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Preface

From the late 70s we have witnessed a revolution in the field of control, when it was found
that the classical and modern control theories did not assure the stability or performance of
the system under uncertainty.

Due to the need of being tolerant to changes in the control systems, subject to unknown dis‐
turbances or random changes in the operational environment of these systems, the robust
control theory started generating new methods that are able to deal with the non-parameter‐
ized disturbances of systems, without adapting itself to the system uncertainty, but rather
providing stability in the presence of errors bound to a model or dealing directly and effec‐
tively with real parameters uncertainty in the control systems.

Robust control applications have been increasing from the mid-80s with the Kharitonov's
Theorem for interval polynomials; after this, several applications in aerospace, electrical,
mechanical and others fields have been generated. More recently, Hansen and Sargent intro‐
duced an approach in the field of economics, which the solution of robustness problem is
found implementing a dynamic game.

We could say, that in the last two decades, several questions about stability of systems un‐
der uncertainty have been answered. However, the robustness problem will remain a study
subject, to improve the technological development and enhance the human quality of life in
the world.

With this approach in mind and with the intention to exemplify robust control applications,
this book includes selected chapters that describe models of H-infinity loop-shaping, robust
stability and uncertainty, among others.

Each robust control method and model discussed in this book is illustrated by a relevant
example, which facilitates its use as research reference or practical textbook in graduate pro‐
grams.

Finally, we are grateful to the authors for their kind contributions and also appreciate the
publisher for the support and guidance to publish this book.

Moises Rivas López
Engineering Institute

Autonomous University of Baja California, Mexico

Wendy Flores-Fuentes
Faculty of Engineering

Autonomous University of Baja California, Mexico





Chapter 1

Robust Observer-Based Output Feedback Control of a
Nonlinear Time-Varying System

Chieh-Chuan Feng

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/62697

Abstract

A  class  of  time-varying  systems  can  be  quadratically  stabilized  with  satisfactory
performance  by  a  modified  time-invariant-based  observer.  The  modified  observer
driven by the additional adaptation forces with static correction gains is used to estimate
the time-varying system states. Under the frame of quadratic stability, the closed-loop
systems satisfying induced norm bounded performance criterion are exponentially
stabilized while the states are exponentially approaching by the modified observer. This
paper deals with the time-varying systems that can be characterized as the multiplica‐
tive type of time-invariant and time-varying parts. The time-invariant part is then used
to construct the modified observer with additional driving forces, which are ready to
adjust time-varying effect coming from the measured outputs feeding into the modified
observer. The determination of the adaptation forces can be derived from the minimi‐
zation  of  the  cost  of  error  dynamics  with  modified  least-squares  algorithms.  The
synthesis of control and observer static correction gains are also demonstrated. The
developed systems have been tested in a mass-spring-damper system to illustrate the
effectiveness of the design.

Keywords: quadratic stablilization, time-invariant-based observer, error dynamics,
least-squares algorithm, adaptation forces, time-varying parts

1. Introduction

The study of optimal control for time-varying systems involves, in general, the solutions of
Riccati differential equations (RDEs) and computations of the time-varying correction gains [1–
4]. It is noted that the system is typically computer-implemented system, upon which the RDE
and correction gains are calculated. The computations, however, induces unavoidable time

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



delay. Although the time-delayed control has been considered, it leads to two disadvantages—
complication of control mechanism and bulk of the control board. For some systems, for example,
hard disk drives (a typically time-varying system) can only tolerate no delayed or very limited
time delay control [5, 6] and use very small compartment. Hence, many literatures have focused
on the static gain control of time-varying systems or the systems with time-varying or nonlin‐
ear uncertainties [7, 8]. It represents the simplest closed-loop control form but still encounters
problems. One should aware that static output control is nonconvex, in which iterative linear
matrix inequality approaches are exploited after it is expressed as a bilinear matrix inequality
formulation( see [9–12]). As a result, it cannot be easily implemented in controlling the time-
varying system and time delay problems remain.

It is a great challenge problem to design a linear continuous time-invariant observer with
constant correction gains that regulate linear continuous time-varying plants. Although the
vast majority of continuous TV control applications are implemented in digital computers [6,
13, 14], there are still opportunities to implement control with Kalman observer in continuous
time (i.e., in analog circuits) [Hug88]. In particular, those control systems requiring fast
response ask no or little delay effects. The difficulties for setting up those boards are because
the algorithm of the design is too complex to implement in board level design, too expensive
which can only be realized in a laboratory, or digital computation time induced unsatisfactory
delay. It should be noticed that to realize the Kalman observer involves the computation of
Riccati differential equations and inversion of matrices, which cause the obstacles of the board
level design. A survey of linear and nonlinear observer design for control systems has been
conducted in the literatures [15–18] and references therein. For controlling an linear time-
invariant (LTI) system, the Lungerber observer [19] design with constant correction gain is
straightforward and can be implemented on a circuit board with ease.

Many practical control systems implement time-invariant controllers with observers in the
feedback loop, which can be easily realized not only in the laboratory but also in the industrial
merchandize [20]. The advantages of realization for the time-invariant controllers and
observers are due to the constant parameters, which can be easily assembled by using resistors
and other analog integrated elements in circuits board. The use of observers is also essential
in industrial controls due to, in some cases, the states can be either not reachable or expensive
to be sensed. Therefore, the use of observers are undoubtedly required to estimate unmeasured
states since not merely full-state feedback control can be easily implemented but unmeasured
states can be monitored [21–25].

With the aforementioned disadvantages and advantages, the control of time-varying systems
is naturally arisen by designing a time-invariant observer-based controller that stabilizes, in
particular exponentially, this time-varying plant. It is believed that this is a great challenge
problem since we found no literatures tackling this problem. In what follows time-varying
system control is first reviewed for laying the foundation of the robust control of the system
with optimality property.

The feedback control of linear time-varying system has been extensively studied [1, 6, 7, 26–
31]. The key observation of early works for exponential stability of time-varying systems
requires that the time-dependent matrix-valued functions be bounded and piecewise contin‐
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uous satisfying Lyapunov quadratic stability [29, 31]. In this regard, many, but not all, of them
can be translated to robust control framework since time-dependent matrices are essentially
bounded and are treated as uncertainties [8, 32]. This gives an opportunity for the control
system design without solving RDEs, although what we pay for the avoiding solving RDEs is
the conservative of control. The conservativeness comes from two reasons—solutions of RDEs
are avoided and admit fast varying parameters. This, however, can be reduced by designing
parameter-dependent type of criterion or introducing slack variables such that reduces the
tightness of dependent variables( see, e.g., [33] and reference therein).

This paper is organized as follows. The following section, Section 2, sets up the time-varying
systems to be tackled, time-invariant observer to be built, feedback control problems to be
solved, and system properties (assumptions) to be with the systems. Section 3 gives the main
results for solving the feedback control problems, in which LMIs characterize the quadratically
stability of the closed-loop system with L2-gain of the closed-loop system is preserved; in
addition, least-squares algorithm is suggested to drive the time-varying observer such that the
time-varying plant states can be estimated asymptotically. Consequently, Section 4 demon‐
strates the synthesis of the static gains of control input and correction gains of observer. To
verify the effectiveness, illustrative applications are to test the overall design of the feedback
closed-loop system. The last section, Section 5, concludes the overall paper.

2. System formulation and problem statement

We consider a nonlinear time-varying system described by a set of equations

(1)

The first equation describes the plant with n-vector of state x and control input u ∈ℝm  and is
subject to exogenous input w ∈ℝl

, which include disturbances (to be rejected) or references (to be
tracked). The second equation defines the regulated outputs z∈ℝq , which, for example, may
include tracking error, expressed as a linear combination of the plant state x and of the exoge‐
nous input w. The last part is the measured outputs y ∈ℝ p . The matrices in (1) are assumed to
have the following system property:

(S1)A(t) denotes the matrix with nonlinear time-varying properties satisfying

(2)

where A is the n ×n constant matrix that extracts from A(t). The n ×n matrix F(t) lumps all time-
varying elements associated with plant matrix A(t), and it is possible to find a vertex set Ψ1

defined as follows
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such that F (t)∈Ψ1 , which is equivalent to saying that F(t) is within the convex set Ψ1  for all
time t ≥  0.

(S2) The matrices B1, B2, D, and D2 are all constant matrices, in which B1 and B2 quantify the
range spaces of control input u and exogenous input w, respectively, and D2 is chosen to be
zero matrix that is D2 =  0 for computational simplicity.

Remark 1. It is highlighted that F(t) in (S1) is not merely to lump all possible time-varying
functions but to include the parametric uncertainties. For the parametric uncertainties, it is
seen by simply observing that F(t) can be multiplicative uncertainties shown in [8]. For
representing time-varying matrix, an example is set as follows. Let

where

It should be aware that another equally good choice is to use additive type of representation,
that is, A(t) =  A +  F1(t), where F1(t) lumps all time-varying factors. As a matter of fact,
multiplicative and additive type of representations are interchangeable. Let F2(t) be such that
F1(t) =  F2(t)A. Thus, A(t)= F (t)A, where F (t) =  I  +  F2(t).

Remark 2. A number of examples are found to show the time-varying bound for F (t), such as
aircraft control systems in which constantly weight decreasing due to fuel consumption, the
switching operations of a power circuit board for voltage and current regulations, and the hard
disk drives with rotational disks induced time-varying dynamic phenomena [6].

The control action to (1) is to design an observer-based output feedback control system, which
processes the measured outputs y(t) in order to determine the plant states and generate an
appropriate control inputs u(t) based on the estimated plant states. The following observer
dynamics is developed for system (1),

(3)

where
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x̂(t) is the observed state of x(t) and the gain L is to be designed for the sake of stability. It
should be noted that the usage of constant matrix A in (3) instead of using time-varying A(t)
is due to the fact that it is not possible or may be too expensive to build the time-varying plant matrix
A(t) for the time-varying observers in a real analog circuit board that controls the system. On the
contrary, we are able to establish a time-invariant observer with ease for constant system
matrix A, B1, and B2 as stated in the Section 2. It is also seen that the observer (3) is Luenberger-
like observer because of the use of observer gain L.

The time-varying vector-valued function ς(t)∈ℝ p  to be determined in the sequel is an
additional degree of freedom for driving observer (3) to estimate the plant state x(t). We should
be aware that the intention of ς(t) is designed and meant to compensate time-varying effects
of F(t) to the system, that is, the effects of the time-varying functions will be adjusted by one
such function ς(t). Therefore, in addition to input u(t), e(t) becomes an additional driving
force to (3) such that x̂(t) tracks x(t) is possible. If F (t) = I  and all elements of the vector ς(t)
being equal to 1, then the system (1) with the observer (3) is a typical textbook example of
Luenberger observer control system [21].

In order to facilitate the closed-loop system, the error dynamics can thus be found by manipu‐
lating (1) and (3) as follows

(4)

or, equivalently, by taking the advantages of polytopic bound of (S1)

(5)

where x̃(t) =  x̂(t)− x(t) and ε(t) =  ς(t)−1, in which 1 denotes the vector with all elements being
equal to 1.

Once the observed state x̂ is available, the control input u is chosen to be a memoryless system
of the form

(6)

where K is the static gain to be designed. The control purpose has twofold: to achieve closed-
loop stability and to attenuate the influence of the exogenous input w on the penalty variable z,
in the sense of rendering the L2 gain of the corresponding closed-loop system less than a
prescribed number γ, in the presence of time-varying plant. The problem of finding controllers
achieving these goals can be formally stated in the following terms.
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Observer-based control via measured feedback. Given a real number γ >0 and
{A(t),  B1,  B2,  C ,  D,  D2} satisfying system properties (S1) and (S2). Find, if possible, two
constant matrices K and L such that

(O1) the matrix

(7)

has all eigenvalues in C−,

(O2) the L2-gain of the closed-loop system

(8)

is strictly less than γ, or equivalently, for each input u(t)= K x̂(t)∈L2 0, ∞), the response z(t) of
(8) from initial state (x(0), x̃(0)) =  (0, 0) is such that the following performance index is satisfied

(9)

for some γ>  0 and every w(t)∈L2  0, ∞).

Remark 3. Here, we will be using the notion of quadratic stability with an L2-gain measure
which was introduced in [32]. This concept is a generalization of that of quadratic stabilization
to handle L2-gain performance constraint to time-varying system attenuation. To this end, the
characterizations of robust performance based on quadratic stability will be given in terms of
LMIs, where if LMIs can be found, then the computations by finite dimensional convex
programming are efficient (see, for example, [32]).

Figure 1. Overall control structure.
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Remark 4. Figure 2 shows the overall feedback control structure of (8) to be designed in the
sequel, where the feedback loop, namely observer–error dynamics, serves as filtering process
with y(t) and w(t) as inputs such that proper control inputs u(t) and additional driving force
of (3) e(t) are produced.

Figure 2. Observer–error dynamics.

3. Analyses and characterizations

Two issues will be addressed in this section. Firstly, the theorem states the sufficiency condition
showing that the problem of observer-based control via measured feedback of time-varying
system is solvable. Secondly, an identification process based on least-squares algorithms for
ς(t) is derived to construct the feedback structure of the closed-loop system (8).

3.1. LMI characterizations

Theorem 1. Consider the time-varying system (1), observer dynamics (3), and error dynamics
(4) satisfying system property (S1) and (S2). Then, (T1) implies (T2), where (T1) and (T2) are
as follows.

(T1) There exist matrices P1≻0, P2≻0, K, and L and positive scalars γ and β such that

(10)

and matrices P3 ≻0 and Q ≻0 with adaptive scheme of (t) satisfying

(11)

The matrices, Π1 and Π2, defined in (10) are
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(12)

(13)

(T2) (O1) and (O2) hold, that is, the problem of observer-based control via contaminated
measured feedback is solvable.

Proof: the implication between (T1) and (T2) is shown in the Appendix.

Remark 5. It is shown in the Theorem 1 that if the matrix inequality (10) is satisfied and if (t)
is computationally adjusted according to (11), then the overall closed-loop system is not merely
quadratically stabilizable, but the performance index (9) is fulfilled. It is highlighted that (t)
in (11) is exponentially approaching zero as t →∞ for any ŷ(t). It is also noticed that there
remains a problem, that is, to compute the observed states x̂(t) in (3), in addition to the input
u(t) and exogenous signal w(t), the time-varying vector function ς(t) is needed in the compu‐
tation. Therefore, the following modified least-squares algorithm is derived for recursive
estimation of time-varying vector-valued function ς(t).

3.2. Modified least-squares algorithms

Prior to stating the modified least-squares scheme for computing ς(t), the following assump‐
tion is made

(14)

where Ii ={t | ti ≤ t < ti + Δt}. This is to say that ς(t) is kept constant within the small time interval
Δt , which, equivalently, is assumed that ς(t) is a piecewise continuous time-varying function.
The problem in this section is to determine an adaptation law for the vector-valued function
ς(t) in such a way that the x̃(t) computed from the model (4) agree as closely as possible to zero
in the sense of least squares. The following least-squares algorithms are developed by
summing the index of each small time interval with cost function defined as follows

(15)

To minimize the cost function ℑ, each index ℑi should be minimized as well and the following
conditions may be obtained for each time interval

Robust Control - Theoretical Models and Case Studies8



(12)

(13)

(T2) (O1) and (O2) hold, that is, the problem of observer-based control via contaminated
measured feedback is solvable.

Proof: the implication between (T1) and (T2) is shown in the Appendix.

Remark 5. It is shown in the Theorem 1 that if the matrix inequality (10) is satisfied and if (t)
is computationally adjusted according to (11), then the overall closed-loop system is not merely
quadratically stabilizable, but the performance index (9) is fulfilled. It is highlighted that (t)
in (11) is exponentially approaching zero as t →∞ for any ŷ(t). It is also noticed that there
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(16)

where t∈ Ii and

In view of (16), the least-squares estimate for ς(t) is given by

(17)

where Γ (t) is called covariance matrix and is defined as follows

To assure positive definiteness and thus the invertibility, the covariance matrix will be further
polished in the sequel. The covariance matrix plays an important role in the estimation of ς(t)
and is worth noting that

(18)

To find the least-squares estimator with recursive formulations, which parameters are updated
continuously on the basis of available data, we differentiate (17) with respect to time and obtain

(19)

where

(20)

for t∈ Ii,  i =  0, 1, 2, ⋯. The covariance matrix Γ (t) acts in the ς̂(t) update law as a time-varying,
directional adaptation gain. We have to aware that by observing (18), which indicates positive
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semi definite of d
dt Γ −1(t), implies that Γ−1 (t) may go without bound and hence Γ (t) will become

very small in some directions and adaptation in those directions becomes very slow. Therefore,
to avoid slowing adaptive propagation speed and to assure the positive definiteness of
covariance matrix Γ (t) such that invertibility exists, the following covariance resetting propaga‐
tion law is developed. Within each time window, we modify (18) as follows,

(21)

and

(22)

The scalar g >  0 is chosen such that the adaptation maintains suitable rate of propagation. The
covariance resetting propagation is adjusted by (21), in which the initial condition is also reset.
The condition (22) shows that the covariance matrix can also be reset within the time window
if the covariance matrix is close to the singularity. That is, the covariance matrix is reset if its
minimum eigenvalue is less than or equal to k1, that is, λmin(Γ (t))≤k1. The following Lemma
shows that the covariance matrix Γ (t) is bounded and is positive definite based on the
covariance resetting propagation law (21) and (22).

Lemma 1. Assuming that (21) and (22) hold. Then, k0I ≽ Γ(t)≽k1I ≻0 and, thus, k0≥ ∥ Γ(t)∥ ≥k1

for t∈ Ii,  i =  0, 1, 2, ⋯.

Proof: At the resettings, the covariance matrix Γ−1 (t) is reset at t = tr
+, hence Γ (tr

+)=k0I . Then,

followed by d
dt Γ

−1 (t)= gW T (t)W (t)≽0, we have Γ−1 (t1)−Γ−1 (t2)≽0 for all t1≥ t2 > tr  between
covariance resettings. The computation will progress until the next resetting time t, if it exists,
on which λmin(Γ (t))≤k1. Hence, we may conclude that k0I ≽ Γ(t)≽k1I ≻0, which says that
k0≥ ∥ Γ(t)∥ ≥k1.

Before presenting the theorem for modified least-squares algorithms of ς̂(t) showing that it is
bounded, the following transition matrix Lemma for the solutions of (19) is essential.

Lemma 2. There exists a positive number k such that the transition matrix, Φ(t , τ), of (19) is
bounded, that is, ∥ Φ(t , τ)∥ ≤k <∞, for t∈ Ii,  i =  0, 1, 2, ⋯.

Proof: The proof is constructive. We first notice that the solution to (19) is given by

where Φ(t , τ) is the transition matrix of ς̇̂(t)= − Γ(t)W T (t)W (t)ς̂(t) or the unique solution of

Robust Control - Theoretical Models and Case Studies10
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(23)

A constructive method is suggested by letting a differential equation η̇(t)= −η(t), η(ti)=ηi, where
η(t) is a vector of appropriate dimensions. We may conclude that η(t), η̇(t)∈L2∩L∞..

Let π(t)= Φ(t , ti)η(t) and Lyapunov candidate, Vπ =  π T (t)Γ−1 (t)π(t), where Γ (t) is chosen as
satisfying Lemma 1. Then, computing V̇ π along solutions of π̇(t) =  Φ̇(t , ti)η(t) + Φ(t , ti)η̇(t)
between the covariance resettings is as follows,

Without loss of generality, let g  =  2. Then,

(24)

At the point of resetting, that is, the point of discontinuity of Γ (t), we obtain

(25)

It follows from (24) and (25), we conclude that the Lyapunov candidate along the solution π(t)
has the property, 0≤Vπ(t)≤Vπ(ti). This shows that π(t)∈L∞ , which implies that
∥ Φ(t , ti)∥ ≤k <∞ for some k >0.

Theorem 2. Assuming that the problem of observer-based control via contaminated measured
feedback is solvable. If there exist the identifier structure of least-squares algorithm (19) with
covariance resetting propagation law (21) and (22), then ς̂(t)∈L∞ for all t ≥0.

Proof: To prove the claim is true, we need to show that ∥ ς̂(t)∥∞ =supt ∥ ς̂(t)∥ <∞ for
t∈ Ii,  i =  0, 1, 2, ⋯. We have the solution to (19) is given by

where Φ(t , τ) is the transition matrix shown in (23). In view of Lemma 2, we obtain
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The boundedness of ∫
ti

t

∥ f (τ)∥∞ dτ can be easily seen by observing (20), in which x̂(t), x̃(t), and

W (t)= Ldiag ŷ = Ldiag C x̂  followed by Theorem 1 have bounds and x̂(t), x̃(t), W (t)→0, as
t →∞. The covariance matrix Γ (t) satisfies (21) and, then, is bounded by Lemma 1. Followed
by system property (S1), F(t) is clearly bounded for all t ≥0. The measured signal y =  Cx, by
Theorem 1, is 0 as t →∞. In summary, there exists a positive finite number k3 such that

Therefore,

(26)

which indicates that ς̂(t)∈ L ∞, for t ∈ Ii. As time evolves, for each small time interval, (26)
always holds. Hence, we may extend t →∞. This completes the proof.

Remark 6. In this section, a modified least-squares algorithm is shown to find the estimated
ς(t), which is intentionally designed to justify the effects of time-varying functions F(t)
produced in the plant (1). Figure 3 depicts the complete structure of observer–error dynamics
that has been shown in Figure 2, in which two filters, namely observer dynamics and error
dynamics, and one lest squares algorithm construct the feedback control. The observer dynam‐
ics produces the estimated state of plant by filtering the signals u(t), w(t), and e(t). It is worth
noting that the signal e(t) from least-squares algorithm plays an additional drive force to the
observer dynamics. The error dynamics is to find the error state x̃(t), which is then injected
into the least-squares algorithms such that the time-varying function ς(t) is estimated.

Figure 3. Mass-damper-spring system.
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4. Control and observer gain synthesis

The synthesis of control and observer gains is addressed in Theorem 1. For the simplicity of
expression, the time argument of matrix-valued function F(t) will be dropped and denoted by
F. A useful and important Lemma will be stated in advance for clarity:

Lemma 3 (Elimination Lemma see [32]). Given H=HT ∈ℜn×n, V∈ℜn×m, and U∈ℜn× p with
Rank(V)<n and Rank(UT )<n. There exists a matrix K such that

if and only if

where V⊥ and U⊥ are orthogonal complement of V and U, respectively, that is V⊥T V=  0 and
V⊥ V  is of maximum rank.

Lemma 4. Given a real number γ>0 and {A(t),  B1,  B2,  C ,  D,  D2} satisfying system properties
(S1) and (S2), the following statements (Q1), (Q2), and (Q3) are equivalent.

(Q1) There exist matrices P1≻0, P2≻0, matrices K and L, and positive scalars β and δ such that
the following inequality holds,

(27)

(Q2) There exist matrices P1≻0,  P2≻0, matrices K and L, and positive scalars β and δ such that
the following inequality hold,

(28)

(29)

(Q3) There exist matrices X ≻0 and P2≻0, matrix W and Y, and the positive scalars γ, δ and β
such that the following two matrix inequalities hold,

(30)
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(31)

Proof: to prove (Q1)⇔(Q2). The inequality (27) may fit into Lemma 3 with

Next, the orthogonal complement of V and U is given by V⊥ and U⊥, respectively, which are

which (B1)⊥ is defined as the orthogonal complement of B1 and is such that (B1)⊥T B1 =0 and

B1(B1)⊥  is of maximum rank. By applying Lemma 3, we may have the following inequalities,

(32)

and

(33)

It is seen that matrix inequalities (28) and (29) hold if and only if (32) is true. Given (32), (33)
is also true. Therefore, by Lemma 3, (Q1)⇔(Q2).

To prove (Q2)⇔(Q3), let X = P1
−1, we find the following iff condition for inequality (28),

(34)
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where W = KX . It is noted that the last iff holds is due to Schur complement in that the positive
definiteness of D T D + δ −2A T (I −F )T (I −F )A must ensure. As for the matrix inequality (29), let
Y  =  P2L , we have

(35)

Again, the last iff of (35) is due to Schur complement and β >0 and δ >0 ensure the inequality
holds.

Remark 7. It is seen that δ is the only common scalar for matrix inequalities (34) and (35). In
order to ease of computation and without loss of generality, we may assume that δ is a certain
constant. The advantage of it, in addition to the ease of computation, is that the gains K and L
are solely determined by (34) and (35), respectively. From rigorous point of view, we may not
be able to say that the separation principle is completely valid for this case. But, loosely
speaking, it fits by small modification.

Lemma 5. (Q1) implies (10).

Proof: let (π1, π2)≠ (0, 0). Then

Thus, (Q1) implies (10). This completes the proof.

Theorem 3. Given a real number γ>0 and {A(t),  B1,  B2,  C ,  D,  D2} satisfying system property
(S1) and (S2). Then, (Q3) with scheme (11) implies (T2).

Proof: by Lemma 5, (Q1) implies matrix inequality (10). Moreover, by Lemma 4, we have
(Q1)⇔(Q3). Therefore, (Q3) with scheme (11) is equivalent to (T1). Moreover, by Theorem 1,
the claim is true.
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Remark 8. Theorem 3 states that the problems post in observer-based control via contaminated
measured feedback, that is, (O1) and (O2), are solvable by proving that (T2) holds.

5. Illustrative application

In this application, a simple time-varying mass-damper-spring system is controlled to
demonstrate that the time-varying effects appearing in the system matrix can be transferred
to a force term in the observer structure. Thus, consider the system shown in Figure 3 without
sensor fault. k1 and c1 are linear spring and damping constant, respectively. k2(t), c2(t), and c3(t)
are time-varying spring and viscous damping coefficients. The system is described by the
following equation of motion

(36)

where time-varying functions are c2(t)= c2(sinω2t), k2(t)=  
k1

m e −bt(cosω1t), c3(t)= −
c1

m e −bt(cosω1t),
and the constants are k1 =  k  and c1 = c2 =  c. Define x1(t)= y(t) and x2(t)= ẏ(t), the state space
representation of (36) is

(37)

where

Here, we consider the parameters m =  1, c =  1, k  =  1, b =  0, ω1 =  1, and ω2 =10 (rad / sec). Thus,
the set of vertices of polytope Ψ1  associated with time-varying matrix F(t) is

By applying linear matrix inequalities (30) and (31) of (Q3) in Lemma 4, the control and
observer gain, K and L can be found by implementing Matlab Robust Control Toolbox. It is
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also noted that the computation of two matrix inequalities can be separated by justifying
δ =  0.05. We thus find

The control input is then computed by u = K x̂, where the observed state x̂ is from

(38)

with e(t)=diag ŷ(t) ς(t)− y(t), in which the time-varying vector-valued function ς(t) is estimat‐
ed via the set of recursive formulations (19)–(22).

Figure 4. (a) shows plant state (solid line) x1 and observer state (dash-dot line) x̂1. (b) is the plant state (solid line) x2
and observer state (dash-dot line) x̂2. (c) gives the control input u(t).
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The implementation are coded in Matlab using the initial states: x1(0)=0.5, x2(0)= −0.6, x̂1(0)=0.0,
x̂2(0)=0.1, ς̂(0)=0.1, Γ (0)=k0 =2, and k1 =0.3. The simulation results are depicted in Figures 4 and
5. Figure 4(a) and (b) shows that the observer states x̂ cohere with the plant states x. It is,
therefore, seen that the observer (38) being driven by time-varying term e(t) can actually trace
the plant (37). The control input u(t) to the system is shown in Figure 4(c). The covariance
resetting propagation law Γ(t) and the estimated ς(t), that is, ς̂(t) are shown in Figure 5(a) and
(b). The observer driving force e(t) and 2-norm value of the time-varying matrix function F(t)
are depicted in Figure 5(c) and (d). It is seen clearly that the Γ (t) and ς̂(t) are adjusted to
accommodate the time-varying effects that driving the observer dynamics as the closed-loop
system is approaching equilibrium point. The driving force to the observer dynamics e(t) shows
the same results. Figure 5(c) depicts that the time-varying matrix F(t) is indeed varying with
time.

Figure 5. (a) is the values of Γ (t). (b) demonstrates the least-squares estimated results of ς̂(t). (c) is the driving force
of the observer dynamics e(t). (d) computes the 2-norm value of time-varying matrix function F (t) with b =  0.
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6. Conclusion

This paper has developed the modified time-invariant observer control for a class of time-
varying systems. The control scheme is suitable for the time-varying system that can be
characterized by the multiplicative type of time-invariant and time-varying parts. The time-
invariant observer is constructed directly from the time-invariant part of the system with
additional adaptation forces that are prepared to account for time-varying effects coming from
the measured output feeding into the modified observer. The derivation of adaptation forces
is based on the least squares algorithms in which the minimization of the cost of error dynamics
considers as the criteria. It is seen from the illustrative application that the closed-loop systems
are showing exponentially stable with system states being asymptotically approached by the
modified observer. Finally, the LMI process has been demonstrated for the synthesis of control
and observer gains and their implementation on a mass-spring-damper system proves the
effectiveness of the design.

7. Appendix

It is noted that in this appendix all time arguments of either vector-valued or matrix-valued
time functions will be dropped for the simplicity of expression. They can be easily distin‐
guished by their contents.

