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Abstract. The growing need of technological assistance to provide support to 
people with special needs demands for systems more and more efficient and with 
better performances. With this aim, this work tries to advance in a multirobot 
platform that allows the coordinated control of different agents and other ele-
ments in the environment to achieve an autonomous behavior based on the user’s 
needs or will. Therefore, this environment is structured according to the potenti-
ality of each agent and elements of this environment and of the dynamic context, 
to generate the adequate actuation plans and the coordination of their execution. 

Keywords: System architectures, Cognitive Systems, Tasks manipulation, se-
mantic nets. 

1 Introduction 

The increasing demand of assistive services due to the continuous aging population 
carries with it a deficit on the availability of human resources able to cope with these 
needs in the future. Assistive technologies are thus the potential solution to these grow-
ing requirements of human welfare in an ageing population. By facilitating the different 
assistive services to attend daily life tasks, this technology is expected to increase the 
user’s autonomy and their own self-esteem. Looking at what technology offers today, 
one can observe that technology in this area is quite diverse, ranging from simple de-
vices that help in communicating and in mobility, those which are currently available, 
to more intelligent devices, as robotic systems capable of perceiving certain environ-
ment conditions and dynamically adapt to their changes.  

These more advanced systems differ in the way of managing the perceived infor-
mation. While reactive systems respond to stimulus or orders in an immediate manner, 
deliberative systems perform an abstraction of the perceived information and do some 
reasoning to provide a behavior adapted to every situation. Being those latter systems 
able to achieve capacities closer to those of humans, they become of interest in assistive 
systems since they allow increasing usability and efficiency. 

When dealing with daily live activities, gesture and activity recognition aiming to 
interpret the user’s will, or their needs, allows the generation of robot actuation strate-
gies in a proactive way [1] [2]. These proactive strategies may even require the inter-
action of multiple robots, when more than one arm is needed to accomplish a given task 
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[3]. At present, many applications require the generation of intelligent environments 
from the combination and coordination of different technologies. Industry 4.0 is an ex-
ample of intelligent environment, which goal is the increase of automation, flexibility 
and scalability of industrial settings. The advantages of this technology that provides 
companies with the ability to quickly adapt to production changes are identified in [4], 
emerging from here the concept of smart retrofitting. Other environments that are ex-
perimenting significant changes are those related to surgery, which lead to the concept 
of surgery 4.0. These new advances in surgical innovation, constitute a step forward in 
the progressive implantation of Minimally Invasive Surgery (MIS). As explained in [5], 
the key factor is the intelligent collaboration between assistant personnel, surgeons, and 
assistance and autonomous systems in the Operating Room. The aim is to support de-
cision making in surgery, contextual assistance and surgical training. When referring 
to daily life, the concept of Healthcare 4.0 appears too. In this context the efforts focus 
on the implantation of intelligent services to support daily life therapies. In [6], an open 
code system is presented aimed at generating an intelligent environment able to monitor 
the patient from diverse sensors, analyze the obtained data and manage the actions to 
perform in an intelligent manner through a complex events processor. 

The increasing availability of intelligent systems and robots at home will make them 
part of our daily life. Then, it will be necessary an adequate interconnexion and coor-
dination of all these systems to generate an adaptable and useful ecosystem. Thus, the 
aim of the work is the development of methodologies that allow this coordination 
through the design of a platform composed of intelligent agents, in a domestic environ-
ment. 

2 Intelligent environments 

The way to generate intelligent environments in any of the above ambits can follow 
different methodologies. Those more frequently used are the implementation of cyber-
physic systems, multirobot environments and heterogeneous environments, which 
combine the previous ones.  

2.1 Cyber-physic systems 

Most intelligent environments are composed of cybernetic means that process infor-
mation in the digital space by means of physical devices, which by means of sensors 
and actuators acquire information and act on the real world. The so-called Cyber-Physic 
Systems (CPS) integrate three fundamental parts: computation, communication and 
physical control. They allow building environments that can exhibit multiple actuation 
modes in function of the context through digital or virtual information and the real 
world.  

Internet of Things (IoT) is a kind of CPS where a connection is created between 
objects and humans, processing information in real time. An example of an intelligent 
assistive environment for elder is that presented in [7], which provides a fluid interac-
tion between the user and the environment and the care givers.  
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Although CPS allow a wide range of services, these services are mainly oriented to 
the connection and communication through internet. In most IoT platforms, the coor-
dination of devices to generate services is pre-programmed, and the links between in-
puts and outputs are stablished to generate some given behaviors. 

