] W.-T. Hung, J.-Y. Huang, Y.-C. Chou, C.-H. Tsai, and M. Chao,
“Transforming Global Routing Report into DRC Violation Map with
Convolutional Neural Network,” in International Symposium on Phys-
ical Design (ISPD), 2020.

[51] R. Liang, H. Xiang, D. Pandey, L. Reddy, S. Ramji, G.-J. Nam, and
J. Hu, “DRC Hotspot Prediction at Sub-10nm Process Nodes Using
Customized Convolutional Network,” in International Symposium on
Physical Design (ISPD), 2020.

[52] K. Zhu, M. Liu, Y. Lin, B. Xu, S. Li, X. Tang, N. Sun, and D. Z. Pan,
“GeniusRoute: A New Analog Routing Paradigm Using Generative
Neural Network Guidance,” in International Conference on Computer-
Aided Design (ICCAD). IEEE, 2019.

[53] T. Qu, Y. Lin, Z. Lu, Y. Su, and Y. Wei, “Asynchronous Reinforcement
Learning Framework for Net Order Exploration in Detailed Routing,”
in Design, Automation and Test in Eurpoe (DATE), Virtual Conference,
February 2021.

[54] H. Li, G. Chen, B. Jiang, J. Chen, and E. F. Young, “Dr. CU 2.0:
A Scalable Detailed Routing Framework with Correct-by-Construction
Design Rule Satisfaction,” in International Conference on Computer-
Aided Design (ICCAD). IEEE, 2019, pp. 1–7.

[55] H. Li, S. Patnaik, A. Sengupta, H. Yang, J. Knechtel, B. Yu, E. F.
Young, and O. Sinanoglu, “Attacking Split Manufacturing from a
Deep Learning Perspective,” in Design Automation Conference (DAC).
ACM, 2019, pp. 1–6.

[56] W. Zeng, B. Zhang, and A. Davoodi, “Analysis of Security of Split
Manufacturing using Machine Learning,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2019.

[57] C. Ho and A. B. Kahng, “IncPIRD: Fast Learning-Based Prediction of
Incremental IR Drop,” in International Conference on Computer-Aided
Design (ICCAD), 2019, pp. 1–8.

[58] Z. Xie, H. Ren, B. Khailany, Y. Sheng, S. Santosh, J. Hu, and Y. Chen,
“PowerNet: Transferable Dynamic IR Drop Estimation via Maximum
Convolutional Neural Network,” in Asia and South Pacific Design
Automation Conference (ASP-DAC), 2020, pp. 13–18.

[59] H. Zhou, W. Jin, and S. X. Tan, “GridNet: Fast Data-Driven EM-
Induced IR Drop Prediction and Localized Fixing for On-Chip Power

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 18

Grid Networks,” in International Conference on Computer-Aided De-
sign (ICCAD), 2020, pp. 1–9.

[60] V. A. Chhabria, A. B. Kahng, M. Kim, U. Mallappa, S. S. Sapatnekar,
and B. Xu, “Template-based PDN Synthesis in Floorplan and Place-
ment Using Classifier and CNN Techniques,” in Asia and South Pacific
Design Automation Conference (ASP-DAC), 2020, pp. 44–49.

[61] Y. Cao, A. B. Kahng, J. Li, A. Roy, V. Srinivas, and B. Xu, “Learning-
Based Prediction of Package Power Delivery Network Quality,” in Asia
and South Pacific Design Automation Conference (ASP-DAC). ACM,
2019, pp. 160–166.

[62] T. Dhar, K. Kunal, Y. Li, M. Madhusudan, J. Poojary, A. K. Sharma,
W. Xu, S. M. Burns, R. Harjani, J. Hu et al., “ALIGN: A System for
Automating Analog Layout,” IEEE Design & Test, 2020.

[63] H. Chen, M. Liu, B. Xu, K. Zhu, X. Tang, S. Li, Y. Lin, N. Sun, and
D. Z. Pan, “Magical: An Open-Source Fully Automated Analog IC
Layout System from Netlist to GDSII,” IEEE Design & Test, 2020.

[64] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H.-S. Lee, and S. Han,
“GCN-RL Circuit Designer: Transferable Transistor Sizing with Graph
Neural Networks and Reinforcement Learning,” in Design Automation
Conference (DAC), 2020.