Proof: (T1)⇒(T2). We need to show that if the conditions (10) and (11) in (T1) hold, then (O1)
and (O2), which are equivalent to (T2), hold. Let quadratic Lyapunov function be

with P1 ≻0, P2 ≻0, and P3 ≻0. Then, the performance index (9) can be written as

(39)

for all states satisfying (1) and (3) with initial states (x(0), x̃(0))= (0, 0), and (0)=0. In view of
(8), the first integrand in (39) is

(40)

The second integrand in (39) is
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(41)

The right-hand side of equality (41) can be reorganized by using the closed-loop system (8),
and thus, the first term is

(42)

Completing the square of (42), we have

(43)

Similarly, the second term of (41) is

(44)

Applying completing the square to (44), we obtain

(45)
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Substituting (40), (43), and (45) into (39), we have

(46)

where definition of Π1(P1) and Π2(P2) are defined as (12) and (13), respectively. Therefore, by
eliminating the negative terms from (46), the following inequality is drawn,

(47)

Given that diag ŷ =diag ŷ , if (11) of (T1) holds, then it concludes that

In view of (10) of (T1), we thus find that the inequality (47) is simply

(48)

Therefore, the inequality (48) satisfies the performance index (9), which completes the proof
(O2).

To prove that (O1) holds, we use the inequality (10) in (T1) and get the equivalent inequality
as follows,

where
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It is concluded, by a standard Lyapunov stability argument, that Ã, that is (7), has all eigen‐
values in C−, which shows that (O1) holds. This completes the proof of Theorem 1.
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Abstract

In this chapter, the stabilization problem of complex dynamical network with non-
delayed and delayed couplings is realized by a new kind of stochastic pinning control‐
ler being partially delay dependent, where the topologies related to couplings may be
exchanged. The designed pinning controller is different from the traditional ones, whose
non-delay  and delay  state  terms occur  asynchronously  with  a  certain  probability,
respectively. Sufficient conditions for the stabilization of complex dynamical network
over topology exchange are derived by the robust method and are presented with liner
matrix inequities (LMIs). The switching between the non-delayed and delayed cou‐
plings is modeled by the related coupling matrices containing uncertainties. It has shown
that the bound of such uncertainties play very important roles in the controller design.
Moreover, when the bound is inaccessible, a kind of adaptive partially delay-depend‐
ent controller is proposed to deal with this general case, where another adaptive control
problem in terms of unknown probability is considered too. Finally, some numerical
simulations are used to demonstrate the correctness and effectiveness of our theoretical
analysis.

Keywords: complex dynamical network, partially delay-dependent pinning control‐
ler, non-delayed and delayed couplings, robust method, adaptive control

1. Introduction

With the rapid development of science and technology, human beings have marched into the
network era, and complex network has become a hot topic. Complex network is an important

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



method to describe and study complex systems, and all complex systems can be abstracted from
practical background by different perspectives and become a complex network of interacting
individuals, such as ecological network, food network, gene regulation network, social network,
and distributed sensor network. Research on complex network has become a frontier subject
with many subjects and challenges. Over the past few years, studies on complex network have
received more and more attention from various fields of scientific research See [1–5]. The
popularization of complex network has also caused a series of important problems about the
network structures and studies of the network dynamic behaviors. Particularly, special attention
has been paid to the studies of synchronization control problems of complex dynamical networks.
As one of the significant dynamic behaviors of complex dynamical network, synchronization
is widely used in neural network, public transit scheduling, laser system, secure communiza‐
tion system, information science, etc. [6–11]. So it is concerned by more and more scholars. In
real networks, because of the complex dynamical network having a great many nodes, and every
node has its dynamical behavior, it is hard for the complex dynamical network itself to make
the states of the network to desired trajectory. Thus, the studies on the control strategy of complex
dynamical network will be meaningful. So far, many control methods for complex dynamical
network have been reported in refs. [12–17]. Pinning control such as in refs. [18–20] is widely
welcomed for its advantages. It is easy to be realized and can save the cost effectively. The main
idea of pinning control is to control a part of nodes in the complex networks to realize the whole
network to the expected states and to reduce the number of the controllers effectively. When
there exist some unknown parameters, the adaptive control method could be exploited, some
of which was mentioned in refs. [21–23].

On the other hand, there are many factors that affect the stability of complex network, where
time delay and network topology are two important factors. First, time delay is an objective
phenomenon in nature and human society. In the process of transmission and response of
complex network, it is inevitable to produce time delay, which is because of the physical
limitations of the speed of transmission and the existence of network congestion, such as the
existence of time delay in communication network and virus transmission. There are some
typical time delay network systems such as circuit system [24], satellite communication system
[25], and laser array system [26]. It is noticed that the majority of the studies on complex
network have been performed on some absolute assumptions. For example, the stabilization
referred to state feedback control is realized only by a non-delay or delay controller, which is
relied on some absolute assumptions [18, 19, 27]. However, in many practical applications,
these assumptions do not accord with the peculiarities of the real networks. Based on these
facts, we may design a kind of controller that contains non-delay and delay states simultane‐
ously. Second, the topology of the network plays an important role in determining the network
characteristics and the synchronization control. The research of coupling delay also plays a
significant role in complex networks. In most of the above papers, it is seen that the topologies
are fixed. But in practical applications, the topological structure of the complex network is not
constant and may be changed randomly. That is because of the influence of various stochastic
factors. In this case, how to ensure the stabilization of networks by the proposed controller
when the topologies related to couplings change is worth discussing.
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Motivated by the above discussions, in this chapter, the stabilization problem of complex
networks with non-delayed and delayed couplings over random exchanges is studied by
exploiting the robust method to describe the topologies exchanging randomly. A kind of
stochastic pinning controller being partially delay-dependent is developed, which contains
non-delay and delay terms simultaneously but occur asynchronously. Here, the probability
distributions are taken into account in the proposed controller design. The rest of this chapter
is organized as follows: In Section 2, the model of complex dynamical networks with non-
delayed and delayed couplings over random exchanges is established. In Section 3, the
stabilization of the underlying complex networks is considered, which is realized by partially
delay-dependent controller and adaptive controller respectively. A numerical example is
demonstrated in Section 4; the conclusion of this chapter is given in Section 5.

Notation: ▯n denotes the n dimensional Euclidean space, ▯m × n is the set of all m × n real matrices.
E{⋅} is the expectation operator with respect to some probability measure. diag{⋅⋅⋅} stands for
a block-diagonal matrix. IN is an identity matrix being of N dimensions. S=Sℓ ∪ S̄ℓ, where
Sl ={1, 2, …, l}, S̄ℓ = {l + 1, l + 2, …, N }. λmax(M) is the maximum eigenvalue of M, while σmax(M)
is the maximum singular value of M. ‖G‖ denotes the 2-norm of matrix G. * stands for an
ellipsis for the term induced by symmetry.

2. Model of complex networks with non-delayed and delayed couplings
over random exchanges

As is known, time delay is ubiquitous in many network systems. When time delay exists in
the interaction, it may affect the dynamic behavior and even destabilize the network system.
Thus, time delay should be taken into consideration, which could accurately reflect some
characteristics of networks. By investing the existing literatures, it is easy to find that most of
the results on complex networks have been carried out under some implicit assumptions. That
is the communication information of nodes is only related to x(t) or x(t − τ). However, in many
cases, this simplification is not satisfactory for the special nature of the networks. In fact, the
information communication of nodes is not only related to x(t) but also to x(t − τ). Unfortu‐
nately, this property has been ignored in many literatures that are about the complex systems
with non-delayed and delayed couplings simultaneously. In this section, we will consider a
general stabilization problem of complex systems with non-delayed and delayed couplings
exchanging randomly.

Considering a kind of complex dynamical network consisting of N nodes and every node is a
n -dimensional dynamical system, which is described as

1 1
( ) ( ( )) ( ) ( ), S

N N

i i ij j ij j
j j

x t f x t c a x t c b x t it
= =

= + + - Îå å& (1)
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where xi(t) = (xi1(t), xi2(t), …, xin(t))T ∈ ▯n is the state vector of the ith node. f : ▯n → ▯n is a
continuously differentiable function that describes the activity of an individual system.

c > 0 is the coupling strength among the nodes. τ > 0 is the coupling delay. A = (aij) ∈ ▯N × N and
B = (bij) ∈ ▯N × N stand for the configuration matrices of the complex dynamical network with
the non-delayed and delayed couplings, respectively. A and B can be defined as follows: for
i ≠ j, if there exist non-delayed and delayed couplings between nodes i and j, then aij > 0 and
bij > 0; Otherwise, aij = 0 and bij = 0, respectively. Assuming both A and B are symmetric and
also satisfy

1, 1,

, ,
N N

ii ij ii ij
j j i j j i

a a b b i
= ¹ = ¹

= - = - Îå å S

Here, the topologies of the complex network are more general, whose related coupling matrices
exchange each other randomly. That is, A changes into B, while B changes into A simultane‐
ously. In other words, matrices A and B exchange. In this case, we have the following complex
network:

1 1
( ) ( ( )) ( ) ( ), S

N N

i i ij j ij j
j j

x t f x t c b x t c a x t it
= =

= + + - Îå å& (2)

From these demonstrations, it is seen that the above two complex networks occur separately
and randomly. To describe the above random switching between coupling matrices A and B,
a robust method will be exploited. That is

1 1
( ) ( ( )) ( ) ( ) ( ) ( ), S

N N

i i ij ij j ij ij j
j j

x t f x t c a a x t c b b x t it
= =

= + + D + + D - Îå å& (3)

when ΔA = (Δaij) ∈ ▯N × N and ΔB = (Δbij) ∈ ▯N × N. Especially, such uncertainties are selected to
be ΔA = B − A and ΔB = A − B, which is assumed to be

*B A d- £  (4)

where δ* is a given positive scalar.

Before giving the main results, a definition is needed.

Definition 1. The complex network (1) is asymptotically stable over topologies exchanging
randomly, if the complex network (3) with condition (4) is asymptotically stable.
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3. Stabilization of complex networks with couplings exchanging
randomly

Based on the proposed model, this section focuses on the design of stochastic pinning
controller. By investigating the existing references, it is found that most of the stabilization
results of complex networks are achieved by either non-delay or delay controllers. However,
from the above explanations, it is said that two such controllers may not describe the actual
systems very well. Here, a kind of partially delay-dependent pinning controller containing
both non-delay and delay states that take place with a certain probability is proposed to deal
with the general case. Without loss of generality, it is assumed that the first l nodes are selected
to be added the desired pinning controller ui(t), which are described as

( ) ( ) ( ) ( )( ) ( )
( )

1 ,

0,
i i i di i

i

u t c t k x t c t k x t i

u t i

a a tì = - - - - Îï
í

= Îïî

l

l

S
S

(5)

where ki and kdi are the non-delayed and delayed coupling control gains, respectively. α(t) is
the Bernoulli stochastic variable and is described as follows:

1,  ( )  
( )

0,  ( )  
if x t is valid

t
if x t is valid

a
t

ì
= í -î

(6)

whose probabilities are expressed by

* *{ ( ) 1} E{ ( } { ( ) 0 .} 1,r rP t t P ta a a a a= = = = = - (7)

where α* ∈ [0, 1]. In addition, it is obtained that

*E{ ( ) } 0ta a- = (8)

Substituting ui(t) into complex network (3), one has
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which is equivalent to
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Assumption 1. Supposing that there exists a positive definite diagonal matrix
P = diag{p1, p2, …, pn} and η > 0, such that
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3.1 Stabilization realized by a partially delay-dependent pinning controller

THEOREM 1. Let Assumption 1 hold, for given scalars α* and δ*, there exists a pinning
controller (5) such that the complex network (9) is asymptotically stable over topology
exchange (4), if there exist Q > 0, ki > 0, and kdi > 0, ∀ i∈Sℓ, such that the following condition

* *2 2 2 ( ) 0
*

N N NI cA c I Q c B I
Q

j d dé ù+ + + +
<ê ú

-ë û

% %
(12)

is satisfied, where

1
min( )ii n

p
hj

£ £

=

* * *
1 2{ , , , ,0, ,0},l

N ll

A A diag k k ka a a
-

= - ¼ ¼%
123144424443

* * *
1 2{(1 ) ,(1 ) , ,(1 ) ,0, ,0}.d d dl

N ll

B B diag k k ka a a
-

= - - - ¼ - ¼%
123144444424444443

Proof. For complex network (9), we choose a Lyapunov function as follows:

1 1

1 1( ( )) ( ) ( ) ( ) ( )
2 2

N n tT T
i i j j jt

i j
V x t x t Px t p x s Qx s ds

t-
= =

= +å å ò % % (13)

where x̃ j(t)= (x1 j(t), x2 j(t), …, xNj(t))T ∈▯N , j = 1, 2, …, n, and Q is a positive definite of suitable

dimensions matrix. Let L be the weak infinitesimal generator of stochastic process, it is defined
as

0

E{ ( ( ))} ( ( ))L ( ( )) lim V x t V x tV x t
+D®

+ D -
=

D
(14)

Then, one has
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It is guaranteed by Π1 < 0. By condition (12), it is known that LV(x(t)) < 0. This completes the
proof.

REMARK 1. It is worth mentioning that for any given function f(xi(t)), it is necessary to find
suitable parameters P and η. There, P is related to f(xi(t)), where η can be obtained by the given
matrix P. Moreover, Theorem 1 is also extended to other general cases that the coupling
matrices A and B change to the other ones independently. Here, we only consider the special
case that A and B exchanges each other.

Based on Theorem 1, it is claimed that Q is selected with a general case. However, it may be
selected to be some special cases. When Q is chosen as the special case that
Q =cσmax(B̃ + δ *IN )IN , we will have the following corollary.

COROLLARY 1. Let Assumption 1 hold, for given scalars α* and δ* > 0, there exists a pinning
controller (5) such that the complex network (9) is asymptotically stable over topology
exchange (4), if there exist ki > 0, and kdi > 0, ∀ i∈Sℓ, such that the following condition

* *( ) 0N N max N NI cA c I c B I Ij d s d+ + + + <% % (16)

is satisfied, where the other symbols are defined in Theorem 1.

Proof. Based on Theorem 1 and using the Schur complement lemma, one has

* 2 * 1 *2 2 2 ( ) ( ) 0T
N N N NI cA c I Q c B I Q B Ij d d d-+ + + + + + <% % % (17)

implying Π1 < 0. By choosing Q =cσmax(B̃ + δ *IN )IN , it is concluded that (17) is guaranteed by

* *
max2 2 2 2 ( ) 0N N N NI cA c I c B I Ij d s d+ + + + <% % (18)

This completes the proof.

When there is no topology exchange, we will have the following corollary directly.
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COROLLARY 2. Let Assumption 1 hold, for given scalar α*, there exists a pinning controller
(5) such that the complex network (9) is asymptotically stable over topology exchange (4), if
there exist Q > 0, ki > 0, and kdi > 0, ∀ i ∈Sℓ, such that the following condition holds:

2 2 0
*

NI cA Q cB
Q

jé ù+ +
<ê ú

-ë û

% %
(19)

where φ, Ã, and B̃ are defined as those in (12).

It is seen that the expectation of α(t) in Theorem 1 plays a vital role in the control of the complex
network, which needs to be given exactly. However, in practice, it may be very hard to get α*
exactly, and only its estimation α̃ is available. For an uncertain α* with its estimation α̃, its
admissible uncertainty Δα is defined as

* , [0,1]a a a aD = - Î% % (20)

where Δα ∈ [−μ, μ] with μ ∈ [0, 1]. Then, we have the following theorem.

THEOREM 2. Let Assumption 1 hold, for given scalars α̃ and δ* > 0, there exists a pinning
controller (5) satisfying condition (20) such that the complex network (9) is asymptotically
stable over topology exchange (4), if there exist Q > 0, W > 0, ki > 0, and kdi > 0, ∀ i ∈Sℓ, such that
the following conditions

* *
1 11 2 12

22

2 2 2 2 2 ( 2 )
0

* 2
N N NI cA c K c W c I Q c B K W I

c W Q
j m m d m m d

m
é ù+ + + + + - + +

<ê ú
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(21)

1 11 2 12

22

2
0

*
K W K W

W
- - -é ù

<ê ú-ë û
(22)

hold, where

11 12

21 22

,
W W

W
W W
é ù

= ê ú
ë û

1 1 2{ , , , ,0, ,0},l
N ll

K diag k k k
-

= ¼ L12314243
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2 1 2{ , , , ,0, ,0},d d dl
N ll

K diag k k k
-

= ¼ L1231442443

1 2{ , , , ,0, ,0},l
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A A diag k k ka a a
-

= - ¼ ¼% % % 1231442443

1 2{(1 ) ,(1 ) , ,(1 ) ,0, ,0}d d dl
N ll

B B diag k k ka a a
-

= - - - ¼ - ¼% % % 123144444424444443

Proof. Based on the proof of Theorem 1, it is known that the stabilization of complex network
(9) over random exchanges with (20) is guaranteed by (12), which is equivalent to
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It could be rewritten as
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That is
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which is implied by
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Taking into account condition (22), it is further guaranteed by
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which is (21) actually. This completes the proof.

3.2 Stabilization realized by adaptive pinning controller

When α* is unknown, how to stabilize a complex network through a pinning controller should
also be taken into consideration. In this section, we will exploit the adaptive pinning control
method to deal with this general case.

THEOREM 3. Let Assumption 1 hold, for given scalar δ*, if there exist Q > 0, ki > 0, and kdi > 0,
∀ i∈Sℓ, such that the following condition

* *ˆ ˆ2 2 2 ( ) 0
*

N N NI cA c I Q c B I
Q

j d dé ù+ + + +
<ê ú

-ë û
(28)

holds with Â = A − K1 and B̂ = B −K2, then the complex network (9) is asymptotically stable over
topology exchange (4) under the adaptive pinning controller
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i i i di i i
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ì
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where

ˆ( ) ( ) ( )i iv t c t x ta= -
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method to deal with this general case.

THEOREM 3. Let Assumption 1 hold, for given scalar δ*, if there exist Q > 0, ki > 0, and kdi > 0,
∀ i∈Sℓ, such that the following condition
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holds with Â = A − K1 and B̂ = B −K2, then the complex network (9) is asymptotically stable over
topology exchange (4) under the adaptive pinning controller
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and the updating law
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where ∀ó > 0 and α̂0 ∈ 0, 1 .

Proof. Here, the Lyapunov function is defined as
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where α̃(t)= α̂(t)−α *, x̃ j(t), and Q are same as the ones in (13). Then, it is obtained
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On the other hand, it is obtained that δ* is also important to the control of the complex network.
When it is unavailable, how to get the sufficient condition for the stabilization of complex
network is an interesting problem to be discussed. In the next, such a problem will be solved
by the following theorem.

THEOREM 4. Let Assumption 1 hold, for given scalar α*, if there exist Q > 0, ki > 0, and kdi > 0,
∀ i ∈Sℓ, such that the following condition
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holds, then the complex network (9) is asymptotically stable over topology exchange (4) under
the adaptive pinning controller
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where ξ is a positive constant and δ0 ≥ 0.

Proof. For this case, we choose the Lyapunov function as
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where δ̃ = δ̂ −δ *. Then, it is obtained
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It is guaranteed by Π3 < 0 which is equivalent to (33). This completes the proof.
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4. Numerical example

In this section, a numerical example is used to verify the effectiveness of the proposed methods.

Example 1. Consider a dynamical network consisting of 10 nodes that are identical Chua’s
circuits. A single Chua’s circuit is described by

1 1 2 1

2 1 2 3

3 2

( ( ))x x x x
x x x x
x x

J z

w

= - + -
= - +
= -

ì
ï
í
ï
î

&
&
&

(38)

where ϑ = 10, ω = 14.87, ζ(x1)=bx1 + a − b
2 (|x1 + 1| − | x1−1|), a = − 1.27, and b = − 0.68. It is known

that the Chua’s system has a chaotic attractor which is shown in Figure 1.

Figure 1. The chaotic attractor of Chua’s circuit.

It is obvious that system (38) is also be rewritten as

( )x Hx g x= +& (39)

where
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[ ]1( ) ( ) 0 0 Tg x xJz= -

Without loss of generality, matrix P here is selected as P = diag{1, ω, 1}. Next, we will check
whether there is a suitable η satisfying condition (11) in Assumption 1. It is obtained that

2
1

1( ( )) ( )
2
1 ( )
2
1                     

    

    

        

  ( )
2

                          

       

 

       

T T T

T T

T T
max

T

x P Hx g x x PH H P x ax

x H H x

H H x x

x x

J

l

h

+ £ + -

= +

£ +

=

% %

% %
(40)

where H̃ = PH + diag{−ϑa, 0, 0} and η = 1
2 λmax(H̃ + H̃ T )=9.0620. Thus, condition (11) is satisfied.

Then, the resulting network closed by controller (4) is described as
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Without loss of generality, the coupling matrices A and B are expressed by small-world and
scale-free networks, which are depicted in Figures 2 and 3, respectively.

New Stabilization of Complex Networks with Non-delayed and Delayed Couplings over Random Exchanges
http://dx.doi.org/10.5772/62504

43



Figure 2. The simulation of coupling matrix A.

Figure 3. The simulation of coupling matrix B.

When such coupling matrices exchange randomly, under conditions such that c = 50, α* = 0.85,
δ* = 3.6, and pinning fraction  = 0.8, based on Theorem 1, we have the corresponding parameters
computed as follows:

ki = 22.8791, kdi = 2.3840, i∈Sℓ, and
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1137.4 35.5 28.5 34.6 43.2 2.5 36.5 34.6 47.9 51.3
* 1074.4 34.8 35.9 41.1 9.1 9.7 4.9 54.9 53.3
* * 1.1085 33.8 42.2 32.2 32.1 6.1 2.7 50.3
* * * 1075.2 45.4 40.3 47.0 4.8 3.5 3.2
* * * * 1097.1 50.2 37.0 38.8 2

Q

- - - - - - - - -
- - - - - - - -

- - - - - - -
- - - - - -

- - - -
=

.6 6.6
* * * * * 1075.5 36.3 39.2 54.0 0.8
* * * * * * 1134.6 41.1 48.4 53.5
* * * * * * * 1074.8 54.7 51.9
* * * * * * * * 156.6 78.4
* * * * * * * * * 148.1
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Under the initial condition xi(t)= 0.1 0.1 0.2 T , where i = 1, 2, …, 10 and τ = 0.005, we have
the state response of the closed-loop network by the stochastic pinning controller (5) shown
in Figure 4 and is stable.

Figure 4. The state response of the complex network by controller (5).

Based on the results in this chapter, it is known that probability α* plays important roles in
the stabilization of complex networks, where non-delay and delay control gains ki and kdi are

very close to α*. Let ka = ki
2 + kdi

2, we have the relationship between parameters α* and ki, kdi

and ka given in Table 1, where the more detailed correlation between α* and ki, kdi and ka is
simulated in Figure 5. From Table 1 and Figure 5, it is seen that both gains of ki and kdi have
effects in the stabilization of the underlying complex network. It is also found that there is not
a phenomenon that larger α* results in larger kdi or smaller ki. This property further demon‐
strates the necessity of considering the probability distribution of non-delay and delay states
while the stabilization problem of delayed systems is considered. Particularly, it is seen that
when α* = 0, there are no solutions to ki and kdi. This is determined by condition (10), which is
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actually determined by the inherent property of pinning control of complex network with
delayed coupling.

α* 0 0.02 0.1 0.3 0.5 0.7 0.8 0.85 0.9 1

ki – 5108.5 1018.8 334.23 192.59 35.18 100.66 22.88 103.17 67.84

kdi – 22.91 25.56 34.07 45.33 5.67 86.89 2.38 204.64 4072.20

ka – 5108.55 1019.12 335.96 197.86 35.64 132.98 23.00 229.17 4072.77

Table 1. The relations between α* and ki, kdi, ka.

Figure 5. The simulation of correlation between α* and ki, kdi, ka.

When probability α* is uncertain and described as (20) such that α̃ =0.85 and μ = 0.1, by Theorem
2, one has the corresponding parameters computed as follows:

ki = 150.8308, kdi = 63.5059, i∈Sℓ, and

2648.1 3.9 10.0 2.2 2.8 27.6 7.2 8.0 23.6 30.5
* 2540.4 17.9 19.4 2.6 9.7 23.7 20.3 21.4 29.0
* * 2585.4 16.3 4.0 15.5 2.2 27.0 2.3 30.0
* * * 2542.1 5.4 0.3 2.9 29.5 0.4 6.8
* * * * 2555.6 3.5 2.0 8.6 0.3 1.6
* * * * * 2548.0 19.2 7.0 22

Q

- - - -
- - -

- -
- - -

- - - -
=

- - .3 0.8
* * * * * * 2586.5 3.9 22.4 19.9
* * * * * * * 2538.5 21.3 27.8
* * * * * * * * 118.3 55.8
* * * * * * * * * 0.1159
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ê ú-ê ú
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11

813.9 10.19 10.86 10.07 9.55 2.78 9.14 10.63 7.00 6.26
* 805.26 11.63 11.87 9.71 0.94 2.32 1.89 7.14 6.40
* * 810.49 11.34 10.21 11.38 10.06 2.69 0.19 6.32
* * * 805.28 10.36 9.80 9.56 2.88 0.04 0.67
* * * * 813.7

W

- - - - - - - - -
- - - - - - - -

- - - - - -
- - - -

=
8 9.40 9.63 8.92 0.04 0.15

* * * * * 804.55 11.81 9.13 7.08 0.08
* * * * * * 820.49 9.54 7.09 7.30
* * * * * * * 805.14 7.17 6.52
* * * * * * * * 7.17 2.97
* * * * * * * * * 7.36
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12

101.76 4.67 4.64 4.71 4.72 4.70 4.69 4.69 4.18 4.18
* 92.71 4.70 4.72 4.70 4.77 4.71 0.11 0.06 4.17
* * 101.91 4.68 4.73 4.74 4.76 4.71 4.06 4.18
* * * 92.62 4.75 4.74 0.08 4.77 0.02 4.10
* * * * 83.40 0.11 4.74

W

- - - - - - - - -
- - - - - - - -

- - - - - - -
- - - - -

- -
=

0.09 0.01 0.02
* * * * * 88.09 4.74 0.09 4.18 0.02
* * * * * * 92.76 4.68 4.16 0.05
* * * * * * * 83.62 0.02 4.15
* * * * * * * * 1.39 0.01
* * * * * * * * * 4.82
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22

209.59 0.33 1.05 0.23 0.36 2.42 0.62 0.64 1.96 2.52
* 200.26 1.49 1.64 0.35 0.76 1.93 1.91 1.71 2.38
* * 204.41 1.37 0.23 1.28 0.12 2.36 0.23 2.48
* * * 200.41 0.38 0.08 0.21 2.53 0.04 0.62
* * * * 201.24 0.20 0.28 0.69 0.02 0.1

W

- - - -
- - -

- -
- - - -
- - - -

=
4

.
* * * * * 200.74 1.57 0.56 1.81 0.07
* * * * * * 204.31 0.48 1.83 1.55
* * * * * * * 199.66 1.69 2.27
* * * * * * * * 8.06 3.82
* * * * * * * * * 7.90
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When probability α* is inaccessible, a kind of adaptive pinning control method may be
exploited. Let the corresponding parameters P, η, and δ* same to the above values, by Theorem
3, one could get the related parameters computed as follows: ki = 102.2258, kdi = 22.3035,
i∈Sℓ, and
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5134.0 28.2 82.8 40.8 112.6 153.4 36.7 62.2 50.0 54.5
* 5437.0 82.4 61.7 100.9 2.1 84.6 87.9 49.7 51.8
* * 5214.8 35.4 232.0 93.1 119.2 20.6 4.9 52.3
* * * 5516.0 173.6 12.1 303.0 24.9 5.2 2.3
* * * * 5644.9 59.9 107.9 2

Q

- - - - - -
- - - - - - -

- - - -
- - - - -

- - -
=

06.4 0.4 7.0
* * * * * 5431.7 195.1 196.0 47.2 0.6
* * * * * * 5589.6 123.3 46.6 50.7
* * * * * * * 5101.7 50.8 50.5
* * * * * * * * 143.9 66.4
* * * * * * * * * 133.0
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where ó is selected to be ó = 5. Under the same initial condition and topologies having couplings
exchanges, the simulations of the resulting complex network are given in Figures 6 and 7,
where Figure 6 is state response of the closed-loop system through the desired adaptive
pinning controller with form (29) and updating law with form (30), and Figure 7 is the curve
of estimation α(t) with α0=0.2.

Figure 6. The state response of the complex network by controller (29).
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Figure 7. The curve of estimation of α*.

From these simulations, it is said that the desired partially delay-dependent controllers in
terms of stochastic pinning controller (5) and adaptive controller (29) are both effective, where
the resulting complex network is stable even if the coupling matrices experience random
exchanges. On the other hand, when α is obtained exactly but δ* is unavailable, using Theorem
4, we have the corresponding parameters obtained as follows: ki = 30.6104, kdi = 16.7135, i∈Sℓ,
and

1648.4 36.0 31.3 34.5 39.7 2.5 36.2 37.5 48.8 52.0
* 1573.4 35.6 33.0 38.4 5.7 6.0 1.5 53.0 52.1
* * 1613.6 33.0 38.9 35.4 34.2 4.1 1.7 50.7
* * * 1574.9 41.5 40.3 42.6 0.5 2.0 5.0
* * * * 1603.5 45.1 37.1 36.6 1.5 5.