2.2 Multirobot systems 

A Multirobot system (MRS) can be characterized as a set of robots operating in the 
same environment, having been widely applied in different domains [8]. An MRS can 
improve the effectivity of a robotic system, providing better performance in the execu-
tion of some tasks, more robustness and reliability, thanks to its modularity. This hap-
pens not only when the robots have different functions, but also when they all have the 
same capacities. However, most frequently robots are heterogeneous to exploit their 
respective characteristics according to the tasks and thus, obtain more efficient solu-
tions, although this implies complex coordination strategies. 

In this work, much attention is paid to MRS developments that operate in dynamic 
environments, where uncertainness and unforeseen changes can occur due to the pres-
ence of other external agents (for instance the presence of humans). Even considering 
uniquely the subset of MRS in assistive robotic applications, it is not easy to identify a 
common frame for comparing the technical solutions known up to now [9]. This is a 
common phenomenon that occurs in other application domains, even easier to specify, 
as shown for instance with the teams of Robot-Soccer in the RoboCup competition.  

An MRS cannot be considered simply as the generalization of a single robot system, 
and the proposed approaches must be characterized in terms of how suppositions over 
the environment are established and how the system is internally organized [10].   

Among the most common problems of multi-robot systems, the focus of this work 
is the design of new methods of tasks assignment, selecting the minimum number of 
robots most suitable to perform a certain task [11].  

2.3 Heterogeneous systems 

The combination of cyber-physical and robotic systems in an environment generates a 
great added value. On the one hand, multi-robot systems can benefit from accessing the 
resources provided by a CPS system, such as information from the environment and the 
user. This allows robots to have more information to elaborate their decision processes 
and more capacity of acting on the environment. For instance, if the CPS 
contains a set of cameras in the scene and a software component that detects objects in 
it, then the robot can use this information to locate a certain object that cannot be easily 
found through its perception system. In another situation, if a given actuation requires 
that the robot must access inside a refrigerator with automatic opening, the robot can 
take advantage of this resource to access its content in a simpler way. On the other hand, 
the CPS system benefits from the resources provided by the robot. For instance, the 
CPS system can acquire not available information from the robot scanning actions to 
areas inaccessible by the CPS. 
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In the interrelation process between CPS and robotic systems different aspects must 
be considered: communications protocol, interoperability method, information sharing, 
modeling and capacity coordination, among others. One of the fields that stands out in 
the development aid of this type of systems is robotics in the cloud. In this field cloud-
based technologies are investigated in order to give the robots access to digital re-
sources. The most relevant advantages of this type of systems is the access to computing 
resources as servers for data analysis or big data and flexible data storage resources. 
Now, a new paradigm pursues the convergence of cyber-physical and robotic systems, 
the Internet of Robotic Things (IoRT). This paradigm is based on three fundamentals 
fields: IoT, robotics and cloud computing. 

3 Architecture design for intelligent environments 

To assist people efficiently and user-friendly, an intelligent environment architecture 
has been designed based on different devices, which can be sensors, actuators, applica-
tions or robots (Fig. 1). This platform has been implemented and tested within the pro-
ject AURORA, with the aim to create services in a dynamic way in healthcare settings.  

This platform offers different features. The first is the connectivity and management 
of devices in the environment. The second is the modeling of devices from a general 
model that contains their relevant information as their capabilities. Third, a modeling 
of the environment describes its state which is used as context information. There is 
also a dynamic service generator that depends on the capabilities of available devices 
and on the context. Then, the assistive services available at a certain time are presented 
to the user through an interactive interface. Once the user demands for a specific ser-
vice, or a pro-active service is offered and accepted, the platform controls and monitors 
its correct execution. The platform is composed of three main modules: the module of 
knowledge management, the module of devices’ abstraction and the module of services. 

The knowledge management module is responsible for maintaining all the infor-
mation about the environment status and the relationships and rules between the differ-
ent elements. This information is stored in classes and instances in ontological models 
using OWL (ontology web language). For this module, the knowledge processing sys-
tem developed in the KnowRob project is used [12]. It provides mechanisms of storage 
and recovery of actions, objects, processes, events, properties and relations. The 
knowledge of agents’ capacity is established as a property owned by actors, which rep-
resents the possibility to perform a certain task. Capabilities are structured hierarchi-
cally from two basic abilities: information and operation. At functional level, this mod-
ule is responsible for the knowledge of the 3D model of the different objects and the 
dynamic model of the environment. 

