11,263 research outputs found

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic systemā€™ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the Kingā€™s College hospital accident and emergency (A&E) departmentā€™s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Foundation for the Electronic Health Record: An ontological analysis of the HL7 Reference Information Model

    Get PDF
    Despite the recent advances in information and communication technology that have increased our ability to store and circulate information, the task remains of ensuring that the right sorts of information reach the right sorts of people. In what follows we defend the thesis that efforts to develop efficient means for sharing information across healthcare systems and organizations would benefit from a careful analysis of human action in healthcare organizations, and that the communication of healthcare information and knowledge needs to rest on a sound ontology of social interaction. We illustrate this thesis in relation to the HL7 RIM, which is one centrally important tool for communication in the healthcare domain

    Suitable task allocation in intelligent systems for assistive environments

    Get PDF
    The growing need of technological assistance to provide support to people with special needs demands for systems more and more efficient and with better performances. With this aim, this work tries to advance in a multirobot platform that allows the coordinated control of different agents and other elements in the environment to achieve an autonomous behavior based on the userā€™s needs or will. Therefore, this environment is structured according to the potentiality of each agent and elements of this environment and of the dynamic context, to generate the adequate actuation plans and the coordination of their execution.Peer ReviewedPostprint (author's final draft

    Adapting structuration theory to understand the role of reflexivity: Problematization, clinical audit and information systems

    Get PDF
    This paper is an exploratory account of the further development and application of a hybrid framework, StructurANTion, that is based on Structuration Theory and Actor Network Theory (ANT). The use of social theories in general and their use in information systems (IS) research in particular is explored leading to the use of the framework to examine the concept of what are termed humanchine networks in the context of clinical audit, within a healthcare Primary Care Trust (PCT). A particular focus is on the manner in which information systems-based reflexivity contributes to both entrenching a networksā€™ structurated order as well as contributing to its emancipatory change. The case study compares clinic-centric and patientcentric audit and seeks to further extend the understanding of the role of information and information systems within structurated humanchine activity systems. Conclusions indicate that the use of more socially informed IS methods and approaches can incorporate more emancipatory ideals and lead to greater adoption and usage of more relevant and useful clinical information systems and practices

    Unified Theory of Relativistic Identification of Information in a Systems Age: Proposed Convergence of Unique Identification with Syntax and Semantics through Internet Protocol version 6

    Get PDF
    Unique identification of objects are helpful to the decision making process in many domains. Decisions, however, are often based on information that takes into account multiple factors. Physical objects and their unique identification may be one of many factors. In real-world scenarios, increasingly decisions are based on collective information gathered from multiple sources (or systems) and then combined to a higher level domain that may trigger a decision or action. Currently, we do not have a globally unique mechanism to identify information derived from data originating from objects and processes. Unique identification of information, hence, is an open question. In addition, information, to be of value, must be related to the context of the process. In general, contextual information is of greater relevance in the decision making process or in decision support systems. In this working paper, I shall refer to such information as decisionable information. The suggestion here is to utilize the vast potential of internet protocol version six (IPv6) to uniquely identify not only objects and processes but also relationships (semantics) and interfaces (sensors). Convergence of identification of diverse entities using the globally agreed structure of IPv6 offers the potential to identify 3.4x10[subscript 38] instances based on the fact that the 128-bit IPv6 structure can support 3.4x10[subscript 38] unique addresses. It is not necessary that all instances must be connected to the internet or routed or transmitted simply because an IP addressing scheme is suggested. This is a means for identification that will be globally unique and offers the potential to be connected or routed via the internet. In this working paper, scenarios offer [1] new revenue potential from data routing (P2P traffic track and trace) for telecommunication industries, [2] potential for use in healthcare and biomedical community, [3] scope of use in the semantic web structure by transitioning URIs used in RDF, [4] applications involving thousands of mobile ad hoc sensors (MANET) that demand dynamic adaptive auto-reconfiguration. This paper presents a confluence of ideas

    Semantics, Ontology and Explanation

    Full text link
    The terms 'semantics' and 'ontology' are increasingly appearing together with 'explanation', not only in the scientific literature, but also in organizational communication. However, all of these terms are also being significantly overloaded. In this paper, we discuss their strong relation under particular interpretations. Specifically, we discuss a notion of explanation termed ontological unpacking, which aims at explaining symbolic domain descriptions (conceptual models, knowledge graphs, logical specifications) by revealing their ontological commitment in terms of their assumed truthmakers, i.e., the entities in one's ontology that make the propositions in those descriptions true. To illustrate this idea, we employ an ontological theory of relations to explain (by revealing the hidden semantics of) a very simple symbolic model encoded in the standard modeling language UML. We also discuss the essential role played by ontology-driven conceptual models (resulting from this form of explanation processes) in properly supporting semantic interoperability tasks. Finally, we discuss the relation between ontological unpacking and other forms of explanation in philosophy and science, as well as in the area of Artificial Intelligence
    • ā€¦
    corecore