Q

- - - - - - - -
- - - - - - - -

- - - - - -
- - - - -

- - -
=

8
* * * * * 1576.6 34.3 44.8 43.6 0.3
* * * * * * 1643.7 39.6 45.3 52.0
* * * * * * * 1578.1 52.8 48.6
* * * * * * * * 334.8 75.6
* * * * * * * * * 308.0
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where ξ is selected to be ξ = 1.
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5. Conclusion

In this chapter, the stabilization problem of complex dynamical network with non-delayed
and delayed couplings exchanging randomly has been realized by a new kind of stochastic
pinning controller being partially delay-dependent, where the switching between the non-
delayed and delayed couplings is modeled by the related coupling matrices containing
uncertainties. Different from the traditional pinning methods, the designed pinning controller
contains non-delay and delay state terms simultaneously but occurs asynchronously with a
certain probability, respectively. Sufficient conditions for the stabilization of complex dynam‐
ical network over topology exchange are derived by the robust method and presented with
liner matrix inequities (LMIs). It has been shown that the probability distributions of non-delay
and delay states in addition to the bound of such uncertainties play very important roles in
the controller design. Moreover, when the probability is inaccessible, a kind of adaptive
partially delay-dependent controller is proposed to deal with this general case, where another
adaptive control problem in terms of unknown bound is also considered. Finally, the correct‐
ness and feasibility of the proposed method are verified by a numerical simulation.

Author details

Guoliang Wang* and Tingting Yan

*Address all correspondence to: glwang985@163.com

School of Information and Control Engineering, Liaoning Shihua University, Liaoning, China

References

[1] Strogatz S. Exploring complex networks. Nature. 2001;410(6825):268-276.

[2] Barabási A, Albert R. Emergence of scaling in random networks. Science.
1999;286(5439):509-512.

[3] Song C, Havlin S, Makse H. Self-similarity of complex networks. Nature.
2005;433(7024):392-395.

[4] Li Z, Duan Z, Chen G, Huang L. Consensus of multiagent systems and synchronization
of complex networks: a unified viewpoint. IEEE Transactions on Circuits and Systems
I: Regular Papers. 2010;57(1):213-224.

[5] Liu Y, Slotine J, Barabási A. Controllability of complex networks. Nature.
2011;473(7346):167-173.

Robust Control - Theoretical Models and Case Studies50



5. Conclusion

In this chapter, the stabilization problem of complex dynamical network with non-delayed
and delayed couplings exchanging randomly has been realized by a new kind of stochastic
pinning controller being partially delay-dependent, where the switching between the non-
delayed and delayed couplings is modeled by the related coupling matrices containing
uncertainties. Different from the traditional pinning methods, the designed pinning controller
contains non-delay and delay state terms simultaneously but occurs asynchronously with a
certain probability, respectively. Sufficient conditions for the stabilization of complex dynam‐
ical network over topology exchange are derived by the robust method and presented with
liner matrix inequities (LMIs). It has been shown that the probability distributions of non-delay
and delay states in addition to the bound of such uncertainties play very important roles in
the controller design. Moreover, when the probability is inaccessible, a kind of adaptive
partially delay-dependent controller is proposed to deal with this general case, where another
adaptive control problem in terms of unknown bound is also considered. Finally, the correct‐
ness and feasibility of the proposed method are verified by a numerical simulation.

Author details

Guoliang Wang* and Tingting Yan

*Address all correspondence to: glwang985@163.com

School of Information and Control Engineering, Liaoning Shihua University, Liaoning, China

References

[1] Strogatz S. Exploring complex networks. Nature. 2001;410(6825):268-276.

[2] Barabási A, Albert R. Emergence of scaling in random networks. Science.
1999;286(5439):509-512.

[3] Song C, Havlin S, Makse H. Self-similarity of complex networks. Nature.
2005;433(7024):392-395.

[4] Li Z, Duan Z, Chen G, Huang L. Consensus of multiagent systems and synchronization
of complex networks: a unified viewpoint. IEEE Transactions on Circuits and Systems
I: Regular Papers. 2010;57(1):213-224.

[5] Liu Y, Slotine J, Barabási A. Controllability of complex networks. Nature.
2011;473(7346):167-173.

Robust Control - Theoretical Models and Case Studies50

[6] Liu Z, Chen Z, Yuan Z. Pinning control of weighted general complex dynamical
networks with time delay. Physica A Statistical Mechanics and Its Applications.
2007;375(1):345-354.

[7] Ji D, Lee D, Koo J, Won S, Lee S, Ju H. Synchronization of neutral complex dynamical
networks with coupling time-varying delays. Nonlinear Dynamics. 2011;65(4):349-358.

[8] Wang Y, Wang H, Xiao J, Guan Z. Synchronization of complex dynamical networks
under recoverable attacks. Automatica. 2010;46(1):197-203.

[9] Liu J. Research on synchronization of complex networks with random nodes. Acta
Physica Sinica. 2013;62(4):221-229.

[10] Li C, Yu W, Huang T. Impulsive synchronization schemes of stochastic complex
networks with switching topology: average time approach. Neural Networks.
2014;54(6):85-94.

[11] Liu X, Chen T. Synchronization of complex networks via aperiodically intermittent
pinning control. IEEE Transactions on Automatic Control. 2015;26(10):2396-2407.

[12] Zhou J, Wu Q, Xiang L. Pinning complex delayed dynamical networks by a single
impulsive controller. IEEE Transactions on Circuits and Systems I: Regular Papers.
2011;58(12):2882-2893.

[13] Zhang W, Tang Y, Miao Q, Fang J. Synchronization of stochastic dynamical networks
under impulsive control with time delays. IEEE Transactions on Neural Networks and
Learning Systems. 2014;25(10):1758-1768.

[14] Cai S, Jia Q, Liu Z. Cluster synchronization for directed heterogeneous dynamical
networks via decentralized adaptive intermittent pinning control. Nonlinear Dynam‐
ics. 2015;82(1-2):689-702.

[15] Hou H, Zhang Q, Zheng M. Cluster synchronization in nonlinear complex networks
under sliding mode control. Nonlinear Dynamics. 2016; 83(1-2):739-749.

[16] Ma Q, Lu J. Cluster synchronization for directed complex dynamical networks via
pinning control. Neurocomputing. 2013;101(3):354-360.

[17] Zhang W, Li C, Huang T, et al. Stability and synchronization of memristor-based
coupling neural networks with time-varying delays via intermittent control. Neuro‐
computing. 2016;173:1066-1072.

[18] Feng J, Sun S, Xu C, Zhao Y, Wang J. The synchronization of general complex dynamical
network via pinning control. Nonlinear Dynamics. 2012;67(2):1623-1633.

[19] Cheng R, Peng M, Yu W. Pinning synchronization of delayed complex dynamical
networks with nonlinear coupling. Physica A: Statistical Mechanics and its Applica‐
tions. 2014;413(11):426-431.

New Stabilization of Complex Networks with Non-delayed and Delayed Couplings over Random Exchanges
http://dx.doi.org/10.5772/62504

51



[20] Wu X, Lu H. Hybrid synchronization of the general delayed and non-delayed complex
dynamical networks via pinning control. Neurocomputing. 2012;89(10):168-177.

[21] DeLellis P, Garofalo F. Novel decentralized adaptive strategies for the synchronization
of complex networks. Automatica. 2009;45(5):1312-1318.

[22] Yu W, DeLellis P, Chen G, Bernardo M, Kurths J. Distributed adaptive control of
synchronization in complex networks. IEEE Transactions on Automatic Control.
2012;57(8):2153-2158.

[23] Liang Y, Wang X, Eustace J. Adaptive synchronization in complex networks with non-
delay and variable delay couplings via pinning control. Neurocomputing.
2014;123:292-298.

[24] Reddy D, Sen A, Johnston G. Experimental evidence of time-delay-induced death in
coupled limit-cycle oscillators. Physical Review Letters. 2000;85(16):3381-3384.

[25] Lindsey W, Chen J. Mutual clock synchronization in global digital communication
networks. European Transactions on Telecommunications. 1996;7(1):25-37.

[26] Kozyreff G, Vladimirov A, Mandel P. Global coupling with time delay in an array of
semiconductor lasers. Physical Review Letters. 2000;85(18):3809-3812.

[27] Yu C, Qin J, Gao H. Cluster synchronization in directed networks of partial state
coupled linear systems under pinning control. Automatica. 2014;50(9):2341-2349.

Robust Control - Theoretical Models and Case Studies52



[20] Wu X, Lu H. Hybrid synchronization of the general delayed and non-delayed complex
dynamical networks via pinning control. Neurocomputing. 2012;89(10):168-177.

[21] DeLellis P, Garofalo F. Novel decentralized adaptive strategies for the synchronization
of complex networks. Automatica. 2009;45(5):1312-1318.

[22] Yu W, DeLellis P, Chen G, Bernardo M, Kurths J. Distributed adaptive control of
synchronization in complex networks. IEEE Transactions on Automatic Control.
2012;57(8):2153-2158.

[23] Liang Y, Wang X, Eustace J. Adaptive synchronization in complex networks with non-
delay and variable delay couplings via pinning control. Neurocomputing.
2014;123:292-298.

[24] Reddy D, Sen A, Johnston G. Experimental evidence of time-delay-induced death in
coupled limit-cycle oscillators. Physical Review Letters. 2000;85(16):3381-3384.

[25] Lindsey W, Chen J. Mutual clock synchronization in global digital communication
networks. European Transactions on Telecommunications. 1996;7(1):25-37.

[26] Kozyreff G, Vladimirov A, Mandel P. Global coupling with time delay in an array of
semiconductor lasers. Physical Review Letters. 2000;85(18):3809-3812.

[27] Yu C, Qin J, Gao H. Cluster synchronization in directed networks of partial state
coupled linear systems under pinning control. Automatica. 2014;50(9):2341-2349.

Robust Control - Theoretical Models and Case Studies52

Chapter 3

Event-Triggered Static Output Feedback Simultaneous
H∞ Control for a Collection of Networked Control Systems

Sheng-Hsiung Yang and Jenq-Lang Wu

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/63020

Abstract

This chapter considers the design of event-triggered static output feedback simultane‐
ous H∞ controllers for a collection of networked control systems (NCSs). It is shown that
conventional point-to-point wiring delayed static output feedback simultaneous H∞
controllers can be obtained by solving linear matrix inequalities (LMIs) with a linear matrix
equality (LME) constraint. Based on an obtained simultaneous H∞  controller, an L2-
gain event-triggered transmission policy is proposed for reducing the network usage. An
illustrative example is presented to verify the obtained theoretical results.

Keywords: networked control systems, simultaneous stabilization, event-triggered,
static output feedback, H∞ control.

1. Introduction

A networked control system (NCS) is a feedback control system with feedback loop closed
through a communication network. As the signal in an NCS is exchanged via a network, the
network-induced delay, packet dropout, and limited network bandwidth can degrade the
control performance. Many results have been proposed for dealing with these issues [1–5]. In
the early stages, the studies on NCSs were mainly based on periodic task models [4–6]. The
number of data packets to be transmitted will be large as the sampling period is small. This leads
to a conservative usage of network resources and possibly leads to a congested network traffic.
Therefore, how to design networked feedback controllers to achieve desired performance with
low network usage is an important issue in NCSs.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Recently, some sporadic task models have been presented in NCSs without degrading system
performance. An important approach is the event-triggered scheme [7–26]. In [7], the state
transmitting and the control signal updating events were triggered only if the error between
the current measured state and the last transmitted state is larger than a threshold condition.
In [8], event-triggered distributed NCSs with transmission delay were studied. Based on the
designed event-triggered policy, an allowable upper bound of the transmission delay was
derived. In [9], for distributed control systems, an implementation of event-triggering control
policy in sensor-actuator network was introduced. In [10], the authors concerned with the
design of event-triggered state feedback controllers for distributed NCSs with transmission
delay and possible packet dropout. Under the proposed triggering policy, the tolerable packet
delay and packet dropout were derived. In [11], an event-triggered control policy was
developed for discrete-time control systems. In [12], under stochastic packet dropouts, an
event-triggered control law for NCSs was calculated by the proposed algorithms. In [13], an
event-triggered scheme was developed for uncertain NCSs under packet dropout. In [14], an
event-based controller and a scheduler scheme were proposed for NCSs under limited
bandwidth. The NCSs were modeled as discrete-time switched control systems. A sufficient
condition for the existences of event-based controllers and schedulers was derived by the LMI
optimization approach. Recently, the event-triggered scheme has been extended to H∞ control
of NCSs for achieving the disturbance attenuation performance [15–21]. In [15] and [18], with
considering transmission delays, event-triggered H∞ state feedback controllers for NCSs were
proposed. Criterion for stability and criterion for co-designing both the controller gains and
the trigger parameters were derived. In [16], an event-triggered state feedback control scheme
was proposed for guaranteeing finite L2-gain stability of a linear control system. In [17], an
event-triggered state feedback H∞ controller for sampled-data control system was proposed.
In [19], the design of event-triggered networked feedback controllers for discrete-time NCS
was considered. In [20], based on Lyapunov-Krasovskii function, an event-triggered state
feedback H∞ controller was derived for NCSs under time-varying delay and quantization.

All the results in [7–20] are derived in the assumption that the system states are available for
measurement. For practical control systems, system states are often unavailable for direct
measurement. In the literature, only few results have been proposed for output-based event-
triggered NCSs [22–26]. In [22], a dynamic output feedback event-triggered controller for NCSs
was proposed for guaranteeing the asymptotic stability. In [23] and [24], by the passivity theory
approach, output-based event-triggered policies were derived for guaranteeing the satisfac‐
tion of L2-gain requirements of dynamic output feedback NCSs in the presence of time-varying
delays. The synthesis of controllers has not been discussed. In [25] and [26], under nonuniform
sampling, new output-based event-triggered H∞ transmission policies were proposed of NCSs
under time-varying transmission delays. Furthermore, the design of static output feedback H∞

controllers for NCSs was discussed. Conditions for the existence of H∞ controllers were
presented in terms of bilinear matrix inequalities. A non-convex minimization problem must
be solved to get a static output feedback H∞ controller.
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On the other hand, few results have been proposed in the literature for simultaneous stabili‐
zation of NCSs. The consideration of simultaneous stabilization is important since it allows us
to design highly reliable controllers that are able to accommodate possible element failures in
control systems. As the signal transmitted through network, the solvability of simultaneous
stabilization problem of NCSs is quite different to that of point-to-point wiring control systems.
Only few results have been proposed for relevant issues [21, 27]. In [27], based on the average
dwell time approach, the simultaneous stabilization for a collection of NCSs was considered.
A sufficient condition for guaranteeing simultaneous stabilization was proposed. In [21],
under the assumption that the network communication channel is ideal (no delay, no packet
dropout, and no quantization error), we considered the design of state feedback event-
triggered simultaneous H∞ transmission policies for a collection of NCSs. Under the proposed
event-triggered transmission policies, the L2-gain stability of all the closed-loop NCSs can be
guaranteeing under low network usages.

It is known that static output feedback controllers are preferred in practical applications since
their implementations are much easier than dynamic output feedback controllers. However,
the design of static output feedback controllers is much more difficult than dynamic ones. In
this chapter, we extend our previous work [21] to static output feedback case. Furthermore,
we consider the network-induced time-varying delay that has not been considered in [21]. We
develop an event-triggered static output feedback simultaneous H∞ transmission policy for a
collection of continuous-time linear NCSs under time-varying delay. It is shown that, under
mild assumptions, conventional point-to-point wiring delayed static output feedback simul‐
taneous H∞ controllers can be obtained by solving LMIs with a LME constraint. Based on the
obtained static output feedback simultaneous H∞ controllers, an event-triggered transmission
policy was derived for reducing network usage. Different to the results presented in [25] and
[26] that only considering the design of an event-triggered H∞ controller for a single system,
this chapter considers the design of a fixed event-triggered H∞ controller that is able to L2-
stabilize a collection of NCSs simultaneously. By the proposed method, highly reliable NCSs
that are able to accommodate possible element failures with low network usage can be
designed. Even simplifying our results to the single system case, our method for designing
static output feedback H∞ controllers is quite different from those in [25] and [26]. In [25] and
[26], a non-convex minimization problem must be solved for getting a static output feedback
H∞ controller. Moreover, the obtained controller can only guarantee uniform ultimate
boundedness but not internal stability. In our approach, (simultaneous) static output feedback
H∞ controllers are obtained by solving LMIs with a LME constraint. Moreover, internal
stabilities of the closed-loop NCSs can be guaranteed.

2. Problem formulation and preliminaries

In this section, the problem to be solved is formulated and some preliminaries are given. For
simplifying the expressions, we use the same notations x, u, w, and z to denote the states, control
inputs, exogenous inputs, and the controlled outputs of all considered systems.
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2.1. Problem formulation

Consider a collect of continuous-time control systems:

1 2

1 11 12

2

( ) ( ) ( ) ( ),      1,2,...,

( ) ( ) ( ) ( )

( ) ( )

j j j

j j j

j

x t A x t B w t B u t j N
z t C x t D w t D u t
y t C x t

= + + =

= + +

=

&

(1)

where x(t)∈ R n is the system state, u(t)∈ R m is the control input, z(t)∈ R s is the controlled
output, y(t)∈ R l is the measured output, w(t)∈ R r  is the exogenous input, and
Aj,  B1 j,  B2 j,  C1 j,  D11 j,  D12 j, and C2 jare constant matrices with appropriate dimensions.
Here, for convenience, we assume C2 j =C2, j = 1,2,…,N. Suppose that (Aj,B2 j) are stabilizable

and (C2,Aj) are detectable for each j ∈{1, 2..., N }.Furthermore, assume that γ 2I − D11 j
T D11 j >0 for

all j ∈{1, 2..., N }.

In this chapter, we consider the case that the feedback loop of system (1) is closed through a
real-time network, but not by the conventional point-to-point wiring. Suppose that the sensor
node keeps measuring the output signal y, but not all the sampled data need to be sent to the
controller node. The data transmission at the sensor node is not periodic. Let ti (i = 1,2,…) be
the time that the i-th transmission occurs at the sensor nodes. In this case, the controller node
receives the networked feedback data y(ti) and updates the control signal at time ti + τi, i = 1,2,
…, where τi ∈ τd min, τd max  is the transmission delay. That is,

1 1( ) ( ), , 1 2i i i i iu t Fy t t t t i = , ,t t+ += + £ < + K (2)

where F is the feedback gain to be designed later. With the same controller (2), the closed-loop
systems are:

1 2 2 1 1

1 11 12 2

( ) ( ) ( ) ( ),      ,  1,2, ,

( ) ( ) ( ) ( )
j j j i i i i i

j j j i

x t A x t B w t B FC x t t t t j N
z t C x t D w t D FC x t

t t+ += + + + £ < + =

= + +

& K
(3)

If the measured data is not critical for L2-gain stability, it will not be sent for saving the network
usage. In this case, the controller node does not update the control signal. If the measured data
is critical, it will be sent through the network to the controller node, and the controller will
update the control signal.

Our main goal is to design an event-triggered transmission rule to determine whether the
currently measured data should be sent to the controller node, such that, under the transmis‐

Robust Control - Theoretical Models and Case Studies56



2.1. Problem formulation

Consider a collect of continuous-time control systems:

1 2

1 11 12

2

( ) ( ) ( ) ( ),      1,2,...,

( ) ( ) ( ) ( )

( ) ( )

j j j

j j j

j

x t A x t B w t B u t j N
z t C x t D w t D u t
y t C x t

= + + =

= + +

=

&

(1)

where x(t)∈ R n is the system state, u(t)∈ R m is the control input, z(t)∈ R s is the controlled
output, y(t)∈ R l is the measured output, w(t)∈ R r  is the exogenous input, and
Aj,  B1 j,  B2 j,  C1 j,  D11 j,  D12 j, and C2 jare constant matrices with appropriate dimensions.
Here, for convenience, we assume C2 j =C2, j = 1,2,…,N. Suppose that (Aj,B2 j) are stabilizable

and (C2,Aj) are detectable for each j ∈{1, 2..., N }.Furthermore, assume that γ 2I − D11 j
T D11 j >0 for

all j ∈{1, 2..., N }.

In this chapter, we consider the case that the feedback loop of system (1) is closed through a
real-time network, but not by the conventional point-to-point wiring. Suppose that the sensor
node keeps measuring the output signal y, but not all the sampled data need to be sent to the
controller node. The data transmission at the sensor node is not periodic. Let ti (i = 1,2,…) be
the time that the i-th transmission occurs at the sensor nodes. In this case, the controller node
receives the networked feedback data y(ti) and updates the control signal at time ti + τi, i = 1,2,
…, where τi ∈ τd min, τd max  is the transmission delay. That is,

1 1( ) ( ), , 1 2i i i i iu t Fy t t t t i = , ,t t+ += + £ < + K (2)

where F is the feedback gain to be designed later. With the same controller (2), the closed-loop
systems are:

1 2 2 1 1

1 11 12 2

( ) ( ) ( ) ( ),      ,  1,2, ,

( ) ( ) ( ) ( )
j j j i i i i i

j j j i

x t A x t B w t B FC x t t t t j N
z t C x t D w t D FC x t

t t+ += + + + £ < + =

= + +

& K
(3)

If the measured data is not critical for L2-gain stability, it will not be sent for saving the network
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sion delay, all possible closed-loop systems in (3) are internally stable and satisfy, for a given
constant γ >0 and for any T >0 and w∈ L 2 0, T ,

2
0 00 0

( ) ( )d ( ) ( ,for s)d ome
T TT Tz t z t t w t w t tg g g£ <ò ò (4)

Note that, a practical control system may have several different dynamic modes since it may
have several different operating points (please see e.g., the ship steering control problem
considered in [28] ). On the other hand, for achieving higher reliability of a practical control
system, we may want to design a controller to accommodate possible element failures. With
considering possible element failures, a control system can have several different dynamic
modes (see e.g., the reliable control problem for active suspension systems considered in [29]).
The problem we considered has a practical importance owing to its high applicability in
designing robust and/or reliable controllers.

2.2. Preliminaries

The following Lemmas will be used later.

Lemma 1 [30]: For any vectors X ,Y ∈R n and any positive definite matrix G∈R n×n, the
following inequality holds:

-£ + +
12 T T TX Y X GX Y G Y

Lemma 2 [31]: For any given matrices Π <0 and Φ =ΦT , and any scalar λ, the following
inequality holds:

2 12l l -FPF £ - F - P +

For convenience, define xt(s)= x(t + s),  ∀ s∈ −τmax, 0 .

Lemma 3 (Lyapunov–Krasovskii Theorem) [32]: Consider a time-delay system:

( ) ( ) ( ( )),  0dx t Ax t A x t t tt= + - " ³& (5)

with τ(t)∈ 0, τmax , ∀ t ≥0. Suppose that x(t)=ψ(t),  ∀ t∈ −τmax, 0 . If there exists a function

max: ([ ,0], )nV C R Rt- ®
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and a scalar ε >0, such that, for all φ∈C( −τmax, 0 , R n), V (φ)≥ε φ(0) 2,  and, along the
solutions of (5),

2d ( ) (0) ,
d

t

t

x

V x
t j

e j
=

£ -

then the system (5) is asymptotically stable. ■

3. Main results

We first consider the design of the event-triggered transmission policy under the assumption
that we have a delayed simultaneous H∞ controller, and then show how to derive simultaneous
H∞ controller under transmission delay.

3.1. Event-triggered transmission policy for NCSs under time-varying delay

Define the equivalent time-varying delay

1 1( ) ,  ,  1,2, .+ += - + £ < + = ¼i i i i iτ t t t t τ t t τ i

It is clear that

min max( ) ,  0,and 1almost everywhereÎé ù" ³ =ë û &τ t τ τ t τ (6)

where τmin ≡min
i∈N

{τi}=τd min and τmax ≡max
i∈N

{ti+1 − ti + τi+1}=max
i∈N

{ti+1 − ti} + τd max. Then, the systems in

(3) can be equivalently described as

1 2 2

1 11 12 2
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j j j

j j j

x t A x t B w t B FC x t t j N
z t C x t D w t D FC x t t

t

t
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= + + -
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(7)

To derive an event-triggered transmission policy in the presence of transmission delay, assume
that, for the systems in (1), we have a conventional delayed static output feedback simultane‐
ous H∞ controller:

( ) ( ( ))u t Fy t tt= - (8)
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which is such that all of the possible closed-loop systems in (7) are internally stable and satisfy
the condition (4) for τ(t)∈ τmin,  τmax . How to get such a delayed static output feedback
simultaneous H∞ controller will be discussed later.

Define the error signal:

1( ) ( ) ( ),i i ie t y t y t t t t += - £ < (9)

We have the following results.

Theorem 1: Consider the systems in (1). Suppose that the controller (8) is such that all the closed-
loop systems in (7) are internally stable and satisfy the condition (4). If there exist matrices
Pj >0, Qj >0, G1 j, G2 j, G3 j, and G4 j, j=1,2,…,N, of appropriate dimensions, and scalars εj >0, j=1,2,
…,N, satisfying the following LMIs:
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2
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(10)

where

1 1 2 2 1 1
T T T T

j j j j j j j j jA P P A C C C C G GF = + + + + +

2 2 1 12 2 1 2
T T

j j j j j j jP B FC C D FC G GX = + - +

2 12 12 2 2 2
T T T T

j j j j jC F D D FC G GS = - -

then all the networked closed-loop systems in (7) are internally stable and satisfy the condition
(4) if the following condition holds:

1{1,2,..., }

1( ) min ( ) , i ij N
j

e t y t t t t
e +Î

< × £ < (11)

Proof: For the systems in (7), choose the candidate storage functions:
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max 2 2 2 2( ( )) ( ( ))T T T T
j jx t t C F B QB FC x t tt t t+ - -

max 1 max 2 22 ( ) ( ) 2 ( ) ( ( ))T T T T
j j j j j jx t A Q B w t x t A Q B FC x t tt t t+ + -

max 2 2 12 ( ( )) ( )T T T T
j j jx t t C F B Q B w tt t+ -

Robust Control - Theoretical Models and Case Studies60

( )2 2( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )d
i

tT T T T
j j i t

x t C C x t e t e t t G x t x t xe h q q+ - + - - ò & (12)

From the definition of τmax, it is clear that τmax≥ t − ti as t∈ ti + τi,  ti+1 + τi+1). As a result,

max

( ) ( )d ( ) ( )d .
i

t tT T
j jt t

x Q x x Q x
t

q q q q q q
-

- £ -ò ò& & & & (13)

By (12), (13), and the Jensen integral inequality [33], we can show that

2 2 1 12 2 1 2 3 1 4 1 11

2 12 12 2 2 2 3 4 2 12 11

2
11 11

*ˆ ( ) ( )
* * 0
* * *

T T T T T
j j j j j j j j j j j j j

T T T T T T T T T
j j j j j j j jT

dj
j

T
j j

P B FC C D FC G G G P B G C D
C F D D FC G G G G C F D D

H t t
I

D D r I

h h
e

é ùF + - + + +
ê ú- - - - +ê ú£ ê ú-
ê ú

-ê úë û

max max 1 1( ) ( ) ( ) ( )T T T T
j j j j j jx t A Q A x t w t B Q B w tt t+ +

max 2 2 2 2( ( )) ( ( ))T T T T
j j jx t t C F B Q B FC x t tt t t+ - -

max 1 max 2 22 ( ) ( ) 2 ( ) ( ( ))T T T T
j j j j j jx t A Q B w t x t A Q B FC x t tt t t+ + -

1
max 2 2 1 max2 ( ( )) ( ) ( ) ( )T T T T T T

j j j j j jx t t C F B Q B w t t G Q G tt t t h h-+ - + (14)

Then, by Schur complement and after some manipulations, it can be proved that if (10) holds,
we have

dj iĤ (x(t),x(t ),e(t),w(t)) for all (t) 0< h ¹

.

That is, under (11),

T 2 T
jV (x(t)) z (t)z(t) w (t)w(t) 0, (t) 0+ - g < h ¹& (15)

This shows that the j-th closed-loop system in (7) satisfies condition (4). To prove the internal
stability, by letting w(t)=0 in (15) yields (note that j can be any number belonging to {1,2,…,N})
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( ( )) ( ) ( ) 0, ( ) 0.T
jV x t z t z t x t< - £ " ¹&

That is, the j-th closed-loop system is internally stable. Note that j can be any number belonging
to {1,2,…,N}. The above proof shows that all the closed-loop systems are internally stable and
satisfy condition (4). ■

Remark 1: Note that condition (11) is checked at the sensor node but not the controller node.
In practice, the transmission event is triggered by the condition

{1,2,..., }

1( ) min ( )
j N

j

e t y th
eÎ

³ × ×

for some constant 0<η <1. In general we set η near to 1. ■

3.2. Synthesis of static output feedback delayed simultaneous H∞ controllers

In this subsection, we introduce how to derive a conventional delayed simultaneous static
output feedback H∞ controller (8) such that all of the closed-loop systems (7) are internally
stable and satisfy the condition (4). We have the following results.

Lemma 4: Consider the systems in (1). For given positive scalars λ and τmax, if there exist
matrices S >0, Q >0, T1 j, T2 j, T3 j, j=1,2,…,N, and matrices M  and L  of appropriate dimensions,
satisfying the following LMIs and LME :

( )

1 3 1 11 max 1 max 1

2 2 3 2 12 11 max 2 2 2 12 max 2
2

11 11 max 1 max 3
1

max

2 1
max

*
* * 0

0* * * 0 0
* * * * 0

* * * * * 2

T T T T
j j j j j j j j j

T T T T T T T T T T T
j j j j j j j j

T T
j j j j

B T SC D SA SC T
T T T C L D D C L B C L D T

D D r I B T
Q

I

S Q

z t t
t t
t t
t

t l l

-

-

é ùL + +
ê ú- - - +ê ú
ê ú-
ê ú <-ê ú
ê ú-ê ú
ê ú- +ë û

(16)

=2 2MC C S (17)

where Λj =S Aj
T + AjS + T1 j + T1 j

T  and ζj = B2 j L C2 −T1 j + T2 j
T , then the feedback law (8) with

F = L M −1 is a simultaneous H∞ controller for the systems in (1).

