
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

IET Control Theory & Applications

                                           

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa31416

_____________________________________________________________

 
Paper:

He, W., Amoateng, D., Yang, C. & Gong, D. (2016).  Adaptive Neural Network Control of a Robotic Manipulator with

Unknown Backlash-like Hysteresis. IET Control Theory & Applications

http://dx.doi.org/10.1049/iet-cta.2016.1058

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

http://cronfa.swan.ac.uk/Record/cronfa31416
http://dx.doi.org/10.1049/iet-cta.2016.1058
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

Adaptive Neural Network Control of a Robotic Manipulator with
Unknown Backlash-like Hysteresis

Wei He1,*, David Ofosu Amoateng2, Chenguang Yang3, Dawei Gong4

1School of Automation and Electrical Engineering and the Key Laboratory of Advanced Control
of Iron and Steel Process, , University of Science and Technology Beijing, Beijing 100083, China.
2Department of Electrical Engineering and Computer Science, Masdar Institute of Science and
Technology, Abu Dhabi, UAE
3Zienkiewicz Centre for Computational Engineering, Swansea University, Swansea, SA1 8EN,
United Kingdom
4School of Mechatronics Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China
*weihe@ieee.org. This work was supported by the National Natural Science Foundation of China
under Grant 61522302, the National Basic Research Program of China (973 Program) under Grant
2014CB744206, the National High Technology Research and Development Program of China (863
Program) under Grant 2015AA042304, and the Fundamental Research Funds for the China Central
Universities of USTB under Grant FRF-TP-15-005C1.

Abstract: This paper proposes an adaptive neural network controller for a 3-DOF robotic manip-
ulator that is subject to backlash-like hysteresis and friction. Two neural networks to approximate
the dynamics and the hysteresis nonlinearity. A neural network, which utilizes a radial basis func-
tion approximates the robot’s dynamics. Another neural network, which employs a hyperbolic
tangent activation function, is used to approximate the unknown backlash-like hysteresis. We also
consider two cases: full state and output feedback control. For output feedback, where system
states are unknown, a high gain observer is employed to estimate the states. The proposed con-
trollers ensure the boundedness of the control signals. Simulations are also performed to show the
effectiveness of the controllers.

Keywords: Neural Networks, Adaptive Control, Robotic Manipulator, Hysteresis, Backlash.

1. Introduction

Backlash hysteresis is quite present in many systems such as gear systems and actuators. It occurs

when the direction of motion of an actuated joint is reversed [1]. Although backlash hysteresis is

required in geared transmission for proper tooth action, too much backlash may degrade system

performance and produce oscillations that can cause instability. Designing control systems with-

out compensating backlash hysteresis can damage the system. Numerous models and methods
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have been proposed and more are being studied to help compensate backlash hysteresis and other

nonlinearities in nonlinear systems [2–4]. In [4], the authors propose an adaptive output feedback

controller for a nonlinear hysteresis system. They prove that the control scheme is effective in

removing the effects of hysteresis. Some of these techniques require the use of an inverse function.

The Preisach model and the Prandtl-Ishlinskii model are two well known models for simulating

backlash hysteresis [5–7]. In [5], an approach to modelling robotic joints with hysteresis and

backlash is presented. A Preisach operator is used to model the hysteresis in the joints. A modified

Prandtl-Ishlinskii model for compensating asymmetric hysteresis is proposed in [6]. The model is

compared with a classical Prandtl-Ishlinskii model and showed a 66% decrease in error. In [8], a

Preisach model is used to simulate the hysteric behaviour of piezoceramic actuators. The inverse

Preisach model is used together with a controller to control the system. Simulation shows that the

error reduces by 50% to 70% compared to systems without hysteresis compensation. In [9], Yi et

al considered hysteresis as disturbance. Using a disturbance observer, hysteresis is estimated and

compensated for. Their method does not require an inverse model and is very simple.