[65] B. Xu, Y. Lin, X. Tang, S. Li, L. Shen, N. Sun, and D. Z. Pan,
“WellGAN: Generative-Adversarial-Network-Guided Well Generation
for Analog/Mixed-Signal Circuit Layout,” in Design Automation Con-
ference (DAC). ACM, 2019, pp. 1–6.

[66] Y. Li, Y. Lin, M. Madhusudan, A. Sharma, W. Xu, S. S. Sapatnekar,
R. Harjani, and J. Hu, “A Customized Graph Neural Network Model
for Guiding Analog IC Placement,” in International Conference On
Computer Aided Design (ICCAD). IEEE, 2020, pp. 1–9.

[67] B. Shook, P. Bhansali, C. Kashyap, C. Amin, and S. Joshi, “MLParest:
Machine Learning Based Parasitic Estimation for Custom Circuit
Design,” in Design Automation Conference (DAC). IEEE, 2020, pp.
1–6.

[68] H. Ren, G. F. Kokai, W. J. Turner, and T.-S. Ku, “ParaGraph: Layout
Parasitics and Device Parameter Prediction using Graph Neural Net-
works,” in Design Automation Conference (DAC). IEEE, 2020.

[69] K. Hakhamaneshi, N. Werblun, P. Abbeel, and V. Stojanović, “BagNet:
Berkeley Analog Generator with Layout Optimizer Boosted with Deep
Neural Networks,” in International Conference on Computer-Aided
Design (ICCAD). IEEE, 2019.

[70] M. B. Alawieh, Y. Lin, Z. Zhang, M. Li, Q. Huang, and D. Z.
Pan, “GAN-SRAF: Sub-Resolution Assist Feature Generation using
Generative Adversarial Networks,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2020.

[71] X. Xu, Y. Lin, M. Li, T. Matsunawa, S. Nojima, C. Kodama, T. Kotani,
and D. Z. Pan, “Subresolution Assist Feature Generation with Super-
vised Data Learning,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 37, no. 6, pp. 1225–
1236, 2017.

[72] Mentor Graphics, “Calibre Verification User’s Manual,” 2008.
[73] H. Yang, S. Li, Z. Deng, Y. Ma, B. Yu, and E. F. Young, “GAN-OPC:

Mask Optimization with Lithography-Guided Generative Adversarial
Nets,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 39, no. 10, pp. 2822–2834, 2019.

[74] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask Optimizing
Solution with Process Window Aware Inverse Correction,” in Design
Automation Conference (DAC). IEEE, 2014, pp. 1–6.

[75] B. Jiang, L. Liu, Y. Ma, H. Zhang, E. F. Young, and B. Yu, “Neural-ILT:
Migrating ILT to Nerual Networks for Mask Printability and Complex-
ity Co-optimizaton,” in International Conference on Computer-Aided
Design (ICCAD), November 2020, pp. 1–9.

[76] G. Chen, W. Chen, Y. Ma, H. Yang, and B. Yu, “DAMO: Deep Agile
Mask Optimization for Full Chip Scale,” in International Conference
on Computer-Aided Design (ICCAD), November 2020, pp. 1–9.

[77] Y. Watanabe, T. Kimura, T. Matsunawa, and S. Nojima, “Accurate
Lithography Simulation Model Based on Convolutional Neural Net-
works,” in Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, vol. 10454, 2017.

[78] “Synopsys Sentaurus Lithography,”
https://www.synopsys.com/silicon/mask-synthesis/sentaurus-
lithography.html.

[79] W. Ye, M. B. Alawieh, Y. Lin, and D. Z. Pan, “LithoGAN: End-to-
End Lithography Modeling with Generative Adversarial Networks,” in
Design Automation Conference (DAC). ACM, 2019, pp. 1–6.

[80] W. Ye, M. B. Alawieh, Y. Watanabe, S. Nojima, Y. Lin, and D. Z.
Pan, “TEMPO: Fast Mask Topography Effect Modeling with Deep
Learning,” in International Symposium on Physical Design (ISPD),
Taipei, Taiwan, September 2020.

[81] Y. Lin, M. Li, Y. Watanabe, T. Kimura, T. Matsunawa, S. Nojima,
and D. Z. Pan, “Data Efficient Lithography Modeling with Transfer
Learning and Active Data Selection,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2018.

