620 research outputs found

    Lyapunov based optimal control of a class of nonlinear systems

    Get PDF
    Optimal control of nonlinear systems is in fact difficult since it requires the solution to the Hamilton-Jacobi-Bellman (HJB) equation which has no closed-form solution. In contrast to offline and/or online iterative schemes for optimal control, this dissertation in the form of five papers focuses on the design of iteration free, online optimal adaptive controllers for nonlinear discrete and continuous-time systems whose dynamics are completely or partially unknown even when the states not measurable. Thus, in Paper I, motivated by homogeneous charge compression ignition (HCCI) engine dynamics, a neural network-based infinite horizon robust optimal controller is introduced for uncertain nonaffine nonlinear discrete-time systems. First, the nonaffine system is transformed into an affine-like representation while the resulting higher order terms are mitigated by using a robust term. The optimal adaptive controller for the affinelike system solves HJB equation and identifies the system dynamics provided a target set point is given. Since it is difficult to define the set point a priori in Paper II, an extremum seeking control loop is designed while maximizing an uncertain output function. On the other hand, Paper III focuses on the infinite horizon online optimal tracking control of known nonlinear continuous-time systems in strict feedback form by using state and output feedback by relaxing the initial admissible controller requirement. Paper IV applies the optimal controller from Paper III to an underactuated helicopter attitude and position tracking problem. In Paper V, the optimal control of nonlinear continuous-time systems in strict feedback form from Paper III is revisited by using state and output feedback when the internal dynamics are unknown. Closed-loop stability is demonstrated for all the controller designs developed in this dissertation by using Lyapunov analysis --Abstract, page iv

    New developments in mathematical control and information for fuzzy systems

    Get PDF
    Hamid Reza Karimi, Mohammed Chadli and Peng Sh

    Fuzzy control turns 50: 10 years later

    Full text link
    In 2015, we celebrate the 50th anniversary of Fuzzy Sets, ten years after the main milestones regarding its applications in fuzzy control in their 40th birthday were reviewed in FSS, see [1]. Ten years is at the same time a long period and short time thinking to the inner dynamics of research. This paper, presented for these 50 years of Fuzzy Sets is taking into account both thoughts. A first part presents a quick recap of the history of fuzzy control: from model-free design, based on human reasoning to quasi-LPV (Linear Parameter Varying) model-based control design via some milestones, and key applications. The second part shows where we arrived and what the improvements are since the milestone of the first 40 years. A last part is devoted to discussion and possible future research topics.Guerra, T.; Sala, A.; Tanaka, K. (2015). Fuzzy control turns 50: 10 years later. Fuzzy Sets and Systems. 281:162-182. doi:10.1016/j.fss.2015.05.005S16218228

    Adaptive neural network control of a robotic manipulator with unknown backlash-like hysteresis

    Get PDF
    This study proposes an adaptive neural network controller for a 3-DOF robotic manipulator that is subject to backlashlike hysteresis and friction. Two neural networks are used to approximate the dynamics and the hysteresis non-linearity. A neural network, which utilises a radial basis function approximates the robot's dynamics. The other neural network, which employs a hyperbolic tangent activation function, is used to approximate the unknown backlash-like hysteresis. The authors also consider two cases: full state and output feedback control. For output feedback, where system states are unknown, a high gain observer is employed to estimate the states. The proposed controllers ensure the boundedness of the control signals. Simulations are also performed to show the effectiveness of the controllers

    Disturbance observer-based fault-tolerant control for robotic systems with guaranteed prescribed performance

    Get PDF
    The actuator failure compensation control problem of robotic systems possessing dynamic uncertainties has been investigated in this paper. Control design against partial loss of effectiveness (PLOE) and total loss of effectiveness (TLOE) of the actuator are considered and described, respectively, and a disturbance observer (DO) using neural networks is constructed to attenuate the influence of the unknown disturbance. Regarding the prescribed error bounds as time-varying constraints, the control design method based on barrier Lyapunov function (BLF) is used to strictly guarantee both the steady-state performance and the transient performance. A simulation study on a two-link planar manipulator verifies the effectiveness of the proposed controllers in dealing with the prescribed performance, the system uncertainties, and the unknown actuator failure simultaneously. Implementation on a Baxter robot gives an experimental verification of our controller

    A classification of techniques for the compensation of time delayed processes. Part 2: Structurally optimised controllers

    Get PDF
    Following on from Part 1, Part 2 of the paper considers the use of structurally optimised controllers to compensate time delayed processes

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Robust Control

    Get PDF
    The need to be tolerant to changes in the control systems or in the operational environment of systems subject to unknown disturbances has generated new control methods that are able to deal with the non-parametrized disturbances of systems, without adapting itself to the system uncertainty but rather providing stability in the presence of errors bound in a model. With this approach in mind and with the intention to exemplify robust control applications, this book includes selected chapters that describe models of H-infinity loop, robust stability and uncertainty, among others. Each robust control method and model discussed in this book is illustrated by a relevant example that serves as an overview of the theoretical and practical method in robust control
    corecore