In [10], a nonlinear controller which is very robust is proposed to overcome deadzone nonlinear-

ities which are present in many physical systems. An ideal reference output is generated using an

ideal model of the system. Through simulations, the authors show that the controller achieves sat-

isfactory system performance. In [11], a controller is proposed to overcome input saturation. The

controller is formulated using backstepping technique and Lasalle’s invariance principle. Com-

puter simulations and experiments confirm the validity of the proposed laws. In [12], hysteresis

is compensated in piezoelectric actuators using neural networks. The control problem is designed

as an optimization problem and solved using the Levenberg-Marquardt algorithm. Experiments

show good tracking and control performance for the proposed scheme. In [13], hysteresis backlash

is described by a dynamic differential equation. The controller is developed using the solution

properties of the hysteresis dynamic differential equation. The control law ensures global stabil-

ity and strict tracking precision. This method, however, requires the system to be within known

bounds or intervals. Two control schemes are proposed in [14]. The backlash hysteresis takes into

account external disturbances. The first scheme uses a sliding mode controller which employs a
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sign function. The sign function however causes chattering. The second adaptive control scheme

employs a continuous function. Unlike other control techniques, the two schemes in [14] do not

require parameters of the model and the disturbance-like term to be within certain bounds.

In some situations, the system states cannot be measured. There are some control schemes and

methods that approximate system states [15, 16]. Zhou et al. [17] also propose an output feedback

control scheme by incorporating in the controller design, an inverse model which eliminates hys-

teresis. In [18], neural networks are used to approximate the dynamics of a robot subject to input

deadzone and output constraint. The output feedback controller estimates system states without

violating the set constraints. An adaptive fuzzy output feedback controller is proposed in [19].

The nonlinear system considered has unmeasured states and unknown dynamics. The fuzzy logic

controller employed completely identifies the unknown nonlinear function. Simulations are also

provided to show the effectiveness of the proposed control method. In [20], a simple procedure

using a nonlinear compensator is proposed. The compensator eliminates limit cycles which arise

due to hysteresis or backlash in contactors. The technique effectively removes the backlash and

does not alter the deadzone.

Most of these hysteresis models and most nonlinear models are very complicated and diffi-

cult to construct. Learning algorithms are very useful when constructing controllers for systems

with unknown models. [21–26]. An approximation based algorithm is given in [27]. The com-

plex dynamics and nonlinear terms of the robot is compensated by a RBFNN. In [28], a neural

network controller for proper coordination of a humanoid robot which considers hysteresis is pre-

sented. The adaptive neural network approach guarantees very good tracking performance. Selmic

et al. [29], also use an inversion approach to approximate the hysteresis function. Geng et al. [30]

use a neural network to compensate hysteresis and improve the precision of a nanometer posi-

tioning system. An inverse model is coupled with the hysteresis model, as a filter to remove the

effects of hysteresis. The nonlinear characteristic is effectively reduced, which results in a more

linear output. In [31], a neural network compensates hysteresis and in position controlled mech-

anisms. The neural network switches to a smoother control when torque transmitted to the shaft

is reversed. In [32], a novel Takagi-Sugeno (T-S) fuzzy-system- based model is proposed for hys-
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teresis in piezoelectric actuators using an inverse hysteresis model to develop the fuzzy controller.

The controller also utilizes least sqaure algorithm for optimization. Zhi et al [33], investigate the

control of time delayed continuous nonlinear systems subject to hysteresis. The controller adopts

an optimized adaptation method to reduce computational burden. Numerical simulations provided

show the effectiveness of the proposed scheme.

2. Problem Formulation and Preliminaries

The dynamics of an n-link robotic manipulator can be expressed as [34]:

M(q)q̈ + C(q, q̇)q̇ + F (q̇) + G(q) = φ(τ) (1)

where q ∈ Rn is a vector of joint variables, φ(τ) ∈ Rn represents the backlash hysteresis input.

M(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n represents the Coriolis and centrifugal matrix,

F (q̇) ∈ Rn is the friction term and G(q) ∈ Rn is the gravitational force.

Property 1. [35] The matrix V (q, q̇) is skew-symmetric, where V (q, q̇) = Ṁ − 2C(q, q̇) is.

Therefore xT V x = 0 ∀x ∈ Rn.

Property 2. [36] The friction term can be approximated as:

F (q̇) = Fv q̇ + Fd(q̇) (2)

where Fv ∈ Rn×n and Fd(q̇) ∈ Rn denotes the viscous friction coefficients and coulomb friction

coefficients.