[82] M. Shin and J.-H. Lee, “Accurate Lithography Hotspot Detec-
tion Using Deep Convolutional Neural Networks,” Journal of Mi-
cro/Nanolithography, MEMS, and MOEMS (JM3), vol. 15, no. 4, 2016.

[83] H. Yang, L. Luo, J. Su, C. Lin, and B. Yu, “Imbalance Aware
Lithography Hotspot Detection: a Deep Learning Approach,” Journal
of Micro/Nanolithography, MEMS, and MOEMS (JM3), vol. 16, no. 3,
2017.

[84] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Young, “Layout Hotspot
Detection with Feature Tensor Generation and Deep Biased Learning,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 38, no. 6, pp. 1175–1187, 2018.

[85] H. Yang, Y. Lin, B. Yu, and E. F. Young, “Lithography Hotspot Detec-
tion: From Shallow to Deep Learning,” in System-on-Chip Conference
(SOCC). IEEE, 2017, pp. 233–238.

[86] J. Chen, Y. Lin, Y. Guo, M. Zhang, M. B. Alawieh, and D. Z. Pan,
“Lithography Hotspot Detection Using a Double Inception Module
Architecture,” Journal of Micro/Nanolithography, MEMS, and MOEMS
(JM3), vol. 18, no. 1, 2019.

[87] Y. Jiang, F. Yang, B. Yu, D. Zhou, and X. Zeng, “Efficient Layout
Hotspot Detection via Binarized Residual Neural Network Ensemble,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 2020.

[88] H. Zhang, B. Yu, and E. F. Young, “Enabling Online Learning in
Lithography Hotspot Detection with Information-Theoretic Feature
Optimization,” in International Conference on Computer-Aided Design
(ICCAD), 2016, pp. 1–8.

[89] W. Ye, M. B. Alawieh, M. Li, Y. Lin, and D. Z. Pan, “Litho-GPA:
Gaussian Process Assurance for Lithography Hotspot Detection,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
Florence, Italy, March 2019.

[90] H. Yang, S. Li, C. Tabery, B. Lin, and B. Yu, “Bridging the Gap
Between Layout Pattern Sampling and Hotspot Detection via Batch
Active Learning,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2020.

[91] Y. Chen, Y. Lin, T. Gai, Y. Su, Y. Wei, and D. Z. Pan, “Semi-
Supervised Hotspot Detection with Self-Paced Multi-Task Learning,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 2019.

[92] R. Chen, W. Zhong, H. Yang, H. Geng, F. Yang, X. Zeng, and
B. Yu, “Faster Region-Based Hotspot Detection,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2020.

[93] A. Ciccazzo, G. Di Pillo, and V. Latorre, “A SVM Surrogate Model-
Based Method for Parametric Yield Optimization,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 35, no. 7, pp. 1224–1228, 2015.

[94] K. Nakata, R. Orihara, Y. Mizuoka, and K. Takagi, “A Comprehen-
sive Big-Data-Based Monitoring System for Yield Enhancement in
Semiconductor Manufacturing,” IEEE Transactions on Semiconductor
Manufacturing, vol. 30, no. 4, pp. 339–344, 2017.

[95] M. B. Alawieh, F. Wang, and X. Li, “Identifying Wafer-Level System-
atic Failure Patterns via Unsupervised Learning,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 37, no. 4, pp. 832–844, 2017.

[96] Z. Gao, J. Tao, Y. Su, D. Zhou, X. Zeng, and X. Li, “Efficient
Rare Failure Analysis over Multiple Corners via Correlated Bayesian
Inference,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2019.

[97] M. B. Alawieh, D. Boning, and D. Z. Pan, “Wafer Map Defect Patterns
Classification using Deep Selective Learning,” in Design Automation
Conference (DAC). IEEE, 2020, pp. 1–6.

[98] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L.-C. Wang, “Challenges
and Trends in Modern SoC Design Verification,” IEEE Design & Test,
vol. 34, no. 5, pp. 7–22, 2017.

[99] S. Li and B. Jacob, “Statistical DRAM Modeling,” in International
Symposium on Memory Systems (MEMSYS), 2019, pp. 521–530.