Proof: Let P =S −1. Choose a candidate storage function
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11 11 max 1 max 3
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*
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0* * * 0 0
* * * * 0
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T T T T
j j j j j j j j j

T T T T T T T T T T T
j j j j j j j j

T T
j j j j
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S Q
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t t
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ê ú <-ê ú
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=2 2MC C S (17)

where Λj =S Aj
T + AjS + T1 j + T1 j

T  and ζj = B2 j L C2 −T1 j + T2 j
T , then the feedback law (8) with

F = L M −1 is a simultaneous H∞ controller for the systems in (1).

Proof: Let P =S −1. Choose a candidate storage function
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max

0
( ( )) ( ) ( ) ( ) ( )

tT T

t
V x t x t Px t x Qx d d

t s
q q q s

- +
= + ò ò & &

and define

1 11 12 1 11 12

2

( ( ), ( )) ( ( )) ( ( ) ( ) ( )) ( ( ) ( ) ( ))

                           ( ) ( ),     1,2,..., .

T
dj j j j j j j

T

H x t w t V x t C x t D w t D u t C x t D w t D u t

w t w t j Ng

º + + + + +

- =

&

Define

1

2

3

( )
( ) ( ( )) ,

( )

j

j j

j

x t PT P
t x t t T PT P

w t T P
m t

é ùé ù
ê úê ú= - = ê úê ú
ê úê úë û ë û

Then, along the trajectories of the j-th system,

( )
max

2
max

( )

2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

             2 ( ) ( ) ( ( )) ( )

tT T T T T
dj t

tT
j t t

H x t Px t z t z t w t w t x Qx d x t Qx t

t T x t x t t x d

t

t

g q q q t

m t q q

-

-

= + - - +

+ - - -

ò

ò

& & & & &

&

( )1 2 2 1 12 ( ) ( ) ( ) ( ( )) ( ) ( )T T T
j j j j jx t P A x t B w t B FC x t t x t C C x tt= + + - +

1 12 2 2 12 12 22 ( ) ( ( )) ( ( )) ( ( ))T T T T T T
j j j jx t C D FC x t t x t t C F D D FC x t tt t t+ - + - -

11 11 1 11 2 12 11( ) ( ) 2 ( ) ( ) 2 ( ( )) ( )T T T T T T T T
j j j j j j jw t D D w t x t C D w t x t t C F D D w tt+ + + -

max

2
max( ) ( ) ( ) ( ) ( ) ( )

tT T T T
j jt

r w t w t x Qx d x t A QA x t
t

q q q t
-

- - +ò & &

max 1 1 max 2 2 2 2( ) ( ) ( ( )) ( ( ))T T T T T T
j j j jw t B QB w t x t t C F B QB FC x t tt t t t+ + - -

max 1 max 2 22 ( ) ( ) 2 ( ) ( ( ))T T T T
j j j jx t A QB w t x t A QB FC x t tt t t+ + -
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( )max 2 2 1 ( )
2 ( ( )) ( ) 2 ( ) ( ) ( ( )) ( )

tT T T T T
j j j t t

x t t C F B QB w t t T x t x t t x d
t

t t m t q q
-

+ - + - - - ò & (18)

By Lemma 1 and the Jensen integral inequality [33], we can show that

1
max( ) ( )

2 ( ) ( )d ( ) ( ) ( ) ( )d
t tT T T T

j j jt t t t
t T x t T Q T t x Qx

t t
m q q t m m q q q-

- -
- £ +ò ò& & & (19)

As a result,

( )1 2 2 1 12 ( ) ( ) ( ) ( ( )) ( ) ( )T T T
dj j j j j jH x t P A x t B w t B FC x t t x t C C x tt£ + + - +

1 12 2 2 12 12 22 ( ) ( ( )) ( ( )) ( ( ))T T T T T T
j j j jx t C D FC x t t x t t C F D D FC x t tt t t+ - + - -

11 11 1 11 2 12 11( ) ( ) 2 ( ) ( ) 2 ( ( )) ( )T T T T T T T T
j j j j j jw t D D w t x t C D w t x t t C F D D w tt+ + + -

2

( )
( ) ( ) ( ) ( )d

tT T

t t
r w t w t x Qx

t
q q q

-
- - ò & &

max max 1 1( ) ( ) ( ) ( )T T T T
j j j jx t A QA x t w t B QB w tt t+ +

max 2 2 2 2 max 1( ( )) ( ( )) 2 ( ) ( )T T T T T T
j j j jx t t C F B QB FC x t t x t A QB w tt t t t+ - - +

max 2 2 max 2 2 12 ( ) ( ( )) 2 ( ( )) ( )T T T T T T
j j j jx t A QB FC x t t x t t C F B QB w tt t t t+ - + -

1
max ( )

2 ( ) ( ) 2 ( ) ( ( )) ( ) ( ) ( ) ( )d
tT T T T T

j j j j t t
t T x t t T x t t t T Q T t x Qx

t
m m t t m m q q q-

-
+ - - + + ò & &

2 2 1 12 2 1 2 1 3 1 11

2 12 12 2 2 2 3 2 12 11
2

11 11

( ) * ( )
* *

T T T T
j j j j j j j j j j

T T T T T T T T T
j j j j j j j

T
j j

PB FC C D FC PT P PT P PB PT C D
t C F D D FC PT P PT P PT C F D D t

D D r I
m m

é ùQ + - + + +
ê ú= - - - +ê ú
ê ú-ë û

max max 1 1( ) ( ) ( ) ( )T T T T
j j j jx t A QA x t w t B QB w tt t+ +
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( )max 2 2 1 ( )
2 ( ( )) ( ) 2 ( ) ( ) ( ( )) ( )

tT T T T T
j j j t t

x t t C F B QB w t t T x t x t t x d
t

t t m t q q
-

+ - + - - - ò & (18)

By Lemma 1 and the Jensen integral inequality [33], we can show that

1
max( ) ( )

2 ( ) ( )d ( ) ( ) ( ) ( )d
t tT T T T

j j jt t t t
t T x t T Q T t x Qx

t t
m q q t m m q q q-

- -
- £ +ò ò& & & (19)

As a result,
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dj j j j j jH x t P A x t B w t B FC x t t x t C C x tt£ + + - +

1 12 2 2 12 12 22 ( ) ( ( )) ( ( )) ( ( ))T T T T T T
j j j jx t C D FC x t t x t t C F D D FC x t tt t t+ - + - -

11 11 1 11 2 12 11( ) ( ) 2 ( ) ( ) 2 ( ( )) ( )T T T T T T T T
j j j j j jw t D D w t x t C D w t x t t C F D D w tt+ + + -

2

( )
( ) ( ) ( ) ( )d

tT T

t t
r w t w t x Qx

t
q q q

-
- - ò & &

max max 1 1( ) ( ) ( ) ( )T T T T
j j j jx t A QA x t w t B QB w tt t+ +

max 2 2 2 2 max 1( ( )) ( ( )) 2 ( ) ( )T T T T T T
j j j jx t t C F B QB FC x t t x t A QB w tt t t t+ - - +

max 2 2 max 2 2 12 ( ) ( ( )) 2 ( ( )) ( )T T T T T T
j j j jx t A QB FC x t t x t t C F B QB w tt t t t+ - + -

1
max ( )

2 ( ) ( ) 2 ( ) ( ( )) ( ) ( ) ( ) ( )d
tT T T T T

j j j j t t
t T x t t T x t t t T Q T t x Qx

t
m m t t m m q q q-

-
+ - - + + ò & &

2 2 1 12 2 1 2 1 3 1 11

2 12 12 2 2 2 3 2 12 11
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11 11

( ) * ( )
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T T T T
j j j j j j j j j j

T T T T T T T T T
j j j j j j j
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j j

PB FC C D FC PT P PT P PB PT C D
t C F D D FC PT P PT P PT C F D D t

D D r I
m m

é ùQ + - + + +
ê ú= - - - +ê ú
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max max 1 1( ) ( ) ( ) ( )T T T T
j j j jx t A QA x t w t B QB w tt t+ +
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max 2 2 2 2 max 1( ( )) ( ( )) 2 ( ) ( )T T T T T T
j j j jx t t C F B QB FC x t t x t A QB w tt t t t+ - - +

max 2 2 max 2 2 12 ( ) ( ( )) 2 ( ( )) ( )T T T T T T
j j j jx t A QB FC x t t x t t C F B QB w tt t t t+ - + -

1
max ( ) ( )T T

j jt T Q T tt m m-+

( ) ( )T
jt tm mº W

where

1 1 1 1
T T T

j j j j j j jPA A P C C PT P PT PQ = + + + +
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T T T T
j 2 j 2 1j 12 j 2 1j 2 j 1j 3 j 1j 11j

T T T T T T T T
j 2 12 j 12 j 2 2 j 2 j 3 j 2 12 j 11j
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11j 11j
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2 j 1j max j j
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+ tê ú
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tê úë û

By noting (17) and the Schur complement, we know that Ωj <0 if Ω̂ j <0, where

1 3 1 11 max 1 max 1

2 2 3 2 12 11 max 2 2 2 12 max 2
2

11 11 max 1 max 3
1

max

max

*
* * 0ˆ
* * * 0 0
* * * * 0
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D D r I B T P
Q

I
Q

d t t
t t

t t
t

t

-

é ùY + +
ê ú- - - +ê ú
ê ú-

W = ê ú
-ê ú

ê ú-ê ú
ê ú-ë û

with
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T T
j j j 1j 1j

T
j 2 j 2 1j 2 j

PA A P PT P PT P

PB FC PT P PT P

Y = + + +

d = - +

Moreover, Ω̂ j <0 if and only if Ω̃ j <0, where Ω̃ j is the matrix obtained by pre- and post-
multiplying Ω̂ j by diag{S S I I I S }:

1 3 1 11 max 1 max 1

2 2 3 2 12 11 max 2 2 2 12 max 2
2

11 11 max 1 max 3
1

max

max

*
* * 0
* * * 0 0
* * * * 0
* * * * *

T T T T
j j j j j j j j j

T T T T T T T T T T T
j j j j j j j j
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j j j j
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S S S S B T SC D SA SC T
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d t t
t t

t t
t

t

-

é ùY + +
ê ú- - - +ê ú
ê ú-

W = ê ú
-ê ú

ê ú-ê ú
ê ú-ë û

%

By Lemma 2, it follows that Ω̃ j <0 (and then Ωj <0) if (16) and (17) hold. This proves that the
feedback law (8) with F = L M −1 is a simultaneous static output feedback H∞ controller for all
the systems in (1). ■

4. An illustrative example

Suppose that a control system operates at three different operating points. The dynamics at
these operating points are different. Suppose that it behaves in the following three possible
modes:

1 2

1 11 12

2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),  1,2,3
( ) ( )

j j j

j j j

x t A x t B w t B u t
z t C x t D w t D u t j
y t C x t

= + +
= + + =
=

&
(20)

where

[ ]

1 11 21

11 111 121

2

0.211 -1.471 -0.361 0.696 -1.824
-0.585 -1.683 0.729 ,  0.385 ,  -1.182 ,  
-1.811 0.64 -2.287 0.176 2.564

0.686 -0.421 -2.211 ,  1.164, 0.665

0.657 0.265 -1.288
-0.439 0

A B B

C D D

C

é ù é ù é ù
ê ú ê ú ê ú= = =ê ú ê ú ê ú
ê ú ê ú ê úë û ë û ë û
= = =

= ,
.336 -0.246

é ù
ê ú
ë û
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By Lemma 2, it follows that Ω̃ j <0 (and then Ωj <0) if (16) and (17) hold. This proves that the
feedback law (8) with F = L M −1 is a simultaneous static output feedback H∞ controller for all
the systems in (1). ■

4. An illustrative example

Suppose that a control system operates at three different operating points. The dynamics at
these operating points are different. Suppose that it behaves in the following three possible
modes:
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We want to design a static output feedback event-triggered H∞ controller that is able to L2-
stabilize the system at all the three possible operating points with γ =7. Suppose that the
minimal and maximal transmission delays are τd min =0.1ms and τd max =0.45ms, respectively. We
first need to derive a conventional simultaneous static output feedback H∞ controller for all
the modes in (20) and then, based on the obtained controller, we can obtain an event-triggered
transmission policy.

Given λ =0.6 and τmax =0.1 s, by solving (16) and (17) we can get a simultaneous H∞ controller

[ ]( ) ( ( )) 0.885 -1.559 ( ( ))u t Fy t t y t tt t= - = -

With this controller, by solving (10) we can get solutions:

0 01 2

112.141 -30.286 -9.24 60.909 -1.957 8.043
P -30.286 113.675 14.086 P -1.957 42.793 -1.25   

-9.24 14.086 47.207 8.043 -1.25 71.935

é ù é ù
ê ú ê ú= > = >ê ú ê ú
ê ú ê úë û ë û

0 03 1

129.678 -14.921 -18.771  297.0174 -97.1611 42.8020
P -14.921 63.544 -18.135 Q -97.1611 345.4888 58.5580

-18.771 -18.135 40.175 42.8020 58.5580 134.3278

é ù é ù
ê ú ê ú= > = >ê ú ê ú
ê ú ê úë û ë û
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0 02 3

157.5111 14.4987 6.6046 282.727 -17.226 -12.768
Q 14.4987 120.8614 11.6833 Q -17.226 61.7053 -10.87

6.6046 11.6833 117.3282 -12.768 -10.87 103.349

é ù é ù
ê ú ê ú= > = >ê ú ê ú
ê ú ê úë û ë û

11 21

-217.2794 119.9043 11.8195 217.253 -42.004 10.029
G 39.8052 12.3064 -28.9204 G 19.619 73.242 0.249

46.2486 -53.3922 -72.2522 -88.031 31.144 156.995

é ù é ù
ê ú ê ú= =ê ú ê ú
ê ú ê úë û ë û

31 41

-9.24 14.086 47.207
G G -40.504 9.752 16.069

60.91 -1.957 42.793
é ù

é ù= =ê ú ë û
ë û

12 22

-134.794 35.386 65.797 170.595 -39.806 -49.551
G 73.976 -46.104 -60.232 G -7.746 56.83 17.2

118.174 -34.092 -46.002 -21.124 16.814 140.097

é ù é ù
ê ú ê ú= =ê ú ê ú
ê ú ê úë û ë û

32 42

-9.2402 14.0864 47.2070
G G -7.001 -8.089 21.297

60.9096 -1.9572 42.7932
é ù

é ù= =ê ú ë û
ë û

13 23

-150.599 38.683 -6.694 258.559 -32.327 -49.367
G 69.354 -43.986 -33.385 G -40.332 58.951 15.119

126.071 -47.435 -130.298 -142.399 35.247 141.214

é ù é ù
ê ú ê ú= =ê ú ê ú
ê ú ê úë û ë û

33 43

-9.24 14.086 47.207
G G -78.396 1.269 45.971

60.91 -1.957 42.793
é ù

é ù= =ê ú ë û
ë û

1 2 338.2561, 72.7127, and 72.8613e e e= = =

According to Theorem 1 and Remark 1, the event-triggered policy is (let η =0.99):

j {1,2 ,3}
j

1e(t) min y(t) 0.1116 y(t)
Î

³ h× × =
e (21)
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With the triggering condition (21), the sensor node can determine whether the currently
measured data must be transmitted. If the currently measured data is such that condition (21)
is violated, it will be discarded for reducing network usage. If the measured data is such that
condition (21) holds, it will be sent to the controller node for updating the control signal.

By simulation, for guaranteeing the simultaneous L2–gain stability, the number of transmission
events at the sensor node of the first system is 64 in the first 10 s. The average inter-transmitting
time is 0.1563 s. The number of transmission events at the sensor node of the second system is
585. The average inter-transmitting time is 0.0171 s. The number of transmission events at the
sensor node of the third system is 595. The average inter-transmitting time is 0.0168 s. Figures
1–3 are the responses of the event-triggered and non-event-triggered closed-loop systems
under the same initial condition x(0)= 1 -1 1 T  and the same exogenous disturbance
w(t)= (3sin(8t) + 2cos(5t))× e −0.5t (shown in Figure 4). It is clear that the proposed event-triggered
policy guarantees simultaneous L2–gain stability under low network usages. Moreover, it can
be seen that the responses of closed-loop systems controlled by the event-triggered controller
and the non-event-triggered controller are almost the same. That is, the obtained event-
triggered controller, in a very low network usage rate, can perform almost the same control
performance as the conventional non-event-triggered controller. A low network usage rate
will in general lead to a good quality of network service.

Figure 1. Responses of the first closed-loop NCS.
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Figure 2. Responses of the second closed-loop NCS.

Figure 3. Responses of the third closed-loop NCS.
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Figure 4. Disturbance input.

5. Conclusions

In this chapter, we develop an event-triggered static output feedback simultaneous H∞

transmission policy for NCSs under time-varying transmission delay. With the proposed
method, we do not need to switch controllers or event-triggered policies for an NCS with
several different operating points. Moreover, the reliability of NCSs can be improved as
possible element failures can be accommodated. The implementation of the obtained event-
triggered simultaneous H∞ controller is easy as it is in the static output feedback framework.
One weakness of our result is that the conditions for the existence of static output feedback
simultaneous H∞ controllers are represented in terms of LMIs with a LME constraint. Standard
LMI tools cannot be directly applied to find the solutions. Possible issues for further study
include finding less conservative event-triggered transmission policies, considering the
possibility of packet dropouts, and relaxing the continuous monitoring requirement at the
sensor node by replacing the event-triggered scheme with a self-triggered one.
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Nomenclatures

R n real vector of dimension n.

R n×m real n ×m matrix.

∥⋅∥  the Euclidean vector norm.

M T (resp., M −1) the transpose (resp., inverse) of matrix M.

M >0 (resp., M ≥0) the matrix M is positive definite (resp., positive semidefinite).
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diag{⋯ } the block diagonal matrix.
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Abstract

This chapter deals with sliding mode application in control of an induction motor (IM)
torque, speed, and position. Classical, direct approaches to control mentioned variables
are described. Their drawbacks are presented and analyzed. Direct control structures are
then compared with  the  proposed cascade sliding mode control  structures.  These
structures allow to control all of the IM variables effectively, simultaneously ensuring
supervision of all remaining variables. All of the analyzed structures are illustrated with
block diagrams, as well as with simulation and experimental test results.

Keywords: induction motor, sliding mode control, torque control, speed control, posi‐
tion control

1. Introduction

Sliding mode control (SMC) is a commonly recognized robust control method. It is known to
be independent on external disturbances [load torque in case of the induction motor (IM)] and
internal changes (e.g., variation of motor parameters, due to heating). It can be successfully
applied in control of all IM variables like flux, torque, speed and position [1]. However, it suffers
from some characteristic negative features, such as steady-state and dynamical errors, chatter‐
ing and variable switching frequency.

Over the several past decades, researchers tried to eliminate or reduce the disadvantages of
the sliding mode applied to the IM control. The steady-state speed control error has been
eliminated using the sliding surface with an additional integral part in reference [2]. Integral

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



part in the switching function has also been used to eliminate the dynamical and steady-state
errors in the torque control [3].

Most of the papers focused on reducing the most negative feature of the SMC, i.e. chattering
(large oscillations of controlled variables). Position control with adaptive continuous approx‐
imation of the sign function is proposed in reference [4]. Load torque estimator was introduced
in reference [5] to reduce level of the discontinuous part of the control signal. One of the
effective solutions to reduce the chattering is the application of higher-order sliding modes.
They were introduced for all of the IM variables: torque in reference [6], speed (in a speed-
sensorless approach) in reference [7] and position in reference [8]. The IM drive control,
supplied from a current source inverter with the second-order SMC is introduced in reference
[9]. Integral SMC of stator current components is shown in references [10–12] to reduce the
chattering.

One of the chattering sources is a discretization caused by digital implementations of the
drives’ control structures; therefore, the discrete SMC methods have been proposed. The IM
position discrete control is proposed in references [13] and [14]. The discrete SMC of the IM
speed is introduced in reference [15].

Another drawback of the SMC in a direct approach (when the control algorithm defines the
transistors’ control signals directly) is a variable switching frequency. In order to eliminate this
phenomenon, a voltage modulator can be applied. The classical direct torque control (DTC),
SMC and space vector modulation (SVM) were combined in references [16] and [17]. Similarly,
the indirect field-oriented control (IFOC) method and SMC were combined in reference [18].

In the past years, there have also been the attempts to extend the robustness of the IM control
over the reaching phase, not only the sliding phase. The proposed approaches can be divided
into two groups. In the first one, the switching line (or a surface) is designed to include the
starting point: for speed control in reference [2] and for the position control in reference [19].
The second group consists of the methods with time-varying switching lines. They have been
applied mainly in the position control [20], but also for the speed control [21].

In this chapter, a comparative analysis of the SMC of all IM state variables is presented. Direct
approaches that define the transistor control signals directly are described and illustrated with
simulation and experimental results. The cascade connection of sliding mode controllers is
proposed for speed and position regulation, presented in a unified manner. The equivalent
signal-based control is used to lower the level of the chattering in regulated variables.

This chapter consists of nine numerated sections. The following section presents the
mathematical model of IM. Next three sections show the control of IM variables: torque, speed
and position, respectively. Sections related to the speed and position control are divided into
two subsections that include the direct and the cascade control. After short conclusions section,
there is an appendix with experimental setup description and tables with tested IM parameters
and base values, necessary to obtain the normalized unit system.
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transistors’ control signals directly) is a variable switching frequency. In order to eliminate this
phenomenon, a voltage modulator can be applied. The classical direct torque control (DTC),
SMC and space vector modulation (SVM) were combined in references [16] and [17]. Similarly,
the indirect field-oriented control (IFOC) method and SMC were combined in reference [18].

In the past years, there have also been the attempts to extend the robustness of the IM control
over the reaching phase, not only the sliding phase. The proposed approaches can be divided
into two groups. In the first one, the switching line (or a surface) is designed to include the
starting point: for speed control in reference [2] and for the position control in reference [19].
The second group consists of the methods with time-varying switching lines. They have been
applied mainly in the position control [20], but also for the speed control [21].

In this chapter, a comparative analysis of the SMC of all IM state variables is presented. Direct
approaches that define the transistor control signals directly are described and illustrated with
simulation and experimental results. The cascade connection of sliding mode controllers is
proposed for speed and position regulation, presented in a unified manner. The equivalent
signal-based control is used to lower the level of the chattering in regulated variables.

This chapter consists of nine numerated sections. The following section presents the
mathematical model of IM. Next three sections show the control of IM variables: torque, speed
and position, respectively. Sections related to the speed and position control are divided into
two subsections that include the direct and the cascade control. After short conclusions section,
there is an appendix with experimental setup description and tables with tested IM parameters
and base values, necessary to obtain the normalized unit system.
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2. Mathematical model of induction motor drive

SMC algorithms are strictly based on the mathematical model of the controlled object, which
is the IM in this research. This model will be shown in this section—it is created with commonly
known simplifying assumptions [22]. It is written with normalized [per unit (p.u.)] units, in
an arbitrary frame, rotating with the angular velocity ωk. Base values, required to the p.u.
system transformation, are shown in the appendix.

Stator and rotor voltage equations:

(1)

(2)

where us = usα + jusβ, ur = urα + jurβ are stator and rotor voltage vectors, is = isα + jisβ, ir = irα + jirβ are
stator and rotor current vectors,  are stator and rotor flux vectors, rs, rr

are stator and rotor winding resistances, TN = 1/(2πfsN) is nominal time constant, appearing
after the per unit system is introduced, fsN is nominal frequency of the motor and ωm is
mechanical velocity.

Flux equations:

s ml l= +s s rψ i i (3)

,r ml l= +r r sψ i i (4)

where ls = lm + lsσ, lr = lm + lrσ are stator and rotor winding inductances, lm is magnetizing
inductance and lsσ, lrσ are stator and rotor leakage inductances.

Electromagnetic torque and the motion equation are as follows:

( )Im ,e s s s sm i ia b b ay y= = -*
s sψ i (5)

( )d 1 ,
d

m
e o

M

m m
t T
w

= - (6)

where me is electromagnetic torque, mo is load torque and TM is mechanical time constant of
the drive.
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It is assumed that the IM is supplied by an ideal voltage source inverter (VSI), which can be
described by the following matrix equation:

1 1 2 1 2
, ,

3 0 3 2 3 2
s DC

s

u u
u

a

b

- -é ùé ù
= = = ê úê ú

-ë û ë û
su Tk T (7)

where k = [kA, kB, kC]T is the control signals’ vector of the VSI transistors and uDC is the DC-bus
voltage.

3. Sliding mode direct torque control

In order to create a cascade connection of sliding mode controllers (for example torque and
speed controllers), it is necessary to design first the sliding mode DTC. This method of control
utilizes the IM mathematical model and its equations, shown in the previous chapter.

The first step in the designing is to define the so-called switching functions. The classical
approach is first taken into account [1]:

[ ]T
1 2 3 ,s s s=s (8)

where the components of s vector allow to control the motor torque, stator flux amplitude and
to ensure the three-phase balance of the system, respectively:

( )1 1 ,ref
e es m ma= - (9)

( )2 2
2 2 ( ) ,ref

s ss a y y= - (10)

( )3 3 d ,A B Cs k k k ta= + +ò (11)

where α1, α2, α3 are control parameters, that need to be chosen.

The goal of the sliding mode controller will be to force the switching functions from Eqs. (9)
to (11) to zero, which means that the real values will follow the reference ones. This goal can
be achieved using the classical sliding-mode control formula, expressed as:
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sign( )= -

=

k s

s s D

,

,
(12)

where the D matrix comes from the division of the switching function derivative into:

= +s f Dk& (13)

and can be calculated as follows:

1
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ë û
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D , (14)
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D T (15)

In order to check the usefulness of the proposed control algorithm and to verify the stability
of the proposed control system, the Lyapunov function method is applied. A positive defined
Lyapunov function is proposed as follows:

( )T 2 2 2
1

1 1 ... 0.
2 2 s nL s s s= = + + + >s s (16)

Its derivative can be calculated as:

( )
T

T * T

TT T

sign( )

L = =

= - =

= -

s s

s f D s

s f I s D

& &

,

(17)

where |s* | = | s1
* | | s2

* | | s3
* | , I= 1 1 1 .

The stability inequality [negative value of Eq. (17)] is defined as:

T .<f D I (18)
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If the control parameters α1, α2, α3, included in the D matrix in Eq. (14) are high enough to fulfill
the condition [Eq. (18)], the system is stable and the real values follow their reference values.

Full SM-DTC block diagram is shown in Figure 1. The control structure defines the control
signals kA, kB, kC directly, to control the switches of the VSI without any voltage modulator. The
input values are the reference values of stator flux amplitude and electromagnetic torque. If
the speed exceeds the nominal value, the amplitude of the flux must be weakened in order to
ensure the constant power operation of the induction machine.

It is also necessary to provide the measurement of the DC-bus voltage [this value is present in
the T matrix in Eq. (14)] and stator phase currents (transformed to the stationary α-β frame
from two-phase currents, when the three-phase symmetry is assumed). The control structure
also needs estimated values, such as stator flux vector components (or its magnitude and angle)
and electromagnetic torque (the hat “∧” indicates the estimated value). They must be deter‐
mined by a proper estimator—this problem will not be addressed in this chapter. If the
estimator requires the stator voltage vector knowledge, its components can be transformed
from measured signals or calculated using the Eq. (7), taking into account the inverter dead-
time [23].

The block diagram, shown in Figure 1, also emphasizes the digital implementation of the SM-
DTC, together with the measurement delays (τd for current and voltage measurement and τdω
for speed measurement). Nowadays, the continuous algorithms are realized in a discrete form
using the digital signal processors (DSPs). The influence of the digital implementation will be
shown in the following part of the chapter.

Figure 1. Block diagram of the SM-DTC (digital realization).

Figure 2 shows a comparative study of performance of the SM-DTC structure for three
different cases: ideal simulation study (Figure 2a), simulation study with the DSP discretiza‐
tion taken into account (Figure 2b) and experimental results (Figure 2c).
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Figure 2a shows the ideal operation of the SM-DTC and proves its perfect dynamical features.
The torque and stator flux amplitudes follow their reference values almost immediately and
without any oscillations. The speed is a result of the motor and load torque difference [ac‐
cording to Eq. (6)] and therefore is changing in a triangular way. Three-phase currents are
smooth and sinusoidal—their frequency is changed automatically by the control structure.

Unfortunately, one of the negative properties of the SMC structures is the phenomenon called
chattering [24]. There are many sources of the chattering—one of them is the discretization,
connected with limited sampling rate of modern processors [25]. In order to check the influence
of this phenomenon, special simulation model has been built. Suitable results are shown in
Figure 2b. Large chattering (sometimes called the discretization chattering) can be seen in the
controlled variables. It is also visible in phase currents. Due to the moment of inertia of the
drive system, speed signal is still smooth.

Simulation test results have been validated using an experimental setup (see Appendix).
Obtained results illustrate the same situation in a very similar way—the chattering can be seen
in torque, flux and currents. The level of the obtained oscillations is even higher than during
the simulation tests—it causes mechanical stress, dangerous for the drive, and acoustic noise.