Property 3. The backlash input nonlinearity is defined as [37]:

dφi(τi)

dt
= hri|dτi

dt
|[haiτi − φi(τi)] + hbi

dτi

dt
(3)

hri, hai and hbi are constants and hai > 0 is the slope satisfying hai > hbi. According to [13], (3)
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can be solved as

φi(τ(t)) = haiτi(t) + di(τi), i = 1, 2...n (4)

di(τi) = [φi(τi)(0)− haiτi(0)]e−hri(τi−τi(0))sgn(τ̇i)

+e−hriτisgn(τ̇i)

∫ τi

τi(0)

[hbi − hai]e
−hriζjsgn(τ̇i)dζj (5)

This shows that (3) can be used to represent backlash-like hysteresis as illustrated in Fig. 1, where

hri = 1, hai = 3.15, hbi = 0.35, τi(t) = x sin(2.3t), x = 2.5, 3.5, 4.5. As illustrated in [13],

di(τi) is bounded, i.e |di(τi)| ≤ d∗i . The backlash hysteresis input nonlinearity φ(τ), is expressed

τ
(t)

-5 -4 -3 -2 -1 0 1 2 3 4 5

φ
(t

)

-15

-10

-5

0

5

10

15

Fig. 1. Hysteresis curves

as

φ(τ) = Haτ + D(τ) (6)

where Ha = diag{hai, ha2, ....han} > 0 and D(τ) = [d1(τi), d2(τ2), ....dn(τn)]T with ‖D(τ)‖ ≤ D∗

with D∗ =
√

d∗21 + d∗22 + ... + d∗2n .

Assumption 1. [38] The slope of the backlash like hysteresis Ha and the inertia matrix are
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unknown, but there exists positive constants h̄∗a, h∗a and m∗ such that h̄∗a ≤‖ Ha ‖≤ h∗a and

||M || ≤ m∗.

3. Control Design

3.1. Full State Feedback Control

The case where all state information is assumed to be available is first presented. From (1), if we

let x1 = [q1, q2..., qn]T and x2 = [q̇1, q̇2..., q̇n], robot manipulator dynamics is rewritten as:

ẋ1 = x2 (7)

ẋ2 = M−1[Haτ + D(τ)− C(x1, x2)x2 − F (x2)−G(x1)]

Let the error variable e1 be defined as

e1 = x1 − xd (8)

where xd is the desired trajectory. Its time derivative is defined as

ė1 = ẋ1 − ẋd (9)

We define a second error variable

e2 = x2 − α (10)

Its time derivative is

ė2 = ẋ2 − α̇ (11)

6



Selecting a Lyapunov function V1 as

V1 =
1

2
eT
1 e1 (12)

Differentiating yields

V̇1 = eT
1 ė1 = eT

1 (e2 + α− ẋd) (13)

We can choose the virtual control as

α = ẋd −K1e1 (14)

Substituting (14) into (13) yields

V̇1 = −eT
1 K1e1 + eT

1 e2 (15)

Choosing another function

V2 = V1 +
1

2
eT
2 H−1

a Me2 (16)

Differentiating V2 yields

V̇2 = V̇1 + eT
2 H−1

a Mė2 +
1

2
eT
2 H−1

a Ṁe2 (17)

Substituting (8) and (11) into (17) and applying property 1 yields

V̇2 = V̇1 + eT
2 [τ + H−1

a D(τ)−H−1
a (C(e2 + α)

+G(x1) + F (x2) + Mα̇)] +
1

2
eT
2 H−1

a Ṁe2

= −eT
1 K1e1 + eT

1 e2 + eT
2 [τ + Q(X) + H−1

a D(τ)]
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where Q(X) = −H−1
a (Cα+G(x1)+F (x2)+Mα̇) and X = [xT

1 , xT
2 , αT , α̇T ]T . However most of

these terms such as C, M and F are quite difficult to determine. A neural network which employs

a radial basis function will approximate these unknown terms.