[100] D. Lee and A. Gerstlauer, “Learning-Based, Fine-Grain Power Mod-
eling of System-Level Hardware IPs,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 23, no. 3, pp. 1–25,
2018.

[101] W. Chen, K.-K. Hsieh, L.-C. Wang, and J. Bhadra, “Data-Driven Test
Plan Augmentation for Platform Verification,” IEEE Design & Test,
vol. 34, no. 5, pp. 23–29, 2017.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 19

[102] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu,
“High Performance Graph Convolutional Networks with Applications
in Testability Analysis,” in Annual Design Automation Conference,
2019.

[103] D. Kim, P. Kang, S. Cho, H.-j. Lee, and S. Doh, “Machine Learning-
based Novelty Detection for Faulty Wafer Detection in Semiconductor
Manufacturing,” Expert Systems with Applications, vol. 39, no. 4, pp.
4075–4083, 2012.

[104] A. DeOrio, Q. Li, M. Burgess, and V. Bertacco, “Machine Learning-
based Anomaly Detection for Post-Silicon Bug Diagnosis,” in Design,
Automation and Test in Europe (DATE). EDA Consortium, 2013, pp.
491–496.

[105] H. Hu, P. Li, and J. Z. Huang, “Parallelizable Bayesian Optimization for
Analog and Mixed-Signal Rare Failure Detection with High Coverage,”
in International Conference on Computer-Aided Design (ICCAD).
IEEE, 2018, pp. 1–8.

[106] P. B. L. Meijer, Neural Network Applications in Device and Subcircuit
Modelling for Circuit Simulation. Philips Electronics, 1996.

[107] Z. Zhang, R. Wang, C. Chen, Q. Huang, Y. Wang, C. Hu, D. Wu,
J. Wang, and R. Huang, “New-Generation Design-Technology Co-
Optimization (DTCO): Machine-Learning Assisted Modeling Frame-
work,” 2019.

[108] K. Lamamra and S. Berrah, “Modeling of MOSFET Transistor by MLP
Neural Networks,” in Recent Advances in Electrical Engineering and
Control Applications, M. Chadli, S. Bououden, and I. Zelinka, Eds.
Cham: Springer International Publishing, 2017, pp. 407–415.

[109] L. Zhang and M. Chan, “Artificial Neural Network Design for Compact
Modeling of Generic Transistors,” Journal of Computational Electron-
ics, vol. 16, no. 3, pp. 825–832, Sep 2017.

[110] M. Li, O. İrsoy, C. Cardie, and H. G. Xing, “Physics-Inspired Neural
Networks for Efficient Device Compact Modeling,” IEEE Journal on
Exploratory Solid-State Computational Devices and Circuits, vol. 2,
pp. 44–49, 2016.

[111] F. Klemme, J. Prinz, V. M. van Santen, J. Henkel, and H. Amrouch,
“Modeling Emerging Technologies using Machine Learning: Chal-
lenges and Opportunities,” in International Conference on Computer-
Aided Design (ICCAD), 2020, pp. 1–9.

[112] F. Klemme, Y. Chauhan, J. Henkel, and H. Amrouch, “Cell Library
Characterization Using Machine Learning for Design Technology Co-
Optimization,” in International Conference On Computer Aided Design
(ICCAD). IEEE, 2020, pp. 1–9.

[113] T. Ebi, D. Kramer, W. Karl, and J. Henkel, “Economic Learning
for Thermal-Aware Power Budgeting in Many-Core Architectures,”
in Conference on Hardware/Software Codesign and System Synthesis
(CODES). ACM, 2011, pp. 189–196.

[114] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, “Achieving Autonomous
Power Management using Reinforcement Learning,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 18, no. 2,
pp. 1–32, 2013.

[115] R. A. Shafik, S. Yang, A. Das, L. A. Maeda-Nunez, G. V. Merrett,
and B. M. Al-Hashimi, “Learning Transfer-Based Adaptive Energy
Minimization in Embedded Systems,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 35, no. 6,
pp. 877–890, 2015.

[116] T. Kim, Z. Sun, H.-B. Chen, H. Wang, and S. X.-D. Tan, “Energy
and Lifetime Optimizations for Dark Silicon Manycore Microprocessor
considering both Hard and Soft Errors,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 25, no. 9, pp. 2561–2574,
2017.