The device abstraction module manages all existing devices in two layers: an inter-
connection and a modeling layer. The first layer is responsible for handling communi-
cations between all devices using ROS middleware (Robotic Operating System [13]. 
To build a heterogeneous system, a communication from ROS to the Open-Hab plat-
form is used. Open-Hab is a platform for the interconnection of smart devices (IoT).  
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Fig. 1. Experimental platform 

Above this layer, the device modeling layer contains a definition of the types of 
devices and their capabilities. These definitions are managed considering the infor-
mation provided by the knowledge management module. At functional level, this mod-
ule allows the interconnection of the actors: control agents, interface agents and recog-
nition and location agents. 

The service module handles the definition, updating, progress and achievement of 
services. Contextual information is managed in a similar way to [14], with the adapta-
tion of the concept of skill as a quantifiable unit of a service. The services are then the 
result of the planning through the composition of different possible skills depending on 
the state of the environment and the capabilities of the actors. These skills have as ob-
jective to fulfill a service and are evaluated by a factor of competence of the skill. This 
factor is calculated by the evaluation of each skill and the available capability. These 
evaluations are calculated under the current context conditions. 

We distinguish between three different types of evaluation functions. First, those 
related to actions that modify the environment. For example, there is an evaluation on 
the manipulation of objects depending on its shape, performed action and environment 
status. Second, functions for evaluating actions addressed to the user, mainly skills and 
abilities of person-robot interaction. And third, those that assess the acquisition of the 
information about the state of the environment and the user, as well as its interpretation. 

4 Implementation 

4.1 Hardware 

An experimental platform has been implemented to validate the architecture. This plat-
form emulates a kitchen living environment with the automation of different devices. 
A table surface with an induction cooker, an automated water tap of a sink, a cabinet 
and a refrigerator equipped with a motorized system for opening/closing doors. Two 
3D cameras cover the whole environment and a user interface allows the interaction 
with the environment from an interactive graphical interface to select elements of the 
environment and trigger the actions necessary to achieve the proposed objectives. 
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To support actions over the environment, the system counts on three robots with very 
different and complementary features: a Cartesian robot hanging on the ceiling 
(CAPDI), a second double-handed robot for complex manipulation operations 
(BAXTER) and a single robot arm over the table surface (MICO).  

The implementation of the proposed control strategy is summarized in Fig. 2. This 
figure shows the agents currently incorporated and in attenuated mode the possibility 
to add new agents. 

4.2 Multi-robot task allocation system 

In the setup considered in this work, the team of robots have different architectures. 
They coordinately assist a disabled user performing daily tasks in a kitchen. Several 
task levels can be considered. The first level is constituted by the high-level tasks, or 
services, such as "making a coffee" or "pouring a glass of water". These types of actions 
are those that will most likely be triggered by the user through a user-machine interface. 
These services or goals are compound or even complex tasks which require the execu-
tion of various sub-tasks. For instance, "pouring a glass of water" will require (1) to 
fetch an empty glass, (2) to grasp a bottle of water, (3) to pour water from the bottle 
into the glass. These lower level tasks can themselves be decomposed into sub-subtasks 
such as "picking the glass from its location", "placing the glass at a given location"... 

 
Fig. 2. System architecture showing the main physical components, the agents, and 

the modules  
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The services are decomposed into a precedence graph of simple or elementary tasks 
by means of preprogramed receipts considering some ordering constraints. These tasks 
must be allocated to the convenient agent at any time, permitting the services to overlap 
in time, by starting one service even before others finish. Every task will be assigned 
considering three constraints: capability, capacity and precedence. 

The Multi-Robot task allocation problem can be stated as: 

Finding an optimal allocation A of a set of tasks T to a subset of robots R, that will 
be in charge of carrying it out:   A: T  R 

The implemented solution is based on an iterated multi-robot auction process in-
spired in the work by [15] conveniently modified for our precedence-constrained task 
scheduling. Despite certain drawbacks, auction-based methods are indeed the most ap-
propriate to work with heterogeneous teams, since they are the most suited to consider 
the different capabilities [16]. The optimization objective will be to minimize the make 
span, i.e. the total schedule duration. 

In the proposed solution, the tasks are scheduled in batches. It is assumed that in 
each batch, the tasks are pairwise independent. This enables to schedule every task of 
a batch without considering the scheduling of the other tasks in the same batch. Batch 
selection is performed by the auctioneer, which takes as input the precedence graph 
defined by receipts. At each iteration, it selects the tasks that have either no predecessor 
or which predecessors have all been scheduled.  