One of the efficient solutions to avoid the chattering, visible in Figure 2, is to use the continuous
approximation of the sign function. One of them is a saturation function:

( )* T0.5 sat( , ) 1 ,mee= - +d s (19)

where εme is positive control parameter to be chosen and column vector d = [dA, dB, dC]T is duty
cycles’ vector and the saturation function:

if
sat( ) .

sign( ) if

s s
s

s s

e e

e

ì £ï= í
>ïî

(20)

In this case, the control structure defines not the transistor control signals directly, but the duty
cycle functions for each phase (relation of the switching-on time to the whole sampling period).
Specific form of the Eq. (19) is imposed by the duty cycle feature—its values can vary between
0 and 1 (0% and 100%).

Effects of the saturation function usage are shown in Figure 3a. It can be seen that the oscilla‐
tions level is greatly reduced. However, a significant and changing in time, regulation error
can be seen in the electromagnetic torque transient. It can be eliminated using simple modifi‐
cation of the switching function [Eq. (9)], to obtain the following formula [3]:

( ) ( )11 dref ref
e e I e es m m K m m ta= - + -ò (21)
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Figure 2. Performance of the SM-DTC for induction motor: (a) simulation study: ideal case, digital implementation is
not taken into account, (b) simulation study: digital implementation taken into account, (c) experimental study; first
row: reference and real (estimated) torque, second row: speed, third row: reference and real (estimated) stator flux,
fourth row: phase currents.

where KI is positive control parameter.

Results of the integral part introduction in the switching function are shown in Figure 3b and
3c for simulation and experimental tests, respectively. The torque and stator flux are controlled
perfectly, without any steady-state or dynamical errors. Additionally, the chattering phenom‐
enon is reduced considerably—level of the oscillations in regulated signals is acceptable now.

Sliding mode DTC structure with the modified switching function, shown in this section, will
be used to create the cascade speed and position control structures, shown in the following
sections.

Figure 3. Performance of the SM-DTC for induction motor: (a) simulation study: saturation function used instead of
the sign function, (b) simulation study: integral part added in the torque switching function, (c) experimental study;
first row: reference and real (estimated) torque, second row: speed, third row: reference and real (estimated) stator
flux, fourth row: phase currents.
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4. Sliding mode speed control

4.1. Direct sliding mode speed control

The direct IM speed control can be realized very similarly to the DTC. The most significant
difference is another switching function that can be expressed as in [1]:

( )1 1 ,ref
m m c ms s T ww a w w w= = - - & (22)

where Tcω is time constant that defines the required dynamics of the speed.

When the switching function is zero, the controlled object acts as first-order inertia with time
constant Tcω. Settling time of the system (95%) is equal to:

3 .s cT T w= (23)

In this case, the same control algorithm [Eq. (12)] can be applied to regulate motor speed;
however, the D1 matrix in Eq. (14) must be slightly modified (the additional term Tcω/TM

appears):
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The condition of the system stability remains the same as in Eq. (18).

The block diagram of the direct sliding mode speed control is shown in Figure 4. It is almost
identical as the one shown in Figure 1; however, the speed switching function sω is provided
instead of the torque regulation error. For the clarity of the block diagram, the digital realiza‐
tion and measurement delays will not be presented in the following figures.

Figure 5a shows the performance of the direct SM speed control structure in the ideal simu‐
lation case. The reverses of the speed are presented—the speed follows the reference value
with the requested dynamics, which is indicated by the ωm

ref ,dyn signal. Even in this ideal case,
the steady-state error exists—it is shown in the second row of Figure 5a. Additionally,
electromagnetic torque of the motor is not controlled and supervised. Therefore, it exceeds the
maximum value, set at the level 1.0 (it is about 150% of the nominal torque in p.u., see
Appendix). If the digital realization of the control structure and measurement delays are taken
into account, the steady-state speed error increases significantly—it can be seen in Figure 5b.
Moreover, the torque and stator flux oscillation levels are much higher, similarly to the DTC
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algorithm, shown in the previous section. If the saturation function is applied (Figure 5c), the
regulation error becomes even larger; however, the chattering level is reduced. This simulation
study is verified using the experimental tests (Figure 5d)—and both of them give almost the
same results.

Figure 4. Block diagram of the direct SM speed control.

Figure 5. Performance of the SM direct speed control: (a) simulation study: control in the ideal case, (b) simulation
study: speed control in case of the digital implementation and measurement delays taken into account, (c) simulation
study: saturation function used instead of the sign function, (d) experimental tests results for saturation function us‐
age; first row: reference and real speed, second row: speed control error, third row: load, electromagnetic and maxi‐
mum torque, fourth row: reference and real amplitude of stator flux.
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In both the previously mentioned cases, direct SM torque and speed control, the torque
becomes higher than the acceptable level and can be dangerous for the drive and its mechanical
elements. This drawback can be eliminated reducing the desired dynamics, defined by Tcω or
applying the cascade structure of the SM controllers. The second solution will be now descri‐
bed.

4.2. Cascade sliding mode speed control

In order to create the cascade connection of SM speed and torque regulators, the torque control
loop has to be simplified to the first-order inertial element, described by the following transfer
function:

( ) 1 ,
1( )

e
ref

mee

m p
T pm p

=
+ (25)

where p is Laplace operator, Tme is replacement time constant of the torque control circuit.

The control signals’ vector becomes a scalar quantity k= me
ref  and the switching functions’

vector s= sω  likewise. In this case, the derivative of the switching function can be divided into:

1 2
ref
es f mf dw w w w+= +& , (26)
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In the above equations, f1ω is the part that can be calculated from available variables, f2ω depends
on the unknown variables and dω stands next to the reference torque.

If the equivalent signal-based control method is applied, then the reference torque signal
consists of two parts [26]:
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where Γωd  is a control parameter.

Continuous control signal part me
ref , eq is calculated from available signals, and is designed to

force the switching function to zero in presence of no load torque and motor parameters
changes. The discontinuous part must be included in the SM control system, in order to
compensate external disturbances, such as the load torque present in f2ω and the inaccuracy of
the simplification from Eq. (25). The switching function derivative becomes:

2 ,dL s s f ssww ww w w= = - G& & (33)

while its negative value is ensured if:

2 .d fw wG > (34)

Thus, if the control parameter is chosen properly, the stability of the proposed control system
can be guaranteed. The block diagram of the cascade control structure described here is shown
in Figure 6. Unlike the direct control from Figure 4, the speed controller output signal is the
reference torque, and it consists of two parts. Furthermore, this signal can be limited at desired
value. The reference torque is the input of the SM-DTC structure, described in the previous
chapter.

Performance of the cascade SM speed control in presence of the passive load torque is shown
in Figure 7. The obtained results are shown for the speed reverses. It can be seen that the speed
follows the reference signal with required dynamics in all cases. First subfigure shows the relay
control—the equivalent signal from Eq. (31) is not taken into account in this case and the control
parameter is equal to Γme

d =me
max. Performance of the control structure is presented during

simulation tests—despite the ideal conditions, some small dynamic and steady-state error
appears. Due to the enormous mechanical vibrations, it is impossible to conduct the experi‐
mental tests. Therefore, the equivalent signal was taken into account and its performance is
shown in Figure 7b and 7c for simulation and experimental tests, respectively. The results are
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almost the same. Electromagnetic torque has acceptable oscillations and is limited on a
maximum value. Stator flux amplitude is kept constant at nominal value.

Figure 6. Block diagram of the SM speed control in cascade connection.

Figure 7. Performance of the SM cascade speed control: (a) simulation study: relay control, (b) simulation study: equiv‐
alent control, (c) experimental study: equivalent signal-based control; first row: reference and real speed, second row:
load, electromagnetic and maximum torques, third row: reference and real amplitude of stator flux.
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5. Sliding mode position control

5.1. Direct sliding mode position control

By the analogy to the torque and speed control, presented in previous sections, IM shaft
position control can be designed using the direct approach [1]. The control algorithm [Eq.
(12)] and the D1 matrix [Eq. (24)] remain the same as for the direct speed control, Tcω is only
replaced by Tcθ. Switching function for the position control becomes:

( )1 1
ref
m m m c ms s T Tq q qa q q q q= = - - -& && (35)

where Tθ, Tcθ are time constants that can be selected according to the required settling time
(5%) of the position control Tsθ, using the following rule [27]:

2 22 , , .
9

s
cr c cr cr

TT T T T T q
q q= = = (36)

The block diagram of the SM direct position control is presented in Figure 8. Performance of
the SM direct position control during experimental tests is shown in Figure 9. It can be seen
that the shaft position has the desired dynamics and tracks the reference value without almost
any error. Unfortunately, the chattering visible in the torque is entirely unacceptable. There‐
fore, the saturation function is applied (Figure 9b)—the level of the undesired oscillations is
greatly reduced. In both cases, similarly to the direct speed control, the electromagnetic torque
is not supervised in this type of the control. Simultaneously, the speed does not exceed the
accepted value, which is 120% of the nominal value in this research. The flux is kept constant
(not shown in the figure).

Figure 8. Block diagram of the direct SM position control.
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that the shaft position has the desired dynamics and tracks the reference value without almost
any error. Unfortunately, the chattering visible in the torque is entirely unacceptable. There‐
fore, the saturation function is applied (Figure 9b)—the level of the undesired oscillations is
greatly reduced. In both cases, similarly to the direct speed control, the electromagnetic torque
is not supervised in this type of the control. Simultaneously, the speed does not exceed the
accepted value, which is 120% of the nominal value in this research. The flux is kept constant
(not shown in the figure).

Figure 8. Block diagram of the direct SM position control.
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Figure 9. Experimental performance of the SM direct position control: (a) with sign function, (b) with saturation func‐
tion.

5.2. Cascade sliding mode position control

According to the previous section, the cascade position control structure will now be analyzed.
It is based on the assumption that the SM speed control works perfectly and ensures zero value
of the speed switching function from Eq. (22). In such situation, the speed control loop can be
described by the following transfer function:
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Similarly, as for the speed control, the control signals vector and switching functions’ vector
become scalars, k= ωm

ref , s= sθ , respectively. In this case, the switching function derivative
becomes:
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By analogy to equation (30), the reference speed control signal is as follows:
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where Γθd  is a control parameter.

According to the methodology shown in previous sections, the position control system is stable
if:

2 .d fq qG > (45)

Figure 10. Block diagram of the cascade SM position control.

The block diagram of the proposed cascade position control structure is shown in the
Figure 10. Performance of the control structure for nominal load operation is shown in
Figure 11. First, the simulation study for the ideal case is shown (Figure 11a), the sign function
is used in the control algorithm directly. It can be seen that the position follows the reference
signal with required dynamics. Due to the torque constraint introduced, some small dynamical
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error of the position control is visible. In order to decrease the level of the chattering of torque
and speed, visible especially when the digital operation is taken into account (Figure 11b), the
saturation function is applied in Figure 11c. The oscillations level is reduced successfully, while
the position dynamic error is maintained. Figure 11d shows the experimental results—because
of the digital realization of the control structure and additional, parasitic dynamics (measure‐
ment delays), the controlled variables are characterized by larger chattering; however, its level
is acceptable. The position dynamic error is slightly higher than in case of the simulation tests.

Figure 11. Performance of the SM equivalent control signal-based position control in a cascade structure: (a) simulation
study: ideal case, (b) simulation study: digital operation and delays taken into account, (c) simulation study: saturation
function used instead of the sign function in cascade control, (d) experimental results with saturation function used in
cascade control; first row: reference and real position, second row: reference, real and maximum speed; third row: ref‐
erence, real (estimated), load and maximum torque; fourth row: reference and real (estimated) stator flux amplitude.

6. Conclusions

This chapter deals with the SMC of the most important IM variables: torque, speed and position
of the shaft, simultaneously ensuring constant value of the stator flux amplitude.

First part of the chapter is connected with the sliding mode DTC for IM. It is proved that the
classical DT-SMC approach gives undesirable torque chattering. In order to reduce the
chattering, the saturation function is used instead of the sign function. However, the saturation
function introduces large steady-state control error. An integral part in the torque switching
function is successfully used to eliminate this error. Such designed torque control is then used
in the cascade speed and position IM control.

Next part of the chapter is the IM speed control. It is shown that the sliding mode speed control
in its classical, direct approach is characterized by a large steady-state error and chattering. It
is proved using a specially prepared simulation model and experimental setup. Additionally,
the torque value is not constrained in this direct speed control structure. Therefore, the cascade
connection of speed and torque regulators is introduced. The equivalent signal-based control
method is applied to reduce the chattering. This solution allows to supervise the value of the
electromagnetic torque, while reducing the control error effectively.
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The last part of the chapter shows the position control of the drive. Conclusions that come from
the SM position control analysis are analogical to the ones from the speed control. Direct
position control does not ensure the torque and speed supervision, that is solved by the cascade
control structure. Simultaneously, the chattering can be reduced using the continuous
approximation of the sign function and the equivalent signal-based approach.

All of these control concepts are illustrated using simulation and experimental study. Special
attention has been paid to create a simulation model that allows to take the digital realization
of modern DSP control applications and measurement delays into account.
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Appendices

Experimental tests were realized using the DSP dSpace 1103 with sampling time equal to 100
μs (10 kHz). The DSP controlled the transistors of the classical two-level VSI, which supplied
the 3 kW tested motor. 6 kW DC motor was used to generate the load torque.

Tables 1–3 include rated values of the tested IM, its parameters and base values, necessary to
make the transition from physical units to the p.u. system, respectively.

Name Symbol SI units Normalized units [p.u.]

Voltage UN 400Δ/680Y [V] 0.707

Current NN 7.0Δ/4.0Y [A] 0.707

Power PN 3000 [W] 0.62

Torque MN 20.46 [Nm] 0.67

Rotational frequency nN 1400 [rpm] 0.933

Frequency fSN 50 [Hz] 1

Stator flux ΨsN 1.65 [Wb] 0.91

Rotor flux ΨrN 1.55 [Wb] 0.86

Pole pairs pb 2 [-] 2

Power factor cosφ 0.80 [-] 0.80

Efficiency η 0.778 [-] 0.778

Table 1. Rated parameters of the tested induction motor.
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Name Symbol  SI units ([]) Normalized units [p.u.]

Stator resistance Rs, rs 7.073 [Ω] 0.707

Rotor resistance Rr, rr 7.372 [Ω] 0.737

Main inductance Lm, lm 597.8 [mH] 1.87

Stator leakage inductance Lrσ, lsσ 31.2 [mH] 0.098

Rotor leakage inductance Lrσ, lrσ 21.2 [mH] 0.066

Table 2. Equivalent circuit parameters of the tested induction motor.

Name Expression Value Units

Power Sb = 3/2UbIb 4800 [VA]

Torque Mb = pbSb/Ωb 30.55 [Nm]

Speed Nb = 60fsN/pb 1500 [rpm]

Stator voltage Usb = √2UsN 565.7 [V]

Stator current Isb = √2IsN 5.657 [A]

Frequency fsb = fsN 50 [Hz]

Angular velocity Ωb = 2πfsN 100π [rad/s]

Flux Ψb = Ub/Ωb 1.80 [Wb]

Inductance Lb = Ψb/Ib 0.318 [H]

Impedance Zb = Ub/Ib 100 [Ω]

Table 3. Calculation of per unit system base values.
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Chapter 5

Robust Adaptive Repetitive and Iterative Learning
Control for Rotary Systems Subject to Spatially Periodic
Uncertainties

Cheng‐Lun Chen
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Abstract

This book chapter reviews and summarizes the recent progress in the design of spatial‐
based robust adaptive repetitive and iterative learning control. In particular, the collection
of methods aims at rotary systems that are subject to spatially periodic uncertainties and
based on nonlinear control paradigm, e.g., adaptive feedback linearization and adaptive
backstepping. We will elaborate on the design procedure (applicable to generic nth‐
order systems) of each method and the corresponding stability and convergence theorems.

Keywords: rotary system, disturbance rejection, robust adaptive control, repetitive
control, iterative learning control

1. Introduction

Rotary systems play important roles in various industry applications, e.g., packaging, print‐
ing, assembly, fabrication, semiconductor, and robotics. A conspicuous characteristic of such
systems is the utilization of actuators, e.g., electric motor, to control the angular position, velocity,
or  acceleration of  the system load.  Depending on the occasion of  application,  simple or
complicated motion control algorithm may be used. The increasing complexity in architec‐
ture and the high‐performance requirement of recent rotary systems have posed a major
challenge on conceiving and synthesizing a desirable control algorithm.

Nonlinearities and uncertainties are common issues when designing a control algorithm for a
rotary system. Nonlinearities are either intrinsic properties of the system or actuator and sensor

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



dynamics being nonlinear. Uncertainties mainly come from structured/unstructured uncer‐
tainties (also known as parametric uncertainty/unmodeled dynamics) and disturbances. For
tackling nonlinearities, conventional techniques, e.g., feedback linearization and backstep‐
ping, are to employ feedback to cancel all or part of the nonlinear terms. On the contrary, design
techniques for conducting disturbance rejection or attenuation in control systems may be
roughly categorized with respect to whether or not the techniques generate the disturbance
by an exosystem. Representative techniques that resort to the exosystem of the disturbance are
internal model design [1,2], which originates from the internal model principle [3], and
observer‐based design [4,5]. Establishing a suitable mathematical description of the disturb‐
ance is an essential step for internal model design techniques. An internal model design for
systems in an extended output feedback form and subject to unknown sinusoidal disturbances
was addressed in [1]. For observer‐based design techniques, an observer is usually employed
to estimate the states of the unknown exosystem. Chen [5] showed that the design of the
observer can be separated from the controller design. For techniques that do not resort to the
exosystem of the disturbance, disturbance observer [6,7] or optimization‐based control
approaches [8,9] have been shown to work well. In [6], integral phase shift and half‐period
integration operator were used together to estimate the periodic disturbances. Another type
of disturbance observers was introduced in [7]. The proposed disturbance observer may
estimate lumped disturbances that comprise unmodeled dynamics and disturbances. How‐
ever, the performance of the disturbance observer is very sensitive to the adaptation rate of
the estimated disturbance components. If the output error of the disturbance observer does
not converge sufficiently fast, instability or performance degradation is inevitable.

With measurement of the system states not available, a common technique is to establish a
state observer that provides estimates of the states. Unlike state observer for linear systems,
no state observer is applicable to general nonlinear systems. Most state observers for nonlinear
systems are suited for systems transformable to a specific representation, e.g., normal form [10]
or adaptive observer form [11]. One class of observers, known as adaptive state observers, are
those having their own update laws adapt the estimated parameters [11,12] or the observer
gain [10] to minimize the observer error, i.e., the error between the real states and the estimated
states. Marine et al. [11] and Vargas and Hemerly [12] presented a state estimator design for
systems subject to bounded disturbances. Bullinger and Allgöwer [10] proposed a high‐gain
observer design for nonlinear systems, which adapts the observer gain instead of the estimated
system parameters. The uncertainties under consideration are nonlinearities of the system.
However, the observer error converges to zero only when persistent excitation exists or the
disturbance magnitude goes to zero. Moreover, the update law for the observer might have
an unexpected interaction with that of the control law. The other type of state observers, e.g.,
K‐filters [13,14] and MT‐filters [15,16], does not estimate the system states directly. Specifically,
the update law for adapting estimated system parameters (which include both observer and
system parameters) is determined from the control law to ensure desired stability and
convergence property.

Temporal‐based motion control algorithms of various class have been in progress lately.
Adaptive control is suited for systems susceptible to uncertain but constant parameters.
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Moreover, repetitive and iterative learning control [17–21] is capable of dealing with systems
affected by periodic disturbances or in need of tracking periodic commands. Lately, adaptive
control has been adopted to adapt the period of the repetitive controller [22,23]. Adaptive and
iterative learning control has consolidated and been studied by researchers (see [17] and
references therein). The integration immediately gains benefits, such as perfect tracking over
finite time, dealing with time‐varying parameters, and nonresetting of initial condition. As
indicated by Chen and Chiu [19] and Chen and Yang [24], most temporal‐based control
algorithms for rotary systems of variable speed do not explore the characteristics of most
uncertainties being spatially periodic. Analyzing and synthesizing such control system in time
domain will mistakenly admit those spatially periodic disturbances/parameters as nonperi‐
odic/time‐varying ones. This often results in a design either with complicated time‐varying
feature or with degraded performance.

Spatial‐based control algorithms have been studied by researchers recently. The initial step is
to reformulate the given system model into the one in spatial domain. Because the reformu‐
lation renders those spatial uncertainties stationary in spatial domain, position‐invariant
control design can be performed to achieve the desired performance regardless of the operating
speed. A spatial‐based repetitive controller synthesizes its kernel (i.e., e−Ls with positive
feedback) and operates in accordance with spatial coordinate, e.g., angular displacement.
Therefore, its ability for spatially periodic disturbances or references rejection/tracking will
not deteriorate as the system operates at variable speed. A regular repetitive controller is
composed of repetitive (i.e., a kernel) and nonrepetitive (e.g., a stabilizing controller) parts.
With the kernel synthesized with respect to spatial coordinate and given a time‐domain
system, designing the nonrepetitive portion that interfaces with the repetitive kernel properly
poses a challenge. For spatially periodic disturbance rejection, Nakano et al. [18] reformulated
a given linear time‐invariant (LTI) system in an angular position domain. The resulting
nonlinear system was linearized around an operating speed. Coprime factorization is then
used to synthesize a stabilizing controller with repetitive kernel for the acquired linear model.
A more sophisticated design based on linearization and robust control was proposed by Chen
et al. [25]. Design approaches for linearized systems are straightforward. However, the overall
system might lack the stability of operating at a variable speed or coping with large velocity
fluctuation. For tracking of spatially periodic references, Mahawan and Luo [26] have vali‐
dated the idea of operating the repetitive kernel in angular domain and the stabilizing
controller in time domain. Doing so does not require reformulation of the open‐loop system.
For experimental verification, however, the approach involves solving an optimization
problem to synchronize the hardware (time) and software (angular position) interruptions. To
further limit the applicability, the mapping between time and angular position has to be known
a priori. The problem formulation made by Nakano and Mahawan assumed the simplest
scenario, i.e., the open‐loop system is LTI without nonlinearity and modeling uncertainty.
Chen and Chiu [19] reported that a class of nonlinear models can be reformulated into a quasi‐
linear parameter varying (quasi‐LPV) system. An LPV gain‐scheduling controller was
synthesized subsequently to address unmodeled dynamics, actuator saturation, and spatially
periodic disturbances. The approach could lead to conservative design if the number of
varying parameters rises, the parametric space is nonconvex, or the modeling uncertainties
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are significant. The restraint and conservatism of modeling uncertainties was relieved by Chen
and Yang [24] by formulating a spatial‐based repetitive control system with the adoption of
adaptive feedback linearization. However, this method is only applicable to systems with
measurement of all states available in real time.

The design of spatial‐based repetitive control has been sophisticated enough to cope with a
class of uncertain nonlinear systems. On the contrary, existing spatial‐based iterative learning
controls [27,28] are still primitive and aim at only linear systems. It is not apparent whether
those methods can be generalized to be applicable for nonlinear and high‐order systems.
Knowing that spatial uncertainties in rotary systems may be tackled as periodic disturbances
or periodic parameters [29–31], treating the uncertainties as disturbances seem to be more
prevalent in literatures.

This book chapter reviews and summarizes the recent progress in the design of spatial‐based
robust adaptive repetitive and iterative learning control. In particular, the collection of
methods aims at rotary systems that are subject to spatially periodic uncertainties and based
on nonlinear control paradigm, e.g., adaptive feedback linearization and adaptive backstep‐
ping. We will elaborate on the design procedure (applicable to generic nth‐order systems) of
each method and the corresponding stability and convergence theorems. The outline of the
chapter is as follows.

Section 2 presents a spatial‐based robust repetitive control design that builds on the design
paradigm of feedback linearization. This design basically evolves from the work of Chen and
Yang [24]. The proposed design resolves the major shortcoming in their design, i.e., which
requires full‐state feedback, by the incorporation of a K‐filter‐type state observer. The system
is allowed to operate at varying speed, and the open‐loop nonlinear time‐invariant (NTI) plant
model identified for controller design is assumed to have both unknown parameters and
unmodeled dynamics. To attain robust stabilization and high‐performance tracking, we
propose a two‐degrees‐of‐freedom control configuration. The controller consists of two
modules, one aiming at robust stabilization and the other tracking performance. One control
module applies adaptive feedback linearization with projected parametric adaptation to
stabilize the system and account for parametric uncertainty. Adaptive control plays the role
of tuning the estimated parameters, which differs from those methods (e.g., [22,23]), where it
was for tuning the period of the repetitive kernel. The other control module comprises a spatial
low‐order and attenuated repetitive controller combined with a loop‐shaping filter and is
integrated with the adaptively controlled system. The overall system may operate in variable
speed and is robust to model uncertainties and capable of rejecting spatially periodic and
nonperiodic disturbances. The stability of the design can be proven under bounded disturb‐
ance and uncertainties.

Section 3 presents another spatial‐based robust repetitive control design that resorts to the
design paradigm of backstepping. This design basically builds on the work of Yang and Chen
[32]. The method has been extended to a category of nonlinear systems (instead of just LTI
systems). Furthermore, the main deficiency of requiring full‐state feedback in Yang and Chen's
design is resolved by incorporating a K‐filter‐type state observer. To achieve robust stabiliza‐
tion and high‐performance tracking, a two‐module control configuration is constructed. One
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of the module using adaptive backstepping with projected parametric adaptation to robustly
stabilize the system. The other module incorporates a spatial‐based low‐order and attenuated
repetitive controller cascaded with a loop‐shaping filter to improve the tracking performance.
The overall system incorporating the state observer can be proven to be stable under bounded
disturbance and system uncertainties.

Section 4 introduces a spatial‐based iterative learning control design that is suited for a generic
class of nonlinear rotary systems with parameters being unknown and spatially periodic.
Fundamentally, this design borrows the feature of parametric adaptation in adaptive control
and integrates it with iterative learning. Note that the theoretical success of the integration is
not immediate because the stability and tracking performance of the overall system is in need
of further justification. Control input and periodic parametric tuning law are specified by
establishing a sensible Lyapunov‐Krasovskii functional (LKF) and rendering its derivative
negative semidefinite. The synthesis of the control input and parametric tuning law and
stability/convergence analysis established for this design is distinct from that in [17]. Moreover,
unlike a typical adaptive control, the proposed periodic parametric tuning law can cope with
unknown parameters of stationary or arbitrarily fast variation.

Section 5 concludes the chapter and points out issues and future research directions relevant
to spatial‐based robust adaptive repetitive and iterative learning control.

2. Spatial‐based output feedback linearization robust adaptive repetitive
control (OFLRARC)

Consider the state‐variable model of an nth‐order single‐input single‐output NTI system with
model uncertainties and output disturbance, i.e.,

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )
( ) ( ) ( ) ( )

f f f fé ù é ù= + D + + Dë û ë û
= Y + = +

&

1

, , , ,t f t f t g t g

y y

x t f x t f x t g x t g x t u t

y x t d t x t d t
(1)

where x(t)= x1(t) ⋯ xn(t) T , Ψ = 1 0 ⋯ 0 , u(t), and y(t) correspond to the control input
and measured output angular velocity of the system, respectively.

Assumption 2.1

(1) dy(t) is a class of bounded signals with (dominant) spatially periodic and band‐limited (or
nonperiodic) components.

Here, band‐limited disturbances are signals with Fourier transform or power spectral density
being zero above a certain finite frequency. The number of distinctive spatial frequencies and
the spectrum distribution are the only available information of the disturbances.

(2) f t(x(t), ϕf ) and gt(x(t), ϕg) are known vector‐valued functions with unknown but bounded
system parameters, i.e., ϕf = ϕ f 1 ⋯ ϕ fk  and ϕg = ϕg1 ⋯ ϕgl .
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(3) Δ f t(x(t), ϕf ) and Δgt(x(t), ϕg) represent unmodeled dynamics, which are also assumed to

be bounded.

Consider an alternate variable θ =λ(t), i.e., the angular displacement, instead of time t  as the

independent variable. Because λ(t)= ∫0
t
ω(τ)dτ + λ(0) where ω(t) is the angular velocity, the

following condition

qw = > "( ) 0,   t >0dt
dt

(2)

will ensure that λ(t) is strictly monotonic, so that t =λ −1(θ) exists. Hence, all the time‐domain
variables can be transformed into their counterparts in the θ‐domain, i.e.,

q l q q l q q l q q l q w q w l q- - - - -= = = = =1 1 1 1 1ˆˆ ˆ ˆ ˆ( ) ( ( )),  ( ) ( ( )),  ( ) ( ( )),  ( ) ( ( )),  ( ) ( ( ))x x y y u u d d

where we denote •
^

 as the θ‐domain representation of • . Note that, in practice, (2) can usually
be satisfied for most rotational motion system where the rotary component rotates only in one
direction. Because

q q q w q q q= × = ×ˆ ˆ ˆ( ) ( ) ( ) ( )dx t dt d dt dx d dx d

(1) can be rewritten as

( )( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( )

qw q q f q f q f q f q
q

q q q q q

é ù é ù= + D + + Dë û ë û

= Y + = +1

ˆ( )ˆ ˆ ˆ ˆ ˆ ˆ( ) , , , ,

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) .

t f t f t g t g

y y

dx f x f x g x g x u
d

y x d x d
(3)

Equation (3) is an nonlinear position‐invariant (NPI; as opposed to the definition of time‐
invariant) system with the θ as the independent variable. Note that we define the Laplace

transform of a signal ĝ(θ) in the angular displacement domain as Ĝ(s̃)= ∫0
∞

ĝ(θ)e −s̃θdθ.

This definition will be useful for describing the linear portion of the overall control system.