Q(X) = W ∗T S(X) + εz (18)

where W ∗T ∈ Rl×n is an ideal weight matrix, l is the number of neural nodes, εz is the error of

approximation with ‖εz‖ ≤ ε∗z and ε∗z > 0. W ∗T is not known, therefore, Ŵ T will be used to design

the controller. We propose the controller as

τ = −e1 −K2e2 − Ŵ T S(X)− β̂ tanh(
e2

b
) (19)

The network updating law is designed as

˙̂
W = Γw(S(X)eT

2 − σwŴ ) (20)

˙̂
β = Γβ(tanh(

e2

b
)eT

2 − σββ̂) (21)

where K1 ∈ Rn×n and K2 ∈ Rn×n are diagonal and positive, β̂ ∈ Rn×n is the estimate of β∗ = λβI

with λβ = ε∗z +‖H−1
a ‖D∗. Γw = ΓT

w ∈ Rl×l, Γβ = ΓT
β ∈ Rn×n, σw, σβ and b are positive constants.

S(X), the radial basis function is defined as

Sj(X) = exp

[−(X − µj)
T (X − µj)

η2
j

]
, j = 1, 2, ..., l (22)

where µ is the mean and η is the variance of the radial basis function.

For this updating law, the σ term makes the system more robust [18, 39]. W̃ and β̃ are denoted as

Ŵ −W ∗ and as β̂ − β∗ respectively. Considering the effects of β̃ and W̃ on stability, the function

below is selected.

V3 = V2 + tr{1

2
W̃ T Γ−1

w W̃}+ tr{1

2
β̃T Γ−1

β β̃} (23)
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Differentiating V3 yields

V̇3 = V̇2 + tr{W̃ T Γ−1
w

˙̂
W}+ tr{β̃Γ−1

β
˙̂
β} (24)

Substituting (18) , (19), (20) and (21) into (24) yields

V̇3 = −eT
1 K1e1 − eT

2 K2e2 − eT
2 β∗ tanh(

e2

b
)

+eT
2 [εz + H−1

a D(τ)]− σwtr{W̃ T Ŵ} − σβtr{β̃T β̂}

Denote β = εz + H−1
a D(τ) , [β1, β2, ...βn]T . The following property holds: |βi| ≤ ‖β‖ ≤

‖εz‖+ ‖H−1
a ‖‖D(τ)‖ ≤ λβ,∀i = 1, 2, ...n. This implies that

eT
2 [εz + H−1

a D(τ)] =
n∑

i=1

e2iβi ≤ λβ

n∑
i=1

|e2i| (25)

Considering (25) and using the facts that

−σwtr{W̃ T Ŵ} ≤ −σw

2
‖W̃‖2

F +
σw

2
‖W ∗‖2

F

−σβtr{β̃T β̂} ≤ −σβ

2
‖β̃‖2

F +
σβ

2
‖β∗‖2

F

we have

V̇3 ≤ −eT
1 K1e1 − eT

2 K2e2 + λβ

n∑
i=1

|e2i| − λβeT
2 tanh(

e2

b
)

−σw

2
‖W̃‖2

F +
σw

2
‖W ∗‖2

F −
σβ

2
‖β̃‖2

F +
σβ

2
‖β∗‖2

F

Using the equality and inequality below

−λβeT
2 tanh(

e2

b
) = −λβ

n∑
i=1

[e2i tanh(
e2i

b
)] (26)

0 ≤ |x| − x tanh(
x

b
) ≤ 0.2785b, ∀b > 0, x ∈ R (27)
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we obtain

V̇3 ≤ −eT
1 K1e1 − eT

2 K2e2 + λβ

n∑
i=1

[|e2i| − e2i tanh(
e2i

b
)]

−σw

2
‖W̃‖2

F +
σw

2
‖W ∗‖2

F −
σβ

2
‖β̃‖2

F +
σβ

2
‖β∗‖2

F

≤ −eT
1 K1e1 − eT

2 K2e2 − σw

2
‖W̃‖2

F −
σβ

2
‖β̃‖2

F

+0.2785nbλβ +
σβ

2
‖β∗‖2

F +
σw

2
‖W ∗‖2

F

≤ −ρ1V3 + C1 (28)

where

ρ1 = min{2λmin(K1),
2h∗aλmin(K2)

m∗ ,
σw

λmax(Γ−1
w )

,
σβ

λmax(Γ
−1
β )

} (29)

C1 = 0.2785nbλβ +
σw

2
‖W ∗‖2

F +
σβ

2
‖β∗‖2

F (30)

K1 and K2 are chosen as

λmin(K1) > 0, λmin(K2) > 0 (31)

Remark 1. Exponential stability could be achieved if C1 = 0. For the proposed controller how-

ever, C1 = 0.2785nbλβ + σw

2
‖W ∗‖2

F +
σβ

2
‖β∗‖2

F , where σβ and σw are constant control parameters.