[117] S. M. P. Dinakarrao, A. Joseph, A. Haridass, M. Shafique, J. Henkel,
and H. Homayoun, “Application and Thermal-Reliability-Aware Rein-
forcement Learning Based Multi-Core Power Management,” Journal on
Emerging Technologies in Computing Systems (JETC), vol. 15, no. 4,
pp. 1–19, 2019.

[118] U. Gupta, S. K. Mandal, M. Mao, C. Chakrabarti, and U. Y. Ogras,
“A Deep Q-Learning Approach for Dynamic Management of Hetero-
geneous Processors,” Computer Architecture Letters (CAL), vol. 18,
no. 1, pp. 14–17, 2019.

[119] Z. Chen and D. Marculescu, “Distributed Reinforcement Learning
for Power Limited Many-Core System Performance Optimization,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE).
EDA Consortium, 2015, pp. 1521–1526.

[120] H. Li, Z. Tian, R. K. Maeda, X. Chen, J. Feng, and J. Xu, “Co-
Manage Power Delivery and Consumption for Manycore Systems using
Reinforcement Learning,” in International Conference on Computer-
Aided Design (ICCAD). ACM, 2018, pp. 1–8.

[121] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource Manage-
ment with Deep Reinforcement Learning,” in Workshop on Hot Topics
in Networks (HotNets). ACM, 2016, pp. 50–56.

[122] F. M. M. ul Islam and M. Lin, “Hybrid DVFS Scheduling for Real-
Time Systems Based on Reinforcement Learning,” Systems Journal,
vol. 11, no. 2, pp. 931–940, 2015.

[123] J.-G. Park, N. Dutt, and S.-S. Lim, “ML-Gov: A Machine Learning
Enhanced Integrated CPU-GPU DVFS Governor for Mobile Gaming,”
in Symposium on Embedded Systems for Real-Time Multimedia (ESTI-
media). ACM, 2017, pp. 12–21.

[124] S. K. Mandal, G. Bhat, C. A. Patil, J. R. Doppa, P. P. Pande, and U. Y.
Ogras, “Dynamic Resource Management of Heterogeneous Mobile
Platforms via Imitation Learning,” IEEE Transactions on Very Large
Scale Integration Systems (TVLSI), 2019.

[125] R. G. Kim, W. Choi, Z. Chen, J. R. Doppa, P. P. Pande, D. Marculescu,
and R. Marculescu, “Imitation Learning for Dynamic VFI Control in
Large-Scale Manycore Systems,” IEEE Transactions on Very Large
Scale Integration Systems (TVLSI), vol. 25, no. 9, pp. 2458–2471, 2017.

[126] S. Ross, G. Gordon, and D. Bagnell, “A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning,”
in International Conference on Artificial Intelligence and Statistics
(AISTATS), 2011.

[127] M. Rapp, H. Amrouch, M. C. Wolf, and J. Henkel, “Machine Learning
Techniques to Support Many-Core Resource Management: Challenges
and Opportunities,” in Workshop on Machine Learning for CAD
(MLCAD). ACM/IEEE, 2019.

[128] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
and D. Mané, “Concrete Problems in AI Safety,” arXiv preprint
arXiv:1606.06565, 2016.

[129] W. L. Bircher, M. Valluri, J. Law, and L. K. John, “Runtime Identifica-
tion of Microprocessor Energy Saving Opportunities,” in International
Symposium on Low Power Electronics and Design (ISLPED). IEEE,
2005, pp. 275–280.

[130] M. Sagi, N. A. V. Doan, M. Rapp, T. Wild, J. Henkel, and A. Herk-
ersdorf, “A Lightweight Nonlinear Methodology to Accurately Model
Multicore Processor Power,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 39, no. 11,
pp. 3152–3164, 2020.

[131] S. Sadiqbatcha, H. Zhao, H. Amrouch, J. Henkel, and S. X.-D. Tan,
“Hot Spot Identification and System Parameterized Thermal Modeling
for Multi-Core Processors Through Infrared Thermal Imaging,” in
Design, Automation & Test in Europe (DATE). IEEE, 2019, pp. 48–53.