Drop the θ notation and rewrite (3) in the form

f f w= + + = + = +& ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ,  ( )f g s y yx f x g x u d y h x d d (4)
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where terms involving unstructured uncertainty are merged into d̂ s =Δf (x̂, ϕf ) + Δg(x̂, ϕg)û
with Δf (x̂, ϕf )=Δ f t(x̂, ϕf ) / x̂1, Δg(x̂, ϕg)=Δgt(x̂, ϕf ) / x̂1. In addition, we have

( )f f f f w= = = =1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) , ( , ) , , ( )f t f g t gf x f x x g x g x x h x x

The state variables have been specified such that the angular velocity ω̂ is equal to x̂1, i.e., the
undisturbed output h (x̂). To proceed, we will adopt the definitions and notations given in [24]
for Lie derivative, relative degree, diffeomorphism.

It can be verified that (4) has the same relative degree in D0 = {x̂ ∈ℝn | x̂1 ≠0} as the NTI model
in (1). If (4) has relative degree r , the following nonlinear coordinate transformation can be
defined as

y y -
-

é ù
é ù= = ê úë û ê úë û

L L @ 21
1

1

ˆ
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ˆ

Tr
n r f

z
z T x x x h x L h x z

where ψ1 to ψn−r  are chosen such that T (x̂) is a diffeomorphism on D0 ⊂ D and

y = £ £ -ˆ( ) 0,  1g iL x i n r

∀ x̂ ∈ D0. With respect to the new coordinates, i.e., ẑ1 and ẑ2, (4) can be transformed into the
so‐called normal form, i.e.,

y -
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(5)

where d̂ so and d̂ si = d̂ si1 ⋯ d̂ sir
T  come from d̂ s going through the indicated coordinate

transformation. ẑ1 = ẑ11 ⋯ ẑ1r
T ∈ℝr , ẑ2 ∈ℝn−r , and (Ac, Bc, Cc) is a canonical form represen‐

tation of a chain of r  integrators. The first equation in (5) is the internal dynamics and not
affected by the control û. By setting ẑ1 =0, we obtain ż̂2 =Ψ(0, ẑ2), which is the zero dynamics of
(4) or (5). The system is called minimum phase if the zero dynamics has an asymptotically
stable equilibrium point in the domain of interest. To allow us to present the proposed
algorithm and stability analysis in a simpler context, we will make the following assumptions
for the subsequent derivation.
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Assumption 2.2

(1) f (x̂(θ), ϕf ) and g(x̂(θ), ϕg) are linearly related to those unknown system parameters, i.e.,

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )q f f q f q q f f q f q= + + = + +1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ, ... ,  , ...f f fk k g g gl lf x f x f x g x g x g x (6)

(2) (4) is exponentially minimum phase, i.e., the zero dynamics is exponentially stable;

(3) The output disturbance is sufficiently smooth [i.e., ḋ̂ y, ⋯ , d̂ y
(r ) exists];

(4) d̂ si1
(r−1), d̂ si2

(r−2), ⋯ , ḋ̂ sir −1
 exist, i.e., the transformed unstructured uncertainty is sufficiently

smooth; and

(5) The reference command ŷm and its first r  derivates are known and bounded. Moreover, ŷm
(r )

is piecewise continuous.

With Assumption 2, the design of a nonlinear state observer may focus on the external
dynamics of (5), i.e.,
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-
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1
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ˆ( ) ˆˆ ˆ ˆ ˆ( )
ˆ( )

r
fr

c c g f sirx T z
g f x T z

L h x
z A z B L L h x u d

L L h x (7)

2.1 State observer design

In this section, we show how to establish a state observer for the transformed NPI system (5).
Because f (x̂) and g(x̂) are assumed to be linearly related to system parameters, L g L f

r−1h (x̂)

and L g L f
r−1h (x̂) can be expressed as

( ) ( )-= Q = Q1ˆ ˆ ˆ ˆ( ) ,  ( )r T r T
f f g f gL h x W x L L h x W x

where Wf (x̂) and Wg(x̂) are two nonlinear functions, and

[ ]1 1 1 .f f f f f fé ùQ = = Îë û
l

lL L L L ¡
T T

f fk g gl

where ℓ denotes the number of unknown parameters. Hence, (7) can be rewritten as

( ) ( )é ù= + Q + Q +ë û
&

1 1
ˆˆ ˆ ˆ ˆ ˆT T

c c g f siz A z B W x u W x d (8)
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(5) The reference command ŷm and its first r  derivates are known and bounded. Moreover, ŷm
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Equation (8) can be further written in the form

( ) ( )é ù= + + Q + Q +ë û
&

1 0 1 11
ˆˆ ˆ ˆ ˆ ˆ ˆ ,T T

c g f siz A z k z B W x u W x d (9)

where A0 =

−k1

⋮
−kr

I(r−1)×(r−1)

01×(r−1)
 and k̄ = k1 ⋯ kr

T .

By properly choosing k̄ , the matrix A0 can be made Hurwitz. Next, we adopt the following
observer structure:

( ) ( )é ù= + + Q + Që û
&

1 0 1 ˆ ˆ ˆ ˆT T
c g fz A z ky B W y u W y (10)

where z̄1 = z̄11 ⋯ z̄1r
T  is the estimate of ẑ1 and W̄ f ( ŷ) and W̄ g( ŷ) are nonlinear functions

with the same structure as Wf (x̂) and Wg(x̂) , except that each entry of x̂ is replaced by ŷ.
Equation (10) can be further expressed as

( )

( ) ( )
- ´ ´

é ù
= + + Q = Îê ú

+ê úë û

l l& ¡
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1 0 1

0
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with

ˆ
rT T r

T T
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z A z ky F y u F y u
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(11)

Define the state estimated error as ε≜ εẑ 11 ⋯ εẑ 1r
T ≜ ẑ1 − z̄1. The dynamics of the estimated

error can be obtained by subtracting (10) from (9), i.e.,

( ) ( ) ( ) ( )e e é ù é ù= + D D = - + Q - + Q - +ë û ë û& 0
ˆ ˆˆ ˆ ˆ ˆ ˆ .T T

y c g g c f f siA kd B W x W y u B W x W y d (12)

Here, we further assume that

Assumption 2.3

(9) Wg(x̂)−W̄ g( ŷ) and Wf (x̂)−W̄ f ( ŷ) are bounded to ensure the boundness of the estimated
error. To see this, note that the solution of (12) may be viewed as sum of zero input response
εu and zero state response εs, i.e., ε =εu + εs. The zero input response ε̇u = A0εu will decay to zero
exponentially, as A0 is Hurwitz, and the zero state response εs will be bounded due to the
bounded disturbance d̂ y, Wg(x̂)−W̄ g( ŷ), and Wf (x̂)−W̄ f ( ŷ).

Equation (10) or (11) cannot be readily implemented due to the unknown parametric vector
Θ, but it motivates the subsequent mathematical manipulation. Define the state estimate as
z̄1 ≜ξ +Ω TΘ such that ξ = ξ11 ⋯ ξ1r

T ∈ℝr  and Ω T ∈ℝr×ℓ and employ the following two K‐
filters:
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x x= + W = W +& &
0 0ˆ ˆ ˆ,  ( , ) .T T TA ky A F y u (13)

It can be easily verified that (13) is equivalent to (11). Hence, (13) may replace the role of (11)
for providing the state estimate. With Ω T ≜ v1 ⋯ vℓ , the second equation of (13) may be
further decomposed into

s= + =& L l0 , 1,2, ,j j r jv A v e j (14)

where er = 0 ⋯ 0 1 ∈ℝr  and σj =w1 j + w2 jû with w1 j and w2 j are the j th  columns of W̄ f
T ( ŷ)

and W̄ g
T ( ŷ), respectively. Equation (13) is still not applicable due to Θ. However, with the

definition of the state estimated error ε, the state estimate, the first equation of (13), and (14),
we acquire the following relationship that is not available from (11):
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j

z z v z

z v
(15)

where • j ,i  denotes the ith row of • j . Equation (15) will be used in the subsequent design.

2.2 Output feedback robust adaptive repetitive control system

In this section, we show how to incorporate the state observer established in the previous
section into an output feedback adaptive repetitive control system. The control configuration
consists of two layers. The first layer is the adaptive feedback linearization, which tackles
system nonlinearity and parametric uncertainty. The second layer is a repetitive control
module of a repetitive controller and a loop‐shaping filter. This layer not only enhances the
ability of the overall system for rejection of disturbance, sensitivity reduction to model
uncertainty, and state estimated error but also improves the robustness of the parametric
adaptation. Although inclusion of the state observer relieves the design of the need of full‐state
feedback, it actually introduces extra dynamics into the system. Hence, the stability of the
resulting system needs to be further justified.

Suppose that (4) has relative degree r. To perform input/output feedback linearization,
differentiate the output ŷ until the control input û appears to obtain

( ) ( ) ( ) ( ) ( )e= + = + = + +& & &
1ˆ11 1 1

ˆ ˆ ˆˆ ˆ ˆ
r

r r r r r
y r y r z yy z d z d z d (16)

Substituting the r th state equation of (10) into (16), we have
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( ) ( ) ( ) ( ) ( )= + + = - + + Q + Q + +& & &
1 1ˆ ˆ1 11

ˆ ˆˆ ˆ ˆ ˆ ˆ
r r

r r rT T
r z y r r f g z yy z d k z k y W y W y u d ze e (17)

To put the previously developed state observer into use, we substitute the first equation of (15)

into (17) and arrive at

( ) ( ) ( ) ( )

=

æ ö
ç ÷= - + + + Q + Q + +
ç ÷
è ø

å
l

&
1ˆ11 ,1

1

ˆˆ ˆ ˆ ˆ ˆ
r

r rT T
r j j r f g z y

j

y k v k y W y W y u dx f e (18)

Define the estimated parametric vector of Θ as

f f f f f fé ù é ùQ = = Îë û ë û
l

l
% % % % % %% L L L L ¡1 1 1 .

T T

f fk g gl

The control law using the estimated system parameters and states is

( ) ( ) x f
=

æ öæ ö
ç ÷ç ÷= -Q + + - + +

ç ÷ç ÷Q è øè ø
å
l

%%%
% ˆ11 ,1

1

1ˆ ˆ ˆ ˆ ˆ ,
ˆ

T
f r j j r dT R

g j

u W y k v k y v u
W y (19)

where we introduce two designable inputs, ṽ̂ d  and ûR
^ . Specify ṽ̂ d , the estimate of v̂d , as

a a a- -
-= + - + + - + -&% % & %L( ) ( 1) ( 1)

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ),r r r
d m m r m r mv y y y y y y y (20)

where ŷm is a prespecified reference trajectory, ỹ̂ (k ) denotes the estimate of ŷ (k ), and αi's are

adjustable parameters. Substituting (19) back into (18) and defining the tracking error

ê≜ ŷ − ŷm, we arrive at the following error equation:

( )

( ) ( )
a a a e

a e a e

-
-

-

-

+ + + + = F + + +

+ + + + +

& &L
& &L

1

11 11

( ) ( 1)
ˆ ˆ1 1

( 1)

ˆ ˆ1 1

ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ,

r
rr r T

r r y zR
r

y z r y z

e e e e W u d

d d
(21)

where Φ =Θ − Θ̃ and W  is a function of ξ, v, and Θ̃. If we denote M (s̃)=1 / (s̃ r + α1s̃
r−1 + ⋯ + αr),

(21) implies that
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( )

a a
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-
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% % %L
11 1

1
ˆ 1 1

1
ˆ ˆ1 1

1 ˆˆ ˆ( ) ( )
( )

.
r

T r r
r yR

r
r z z

E s W U s s s s d
M s

s s s
(22)

Neglecting the details of Φ T W , we can view (21) or (22) as a linear system (with the output
ê) subject to five inputs. We propose adding another control loop between Ê (s̃) and Û R

^ (s̃). This
control loop provides an additional degree‐of‐freedom for reducing the effect of the unstruc‐
tured uncertainty, the state estimated error, and the output disturbance. The tracking error
Ê (s̃) and the control input Û R

^ (s̃) is related by

z w w
x w w=

+ +
= - =

+ +P % %% % % % %
% %

2 2

ˆ 2 2
1

2ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ),  ( ) ( )
2

low-order repetitive controller
k

i ni ni
R

i ni nii

s sU s R s C s E s R s
s s (23)

where k is the number of periodic frequencies, ωni is the ith disturbance frequency in rad/rev,
and ξi and ζi are damping ratios with 0<ξi <ζi <1. The gain of R̂(s̃) at those periodic frequencies
may be varied by adjusting the values of ξi and ζi. Furthermore, Ĉ(s̃) is a controller that should
ensure the stability of the overall system. Substitute (23) back into (22), we obtain

( )
( )

a a

a a e e

-
-

-
-

é ù+ = F + + + +ë û
+ + + +

% % % % % % %L

% % %L
11 1

1
1 1

1
ˆ ˆ1 1

ˆˆˆ ˆ1 ( ) ( ) ( ) ( )

r

T r r
r y

r
r z z

M s R s C s E s W s s s d

s s s
(24)

Define

-
é ù+ë û% % % %@

1ˆˆ( ) 1 ( ) ( ) ( ) ,M s M s R s C s (25)

Equation (24) becomes

( )
( )

a a

a a e e

-
-

-
-

é= F + = + + +ë
ù+ + + + û

% % % % %L

% % %L
11 1

1
1 1

1
ˆ ˆ1 1

ˆ ˆ ˆˆ ( ) , ( )

r

T r r
r yM M

r
r z z

e M s W d d M s s s s d

s s s
(26)

where

( ) ( )a a a a e e- -
- -

é ù= + + + + + + + ûë% % % % % % %L L
11 1

1 1
ˆ ˆ1 1 1 1

ˆ ˆ( )
r

r r r
r y r z zMd M s s s s d s s s
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Because ė̂, ë̂, ⋯ , ê(r−1) cannot be measured directly, the so‐called augmented error scheme will
be used. The augmented error is defined as

( )= + F - F% %1ˆ ˆ ( ) ( ) .T Te e M s W M s W (27)

Substituting (26) into (27), we obtain

V= F +1
ˆˆ ,T

Me d (28)

where ς̄ =M̄ (s̃)W . The parametric adaptation law to be used is modified from the normalized
gradient method proposed in [33], i.e.,

r V
V V
r V V
V V

ì > QÎï +ï
ïQ = -F = > QÎ¶ Q >í

+ï
ï £ï
î

%

&% % %&

0

0

0

01
1

1
1 1

1

ˆ ˆˆif and ,
1

ˆ ˆˆ ˆ( ) if , ,  and 0,
1

ˆˆ0 if ,

MT

T
R perpMT

M

e e d w

eP e d w e

e d

(29)

where w is the allowable parametric variation set (compact and convex) with its interior and
boundary denoted by w 0 and ∂w, respectively, d̂ M̄ 0

 is an upper bound for the magnitude of
d̂ M̄ , and ρ is an adjustable adaptation rate that affects the convergence property. If the
magnitude of ê1 is small and dominated by the magnitude of d̂ M̄ , the adaptation law is disabled
to prevent the parameters from being adjusted based on the disturbance. If ê1 is greater than
d̂ M̄  magnitude‐wise, two scenarios need to be considered. If the current estimated parametric
vector locates within the allowable parametric set, regular adaptation law is applied. If the
current estimated parametric vector is on the boundary of the allowable parametric set, the
projected adaptation law is employed to stop the parametric vector from leaving the variation
set.

In the following, we present stability theorem for the proposed spatial‐based OFLRARC
system. The theorem extends the results in the literature [33,34] to take into account the
addition of the repetitive control module. It will be seen that the overall OFLRARC system
will stay stable and the tracking error will be bounded as long as a stable and proper loop‐
shaping filter stabilizes a certain feedback system.

Theorem 2.1 The error equation (28) with the parametric update law (29) leads to Φ∈ L ∞,
Φ̇∈ L 2 ∩ L ∞, and Φ T ς̄(θ) 2 ≤γ(1 + ς̄ T L ∞

) for all θ.

Proof: Follow the same steps for proof of Theorem 3.1 in [24].
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Theorem 2.2 Consider an exponentially minimum‐phase nonlinear system with parameter
uncertainty and subject to output disturbance as given by (4), which is augmented with a state
observer (or K‐filters) described by (13) [35]. Specify the control laws as (19), (20), and (23). Let
Assumptions (1) to (9) be satisfied. Assume that ŷm, ẏ̂m, ⋯ ,  ŷm

(r−1) (where r  is the relative
degree) and d̂ M̄  are bounded with an upper bound d̂ M̄ 0

, f , g , h , L hf
k , L g L f h  are Lipschitz

continuous functions, and W  has bounded derivative with respect to ξ , v, and Θ̃. In addition,
assume that a stable and proper controller Ĉ(s̃) is specified such that the feedback system
shown in Figure.1 is stable. Then, the parametric adaptation law given by (29) yields the
bounded tracking error, i.e., | ŷ(θ)− ŷm(θ)| < d̂ M̄ 0

 as θ→∞.

Proof: Follow the same steps for proof of Theorem 3.2 in [24] with some differences.

Figure 1. Repetitive controller and stabilizing compensator.

3.Spatial‐based output feedback backstepping robust adaptive repetitive
control (OFBRARC)

Consider the same NPI model (3), which is transformed from the NTI model (1), under the
same set of assumptions (Assumptions 2.1 and 2.2). The NPI model will be used for the
subsequent design and discussion.

3.1 Nonlinear state observer

Drop the θ notation and note that (3) can be expressed as a standard nonlinear system:

( )x e s= + - + + X + + = - +&& & & & &
1ˆ11 1 01 02 0 1 02 2 01

ˆˆ ˆ,  .T
x yy k v v b a d v k v u (30)

Robust Control - Theoretical Models and Case Studies112



Theorem 2.2 Consider an exponentially minimum‐phase nonlinear system with parameter
uncertainty and subject to output disturbance as given by (4), which is augmented with a state
observer (or K‐filters) described by (13) [35]. Specify the control laws as (19), (20), and (23). Let
Assumptions (1) to (9) be satisfied. Assume that ŷm, ẏ̂m, ⋯ ,  ŷm
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where terms involving unstructured uncertainty are merged into d̂ s =Δf (x̂, ϕf ) + Δg(x̂, ϕg)û
with

( ) ( )f f
f f

D D
D = D =

1 1

ˆ ˆ( , ) ( , )
ˆ ˆ, , ,

ˆ ˆ
t f t g

f g

f x g x
f x g x

x x

In addition, we have

( )ff
f f w= = = = 1

1 1

ˆˆ ,( , )
ˆ ˆ ˆ ˆ ˆ( , ) , ( , ) , ( )

ˆ ˆ
t gt f

f g

g xf x
f x g x h x x

x x

The state variables have been specified such that the angular velocity ω̂ is equal to x̂1, i.e., the
undisturbed output h (x̂). It is not difficult to verify that (30) has the same relative degree in
D0 = {x̂ ∈ℝn | x̂1 ≠0} as the NTI model in (1). If (30) has relative degree r , we can use the same
nonlinear coordinate transformation defined previously. With respect to the new coordinates,
i.e., ẑ1 and ẑ2, (30) can be transformed into the so‐called normal form, i.e., (5). With zero
dynamics being assumed to be asymptotically stable, we may focus on designing a nonlinear
state observer for external dynamics of (5), i.e., (7).

Because f (x̂) and g(x̂) are linearly related to system parameters, L g L f
r−1h (x̂) and L g L f

r−1h (x̂)

can be written as L f
rh (x̂)=Θ T Wf (x̂) and L g L f

r−1h (x̂)=Θ T Wg(x̂), where Wf (x̂) and Wg(x̂) are

two nonlinear functions, and Θ = ϕ f 1 ⋯ ϕ fk ϕg1 ⋯ ϕgl ⋯ T = ϕ1 ⋯ ϕℓ
T ∈ℝℓ, where

ℓ is the number of unknown parameters. Next, we adopt the following observer structure:
ż̄1 = A0z̄1 + k̄ y + F (y, u)TΘ, where z̄1 = z̄11 ⋯ z̄1r

T  is the estimate of z1 and W̄ f (y) and W̄ g(y)

are nonlinear functions with the same structure as Wf (x) and Wg(x), except that each entry of

x is replaced by y. Furthermore, A0 =

−k1

⋮
−kr

I(r−1)×(r−1)

01×(r−1)
, k̄ = k1 ⋯ kr

T , and

F (y, u)T =
0(r−1)×ℓ

W̄ f
T (y) + W̄ g

T (y)u
∈ℝr×ℓ.

By properly choosing k̄ , the matrix A0 can be made Hurwitz. Define the state estimated error

as ε≜ εz11 ⋯ εz1r
T ≜ z1 − z̄1. The dynamics of the estimated error can be obtained as

ε̇ = A0ε + Δ, where Δ = − k̄dy + BcΘ
T Wg(x)−W̄ g(y) u + BcΘ

T Wf (x)−W̄ f (y) + dsi. To proceed,

the role of the state observer is replaced by z̄1 ≜ξ +Ω TΘ and the following two K‐filters:

x x= + W = W +& &
0 0,  ( , )T T TA ky A F y u (31)
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such that ξ = ξ11 ⋯ ξ1r
T ∈ℝr  and Ω T ≜ v1 ⋯ vℓ ∈ℝr×ℓ. Decompose the second equation

of (31) into v̇ j = A0vj + erσj, j =1, 2, ⋯ , ℓ, where er = 0 ⋯ 0 1 ∈ℝrand σj =w1 j + w2 ju with w1 j

and w2 j are the j th  columns of W̄ f
T (y) and W̄ g

T (y), respectively. With the definition of the state
estimated error ε, the state estimate z̄1, and (31), we acquire the following set of equations that
will be used in the subsequent design:

e x f e
=

= + = + + =å
l

1 11 1 1 ,
1

,  1,...,
k kk k z k j k j z

j

z z v k r (32)

where • j ,i  denotes the i th row of • j .

3.2 Spatial domain output feedback adaptive control system

To apply adaptive backstepping method, we first rewrite the derivative of output ŷ as

e= + = + + = + + +& & && &
1 12 1ˆ11 12 12

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆy si y z si yy z d z d d z d d (33)

With the second equation in (32), (33) can be written as

e x f w e= + + + = + + Q + + +l l
& &&

12 1 12 1ˆ ˆ12 12 ,2
ˆ ˆ ˆ ˆˆ T

z si y z si yy z d d v d d

where ω̄T = v1,2 ⋯ vℓ−1,2 0 .

In view of designing output feedback backstepping with K‐filters, we need to find a set of K‐
filter parameters, i.e., vℓ,2, ⋯ , v1,2, separated from û by the same number of integrators between
ẑ12 and û. From (31), we see that vℓ,2, ⋯ , v1,2 are all candidates if w2 j are not zero. In the
subsequent derivation, we assume that vℓ,2 is selected. Therefore, the system incorporated the
K‐filters can be represented by

x f w e += + + Q + + + = -

= - = - + +
l l l l

l l l l l

&& &
&L

12 1ˆ12 ,2 , , 1

,1 , ,1 1 2

ˆ ˆˆ ,  
ˆ, 2, , 1,  

T
z si y i i

i r r

y v d d v v
k v i r v k v w w u

(34)

To apply adaptive backstepping to (34), a new set of coordinates will be introduced

a -= - = - =l L1 , 1ˆ ˆ ,  , 2, ,m i i iz y y z v i r (35)

Robust Control - Theoretical Models and Case Studies114



such that ξ = ξ11 ⋯ ξ1r
T ∈ℝr  and Ω T ≜ v1 ⋯ vℓ ∈ℝr×ℓ. Decompose the second equation

of (31) into v̇ j = A0vj + erσj, j =1, 2, ⋯ , ℓ, where er = 0 ⋯ 0 1 ∈ℝrand σj =w1 j + w2 ju with w1 j

and w2 j are the j th  columns of W̄ f
T (y) and W̄ g

T (y), respectively. With the definition of the state
estimated error ε, the state estimate z̄1, and (31), we acquire the following set of equations that
will be used in the subsequent design:

e x f e
=

= + = + + =å
l

1 11 1 1 ,
1

,  1,...,
k kk k z k j k j z

j

z z v k r (32)

where • j ,i  denotes the i th row of • j .

3.2 Spatial domain output feedback adaptive control system

To apply adaptive backstepping method, we first rewrite the derivative of output ŷ as
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With the second equation in (32), (33) can be written as

e x f w e= + + + = + + Q + + +l l
& &&

12 1 12 1ˆ ˆ12 12 ,2
ˆ ˆ ˆ ˆˆ T

z si y z si yy z d d v d d

where ω̄T = v1,2 ⋯ vℓ−1,2 0 .

In view of designing output feedback backstepping with K‐filters, we need to find a set of K‐
filter parameters, i.e., vℓ,2, ⋯ , v1,2, separated from û by the same number of integrators between
ẑ12 and û. From (31), we see that vℓ,2, ⋯ , v1,2 are all candidates if w2 j are not zero. In the
subsequent derivation, we assume that vℓ,2 is selected. Therefore, the system incorporated the
K‐filters can be represented by

x f w e += + + Q + + + = -

= - = - + +
l l l l

l l l l l

&& &
&L

12 1ˆ12 ,2 , , 1

,1 , ,1 1 2

ˆ ˆˆ ,  
ˆ, 2, , 1,  

T
z si y i i

i r r

y v d d v v
k v i r v k v w w u

(34)

To apply adaptive backstepping to (34), a new set of coordinates will be introduced

a -= - = - =l L1 , 1ˆ ˆ ,  , 2, ,m i i iz y y z v i r (35)
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where ŷm is the prespecified reference output, and αi−1 is the virtual input to be used for
stabilizing each state equation. For simplicity, we define ∂α0 / ∂ ŷ ≜ –1 for subsequent deriva‐
tions.

Step 1:i =1With (35), the first state equation in (34) can be expressed as

x f a f w e= + + + Q + + + -l l
& &&

12 1ˆ1 12 2 1
ˆ ˆ ˆT

z si y mz z d d y (36)

Consider a Lyapunov function V1 = (1 / 2)z1
2 and calculate its derivative

( )x f a f w e= = + + + Q + + + -l l
& && &

12 1ˆ1 1 1 1 12 2 1
ˆ ˆ ˆT

z si y mV z z z z d d y (37)

Define the estimates of ϕi as ϕ̃ i and Φ = Φ1 ⋯ Φℓ =Θ − Θ̃, where

Θ̃ = ϕ̃ f 1 ⋯ ϕ̃ fk ϕ̃g1 ⋯ ϕ̃gl ⋯ T = ϕ̃1 ⋯ ϕ̃ℓ
T ∈ℝℓ. Note that Θ is the “true” parameter

vector, whereas Θ̃ is the estimated parameter vector. Design the virtual input α1 as α1 = ᾱ1 / ϕ̃ℓ

and specify

( )a x f w= - - - Q + - - -l
&% % 2 2 2

1 1 12 1 2 1 1 1 1 1 1 1 1
1

1 ˆmz z z z z y c z d z g z
z (38)

where ci, di, gi are variables. Therefore, (37) becomes

( )= - - - + F + + + &&
12 1

2 2 2
ˆ1 1 1 1 1 1 1 1 1

ˆ ˆ
z si yV c z d z g z z d dt e (39)

where τ1 Φ = z1z2Φℓ + α1Φℓ + z1ω̄
T Φ .

Step 2:i =2, ⋯ , r −1With respect to the new set of coordinates (35), the second equation of (34)
can be rewritten as

( )
( )

( ) ( )
( )

aa x f w e

a ax
x

a as

-
+

- -

-
- -

-
= =

é¶
= + - - + + Q + + + +ê ¶ë
¶ ¶

+ + Q
¶ ¶Q

ù¶ ¶ ú+ +
¶ ¶ úû

å å

l l l

l

&&

&%
%

12 1
1

ˆ1 ,1 12 ,2

1 1
0

1
1 1

0 1
1 1

ˆ ˆ
ˆ

ˆ

ˆ
ˆ

Ti
i i i i z si y

i i

i
ji i

j r j mj
j mj j

z z k v v d d
y

A ky

A v e y
v y

Robust Adaptive Repetitive and Iterative Learning Control for Rotary Systems Subject to Spatially Periodic
Uncertainties

http://dx.doi.org/10.5772/63082

115



Consider a Lyapunov function Vi =∑
j=1

i−1
Vj + 1

2 zi
2. Specify

( ) ( )

( ) ( )
( )

a a aa x f w x
x

a a a as

- - -
+

-
- - - -

-
= =

éì ¶ ¶ ¶
= - + + + + Q + + + Qí ê ¶ ¶ ¶Qî ë

üù æ ö æ ö¶ ¶ ¶ ¶ ïú+ + - - -ç ÷ ç ÷ ý
¶ ¶ ¶¶ ú è ø è ø ïû þ

å å

l l l

l

&% % %
%

1 1 1
1 ,1 12 ,2 0

2 21
2 2 21 1 1 1

0 1
1 1

1 ˆ
ˆ

ˆ
ˆ ˆˆ

Ti i i
i i i i i i

i

i
ji i i i

j r j m i i i i i ij
j mj j

z z z k v z v A ky
z y

A v e y c z d z g z
v y yy

The derivative of Vi becomes

( )a a a
t e

- -
- - -

= =

æ ö¶ ¶ ¶æ ö æ öç ÷= - + + + F - + +ç ÷ ç ÷ç ÷¶ ¶ ¶è ø è øè ø
å å &&

12 1

2 21 1
1 1 12 2 2

ˆ
1 1

ˆ ˆ
ˆ ˆ ˆ

i i
j j j

i j j j j j j i j z si y
j j

V c z d z g z z d d
y y y

where τiΦ =τ1Φ −∑
j=2

i−1 ∂α j−1
∂ ŷ (zjvℓ,1Φℓ + zjω̄

TΦ).