These parameters help make the system more robust. If these parameters are set to zero, the term

remaining is 0.2785nbλβ , which is greater than zero. The system can therefore not achieve expo-

nential stability.

Theorem 1. When initial conditions of the robotic manipulator system (1), full state feedback

control law (19) and adaptation laws (20) and (21) are bounded, there exist constant matrices

K1 > 0, K2 > 0, Γw > 0, Γβ > 0, σw > 0 and σβ > 0 such that the closed-loop system is

semi-globally stable.

Proof: The proof of the above theorem is given in the appendix.
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3.2. Output Feedback Control

The system states are considered to be measurable for the state feedback controller. It is however

impractical to do so [40–42]. An output feedback controller is designed in this section, where,

a high gain observer estimates unmeasurable state terms [43]. x2 is denoted as π2

ε
[44]. e2 can

therefore be estimated as

ê2 =
π2

ε
− α (32)

where the dynamics of π2 is described as

επ̇1 = π2 (33)

επ̇2 = λ1π2 − π1 + x1 (34)

where ε and λ1 are positive constants. According to [45], we have

ξ2 =
π2

ε
− ẋ1 = −εψ(2) (35)

ẽ2 = ê2 − e2 =
π2

ε
− α− ẋ1 + α = ξ2 (36)

Therefore, we can use π2

ε
to estimate ẋ1 and x2, e2 can be estimated as follows

x̂2 =
π2

ε
(37)

ê2 =
π2

ε
− α (38)
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Using control law (19) and the neural network updating laws (20) and (21), we write the output

feedback controller and its update laws are written as:

τ = −e1 −K2ê2 − Ŵ T S(X̂)− β̂ tanh(
ê2

b
) (39)

˙̂
W = Γw(S(X̂)êT

2 − σwŴ ) (40)

˙̂
β = Γβ(tanh(

ê2

b
)êT

2 − σββ̂) (41)

Consider the Lyapunov function

V3 = V2 + tr{1

2
W̃ T Γ−1

w W̃}+ tr{1

2
β̃T Γ−1

β β̃} (42)

Differentiating (42) yields

V̇3 = V̇2 + tr{W̃ T Γ−1
w

˙̂
W}+ tr{β̃T Γ−1

β
˙̂
β} (43)

Substituting (18) into (43) yields

V̇3 = −eT
1 K1e1 + eT

1 e2 + eT
2 [τ + Q(X) + H−1

a D(τ)] + tr{W̃ T Γ−1
w

˙̂
W}+ tr{β̃T Γ−1

β
˙̂
β}

where Q(X) is expressed as

Q(X) = W ∗T S(X̂) + εz (44)

Substituting (44) and (39) into (43) yields

V̇3 = −eT
1 K1e1 + eT

2 [−K2ê2 − β̂ tanh(
ê2

b
)− W̃ T S(X̂)

+εz + H−1
a D(τ)] + tr{W̃ T Γ−1

w
˙̂

W}+ tr{β̃T Γ−1
β

˙̂
β} (45)
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Substituting (40) and (41) into (45) yields

V̇3 = −eT
1 K1e1 − eT

2 K2ê2 + eT
2 [−β̂ tanh(

ê2

b
)− W̃ T S(X̂)

+εz + H−1
a D(τ)] + tr{W̃ T (S(X̂)êT

2 − σwŴ )}

+tr{β̃T (tanh(
ê2

b
)êT

2 − σββ̂)} (46)

Denoting ê2 = ẽ2 + e2 and substituting it into equation (46) yields

V̇3 = −eT
1 K1e1 − eT

2 K2ẽ2 − eT
2 K2e2 − êT

2 β∗ tanh(
ê2

b
) + ẽT

2 (β̂) tanh(
ê2

b
)

