13 research outputs found

    An optimization approach for removing blocking effects in transform coding

    Full text link

    No-reference visually significant blocking artifact metric for natural scene images

    Get PDF
    Quantifying visually annoying blocking artifacts is essential for image and video quality assessment. This paper presents a no-reference technique that uses the multi neural channels aspect of human visual system (HVS) to quantify visual impairment by altering the outputs of these sensory channels independently using statistical “standard score” formula in the Fourier domain. It also uses the bit patterns of the least significant bits (LSB) to extract blocking artifacts. Simulation results show that the blocking artifact extracted using this approach follows subjective visual interpretation of blocking artifacts. This paper also presents a visually significant blocking artifact metric (VSBAM) along with some experimental results

    A SVD based scheme for post processing of DCT coded images

    Get PDF
    In block discrete cosine transform (DCT) based image compression the blocking artifacts are the main cause of degradation, especially at higher compression ratio. In proposed scheme, monotone or edge blocks are identified by examining the DCT coefficients of the block itself. In the first algorithm of the proposed scheme, a signal adaptive filter is applied to sub-image constructed by the DC components of DCT coded image to exploit the residual inter-block correlation between adjacent blocks. To further reduce artificial discontinuities due to blocking artifacts, the blocky image is re-divided into blocks in such a way that the corner of the original blocks comes at the center of new blocks. These discontinuities cause the high frequency components in the new blocks. In this paper, these high frequency components due to blocking artifacts in monotone area are eliminated using singular value decomposition (SVD) based filtering algorithm. It is well known that random noise is hard to compress whereas it is easy to compress the ordered information. Thus, lossy compression of noisy signal provides the required filtering of the signal

    Decodage optimal oriente objet pour la suppression des effets de bloc dans les sequences dv et mpeg-2

    Get PDF
    Cet article propose une méthode de décodage permettant d'améliorer la qualité visuelle des séquences vidéos. Deux objectifs sont visés : la réduction des effets de bloc dans les séquences de type DV, M-JPEG et MPEG d'une part, la restitution des blocs perdus (dropout) par le système d'acquisition ou par le réseau d'autre part. La minimisation de critères appropriés permet une estimation et un traitement simultané du fond de la séquence et une segmentation spatio-temporelle des objets en mouvement. Un suivi temporel des objets permet ensuite de traiter chaque objet de manière indépendante et adaptée. La qualité de la séquence ainsi restituée par le décodeur est largement améliorée

    Image compression in interactive applications in digital video broadcasting

    Get PDF
    V interaktivních aplikacích digitálního televizního vysílání se v hojné míře používají komprimované obrazy. V doktorské práci jsou prezentovány nové metody zefektivnění jejich přenosu v sítích digitálního televizního vysílání. Byly navrženy metody na principu adaptivní prostorové filtrace pro zlepšení vizuálního vjemu komprimovaných obrazů. Nová metoda optimalizace spočívá v aplikaci těchto metod na více komprimované (tedy datově menší) obrazy a zlepšení jejich vizuální kvality až v aplikaci. Dále byly analyzovány nové metody komprese JPEG2000 a H.264 pro kompresi obrazů. V práci je rovněž prezentována nová původní kombinovaná metoda komprese obrazů určených pro standardní a vysoké prostorové televizní rozlišení.Compressed images are used very frequently in interactive applications in digital video broadcasting. New methods increasing efficiency of the image transmission in digital video broadcasting networks are proposed. Adaptive spatial filtering methods have been proposed for enhancement of the visual perception of the compressed images. New optimalization method is based on application of the filtering algorithms on more compressed images (data size are reduced). Visual quality enhancement is processed in interactive application. Further, new compression methods JPEG2000 and H.264 for image compression have been analysed. Novel compound image compression method for standard and high spatial television resolution is proposed in the thesis.