Step 3:

With respect to the new set of coordinates (35), the third equation of (34) can be written as

( ) ( )

( ) ( )
( )

a a ax f w e x
x

a as

- - -

-
- -

-
= =

é¶ ¶ ¶
= - + + - + + Q + + + + + + Qê ¶ ¶ ¶Që

ù¶ ¶ ú+ +
¶ ¶ úû

å å

l l l l l

l

& &%& %12 1
1 1 1

ˆ,1 1 2 12 ,2 0

1
1 1

0 1
1 1

ˆ ˆˆ ˆ
ˆ

ˆ
ˆ

Tr r r
r r z si y

r
jr r

j r j mj
j mj j

z k v w w u v d d A ky
y

A v e y
v y

The overall Lyapunov function may now be chosen as

e e
-

-

= =

= + + F G F +å å
1

2 1

1 1

1 1 1
2 2 4

r r
T T

r j r
jj j

V V z P
d (40)

where Γ is a symmetric positive definite matrix, i.e., Γ =Γ T >0. With the definition of state

estimated error ε, we can obtain that
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v y

The overall Lyapunov function may now be chosen as

e e
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-

= =
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where Γ is a symmetric positive definite matrix, i.e., Γ =Γ T >0. With the definition of state

estimated error ε, we can obtain that
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( ) ( )

( ) ( )
( )

( )

a ax f w e x
x

a a as

e e e e

-

- -
=

-
- - -

-
= =

-

=

- + +ì
ï

= + é¶ ¶í- + + Q + + + + +êï ¶ ¶ëî
üù¶ ¶ ¶ ïú+ Q + + ý

¶Q ¶ ¶ úïûþ

+F G F - + D + D

å

å å

å

l l l

l l

l

& & &

&%
%

&

12 1

,1 1 21

1 1
ˆ12 ,2 01

1
1 1 1

0 1
1 1

1

1

ˆ

ˆ ˆ ˆ
ˆ

ˆ
ˆ

1 1
4 4

rr

r j r Tr r
z si yj

r
jr r r

j r j mj
j mj j

r
T T T T

j jj j

k v w w u
V V z

v d d A ky
y

A v e y
v y

P P
d d

=
å

1

r

Specify the control input as

( ) ( )

( ) ( )
( )

a a ax f w x
x

a a a as

- - -

-
- - - -

-
= =

éì ¶ ¶ ¶
= - + + + Q + + + Qí ê ¶ ¶ ¶Qî ë

üù æ ö æ ö¶ ¶ ¶ ¶ ïú+ + - - - +ç ÷ ç ÷ ý
¶ ¶ ¶¶ ú è ø è ø ïû þ

å å

l l l l
l

l

&% % %
%

1 1 1
,1 1 12 ,2 0

2

2 21
2 2 21 1 1 1

ˆ0 1
1 1

1ˆ ˆ
ˆ

ˆ ˆ
ˆ ˆˆ

Tr r r
r r r r

r

r
jr r r r

j r j m r r r r r r rj R
j mj j

u z k v z w z v A ky
z w y

A v e y c z d z g z z u
v y yy

(41)

where ûR
^  is an addition input that will be used to target on rejection of uncertainties.

Substituting (41) into V̇ r  and writing τrΦ =τr−1Φ −
∂αr −1

∂ ŷ (zrvℓ,1Φℓ + zrω̄
T Φ ), we arrive at

( )

( ) ( )

a a
t

a
e e e e e

- - -

=

-

= = =

æ ö¶ ¶æ ö æ öç ÷= - + + + + F G F +ç ÷ ç ÷ç ÷¶ ¶è ø è øè ø
¶

- + + - + D + D
¶

å

å å å

& &

&
12 1

2 2
1 12 2 2 1

ˆ
1

1
ˆ

1 1 1

ˆ
ˆ ˆ

1 1ˆ ˆ
ˆ 4 4

r
j j T

r j j j j j j r r R
j

r r r
j T T T

j z si y
j jj j j

V c z d z g z z u
y y

z d d P P
y d d

(42)

From (42), we may specify the parameter update law to cancel the term (τr + Φ̇T Γ −1)Φ . To
guarantee that the estimated parameters will always lie within allowable region w, a projected
parametric update law will be specified as

t

t t

ì G QÎïQ = í
G QÎ¶ GQ >ïî

%&%
%

0if ,
ˆ( ) if  and 0,

T
r

T
R r r perp

w
P w

(43)

where w is the allowable parametric set. It is compact and convex with its interior and
boundary denoted by w 0 and ∂w, respectively. If the current estimated parametric vector
locates within the allowable parametric set, the regular update law is used. If the current
estimated parametric vector is on the boundary of the allowable parametric set, the projected
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update law denoted by PR(.) is employed to stop the parametric vector from leaving the set.

With (43), add and subtract terms ∑
j=1

r 1
4gj

| d̂ si1
+ ḋ̂ y | 2 to (42), we have

( )

( )

a
e

a

e e

e e e

-

= =

-

=

= =

=

æ ö¶
£ - - +ç ÷ç ÷¶è ø

æ ö¶
- + +ç ÷ç ÷¶è ø

+ + + D + D

- + + + +

å å

å

å å

å

&

&

&

L

12

1

1

ˆ ˆ ˆ11 13 1

2

12
ˆ

1 1

2

1

1

2

1 1

2 2 2
ˆ

1

1
ˆ 2

1 ˆ ˆ
ˆ 2

1 1ˆ ˆ
4 4

1 ˆ
4 z z z r

r r
j

i j j j j z
jj j

r
j

j j si y
jj

r r
T T

si y
j ij j

r

r R
jj

V c z d z
y d

g z d d
y g

d d P P
g d

z u
d

(44)

The tracking error Z1(s̃) and the control input Û R
^ (s̃) are related by

= -% % % %ˆ 1
ˆˆ ˆ( ) ( ) ( ) ( )RU s R s C s Z s (45)

where we have chosen R̂(s̃) as a low‐order and attenuated‐type internal model filter, i.e.,

z w w
x w w=

+ +
=

+ +P % %%
% %

2 2

2 2
1

2ˆ ( )
2

k
i ni ni

i ni nii

s sR s
s s

(46)

where k is the number of periodic frequencies, ωni is the ith disturbance frequency in rad/rev,
and ξi and ζi are damping ratios satisfying 0<ξi <ζi <1. The gain of R̂(s̃) at those periodic
frequencies can be varied by adjusting the values of ξi and ζi.

Theorem 3.1

Consider the control law of (41) and (45) employed to a nonlinear system with unmodeled
dynamics, parametric uncertainty, and output disturbance given by (30). Suppose that
ŷm, ẏ̂m, ⋯ ,  ŷm

(r ) (where r  is the relative degree) and d̂ y, ḋ̂ y, ⋯ ,  d̂ y
(r ) are known and bounded,

d̂ si1
(r−1), d̂ si2

(r−2), ⋯ , ḋ̂ sir −1
 are sufficiently smooth, f ,  g ,  h ,  L f

rh ,  L g L f
r−1h  are Lipschitz contin‐

uous functions, and at least one column of W̄ ( ŷ) is bounded away from zero. Moreover,
suppose that a loop‐shaping filter Ĉ(s̃) is specified to stabilized the feedback system. Then, the
parametric update law given by (43) yields the bounded tracking error.

Proof: Refer to [36].
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^ (s̃) are related by

= -% % % %ˆ 1
ˆˆ ˆ( ) ( ) ( ) ( )RU s R s C s Z s (45)

where we have chosen R̂(s̃) as a low‐order and attenuated‐type internal model filter, i.e.,

z w w
x w w=

+ +
=

+ +P % %%
% %

2 2

2 2
1

2ˆ ( )
2

k
i ni ni

i ni nii

s sR s
s s

(46)

where k is the number of periodic frequencies, ωni is the ith disturbance frequency in rad/rev,
and ξi and ζi are damping ratios satisfying 0<ξi <ζi <1. The gain of R̂(s̃) at those periodic
frequencies can be varied by adjusting the values of ξi and ζi.
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suppose that a loop‐shaping filter Ĉ(s̃) is specified to stabilized the feedback system. Then, the
parametric update law given by (43) yields the bounded tracking error.
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4. Spatial‐based adaptive iterative learning control of nonlinear rotary
systems with spatially periodic parametric variation

Consider an NTI system described by

( ) ( )( ) ( )( ) ( ) ( ) ( )j q j q= + = Y& , , ,  t f c t gx t f x B g x u t y t x t (47)

where

( ) ( ) ( ) [ ] [ ]= é ù Y = =ë ûL L L1 , 0 0 1 , 0 0 1
T T

n cx t x t x t B

y(t) is the system output, u(t) is the control input, and φf (θ)= φ1(θ) ⋯ φp(θ)  and φg(θ) are
system parameters that are periodic with respect to angular position θ (i.e., spatially periodic).
Using the aforementioned change of coordinate, we may transform (47) in the time domain
into

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )w q q j q j q q q q= + = Y&ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,  t f c t gx f x B g x u y x (48)

in the θ‐domain. If ω̂(θ) equals one of the state variables, (48) is an NPI system in the θ‐domain.

Remark 4.1. As mentioned previously, uncertainties for rotary systems may be treated as
periodic disturbances or periodic parameters. Periodic parametric variation is, in fact, a
sensible and practical assumption.

4.1 Definitions and assumptions

In this section, we list and present the definitions and assumptions to be used in the subsequent
sections.

Definition 4.1. (Lie derivative) The Lie derivative is defined as

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

( )
¶ ¶¶

= = = = =
¶ ¶ ¶

0 2, , , ,...f f
f f f f f g f

L h L hhL h x h x L h x f x L h x L L h x f x L L h x g x
x x x

Definition 4.2. (Diffeomorphism) A diffeomorphism is considered as a mapping
T (.) : D ⊂ R n → R n being continuously differentiable on D and has a continuously differentia‐
ble inverse T −1(.).

Definition 4.3. (Adaptation rate) Instead of constant adaptation rate in regular adaptive
control, a varying adaptation rate will be used. Consider a matrix Γ(θ, φc) defined by
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( ) ( )
q

q j a q q j
b j q

=ì
ïG = < <í
ï £î

0, 0
, , 0

,
c c

c

(49)

where φc is the lowest common multiple of the parametric periods, β =diag{β1 ⋯ βℓ} with

nonzero positive constant βi, and α(θ)=diag{α1(θ) ⋯ αℓ(θ)} with αi(θ) a strictly increasing
function, αi(0)=0, and αi(φc)=βi.

Assumption 4.1. The desired trajectory (or reference command signal) ym is sufficiently smooth

or ym
(n), ym

(n−1), ⋯ , ẏm exists.

Assumption 4.2. For a θ‐domain NPI system described by

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )q q j q q j q q q q= + = Y&̂ ˆ ˆ ˆ ˆ ˆ, , ,  f c gx f x B g x u y x

the nonlinear functions f (x̂(θ)) and g(x̂(θ)) are assumed to linearly relate to the system
parameters φf  and φg , i.e.,

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )q j q j q q q j q j q q
=

= =å
1

ˆ ˆ ˆ ˆ, , ,
p

f i i g g
i

f x f x g x g x

Remark 4.2. Assumption 1 may be satisfied by considering a reference trajectory without
sudden change of slope. Assumption 2 may be satisfied by many systems, e.g., LTI and NTI
systems.

4.2 Spatial‐based adaptive iterative learning control

For tidy presentation, the θ notation will be dropped from most of the equations in the sequel.
Rewrite (48) as

( ) ( )j j w= + = = Y&̂ ˆ ˆ ˆ ˆ ˆ ˆ, , ,  f c gx f x B g x u y x (50)

where the output ŷ is equal to the angular velocity ω̂, which is set to be the first state of the
system. Also note that

( ) ( ) ( ) ( )j j j j= =1 1ˆ ˆ ˆ ˆ ˆ ˆ, , and , ,f t f g t gf x f x x g x g x x
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For tidy presentation, the θ notation will be dropped from most of the equations in the sequel.
Rewrite (48) as

( ) ( )j j w= + = = Y&̂ ˆ ˆ ˆ ˆ ˆ ˆ, , ,  f c gx f x B g x u y x (50)

where the output ŷ is equal to the angular velocity ω̂, which is set to be the first state of the
system. Also note that

( ) ( ) ( ) ( )j j j j= =1 1ˆ ˆ ˆ ˆ ˆ ˆ, , and , ,f t f g t gf x f x x g x g x x
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The system (50) is valid within the set D0 = {x̂ ∈ R | x̂1 ≠0}. Within this set, a diffeomorphism
T (x̂) : D0 ⊂ D (as defined previously) exists and may be described by

( ) ( ) ( ) ( )-é ù= = ë ûL0 1ˆ ˆ ˆ ˆ ˆ Tn
f f fz T x L h x L h x L h x (51)

where ẑ = ẑ1 ⋯ ẑn
T . Using (51), we may transform (50) into

( ) ( )
( )-

-

=
é ù= + + =ë û

&
1

1
1ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ,  n n
c c f g f x T z

z A z B L h x L L h x u y z (52)

where

( ) ( )

( )
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´ -

é ù
= ê ú
ê úë û

1 1

1 1

0

0 0
n n

c
n

I
A

According to Assumption 3.2, we may rewrite (52) as

( ) ( ) ( )r jé ù= + + Q + =ë û
&

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,  T
c c f g gz A z B z W z W z u y z (53)

where Θ = φ1 ⋯ φp φg ⋯ T  is the actual parametric vector, φg  is a parameter mapped via
the diffeomorphism, Wf (ẑ) is a vector of nonlinear terms, and ρ(ẑ) and Wg(ẑ) are two nonlinear
functions.

Consider a reference trajectory ym(t) satisfying Assumption 3.1, which may be transformed

into its counterpart in the θ‐domain, i.e., ŷm(θ)= ym(λ −1(θ))= ym(t). Define another state or
coordinate transformation:

( ) ( ) ( ) ( )q q q-= = =& L 1
1 2ˆ ˆ ˆ ˆ ˆ ˆ, , , .n

r m r m nr mz y z y z y

We may form a state space model, which produces the reference trajectory, as

( )= +&̂ ˆ ˆ n
r c r c mz A z B y (54)

where ẑ r = ẑ1r ⋯ ẑnr
T . Define the tracking error as ê = ẑ − ẑ r . Then, the error dynamics can be

obtained using the first equation of (53) and (54), i.e.,
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( )r s jé ù= + Q + + - +ë û
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c f m g ge Ae B W y W u (55)

where σ = cê with c = c1 ⋯ cn−1 1 , and

( ) ( ) ( )- ´ - ´ -é ù
= ê ú
ê úë û

1 1 1 10 n n nI
A

c

Next, specify an LKF as

( ) ( )
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q j
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c
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gV d (56)

where Φ = Θ̄ − Θ̃̄  and Θ̄  is a vector of parameters (to be defined later). Θ̃̄  is the estimate of
Θ̄ . The objective for the following steps is to establish a suitable control input and parametric
update law rendering the derivative of the LKF negative semidefinite. Calculating the
derivative of V , we obtain

( ) ( ) ( ) ( )s s j q b q q j b q j
j j

- -é ù= + = - = F F -F - F -ë û
&& &

2
1 1

1 2 1 22
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g c c
g g

V V V V ce V (57)

Substituting the error dynamics (55) into V1 and recalling that σ = cê, we have

( )( ) j ss r
j j j

é ùQ
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& 2

1
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2

T
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m f g
g g g
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where c̄ = 0 c1 ⋯ cn−1 . Hence, we may specify û as

( )s= - + Q%ˆ 1 ,T
gu W k W (59)

where k  is a positive variable, Θ̃̄ is the corresponding estimate of

( )( )j sr
j j j

é ù é ùQ
Q = = + - -ê ú ê ú
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This will simplify V1, i.e.,

s s= - + F2
1

TV k W (60)

Using the periodicity of Θ̄ (θ)= Θ̄ (θ −φc), we may rewrite V2 as

( ) ( ) ( )( ) ( )( )b q j b q j- -é ù= Q -Q Q -Q - Q -Q - Q -Q -ê úë û
% % % %1 1

2 1 2 .
T T

c cV (61)

According to the following algebraic relationship,

( ) ( ) ( ) ( ) ( ) ( ) ( )b b b- - - - - = - é - + - ùë û1 2 2T T Ta b a b a c a c c b a b b c

where a, b, and c are vectors, (61) implies that

( )( ) ( ) ( )( )q j b q j- é ù= Q - -Q Q -Q + Q -Q -ê úë û
% % % % %1

2 1 2 2
T

c cV (62)

Therefore, we may specify a periodic parametric update law as

( ) ( ) ( ) ( )q q j q j s q j qQ = Q - + G Q = - £ £% % %, ;  0 if 0c c cW (63)

Recall that Γ(θ, φc) is the adaptation rate as defined in (49). For φc ≤θ, V2 becomes

s s b s= - F -2 1 2T T TV W W W (64)

With (60) and (64), we conclude that

s s b s s= - - £ -& 2 21 2 T TV k W W k (65)

The objective is achieved. The main results are summarized in the following theorem.

Theorem 4.1 Consider a spatial‐based nonlinear system (50) with spatially periodic parameters
satisfying Assumption 3.2. The error dynamics described by (55) exists under Assumption 3.1.
Assume that the control input is determined by (59) along with the periodic parametric
adaptation law (63). Then, the tracking error ê will converge to 0 with the performance
characteristics described by
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Proof: Refer to [37].

5. Conclusion

Adaptive fuzzy control (AFC) has been investigated for coping with nonlinearities and
uncertainties of unknown structures [38–40]. The major distinctions between AFC techniques
and the ones described in Sections 2 and 3 are (a) time‐based (AFC) versus spatial‐based design
(OFLRARC/OFBRARC) and (b) less information assumed on the nonlinearities/uncertainties
(AFC) versus more information on the nonlinearities/uncertainties (OFLRARC/OFBRARC).
Because, in spatial‐based design, a nonlinear coordinate transformation is conducted to change
the independent variable from time to angular displacement, the systems under consideration
in AFC and OFLRARC/OFBRARC are distinct. Next, AFC design techniques claim being able
to tackle systems with a more generic class of nonlinearities/uncertainties, which relies on
incorporating a fuzzy system to approximate those nonlinearities/uncertainties. It is not clear
how to determine the required structure complexity of the fuzzy system (e.g., number of
membership functions) to achieve desired control performance with reasonable control effort.
Generally speaking, known characteristics of the uncertainties or disturbances should be
incorporated as much as possible into the control design to improve performance, avoid
conservativeness, and produce sensible control input. Therefore, instead of assuming the
disturbances to be of generic type (as done by AFC), the methods presented in this chapter
aim at a category of disturbances prevalent in rotary systems and explore the spatially periodic
nature of the disturbances to design a specific control module and integrate into the overall
control system.

Acknowledgements

The author gratefully acknowledges the support from the Ministry of Science and Technology,
R.O.C. under grant MOST104-2221-E-005-043.

Author details

Cheng‐Lun Chen

Address all correspondence to: chenc@dragon.nchu.edu.tw

National Chung Hsing University, Taiwan, R.O.C

Robust Control - Theoretical Models and Case Studies124



q

q j
t q

-
® ®¥ò 2ˆ 0,

c

e d as

Proof: Refer to [37].

5. Conclusion

Adaptive fuzzy control (AFC) has been investigated for coping with nonlinearities and
uncertainties of unknown structures [38–40]. The major distinctions between AFC techniques
and the ones described in Sections 2 and 3 are (a) time‐based (AFC) versus spatial‐based design
(OFLRARC/OFBRARC) and (b) less information assumed on the nonlinearities/uncertainties
(AFC) versus more information on the nonlinearities/uncertainties (OFLRARC/OFBRARC).
Because, in spatial‐based design, a nonlinear coordinate transformation is conducted to change
the independent variable from time to angular displacement, the systems under consideration
in AFC and OFLRARC/OFBRARC are distinct. Next, AFC design techniques claim being able
to tackle systems with a more generic class of nonlinearities/uncertainties, which relies on
incorporating a fuzzy system to approximate those nonlinearities/uncertainties. It is not clear
how to determine the required structure complexity of the fuzzy system (e.g., number of
membership functions) to achieve desired control performance with reasonable control effort.
Generally speaking, known characteristics of the uncertainties or disturbances should be
incorporated as much as possible into the control design to improve performance, avoid
conservativeness, and produce sensible control input. Therefore, instead of assuming the
disturbances to be of generic type (as done by AFC), the methods presented in this chapter
aim at a category of disturbances prevalent in rotary systems and explore the spatially periodic
nature of the disturbances to design a specific control module and integrate into the overall
control system.

Acknowledgements

The author gratefully acknowledges the support from the Ministry of Science and Technology,
R.O.C. under grant MOST104-2221-E-005-043.

Author details

Cheng‐Lun Chen

Address all correspondence to: chenc@dragon.nchu.edu.tw

National Chung Hsing University, Taiwan, R.O.C

Robust Control - Theoretical Models and Case Studies124

References

[1] Ding Z. Adaptive disturbance rejection of nonlinear systems in an extended output
feedback form. Control Theory & Applications, IET. 2007;1(1):298–303.

[2] Priscoli FD, Marconi L, Isidori A. A new approach to adaptive nonlinear regulation.
SIAM Journal on Control and Optimization. 2006;45(3):829–55.

[3] Francis BA, Wonham WM. The internal model principle of control theory. Automatica.
1976;12(5):457–65.

[4] Kravaris C, Sotiropoulos V, Georgiou C, Kazantzis N, Xiao M, Krener AJ. Nonlinear
observer design for state and disturbance estimation. Systems & Control Letters.
2007;56(11):730–5.

[5] Chen W‐H. Disturbance observer based control for nonlinear systems. Mechatronics,
IEEE/ASME Transactions on. 2004;9(4):706–10.

[6] Ding Z. Asymptotic rejection of asymmetric periodic disturbances in output‐feedback
nonlinear systems. Automatica. 2007;43(3):555–61.

[7] Liu ZL, Svoboda J. A new control scheme for nonlinear systems with disturbances.
Control Systems Technology, IEEE Transactions on. 2006;14(1):176–81.

[8] Tang G‐Y, Gao D‐X. Approximation design of optimal controllers for nonlinear systems
with sinusoidal disturbances. Nonlinear Analysis: Theory, Methods & Applications.
2007;66(2):403–14.

[9] Teoh J, Du C, Xie L, Wang Y. Nonlinear least‐squares optimisation of sensitivity
function for disturbance attenuation on hard disk drives. Control Theory & Applica‐
tions, IET. 2007;1(5):1364–9.

[10] Bullinger E, Allgöwer F, editors. An adaptive high‐gain observer for nonlinear systems.
In Decision and Control, Proceedings of the 36th IEEE Conference on; 1997; San Diego.
California: IEEE.

[11] Marine R, Santosuosso GL, Tomei P. Robust adaptive observers for nonlinear systems
with bounded disturbances. Automatic Control, IEEE Transactions on. 2001;46(6):967–
72.

[12] Vargas JAR, Hemerly E, editors. Nonlinear adaptive observer design for uncertain
dynamical systems. IEEE Conference on Decision and Control; 2000: Citeseer.

[13] Kanellakopoulos I, Kokotovic P, Morse A, editors. Adaptive output‐feedback control
of a class of nonlinear systems. Decision and Control, Proceedings of the 30th IEEE
Conference on; 1991: IEEE.

Robust Adaptive Repetitive and Iterative Learning Control for Rotary Systems Subject to Spatially Periodic
Uncertainties

http://dx.doi.org/10.5772/63082

125



[14] Yang Z‐J, Kunitoshi K, Kanae S, Wada K. Adaptive robust output‐feedback control of
a magnetic levitation system by K‐filter approach. Industrial Electronics, IEEE Trans‐
actions on. 2008;55(1):390–9.

[15] Marino R, Tomei P. Global adaptive observers for nonlinear systems via filtered
transformations. Automatic Control, IEEE Transactions on. 1992;37(8):1239–45.

[16] Marino R, Tomei P. Global adaptive output‐feedback control of nonlinear systems. I.
Linear parameterization. Automatic Control, IEEE Transactions on. 1993;38(1):17–32.

[17] Chi R, Hou Z, Sui S, Yu L, Yao W. A new adaptive iterative learning control motivated
by discrete‐time adaptive control. International Journal of Innovative Computing,
Information and Control. 2008;4(6):1267–74.

[18] Nakano M, She J‐H, Mastuo Y, Hino T. Elimination of position‐dependent disturbances
in constant‐speed‐rotation control systems. Control Engineering Practice. 1996;4(9):
1241–8.

[19] Chen C‐L, Chiu GT‐C. Spatially periodic disturbance rejection with spatially sampled
robust repetitive control. Journal of Dynamic Systems, Measurement, and Control.
2008;130(2):021002.

[20] Moore KL. Iterative Learning Control for Deterministic Systems. Springer Science &
Business Media; 2012.

[21] Xu J‐X, Tan Y. Linear and Nonlinear Iterative Learning Control. New York: Springer;
2003.

[22] De Wit CC, Praly L. Adaptive eccentricity compensation. Control Systems Technology,
IEEE Transactions on. 2000;8(5):757–66.

[23] Tsao T‐C, Bentsman J. Rejection of unknown periodic load disturbances in continuous
steel casting process using learning repetitive control approach. Control Systems
Technology, IEEE Transactions on. 1996;4(3):259–65.

[24] Chen CL, Yang YH. Position‐dependent disturbance rejection using spatial‐based
adaptive feedback linearization repetitive control. International Journal of Robust and
Nonlinear Control. 2009;19(12):1337–63.

[25] Chen C‐L, Chiu GT‐C, Allebach J. Robust spatial‐sampling controller design for
banding reduction in electrophotographic process. Journal of Imaging Science and
Technology. 2006;50(6):530–6.

[26] Mahawan B, Luo Z‐H. Repetitive control of tracking systems with time‐varying
periodic references. International Journal of Control. 2000;73(1):1–10.

[27] Ahn H, Chen Y, Dou H. State‐periodic adaptive cogging and friction compensation of
permanent magnetic linear motors. Magnetics, IEEE Transactions on. 2005;41(1):90–8.

Robust Control - Theoretical Models and Case Studies126



[14] Yang Z‐J, Kunitoshi K, Kanae S, Wada K. Adaptive robust output‐feedback control of
a magnetic levitation system by K‐filter approach. Industrial Electronics, IEEE Trans‐
actions on. 2008;55(1):390–9.

[15] Marino R, Tomei P. Global adaptive observers for nonlinear systems via filtered
transformations. Automatic Control, IEEE Transactions on. 1992;37(8):1239–45.

[16] Marino R, Tomei P. Global adaptive output‐feedback control of nonlinear systems. I.
Linear parameterization. Automatic Control, IEEE Transactions on. 1993;38(1):17–32.

[17] Chi R, Hou Z, Sui S, Yu L, Yao W. A new adaptive iterative learning control motivated
by discrete‐time adaptive control. International Journal of Innovative Computing,
Information and Control. 2008;4(6):1267–74.

[18] Nakano M, She J‐H, Mastuo Y, Hino T. Elimination of position‐dependent disturbances
in constant‐speed‐rotation control systems. Control Engineering Practice. 1996;4(9):
1241–8.

[19] Chen C‐L, Chiu GT‐C. Spatially periodic disturbance rejection with spatially sampled
robust repetitive control. Journal of Dynamic Systems, Measurement, and Control.
2008;130(2):021002.

[20] Moore KL. Iterative Learning Control for Deterministic Systems. Springer Science &
Business Media; 2012.

[21] Xu J‐X, Tan Y. Linear and Nonlinear Iterative Learning Control. New York: Springer;
2003.

[22] De Wit CC, Praly L. Adaptive eccentricity compensation. Control Systems Technology,
IEEE Transactions on. 2000;8(5):757–66.

[23] Tsao T‐C, Bentsman J. Rejection of unknown periodic load disturbances in continuous
steel casting process using learning repetitive control approach. Control Systems
Technology, IEEE Transactions on. 1996;4(3):259–65.

[24] Chen CL, Yang YH. Position‐dependent disturbance rejection using spatial‐based
adaptive feedback linearization repetitive control. International Journal of Robust and
Nonlinear Control. 2009;19(12):1337–63.

[25] Chen C‐L, Chiu GT‐C, Allebach J. Robust spatial‐sampling controller design for
banding reduction in electrophotographic process. Journal of Imaging Science and
Technology. 2006;50(6):530–6.

[26] Mahawan B, Luo Z‐H. Repetitive control of tracking systems with time‐varying
periodic references. International Journal of Control. 2000;73(1):1–10.

[27] Ahn H, Chen Y, Dou H. State‐periodic adaptive cogging and friction compensation of
permanent magnetic linear motors. Magnetics, IEEE Transactions on. 2005;41(1):90–8.

Robust Control - Theoretical Models and Case Studies126

[28] Moore KL, Ghosh M, Chen YQ. Spatial‐based iterative learning control for motion
control applications. Meccanica. 2007;42(2):167–75.

[29] Fardad M, Jovanović MR, Bamieh B. Frequency analysis and norms of distributed
spatially periodic systems. Automatic Control, IEEE Transactions on. 2008;53(10):2266–
79.

[30] Al‐Shyyab A, Kahraman A. Non‐linear dynamic analysis of a multi‐mesh gear train
using multi‐term harmonic balance method: period‐one motions. Journal of Sound and
Vibration. 2005;284(1):151–72.