[132] D. Kim, J. Zhao, J. Bachrach, and K. Asanović, “Simmani: Runtime
Power Modeling for Arbitrary RTL with Automatic Signal Selection,”
in International Symposium on Microarchitecture (MICRO), 2019, pp.
1050–1062.

[133] M. Rapp, M. B. Sikal, H. Khdr, and J. Henkel, “SmartBoost:
Lightweight ML-Driven Boosting for Thermally-Constrained Many-
Core Processors,” in Design Automation Conference (DAC), 2021.

[134] M. Rapp, A. Pathania, T. Mitra, and J. Henkel, “Neural Network-based
Performance Prediction for Task Migration on S-NUCA Many-Cores,”
IEEE Transactions on Computers (TC), 2020.

[135] U. Gupta, M. Babu, R. Ayoub, M. Kishinevsky, F. Paterna, and U. Y.
Ogras, “STAFF: Online Learning with Stabilized Adaptive Forgetting
Factor and Feature Selection Algorithm,” in Design Automation Con-
ference (DAC). IEEE, 2018, pp. 1–6.

[136] Y. Kim, P. Mercati, A. More, E. Shriver, and T. Rosing, “P4: Phase-
Based Power/Performance Prediction of Heterogeneous Systems via
Neural Networks,” in International Conference on Computer-Aided
Design (ICCAD). IEEE, 2017, pp. 683–690.

[137] K. Zhang, A. Guliani, S. Ogrenci-Memik, G. Memik, K. Yoshii,
R. Sankaran, and P. Beckman, “Machine Learning-Based Temperature
Prediction for Runtime Thermal Management Across System Compo-
nents,” IEEE Transactions on Parallel and Distributed Systems (TPDS),
vol. 29, no. 2, pp. 405–419, 2017.

[138] J. M. N. Abad and A. Soleimani, “Novel Feature Selection Algorithm
for Thermal Prediction Model,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 26, no. 10, pp. 1831–1844, 2018.

[139] M. Sagi, M. Rapp, H. Khdr, Y. Zhang, N. Fasfous, N. A. V. Doan,
T. Wild, J. Henkel, and A. Herkersdorf, “Long Short-Term Memory
Neural Network-based Power Forecasting of Multi-Core Processors,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2021.

[140] L. Li, P. Deaville, A. Sapio, L. Anttila, M. Valkama, M. Wolf, and S. S.
Bhattacharyya, “MADS: A Framework for Design and Implementation
of Adaptive Digital Predistortion Systems,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, pp. 712–722, 2019.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 20

[141] A. Jonsson and A. Barto, “Causal Graph Based Decomposition of
Factored MDPs,” Journal of Machine Learning Research, vol. 7, pp.
2259–2301, Dec. 2006.

[142] A. Bhuiyan, F. Reghenzani, W. Fornaciari, and Z. Guo, “Optimizing
Energy in Non-Preemptive Mixed-Criticality Scheduling by Exploiting
Probabilistic Information,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems (TCAD), vol. 39, no. 11, pp.
3906–3917, 2020.

[143] Y. Bengio, A. Lodi, and A. Prouvost, “Machine Learning for Combi-
natorial Optimization: A Methodological Tour d’Horizon,” European
Journal of Operational Research, 2020.

[144] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer Networks,” in Neural
Information Processing Systems (NeurIPS), 2015, pp. 2692–2700.

[145] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is All You Need,”
in Neural Information Processing Systems (NeurIPS), 2017, pp. 5998–
6008.

[146] P. Emami and S. Ranka, “Learning Permutations with Sinkhorn Policy
Gradient,” arXiv preprint arXiv:1805.07010, 2018.

[147] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “LOGAN: Mem-
bership Inference Attacks Against Generative Models,” Proceedings on
Privacy Enhancing Technologies (PoPETs), vol. 2019, no. 1, pp. 133–
152, 2019.

[148] T.-B. Chan, A. B. Kahng, and M. Woo, “Revisiting Inherent Noise
Floors for Interconnect Prediction,” in Proceedings of the Workshop
on System-Level Interconnect: Problems and Pathfinding Workshop
(SLIP), 2020, pp. 1–7.

[149] G. R. Reddy, K. Madkour, and Y. Makris, “Machine Learning-Based
Hotspot Detection: Fallacies, Pitfalls and Marching Orders,” in Interna-
tional Conference on Computer-Aided Design (ICCAD). IEEE, 2019.