    Development of a micro-extruder with vibration mode for microencapsulation of human keratinocytes in calcium alginate

    Get PDF
    Microencapsulation is a promising technique to form microtissues. The existing cell microencapsulation technologies that involved extrusion and vibration are designed with complex systems and required the use of high energy. A micro-extruder with an inclusion of simple vibrator that has the commercial value for creating a 3D cell model has been developed in this work. This system encapsulates human keratinocytes (HaCaT) in calcium alginate and the size of the microcapsules is controllable in the range of 500-800 µm by varying the flow rates of the extruded solution and frequency of the vibrator motor ( I 0-63 Hz). At 0.13 ml/min of flow rate and vibration rate of 26.4 Hz, approximately 40 ± IO pieces of the alginate microcapsules in a size 632.14 ± I 0.35 µm were produced. Approximately I 00 µm suspension of cells at different cells densities of 1.55 x I 05 cells/ml and 1.37 x I 07 cells/ml were encapsulated for investigation of microtissues formation. Fourier transform infrared spectroscopy (FTIR) analysis showed the different functional groups and chemistry contents of the calcium alginate with and without the inclusion of HaCaT cells in comparison to the monolayers of HaCaT cells. From Field Emission Scanning Electron Microscope (FESEM) imaging, calcium alginate microcapsules were characterised by spherical shape and homogenous surface morphology. Via the nuclei staining, the distance between cells was found reduced as the incubation period increased. This indicated that the cells merged into microtissues with good cell-cell adhesions. After 15 days of culture, the cells were still viable as indicated by the fluorescence green expression of calcein­acetoxymethyl. Replating experiment indicated that the cells from the microtissues were able to migrate and has the tendency to form monolayer of cells on the culture flask. The system was successfully developed and applied to encapsulate cells to produce 3D microtissues

    Development of a micro-extruder with vibration mode for microencapsulation of human keratinocytes in calcium alginate

    Get PDF
    Microencapsulation is a promising technique to form microtissues. The existing cell microencapsulation technologies that involved extrusion and vibration are designed with complex systems and required the use of high energy. A micro-extruder with an inclusion of simple vibrator that has the commercial value for creating a 3D cell model has been developed in this work. This system encapsulates human keratinocytes (HaCaT) in calcium alginate and the size of the microcapsules is controllable in the range of 500-800 µm by varying the flow rates of the extruded solution and frequency of the vibrator motor ( I 0-63 Hz). At 0.13 ml/min of flow rate and vibration rate of 26.4 Hz, approximately 40 ± IO pieces of the alginate microcapsules in a size 632.14 ± I 0.35 µm were produced. Approximately I 00 µm suspension of cells at different cells densities of 1.55 x I 05 cells/ml and 1.37 x I 07 cells/ml were encapsulated for investigation of microtissues formation. Fourier transform infrared spectroscopy (FTIR) analysis showed the different functional groups and chemistry contents of the calcium alginate with and without the inclusion of HaCaT cells in comparison to the monolayers of HaCaT cells. From Field Emission Scanning Electron Microscope (FESEM) imaging, calcium alginate microcapsules were characterised by spherical shape and homogenous surface morphology. Via the nuclei staining, the distance between cells was found reduced as the incubation period increased. This indicated that the cells merged into microtissues with good cell-cell adhesions. After 15 days of culture, the cells were still viable as indicated by the fluorescence green expression of calcein­acetoxymethyl. Replating experiment indicated that the cells from the microtissues were able to migrate and has the tendency to form monolayer of cells on the culture flask. The system was successfully developed and applied to encapsulate cells to produce 3D microtissues

    Bilateral filter in image processing

    Get PDF
    The bilateral filter is a nonlinear filter that does spatial averaging without smoothing edges. It has shown to be an effective image denoising technique. It also can be applied to the blocking artifacts reduction. An important issue with the application of the bilateral filter is the selection of the filter parameters, which affect the results significantly. Another research interest of bilateral filter is acceleration of the computation speed. There are three main contributions of this thesis. The first contribution is an empirical study of the optimal bilateral filter parameter selection in image denoising. I propose an extension of the bilateral filter: multi resolution bilateral filter, where bilateral filtering is applied to the low-frequency sub-bands of a signal decomposed using a wavelet filter bank. The multi resolution bilateral filter is combined with wavelet thresholding to form a new image denoising framework, which turns out to be very effective in eliminating noise in real noisy images. The second contribution is that I present a spatially adaptive method to reduce compression artifacts. To avoid over-smoothing texture regions and to effectively eliminate blocking and ringing artifacts, in this paper, texture regions and block boundary discontinuities are first detected; these are then used to control/adapt the spatial and intensity parameters of the bilateral filter. The test results prove that the adaptive method can improve the quality of restored images significantly better than the standard bilateral filter. The third contribution is the improvement of the fast bilateral filter, in which I use a combination of multi windows to approximate the Gaussian filter more precisely
    corecore