Once the batch of tasks to auction has been selected, it is broadcasted to all bidders. 
To take into account heterogeneity, McIntire’s solution is modified by adding the fol-
lowing step: before computing the bid for a task, the robot evaluates if it can be done 
with respect to its capabilities. Each robot then computes a bid for each feasible task in 
the batch and for each possible position in its current schedule. The best result of each 
robot is sent to the auctioneer, which selects the best "offer" and communicates the 
winner to the robots. The winner updates its schedule and all participants remove the 
assigned task from the tasks to be auctioned. The process is repeated until all the tasks 
from the auctioned batch have been scheduled. 

The task schedules generated in this way are represented using Simple Temporal 
Networks (STN), introduced in [17]. STNs are data structures similar to graphs, in 
which nodes symbolize events and edges symbolize timing constraints on the events. 

Notice that in this stage the system follows the decompose-then-allocate paradigm, 
in which the services are decomposed into tasks that are then allocated optimizing du-
ration under capability, capacity and precedence criteria. However, before task execu-
tion, the allocate-then-decompose approach will be used, in which the tasks assigned 
to robots can be decomposed locally using a spatial 3D suitability function.  

4.3 Supervising and optimizing robot capabilities  

Once all tasks have been assigned to each agent, an assessment of the best execution 
by means of the degree of adequacy of the capabilities of each agent is calculated over 
the workspace.  For that, there is a common data structure of the workspace for general 
coordination and management. This data is a 3D map represented by the voxelization 
of the workspace volume and a given value for each voxel (workspace map). One is the 
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occupancy map that provides the occupancy of the workspace that includes static ele-
ments loaded from the pre-known CAD of the environment and dynamic elements that 
are updated in real-time from the processing of the images provided by the different  

After the task allocation has been stablished, the implemented evaluation of capaci-
ties and abilities aims to be spatially evaluated on each action. To achieve this objective, 
a spatial three-dimensional suitability function is used, calculating for each free agent 
a suitability value in each voxel of the workspace map using Eq. 1. 

Φ 𝑥, 𝑦, 𝑧 ∑ 𝑝 𝑥, 𝑦, 𝑧                                      (1) 

where a is the evaluated agent, and 𝑝  a function based on the capabilities of each agent 
given by quantitative and qualitative parameters. Those quantitative that have been con-
sidered initially for the validation of the proposed strategy are shown in table 1. 

𝑝
𝑃  𝑃

𝑃
 

Load margin around workspace. 𝑃  is the 
load capacity of robot and 𝑃  is the load of the ob-
ject to be manipulated. 

p  1 
T  T

T
 

Execution speed factor. Measured from the origin 
of the trajectory to each intermediate point of the 
trajectory. 

𝑝 1
1

𝑑 1
 

Accessibility to the operating point. Where dmin  
is the distance to a singularity of the articulation, 
which represents a minimum among all of them. 

p
h h

P
 

Grasp capacity, where hmax is the opening value of 
the end effector, and  hr the opening resulting from 
prehension 

Table 1. Quantitative parameters  

The qualitative parameters introduced as indicators of the quality of the task per-
formed by each agent, in this case robotic arms, are shown in table 2. 

p  1
Vpp

Vpp
 

Smoothness of task execution. 
The value Vpp, is the mean value of the peak val-
ues of the frequency signal generated by an accel-
erometer located at the end effector of each agent, 
in each path.  Vppmax is the maximum value from 
the signal along the entire trajectory.  

p  1
Γ

Γ
 

Ease of manipulation throughout the completion 
of each task, in which Γ  is the pair made by the 
last articulation of the kinematic chain of each ro-
botic arm, and Γ  the maximum admissible 
torque. 

Table 2. Qualitative parameters 

The action will switch to the free agent with the maximum suitability in the workspace 
map from a predefined trajectory of the actual action. Since performing this process can 
lead to excessive segmentation and transfer of tasks between agents, a hysteresis factor 
is introduced in the allocation change algorithm. 
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5 Performance evaluation  

The performance of the system architecture has been tested with a given problem in 
two simulated scenarios, similar to the real one. These simulations involve modifica-
tions and physical constraints with the objective of testing the system performance.    

The conditions of the first simulation are slightly different from the implemented 
setup. We consider the case where the kitchen is equipped with one CAPDI robot and 
three, instead of one, MICO arms. This enables to test more demanding scenarios, as 
well as to evaluate the possibility of parallel task execution, which is rather limited in 
the real Aurora setup. In the rest of this subsection, the three MICOs will be identified 
as "M0", "M1" and "M2". This arrangement, which can be seen in Fig. 3 enables to 
reach both cupboards to store objects and to create parallelism. 