[150] J. A. Torres, “ICCAD-2012 CAD Contest in Fuzzy Pattern Match-
ing for Physical Verification and Benchmark Suite,” in International
Conference on Computer-Aided Design (ICCAD). IEEE, 2012, pp.
349–350.

[151] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-Efficient Learning of Deep Networks from Decen-
tralized Data,” in International Conference on Artificial Intelligence
and Statistics (AISTATS), 2017.

[152] J. R. Doppa, J. Rosca, and P. Bogdan, “Autonomous Design Space
Exploration of Computing Systems for Sustainability: Opportunities
and Challenges,” IEEE Design & Test, vol. 36, no. 5, pp. 35–43, 2019.

[153] K. Liu, H. Yang, Y. Ma, B. Tan, B. Yu, E. F. Young, R. Karri, and
S. Garg, “Are Adversarial Perturbations a Showstopper for ML-Based
CAD? A Case Study on CNN-Based Lithographic Hotspot Detection,”
arXiv preprint arXiv:1906.10773, 2019.

[154] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “BadNets: Evaluating
Backdooring Attacks on Deep Neural Networks,” IEEE Access, vol. 7,
pp. 47 230–47 244, 2019.

Martin Rapp received a B.Sc. and M.Sc. degree –
both with distinction – in Computer Science from the
Karlsruhe Institute of Technology in 2014 and 2016,
respectively. Currently, he is pursuing his PhD under
the supervision of Prof. Dr. Jörg Henkel. His current
research focuses on resource-constrained machine
learning: ML-based run-time resource management
for many-core architectures and distributed resource-
aware on-device training of neural networks.
ORCID 0000-0002-5989-2950

Hussam Amrouch (S’11-M’15) is a Jun.-Professor
heading the Chair of Semiconductor Test and Relia-
bility (STAR) within the Computer Science, Electri-
cal Engineering Faculty at the University of Stuttgart
as well as a Research Group Leader at the Karlsruhe
Institute of Technology (KIT), Germany. He received
his Ph.D. degree with distinction (summa cum laude)
from KIT in 2015. His main research interests are
design for reliability and testing from device physics
to systems, machine learning, security, approximate
computing, and emerging technologies with a special

focus on ferroelectric devices. He holds eight HiPEAC Paper Awards and
four best paper nominations at top EDA conferences: DAC’16, DAC’17,
DATE’17, and EDTM’21 for his work on reliability. He currently serves
as Associate Editor at Integration, the VLSI Journal. He has served in the
technical program committees of many major EDA conferences such as DAC,
ASP-DAC, ICCAD, etc. and as a reviewer in many top journals like T-
ED, TCAS-I, TVLSI, TCAD, TC, etc. He has 140+ publications (including
55 journals) in multidisciplinary research areas across the entire computing
stack, starting from semiconductor physics to circuit design all the way up to
computer-aided design and computer architecture. ORCID 0000-0002-5649-
3102.

Yibo Lin (S’16–M’19) received the B.S. degree in
microelectronics from Shanghai Jiaotong University
in 2013, and his Ph.D. degree from the Electrical and
Computer Engineering Department of the University
of Texas at Austin in 2018. He is current an assistant
professor in the Computer Science Department as-
sociated with the Center for Energy-Efficient Com-
puting and Applications at Peking University, China.
His research interests include physical design, ma-
chine learning applications, GPU acceleration, and
hardware security. He has received 5 Best Paper

Awards at premier venues (TCAD 2021, ISPD 2020, DAC 2019, VLSI
Integration 2018, and SPIE 2016). He has also served in the Technical Program
Committees of many major conferences, including ICCAD, ICCD, ISPD, and
DAC.