+ẽT
2 W̃ T S(X̂) + eT

2 [εz + H−1
a D(τ)]− σwtr{W̃ T Ŵ} − σβtr{β̃T β̂}

β = εz + H−1
a D(τ) , [β1, β2, ...βn]T . The following property holds: |βi| ≤ ‖β‖ ≤ ‖εz‖ +

‖H−1
a ‖‖D(τ)‖ ≤ λβ,∀i = 1, 2, ...n. This implies that

eT
2 [εz + H−1

a D(τ)] =
n∑

i=1

e2iβi ≤ λβ

n∑
i=1

|e2i| (47)

Considering (47) and applying the following inequalities we have

−σwtr{W̃ T Ŵ} ≤ −σw

2
‖W̃‖2

F +
σw

2
‖W ∗‖2

F (48)

−σβtr{β̃T β̂} ≤ −σβ

2
‖β̃‖2

F +
σβ

2
‖β∗‖2

F (49)

−eT
2 K2ẽ2 ≤ 1

2
eT
2 e2 +

1

2
(K2ẽ2)

T (K2ẽ2) (50)

we have

V̇3 ≤ −eT
1 K1e1 +

1

2
(K2ẽ2)

T (K2ẽ2)− eT
2 (K2 − 1

2
I)e2 + λβ

n∑
i=1

(|ê2i| − ê2i tanh(
ê2i

b
))

+λβ

n∑
i=1

|ẽ2i|(1 + tanh(
ê2i

b
)) +

σβ

2
‖β∗‖2

F + ‖β̃‖
n∑

i=1

|ẽ2i| tanh(
ê2i

b
)

+
n∑

i=1

W̃ T
i Si(X̂)ẽ2i − σw

2
‖W̃‖2

F +
σw

2
‖W ∗‖2

F −
σβ

2
‖β̃‖2

F (51)
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However

0 ≤ |x| − x tanh(
x

b
) ≤ 0.2785b (52)

0 ≤ 1 + tanh(x) ≤ 2 (53)

−1 ≤ tanh(x) ≤ 1 (54)

W̃ T
i Si(X̂)ẽ2i ≤ σwi

4
‖ W̃i ‖2 +

1

σwi

‖ Si(X̂) ‖2 ẽ2
2i

Substituting ‖ Si(X̂) ‖2≤ li into (55) yields

W̃ T
i Si(X̂)ẽ2i ≤ σwi

2
‖ W̃i ‖2 +

2li
σwi

1

4
ẽ2
2i (55)

Substituting (52), (53), (54) and (55) into (51) yields

V̇3 ≤ −eT
1 K1e1 − eT

2 (K2 − 1

2
I)e2 + 0.2785bnλβ

+
1

2
ẽT
2 (KT

2 K2 + diag(2li/σwi))ẽ2 + ‖β̃‖
n∑

i=1

|ẽ2i|+ 2λβ

n∑
i=1

|ẽ2i|

+
n∑

i=1

σwi

4
‖W̃i‖2 − σw

2
‖W̃‖2

F +
σw

2
‖W ∗‖2

F −
σβ

2
‖β̃‖2

F +
σβ

2
‖β∗‖2

F (56)

Substituting (36) into (56) and applying 1
2
ξT
2 ξ2 ≤ 1

2
ε2hT

2 h2, where h2 = [h21, h22, ...h2n]T yields

V̇3 ≤ −eT
1 K1e1 − eT

2 (K2 − I)e2 + 0.2785bnλβ

+(KT
2 K2 + diag(2li/σwi))

1

2
ε2hT

2 h2 −
n∑

i=1

σwi

4
‖W̃i‖2

+2λβ

n∑
i=1

|εh2i|+ ‖β̃‖
n∑

i=1

|εh2i|+ σw

2
‖W ∗‖2

F −
σβ

2
‖β̃‖2

F +
σβ

2
‖β∗‖2

F

Lemma 1. [46] For the adaptive law (40), there exists a compact set

Ωβ = {β̂|‖β̂‖ ≤ ϑ

κ
} (57)
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where ‖ tanh( ê2

b
)‖ ≤ ϑ with κ > 0, such that β̂(t) ∈ Ωβ , ∀t ≥ 0 provided β̂(0) ∈ Ωβ

From Lemma 1,

‖β̃‖ = ‖β̂ − β∗‖ ≤ ‖β̂‖+ ‖β∗‖ ≤ ϑ

κ
+ ‖β∗‖ (58)