In order to evaluate the interest of having two MICOs on the left side of the table, 
the second simulation is carried out on the same scenario but without M1. 

 

 

 

 

 

 

 
 

 

Fig. 3. Evaluation scenario 

 
Given both simulations, the following problem is presented to the system: food items 
from a box must be unpacked, and each item must be stored to its place. The robots 
must store six items: Sugar (green box) and coffee (brown box), to be stored on the 
shelves of the left cupboard. A tomato sauce can (in red) and pasta (in blue), to be 
placed on the shelves of the right cupboard. A carton of milk (in pale yellow) and a 
bottle of juice (in orange), that must be stored in the fridge (see fig. 4).  

Some of the tasks can be performed by several agents, while others can only be 
achieved by one of the team members, depending on the agent’s capabilities and reach-
able workspace. The precedence graph is represented in Fig. 4. Each task is represented 
by a circle divided into two: in the upper half is the action type, and in the lower the 
associated object. The global precedence graph is composed of six disconnected 
branches which can operate in parallel. The bold number at the left of each circle indica-
tes the task index. For every task its duration is known (sec.), the object, initial and final 
point (if needed), and other internal parameters needed for task execution (table 3). 
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Fig. 4.   Task precedence graph 
 

Id Type duration(s) object Surface   
0  8 30 sugar Table   
1  0 30 sugar lower left cupboard   
2  8 30 coffee table   
3  0 30 coffee middle left cupboard   
4  8 30 tomato Table   
5  0 45 tomato Table   
6  0 30 tomato middle right cupboard   
7  8 30 pasta Table   
8  0 45 pasta Table   
9  0 30 pasta middle right cupboard   
10  8 30 milk fridge   
11  0 30 milk fridge   
12  8 30 juice fridge   
13  0 30 juice fridge   

Table 3. Task list definition 

The output schedules obtained for the proposed problem and for each simulation are 
shown in table 4. The first column of each table presents the task ids in ascending order 
with respect to their start times. For each task, its start and finish times are specified 
along with the agent to which it has been assigned. The make span is indicated in bold; 
for all cases, it corresponds to the finishing time of the last task to be started. 

This result obviously presents a different task distribution and task sequence. In the 
first simulation, CAPDI has only three tasks to complete, those of bringing the pasta 
and tomato sauce to the other side of the table and that of bringing the milk to the fridge. 
In the second case, CAPDI is also in charge of bringing the juice to the fridge, while 
M1 is not present so all tasks must be assigned to other robots. M0 oversees the rest of 
tasks previously assigned to M1, since M2 performs the same tasks in both cases. 

Comparing the two variants, results are as expected: the make span is 41% longer 
with one robot less. This is due to the fact, visible in the task distribution of the first 
variant, that M0 and M1 work in parallel most of the time.  
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The improvement of the quality has been applied in both simulations. From the var-
iant of four robots, task 9 was assigned only to robot M2, but it has been replaced by a 
shared task between robot M1 (free) and M2. The position of the pasta placed by 
CAPDI in task 8 gives a suitability of Φ 0.8 and Φ 0.6 mainly due to a better 
accessibility and easiest manipulation in the workspace. When M1 carries pasta to right 
direction at the middle between both robots, M1 places pasta and it is picked by M2 
because it has a major suitability mainly due to zero accessibility of M1 to reach the 
right cupboard.       

In the second simulation, task 8 firstly allocated to CAPDI it’s finally shared be-
tween robot M0 (free) and CAPDI.  This is due to the less suitability of CAPDI to reach 
the pasta in the position placed after it has been removed from the box. M0 has a better 
execution speed and smoothness for the task, so, it translates pasta towards the center 
of the kitchen until Φ Φ .  

 
       

  
(a) (b)  

Table 4  a) Output schedule for simulation 1 and b) Output schedule for simulation 2 

 
Conclusion 
 

  When dealing with different kind of agents that collaboratively should perform a 
task, an adequate management of all the resources considering the capabilities and abil-
ities of the agents, the state of the elements in the scene and the sequence of actions 
should be considered. This work has been addressed to formalize a methodology that 
allows considering all the involved elements to stablish the sequence of actions and the 
allocation of the robot assigned to each action. Then, the methodology has been evalu-
ated on slightly modified scenarios of a robotized kitchen. 
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