Bei Yu (Member, IEEE) received the Ph.D. degree
from The University of Texas at Austin in 2014. He
is currently an Associate Professor in the Depart-
ment of Computer Science and Engineering, The
Chinese University of Hong Kong. He has served
as TPC Chair of ACM/IEEE Workshop on Machine
Learning for CAD, and in many journal editorial
boards and conference committees. He is Editor of
IEEE TCCPS Newsletter. He received seven Best
Paper Awards from ASPDAC 2021, ICTAI 2019,
Integration, the VLSI Journal in 2018, ISPD 2017,

SPIE Advanced Lithography Conference 2016, ICCAD 2013, ASPDAC 2012,
and six ICCAD/ISPD contest awards.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3124762, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) 21

David Z. Pan (S’97—M’00—SM’06—F’14) re-
ceived his B.S. degree from Peking University, and
his M.S. and Ph.D. degrees from University of
California, Los Angeles (UCLA). From 2000 to
2003, he was a Research Staff Member with IBM T.
J. Watson Research Center. He is currently Silicon
Labs Endowed Chair Professor at the Department of
Electrical and Computer Engineering, The Univer-
sity of Texas at Austin. His research interests include
bidirectional AI and IC interactions, electronic de-
sign automation, design for manufacturing, and CAD

for analog/mixed-signal ICs and emerging technologies. He has published over
420 journal articles and refereed conference papers, and is the holder of 8
U.S. patents. He has served in many journal editorial boards and conference
committees, including various leadership roles such as ICCAD 2019 General
Chair, ASP-DAC 2017 TPC Chair, and ISPD 2008 General Chair. He
has received a number of awards including the SRC Technical Excellence
Award in 2013, DAC Top 10 Author in Fifth Decade, DAC Prolific Author
Award, ASP-DAC Frequently Cited Author Award, 20 Best Paper Awards
(TCAD 2021, ISPD 2020, ASPDAC 2020, DAC 2019, GLSVLSI 2018,
VLSI Integration 2018, HOST 2017, SPIE 2016, ISPD 2014, ICCAD 2013,
ASPDAC 2012, ISPD 2011, IBM Research 2010 Pat Goldberg Memorial Best
Paper Award, ASPDAC 2010, DATE 2009, ICICDT 2009, SRC Techcon in
1998, 2007, 2012 and 2015) and 18 additional Best Paper Award nominations,
Communications of the ACM Research Highlights (2014), UT Austin RAISE
Faculty Excellence Award (2014), Cadence Academic Collaboration Award
(2019), and many international CAD contest awards, among others. He is a
Fellow of IEEE and SPIE.

Marylin Wolf is Elmer E. Koch Professor of Engi-
neering and Chair of the Department of Computer
Science and Engineering at the University of Ne-
braska – Lincoln. She received her BS, MS, and PhD
in electrical engineering from Stanford University in
1980, 1981, and 1984, respectively. She was with
AT&T Bell Laboratories from 1984 to 1989. She
was on the faculty of Princeton University from
1989 to 2007 and was Farmer Distinguished Chair
at Georgia Tech from 2007 to 2019. Her research
interests include cyber-physical systems, embedded

computing, embedded video and computer vision, and VLSI systems. She
has received the IEEE Computer Society Goode Memorial Award, the ASEE
Terman Award, and the IEEE Circuits and Systems Society Education Award.
She is a Fellow of the IEEE and ACM and an IEEE Computer Society Golden
Core member.

Jörg Henkel received the Diploma and Ph.D.
(summa cum laude) degrees from the Technical
University of Braunschweig, Braunschweig, Ger-
many. He was a Research Staff Member with NEC
Laboratories, Princeton, NJ, USA. He is the Chair
Professor of embedded systems with the Karlsruhe
Institute of Technology, Karlsruhe, Germany. His
research work is focused on co-design for embedded
hardware/software systems with respect to power,
thermal, and reliability aspects. Dr. Henkel has re-
ceived six best paper awards throughout his career

from, among others, ICCAD, ESWeek and DATE. For two consecutive terms
he served as the Editor-in-Chief for the ACM Transactions on Embedded
Computing Systems. He is currently the Editor-in-Chief of the IEEE De-
sign&Test . He is/has been an Associate Editor for major ACM and IEEE
journals. He has led several conferences as a General Chair incl. ICCAD,
ESWeek, and serves as a Steering Committee chair/member for leading
conferences and journals for embedded and cyber–physical systems. He
coordinates the DFG Program SPP 1500 “Dependable Embedded Systems”
and is a site coordinator of the DFG TR89 collaborative research center on
“Invasive Computing.” He is the Chairman of the IEEE Computer Society,
Germany Chapter. He is a Fellow of the IEEE.