Thus we can obtain

V̇3 ≤ −ρ2V3 + C2 (59)

where

ρ2 = min{2λmin(K1),
2h∗aλmin(K2 − I)

m∗ ,
σw

λmax(Γ−1
w )

,
σβ

λmax(Γ
−1
β )

}

C2 = 0.2785nbλβ +
σβ

2
‖β∗‖2

F +
σw

2
‖W ∗‖2

F + (
ϑ

κ
+ ‖β∗‖)

n∑
i=1

|εh2i|

+2λβ

n∑
i=1

|εh2i|+ (KT
2 K2 + diag(2li/σwi))

1

2
ε2hT

2 h2 (60)

where K1 and K2 are chosen as

λmin(K1) > 0, λmin(K2 − I) > 0 (61)

Remark 2. Exponential stability could be achieved if C2 = 0. For the proposed controller how-

ever, C2 = 0.2785nbλβ +
σβ

2
‖β∗‖2

F + σw

2
‖W ∗‖2

F + 2λβ

∑n
i=1 |εh2i|+ ‖β̃‖

∑n
i=1 |εh2i|+ (KT

2 K2 +

diag(2li/σwi))
1
2
ε2hT

2 h2, where σβ and σw are constant control parameters. If these parameters are

set to zero, there are terms remaining such as 0.2785nbλβ and 2λβ

∑n
i=1 |εhi|, which are greater

than zero. The system can therefore not achieve exponential stability.

Theorem 2. When initial conditions of the robotic manipulator system (1), output feedback control

(39) and adaptation laws (40) and (41) are bounded, there exist constant matrices K1 > 0, (K2 −
I) > 0, Γw > 0, Γβ > 0, σw > 0 and σβ > 0 such the closed loop system is semi-globally stable.
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The proof of Theorem 2 has been omitted since it is quite similar to that of theorem 1. Fig. 2

-

Fig. 2. Output feedback control strategy

shows the strategy for the output feedback control.
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4. Simulation

Using simulations, the effectiveness of our proposed controllers is illustrated. The robot has two

rotary joints and one prismatic joint. M(x1), C(x1, x2) and G(x1) are expressed as

M(x1) =




M11 M12 M13

M21 M22 0

M31 0 M33




(62)

C(x1, x2) =




C11 C12 C13

C21 C22 C23

C31 C32 0




(63)

G(x1) =




0

G21

G31




(64)

Where M11 = m3q
2
3 sin q2

2 + m3l
2
1 + m2l

2
1 + I1, M12 = M21 = m3q3l1 cos q2, M13 = M31 =

m3l1 sin q2, M22 = m3q
2
3 + I2, M33 = m3, C11 = m3q

2
3 sin q2 cos q2q̇2 + m3q3 sin q2

2 q̇3, C12 =

m3q
2
3 sin q2 cos q2q̇1 − m3l1q3 sin q2q̇2 − m3l1q3 sin q2q̇3, C13 = m3q3 sin q2

2 q̇1 − m3l1q3 sin q2q̇2,

C21 = −m3q
2
3 sin q2 cos q2q̇1, C22 = m3q3q̇3, C23 = m3q3q̇2+m3l1 cos q2q̇3, C31 = −m3q3 sin q2

2 q̇1+

m3l1 cos q2q̇2, C32 = m3l1 cos q2q̇1 −m3q3q̇2, G21 = −m3gq3 cos q2, G31 = −m3g sin q2. m1 =

1kg, m2 = 0.85kg, m3 = 1kg, l1 = 0.3m, l2 = 0.4m, l3 = 0.5m. The friction term is defined as

F (q̇) = Fv q̇ + Fd(q̇) = diag[2, 2]q̇ + 1.5sgn(q̇), and sgn(x) is defined as

sgn(k) =





−1, if k ≥ 0

+1, otherwise
(65)

All initial positions of the robot is set at 0. The desired trajectory is chosen as

qd = [0.1 cos(0.5t), 0.1 sin(0.5t), 0.1 + 0.1 cos(0.5t)] (66)
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The control gains are chosen as K1 = diag[5, 5, 5] and K2 = diag[20, 20, 20]. Sixteen nodes are

used, variance = 50, σβ = σw = 0.01, Γβ = 50I3×3, Γw = 50I16×16. The neural network weights

are initialized from zero, ε = 0.005, λ = [5, 5, 5]. The high gain observer is also initialized from

zero. The diagram of the 3-DOF robotic manipulator is shown in Fig. 4. In this paper sixteen

Fig. 3. Diagram of a 3-DOF robotic manipulator

hidden-layer neurons are used for the RBF neural network and three hidden-layer neurons are used

for the tanh network.

Determining the number of hidden layer neurons required for any application is an open prob-

lem. One can perform computer simulations of the controller and then increase the number for

another simulation run. If no further improvement is detected, that value of hidden nodes can be

used. Increasing the number of neural network nodes will however increase the computation time

of your code. The type of activation function used and the number of input selected can also de-

termine the number of neural network nodes. The design parameters such as K1, K2, σw, σβ , has

great effect on the tracking performance. Increasing or decreasing them can result in either small

or large tracking errors. The values used in this work were chosen through trial and error method.

However, we are working on formulating it as an optimization problem, which chooses optimum

parameters for excellent tracking performance. The radial basis function neural network is a higher

order network that approximates the dynamics of the robot. The term β̂ tanh( e2

b
) is a high gain

term that counteracts the term associated with the upper bound on the term ‖H−1
a ‖D∗.

We compared our state and output feedback controllers with controllers without backlash hys-
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teresis compensation. The tracking performance of the controllers with backlash-hysteresis com-

pensation is shown in Fig. 4. The neural network successfully approximates the dynamics of the

robot and the hysteresis nonlinearity. From Fig. 4 the controllers show excellent tracking perfor-

mance. In Fig. 5, it can be seen that the absolute values of the tracking errors also converge to

a very small value or is less than a small value closer to zero. The closed loop system therefore

remains bounded for all time. The tracking performance of the controllers without backlash com-

pensation in Fig. 9 shows a more oscillatory and bad tracking performance. The controller tries to

track the desired trajectory but is unable to do so. This is due to the absence of the high gain term

β̂ tanh( ê2

b
).

The errors of the controllers without backlash compensation, in Fig. 10 are more oscillatory

and larger in magnitude than the errors of the controllers with backlash compensation. This shows

that the RBF neural network alone, is not able to approximate the backlash hysteresis nonlinearity.

The addition of the tanh neural network however ensures the compensation of hysteresis and

good tracking performance. Backlash hysteresis therefore needs to be compensated in robotic

manipulators. The values of the control input for controllers without backlash compensation are

also higher than the compensated controllers. The norms of the neural network weights of the

compensated controllers are smoother than the weights of the uncompensated controllers. The

torque inputs in Fig. 6 and Fig. 11 are also within realistic ranges, hence the controller can be

implemented.

5. Conclusion

An adaptive neural network controller has been designed for a 3-DOF robotic manipulator. The

controller mitigates the effects of backlash-like hysteresis. State and output feedback control

schemes have been considered. The dynamics of the robot has been approximated by a neural

network which uses a radial basis function. The unknown hysteresis nonlinearity is approximated

by another neural network that employs a hyperbolic tangent activation function. A high gain ob-

server is used in the output feedback controller design to estimate system states. The proposed con-

trol schemes are all verified through simulations and compared with controllers without hysteresis
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compensation. Future work will include the investigation of other intelligent control schemes, their

implementation on real robotic systems, optimizing neural network controller parameters.
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Appendix

Theorem 1 Proof

Proof 1. Multiplying (28) by eρ1t yields

d

dt
(V3e

ρ1t) ≤ C1e
ρ1t (67)

Integrating yields

0 ≤ V3(t) ≤ C1

ρ1

+ [V3(0)− C1

ρ1

]e−ρ1t (68)

This implies that e1, e2 and W̃ are uniformly ultimately bounded. Given the constants, b, σw

and σβ , the value of C1

ρ1
can be made arbitrarily small by increasing λmin(K1) and λmin(K2) and

the tracking error e1 can be made small.
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Fig. 4. Tracking performance (with backlash compensation)
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Fig. 9. Tracking performance (without backlash compensation)
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