[31] Young T, Wu M. Dynamic stability of disks with periodically varying spin rates
subjected to stationary in‐plane edge loads. Journal of Applied Mechanics. 2004;71(4):
450–8.

[32] Yang Y‐H, Chen C‐L, editors. Spatially periodic disturbance rejection using spatial‐
based output feedback adaptive backstepping repetitive control. American Control
Conference; 2008: IEEE.

[33] Sastry SS, Isidori A. Adaptive control of linearizable systems. Automatic Control, IEEE
Transactions on. 1989;34(11):1123–31.

[34] Peterson BB, Narendra KS. Bounded error adaptive control. Automatic Control, IEEE
Transactions on. 1982;27(6):1161–8.

[35] Khalil HK, Grizzle J. Nonlinear Systems: Prentice‐Hall, New Jersey; 1996.

[36] Yang Y‐H, Chen C‐L. Spatial domain adaptive control of nonlinear rotary systems
subject to spatially periodic disturbances. Journal of Applied Mathematics. 2012;2012.

[37] Yang Y‐H, Chen C‐L, editors. Spatial‐based adaptive iterative learning control of
nonlinear rotary systems with spatially periodic parametric variation. Asian Control
Conference, ASCC 7th; 2009: IEEE.

[38] Tong S‐C, He X‐L, Zhang H‐G. A combined backstepping and small‐gain approach to
robust adaptive fuzzy output feedback control. Fuzzy Systems, IEEE Transactions on.
2009;17(5):1059–69.

[39] Tong S, Li Y. Observer‐based fuzzy adaptive control for strict‐feedback nonlinear
systems. Fuzzy Sets and Systems. 2009;160(12):1749–64.

[40] Shaocheng T, Changying L, Yongming L. Fuzzy adaptive observer backstepping
control for MIMO nonlinear systems. Fuzzy Sets and Systems. 2009;160(19):2755–75.

 

 

 

 

Robust Adaptive Repetitive and Iterative Learning Control for Rotary Systems Subject to Spatially Periodic
Uncertainties

http://dx.doi.org/10.5772/63082

127





Chapter 6

Sequential Optimization Model for Marine Oil Spill
Control

Kufre Bassey

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/63050

Abstract

This chapter gives credence to the introduction of optimal control theory into oil spill
modeling and develops an optimization process that will aid in the effective decision-
making in marine oil spill management. The purpose of the optimal control theory is to
determine the control policy that will optimize (maximize or minimize) a specific per‐
formance criterion, subject to the constraints imposed by the physical nature of the
problem. A fundamental theorem of the calculus of variations is applied to problems
with unconstrained states and controls, whereas a consideration of the effect of control
constraints leads to the application of Markovian decision processes. The optimization
objectives are expressed as value function or reward to be optimized, whereas the opti‐
mization models are formulated to adequately describe the marine oil spill control,
starting from the transportation process. These models consist of conservation relations
needed to specify the dynamic state of the process given by the chemical compositions
and movements of crude oil in water.

Keywords: decision theory, marine oil spill, optimal control, sequential optimization,
Markov processes

1. Introduction

The degradation of aquatic ecosystem is generally agreed to be undesirable. Historically, most
evaluations of the ecological effects of petroleum contamination have related impacts to effects
on the supply of products and services of importance to human cultures. According to Xu and
Pang [1], most of the environmental and pollution control laws were legislated to protect
ecological objectives and public health. Here, a substance is considered to be a pollutant if it
is perceived to have adverse effects on wildlife or human well-being. In recent years, a number

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



of substances appear to pose such threats. Among them is crude oil spillage, which first came
to public attention with the Torrey Canyon disaster in 1967.

The risk of crude oil spillage to the sea presents a major threat to the marine ecology compared
with other sources of pollution in the oceans. Before now, it was earlier reported that oil spillage
impacts negatively on wildlife and their environments in various ways, which include the
alteration of the ecological conditions, and can result into alterations of the environmental
physical and chemical composition, destruction of nutritional capita of the marine biomass,
changes in the biological equilibrium of the habitat, and as a threat to human health [2]. The
same can also be said about Nigeria, where oil spillage is a major environmental problem and
its coastal zone is rated as one of the most polluted spots on the planet in the year 2006 [3]. For
instance, from 1976 to 2007, over 1,896,960 barrels of oil were sunk into the Nigerian coastal
waters resulting in a serious pollution of drinkable water and destruction of resort centers,
properties, and lives along the coastal zone. This was seen to be a major contributor to the
regional crisis in the Nigeria Niger-Delta region.

As a case in point, after a spill in the ocean, oil in water body, regardless of whether it originated
as surface or subsurface spill, forms a thin film called oil slick as it spreads in water. The oil
slick movement is governed by the advection and blustery diffusion as a result of water current
and wind action. The slick always spreads over the water surface due to gravitational, inertia,
gluey, and interfacial strain force equilibrium. The oil composition also changes from the early
time of the spill. Thus, the water-soluble components of the oil dissolve in the water column,
whereas the immiscible components emulsified and disperse in the water column as small
droplets and light (low molecular weight) fractions evaporate (for example, see [4]).

In essence, the frequency of accidental oil spills in aquatic environments has presented a
growing global concern and awareness of the risks of oil spills and the damage they do to the
environment. However, it is widely known that oil exploration is a necessity in our industrial
society and a major sustainer of our lifestyle, as most of the energy used in Canada and the
United States, for instance, is for transportation that runs on oil and petroleum products. Thus,
in as much as the industry uses oil and petroleum derivatives for the manufacturing of vital
products, such as plastics, fertilizers, and chemical feedstock, the drifts in energy usage are
not likely to decrease much in the near future. In what follows, it is a global belief that the
production and consumption of oil and petroleum products might continue to increase
worldwide while the threat of oil pollution is also likely to increase accordingly.

Consequently, a fundamental problem in environmental research in recent time has been
identified in the literature to how to properly assess and control the spatial structure of
pollution fields at various scales, and several studies showed that mathematical models were
the only available tools for rapid computations and determinations of spilled oil fate and for
the simulation of the various clean-up operations.
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regional crisis in the Nigeria Niger-Delta region.

As a case in point, after a spill in the ocean, oil in water body, regardless of whether it originated
as surface or subsurface spill, forms a thin film called oil slick as it spreads in water. The oil
slick movement is governed by the advection and blustery diffusion as a result of water current
and wind action. The slick always spreads over the water surface due to gravitational, inertia,
gluey, and interfacial strain force equilibrium. The oil composition also changes from the early
time of the spill. Thus, the water-soluble components of the oil dissolve in the water column,
whereas the immiscible components emulsified and disperse in the water column as small
droplets and light (low molecular weight) fractions evaporate (for example, see [4]).

In essence, the frequency of accidental oil spills in aquatic environments has presented a
growing global concern and awareness of the risks of oil spills and the damage they do to the
environment. However, it is widely known that oil exploration is a necessity in our industrial
society and a major sustainer of our lifestyle, as most of the energy used in Canada and the
United States, for instance, is for transportation that runs on oil and petroleum products. Thus,
in as much as the industry uses oil and petroleum derivatives for the manufacturing of vital
products, such as plastics, fertilizers, and chemical feedstock, the drifts in energy usage are
not likely to decrease much in the near future. In what follows, it is a global belief that the
production and consumption of oil and petroleum products might continue to increase
worldwide while the threat of oil pollution is also likely to increase accordingly.

Consequently, a fundamental problem in environmental research in recent time has been
identified in the literature to how to properly assess and control the spatial structure of
pollution fields at various scales, and several studies showed that mathematical models were
the only available tools for rapid computations and determinations of spilled oil fate and for
the simulation of the various clean-up operations.
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2. Methodological model

Now, consider the introduction of an optimal control theory into spill modeling to develop an
optimization process that will aid effective decision-making in marine oil spill management.
The purpose of the optimal control theory is to determine the control policy that will optimize
(maximize or minimize) a specific performance criterion subject to the constraints imposed by
the physical nature of the problem. A fundamental theorem of the calculus of variations is
applied to problems with unconstrained states and controls, whereas a consideration of the
effect of control constraints leads to the application of Markovian decision processes.

The optimization objectives are expressed as a performance index (value function or reward)
to be optimized, whereas the optimization models are formulated to adequately describe the
marine oil spill control starting from the transportation process. These models consist of
conservation relations needed to specify the dynamic state of the process given by the chemical
compositions and movements of crude oil in water.

2.1. Mathematical preliminaries and definition of terms

In our basic optimal control problem, u(t) is used for the control and x(t) is used for the state
variables. The state variable satisfies a differential equation that depends on the control
variable:

( ) ( ) ( )( ), ,x t g t x t u t¢ = (1)

where x ′(t) is the state differential defining the performance index. This implies that, as a
control function changes, the solution to the differential equation will also change. In other
words, one can view the control-to-state relationship as a map u(t)↦ x = x(u) [we wrote x(u)
just to remind us of the dependence on u]. Our basic optimal control problem therefore
consisted of finding, in mathematical terms, a piecewise continuous control u(t) and the
associated state variable x(t) to optimize a given objective function. That is to say,

( ) ( )( )1

0

max , ,
t

u t
f t x t u t dtò (2)

( ) ( ) ( )( )

( ) ( )0 1

, ,

 
0

Subject

x t g t x t u t

x t and x t free
to

¢ =

=

(3)

Such a maximizing control is called an optimal control. By “x(t1) free”, it means that the value
of x(t1) is unrestricted. Here, the functions f and g are continuously differentiable functions in
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all arguments. Thus, whereas the control(s) is piecewise continuous, the associated states are
piecewise differentiable. This implies that, depending on the scale of the spatial resolution (like
the case of oil spill), an introduction of space variables could alter the basic model from
ordinary differential equations (with just time as the underlying variable) to partial differential
equations (PDEs). Let us focus our attention to the consideration of optimal control of PDEs.
Our solution to the control problem will then depend on the existence of an optimal control in
the PDE.

The general idea of the optimal control of PDEs here starts with a PDE with a state solution x
and control u. Set ∂ to denote a partial differential operator with appropriate initial and
boundary conditions:

( ), in 0,x f x u T¶ = W´é ùë û (4)

This implies that we are considering a problem with space x and time t within a territorial
boundary, Ω × 0, T . The objective functional in this problem represents the goal of the
problem, and we seek to find an optimal control u * in an appropriate control set such that

( ) ( )* min
u

J u J u= (5)

When the control cost is considered, with an objective functional

( ) ( ) ( )( )
0

, , , ,
T

J u g x t x t u x t dxdt
W

= ò ò (6)

To consider the properties of the functional, it is important to note the following fundamentals:

i. A functional J is “a rule of correspondence that assigns to each function, say x(t),
constrained in a certain set of functions, say X, a unique real number. The set of
functions is called the domain of the functional, and the set of real numbers associated
with the functions in the domain is called the range of the functional” [5].

ii. Let δ(J ) be the first variation of the functional; thus, δ(J ) is the part of the increment
of ΔJ , which is linear in the variation δ(x) such that

( )( ) ( ) ( ) ( )( ) ( ), , ,J x x J x x g x x xd d d d dé ùD = +ë û (7)

where δ(J ) is also linear in δ(x). Suppose that lim
δ(x) →0

g(x, δ(x))=0; then, J is said to be

differentiable on x, whereas δ(J ) is the first variation of J evaluated for x(t) [5].
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iii. A functional J with domain X  has a relative optimum at x * if there is an ε >0, such
that, for all functions x∈X , which satisfy that x − x * <ε, the increment of J has the
same sign. In other words, J (x *) is a relative minimum if ΔJ = J (x)− J (x *)≥0 and a
relative maximum if ΔJ = J (x)− J (x *)≤0. Hence, J is said to be a functional of the
function x(t) if and only if it first satisfies the scalar commutative property J (αx)=αJ (x)
for all x∈X  and for all real numbers α such that αx∈X .

iv. A rule of correspondence that assigns to each functionx(t)∈X ,  defined for
t∈ t0, T , a real number is called the norm of a function, where the norm of x is given
as x . If x and x + δ(x) are both functions for which the functional J is defined, then
the increment of the functional ΔJ  is defined as

( )( ) ( )J J x x J xdD = + - (8)

v. A differential equation whose solutions are the functions for which a given functional
is stationary is known as an Euler-Lagrange equation (Euler’s equation or Lagrange’s
equation).

Fundamental theorem of variational calculus [5]: This theorem states that “if x * is optimum,
then it is a necessary condition that the first variation of J must vanish on x. That is to say,
δ(J ) x *, δ(x) =0 for all admissible δ(x)”.

2.2. Model conceptualization

The fundamental principle upon which the pollutant fate and transport models are based is
the law of conservation of mass [6]:

( ) ( )
( ) ( )

h
h hv D h R
t

E
t

¶ì + Ñ -Ñ Ñ =ïï ¶
í¶ï + Ñ -Ñ Ñ =
ï ¶î

C Cu C R
r r r rr (9)

where

h = oil slick thickness,

C = oil concentration,

v̄ = oil slick drifting velocity,

D = oil fluid velocity,

E
→  = dispersion-diffusion coefficient,

∇
→

 = computational slick spreading function,

Rh  and R = physical chemical kinetic terms,
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u→  = grid size,

∇̄  = Cartesian coordinate, and

t = time.

Eq. (9) can be modified as

,i dxdydz
i
g¶
¶

where dxdydz denotes the differential volume of the state variable assuming a net chemical
contaminant flux in each axial direction such that γ i = contaminant movement in each axial
direction (i = x, y, z) and dx, dy, dz =  differential distances in the x, y, and z directions.

The fluidity of oil in water contains the advection due to current and wind as well as the
dispersive instability due to weathering processes. Thus, if we set

q d qg w= - Ñ (10)

where

γ = movement of contaminant vector,

ω = contaminant discharge vector,

q = contaminant molar concentration,

d = dispersion tensor, and

∇ = gradient operator (Laplacian).

With minor mathematical regularities, Eq. (10) will become

( )q d q m
t
tw ¶

-Ñ - Ñ = +
¶

(11)

where

τ = total concentration of contaminant in the system,

m = decay rate of contaminant, and

t = time.

A two-dimensional differential representation of Eq. (11) is given as
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( ) ( )

2 2

2 2

..
,

y yx x
x x y y

yx yx

v vv vq q q q q qc v v q v v m
t x x x x y y y yx y

qq vv q vq v yx m
x x y y

t é ù¶ ¶¶ ¶¶ ¶ ¶ ¶ ¶ ¶ ¶
= + + + - - + + -ê ú

¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶¶ ¶ê úë û
é ù¶¶é ù ¶¶ ê úê ú ¶¶ ¶¶ë û ë û= + - + -

¶ ¶ ¶ ¶

(12)

so that we have vx and vy, which represented the fluid velocities in the x and y directions. By
applying the principle of the conservation of mass, the steady-state equation of spill transpor‐
tation is given as

2 2 2 2 2 2

2 2

2 2

2 yx
x y

x y

hhVST p p p ph h
dxdylb x x y yx y

p ph h
x x y

¶¶ ¶ ¶ ¶ ¶
= + + +

¶ ¶ ¶ ¶¶ ¶

é ù é ù¶ ¶ ¶
= +ê ú ê ú
¶ ¶ ¶ê ú ê úë û ë û

(13)

where

h = oil penetrability trajectory,

p = oil stress,

V = oil viscidness,

S = source of oil mass fluidity,

T = temperature,

b = molecular weight of oil, and

l = a fixed length of the z direction.

According to Refs. [5–7], “the transport and fate of the spilled oil is governed by the advection
due to current and wind, horizontal spreading of the surface slick due to turbulent diffusion,
gravitational force, force of inertia, viscous and surface tension forces, emulsification, mass
transfer of heat, and changes in the physiochemical properties of oil due to weathering
processes (evaporation, dispersion, dissolution, oxidation, etc.)”. Thus, Eq. (13) can be
transformed to

( ) ( ) ( )
2

2
,

, ,x
q x t

h q x t D q x t R S
t x x

¶ ¶ ¶
= - + + +

¶ ¶ ¶
(14)
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where q ={qe, qd , qp} denotes the oil spill concentration in emulsified, dissolved, and particulate
phases, respectively, at state x and time t; h is the fluid velocity; D is the spreading function,
and R and S denote the environmental factors and the spill source term, respectively.

2.3. Optimality problem

When hydrocarbons enter an aquatic environment, their concentrations tend to decrease with
time due to the evaporation, oxidation, and other weathering processes. This could be
described as a death process and could be modeled as a first-order reaction [7]. Having known
this, the optimal control problem can then be formulated by setting R in Eq. (14) to be

( ),R kC x t= - (15)

so that k denotes a kinetic constant of the environmental factors that influenced the concen‐
tration of oil in water. Here, it is assumed that the source term is not known so that’ S = 0.

Then, Eq. (14) can be expressed as

( ) ( )( ) ( )( ) ( ),
, , ,

q x t
Vq x t D q x t kq x t

t
¶

= -Ñ +Ñ × Ñ -
¶

(16)

which is called “oil spill dynamical (or transport) problem”. To solve this problem, a mecha‐
nism for controlling the system in marine environment can be set up as follows:

Let Ω be an open, connected subset of ℝn, where ℝni is the Euclidean n-dimensional space. We
defined the spatial boundary of the problem as Ω. The unit variable is t and is contained in the
interval 0, T , where T <∞. Let x be the space variable associated with Ω, and let ∂ be a partial
differential operator with appropriate initial and boundary conditions, where ∂Ω is the
differential boundary of Ω; then,

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )
( )

0

, , , 1 , ,  , 0,

,0 0 , 0 ( )

, 0 0, ( )

tq x t q x t q x t q x t u x t q x t in T

q x q x on t seabed boundary

q x t on T sea sideboundary

a- D = - - W´é ùë û

= ³ W =

= ¶W´ -é ùë û

(17)

where ∂Ω × 0, T  mathematically defined an operation with a PDE operator ∂ in the spatial
boundary of the problem Ω within a specified upper and lower horizons 0, T .

Eq. (17) is defined as the state equation with a logistic growth q(1−q) and a constant diffusion
coefficient α due to weathering processes. The symbol Δ represents the Laplacian. The state
q(x, t) denotes the volume or concentration of the crude oil and u(x, t) is the control that entered
the problem over the volumetric domain. The zero boundary conditions imply the limitation
of the slick at the surrounding environment.
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The reward or value objective functional can be obtained as

( ) ( ) ( ) ( )( )2

0
, , ,

T tJ u e u x t q x t Au x t dxdtq x-

W
= -ò ò (18)

Here, ξ denotes the price of spilled oil, so that ξuq represents the reward from the control
amount uq. Note that a quadratic cost for the clean-up effort with a weighted coefficient A,
where A is assumed to be a positive constant, is applied. The term e −θt  is introduced to denote
a discounted value of the accrued future costs with0≤θ <1. By setting ξ =1 (for convenience),
an optimal control u * is needed to optimize a control strategy focusing on the actual detected
spill point, such that application of any control on a no-spill region (look-alike) would be
minimized [i.e., u *(x, t)=0] and the value of all future earnings would be maximized. In other
words, we seek for u * such that

( ) ( )* max
u U

J u J u
Î

= (19)

where U  denotes a set of allowable control, and the maximization is over all measurable
controls with 0≤u(x, t)≤m <1 a.e. Under this set-up, it follows that, within the context of optimal
control, the state solution satisfies q(x, t)≥0 on Ω ×(0, T ) by the maximum principle for
parabolic equations.

Lemma 1 [8]: Let U be a convex set and J be strictly convex on U. Then, there exists at most
one u *∈U  such that J has a minimum at u *. This implies that, by the maximum principle for
parabolic equations, the necessary conditions for optimality are satisfied whenever the state
solution satisfies q(x, t)≥0 on Ω ×(0, T ).

3. Necessary optimality conditions

Consider the following conservation relations [8]:

( ) ( )0, 0t t t tx f x u x x== Þ& (20)

where x t is the composition and concentration of the pollutant at time t, u t denotes controls
that enter on the boundary of the problem at time t, f is a set of nonlinear functions representing
the conservation relation, andxt=0 denotes the initial condition of x. Every change in the control
function changes the solution to Eq.(20). Thus, for a given objective functional to be maximized,
a piecewise continuous control policy u t and the state variable x t have to be obtained. The
principle technique is to determine the necessary conditions that define an optimal control
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policy u(t) that would cause the system to follow a path x(t), such that the performance
functional

( ) ( )
0

, ,
T

J u F x u t dt= ò (21)

would be optimized.

Consider also the Lagrangian

( ) ( )( ), ,L F x u t f xl¢= + × - & (22)

where λ denotes the dynamic Lagrange multipliers or costate variables with its derivative
given as λ′. For more simplification, an augmented functional with the same optimum of (21)
could further be derived as

( )
0

, , , ,
T

J L x x u t dtl= ò & (23)

,

and by introducing the variations δ(x), δ(ẋ), δ(u), δ(λ), δ(T ), the first variation of the functional
would be

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0

0 0

T
T

T T

L d L LJ x dt T x
x dt x x

LL T T x T T
x

L Ldt u dt
u

d d d

d

d l d
l

¢ ¢¶ ¶ ¶é ù é ù= - +ê ú ê ú¶ ¶ ¶ë û ë û
é ù¢¶æ öê ú+ - ç ÷¶ê úè øë û

¢ ¢¶ ¶æ ö æ ö+ +ç ÷ ç ÷¶ ¶è ø è ø

ò

ò ò

& &

&
& (24)

Noticed that, by the fundamental theorem of variational calculus, for x(t) to be an optimum
of the functional J, it is necessary that δJ =0. Because the controls and states are unbounded,
the variations δ(x), δ(λ), and δ(u) are free and unconstrained. Thus, the following are the
necessary conditions for optimality:

(i) Existence and uniqueness: Euler-Lagrange equations

Because the variation δ(x) was not bounded (i.e., it was free), we have
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0L d L
x dt x
¶ ¶

- =
¶ ¶&

(25)

Using Eq. (22), obtain

.L
x

l¶
= -

¶&
(26)

The Euler-Lagrange equations could be transformed as

,L
x

l ¶
=
¶

& (27)

and by the definition of the Lagrangian, Eq. (27) becomes

f F
x x

l l
¢¶ ¶æ ö= -ç ÷¶ ¶è ø

& (28)

Eq. (28) shows that the Euler-Lagrange equations are the equations that specify the dynamic
Lagrange multipliers.

(ii) Constraints relations

Because the variationδ(λ) is free, we have

0L
l
¶

=
¶

(29)

which is equivalent to (20). This implies that, along the optimal trajectory, the state differential
equations must hold.

(iii) Optimal control

Also, because the variation δ(u) is free, it follows that the optimal control policy must be
consistent with

0L
u
¶

=
¶

(30)

or
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0 , and
¢¶ ¶æ ö+ =ç ÷¶ ¶è ø

F f
u u

l (31)

(iv) Transversality boundary conditions

( ) ( ) ( ) ( ) ( ) ( ) 0T T F T T f T Tl d l d¢ é ¢ ù- + + =ë û (32)

The necessary conditions (i) to (iv) could be simplified further by introducing an Hamiltonian

( ) ( ), , , ,H F x u t f x u tl¢= + (33)

Such that

i. Euler’s equation:

H
x

l ¶
= -

¶
& (34)

ii. Constraints relations:

( ) Hx f
l

¶
= × =

¶
& (35)

iii. Optimal control:

0,andH
u

¶
=

¶
(36)

iv. Boundary conditions:

( ) ( ) ( ) ( ) 0TT x H T Tl d d- + =¢ (37)

Furthermore, with the assumption that all the necessary conditions for optimality exist and
sufficient for a unique optimal control, a sequential decision processes for optimal response
strategy can be developed.
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4. Sequential optimization processes

Sequential decision processes are mathematical abstractions of situations in which decisions
must be made in several stages while incurring a certain cost at each stage. The philosophy
here is to establish a sequential decision policy to be used as a combating technique strategy
in oil spill control.

First, consider x t at time t∈ 0, T , where T specifies the time horizon for the situation. For a
control u t defined on 0, T , the state equation given in Eq. (38) assumes a sudden rate of

variation in the system. Thus,xt∈ℝ
n denotes the state of oil spill in waters, whereas ẋ t∈ℝ

n

represents the vector of first-order time derivatives of x t and ut∈U ⊂ℝm denotes the control

vector. With the assumption that the initial value x 0 and the control trajectory over the time
interval 0≤ t ≤T  are known, the optimization problem over the control trajectory is given as

( ) ( )( )
0

min , ,
T

u
f x t u t t dtò (38)

( ) ( ) ( )( ), ,subject to x t g x t u t t=& (39)

where g is a given function of u, ta, and possibly x. This model establishes a sequential decision
path for optimal policy to be used in the application of oil spill combating technique.

By introducing a value function V, we have

( ) ( ) ( )( )
( ) ( ) ( )( )

0
0

0, : min , ,

, , ,

T

u
V x f t x t u t dt

subject to x t g t x t u t

=

=

ò
&

(40)

and by fixing Δt >0, we get

( ) ( ) ( )( ) ( ) ( )( )0
0

0, min , , , , .
t T

u t
V x f t x t u t dt f t x t u t dt

D

D

ìï= +í
ïîò ò (41)

Also, with the application of the principle of optimality,1 we have

1 See [9] for detailed discussion on principle of optimality.
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( ) ( ) ( )( ) ( )( )0
0

0, min , , ,
t

u
V x f t x t u t dt V t x t

Dìï= + D Dí
ïîò (42)

Discretizing via Taylor series expansion, we get

( ) ( ) ( ) ( ) ( ){0 0 0 0 0 0 0 0 00, min , , , , ,t x
u

V x f t x u t V t x V t x t V x t x= D + + D + D +L (43)

where Δx = x(t0 + Δt)− x(t0). Thus, letting Δt→0 and dividing by Δt , we have

( ) ( ) ( ) ( ){, min , , , , ,t x
u

V x t f t x u V x t g t x u- = + (44)

with boundary condition

( ), 0.TV T x = (45)

Theorem 1 [8]: Let t0, t1  denotes the range of time in which a sequence of control is applied.

Then, for any processes, t0≤τ1≤τ2≤ t1:

( )( ) ( )( )1 1 2 2, ,V x V xt t t t£ (46)

and for any t, such that t0≤ t ≤ t1, the setΛt ,x(t ) is not empty, as the restriction of the control to

the time interval is feasible for x(t).

Proof:

Let u * be any optimal control in Λτ2,x(τ2), where u * is defined on τ1, τ
→

1  and is given by

( )
( )
( )

1 2*

2 1

,

,

u if
u

u if

x t x t
x

x t x t

ì £ £ï= í
£ £ïî

r r (47)

Then, u *∈Λτ1,x(τ1). Hence,

( )( ) ( )( )*
1 1 1 1 1, ,V x xt t f t t£

r r
(48)
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where ϕ1(⋅ ) is a value function defined on τ1, τ
→

1 . Because u * was any optimal control in
Λτ2,x(τ2), taking the infimum over the controls in Λτ2,x(τ2) gives

( )( ) ( )( )1 1 2 2, ,V x V xt t t t£ (49)

This implies that, if u * is any optimal control for the sequential optimization process, the value
function V evaluated along the state and control trajectories will be a nondecreasing function
of time.

Theorem 1 summarizes the expected future utility at any node of the decision tree on the
assumption that an optimal policy will be imminent. The implication is that a continuous
selection of a sequence of control at different assessment point will optimize the performance
index of the control strategy. This, however, requires a decision rule, and the next section
contained further explanation on this.

4.1. Decision rule

A successful sequential decision requires a decision rule that will prescribe a procedure for
action selection in each state at a specified decision epoch. This is a known strategy in the field
of operation research. More so, the problems of decision-making under uncertainty are best
modeled as Markov decision processes (MDP) [8]. When a rule depends on the previous states
of the system or actions through the current state or action only, it is said to be Markovian but
deterministic if it chooses an action with certainty [8]. Thus, a deterministic decision rule that
depends on the past history of the system is known as “history dependent”. In general, MDP
can be expressed as a process that

• allowed the decision maker to select an action whenever the system state changes and model
the progression in continuous time and

• allowed the time spent in a certain state to follow a known probability distribution.

It follows a time-homogeneous, finite state, and finite action semi-MDP (SMDP) defined as

i. P(xt+1 |ut , xt), t ={0, 1, 2, ⋯ , T }, T ≤∞ transition probability;

ii. P(rt |ut , xt) reward probability; and

iii. P(ut | xt)=π(ut | xt) policy

This implies that, although the system state may change several times between decision
epochs, the decision rule remains that only the state at a decision epoch is relevant to the
decision maker. Consider the stochastic process x0, x1, x2, ...,  where x t or x(t) (which may be
used interchangeably). Note that we are considering an optimal control of a discrete-time
Markov process with a finite time horizon T, where the Markov process x takes values in some
measurable space Ω. In what follows, assuming that we have a sequence of control u0, u1, u2, ...,
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where u n is the action taken by the decision maker at time t =0, 1, ⋯ , n, take values in some
assessable space U of allowable control. The decision rule is described by considering a class
of randomized history-dependent strategies consisting of a sequence of functions

( )0 1 1, , , ,n Td d d d -= L (50)

and also by considering the following sequence of events:

• an initial state x 0 is obtained;

• having known x 0, the response official (the controller) selects a control u0∈U ;

• a state x1 is attained according to a known probability measure P(x1 | x0, u0); and

• knowing x 1, the response official selects a control u1∈U .

The basic problem therefore is to find a policy π =(d0, d1) consisting of d 0 and d 1 that will

minimize the objective functional J (x0)= ∫ f x1, d1(x1) P(x1 | x0, d0(x0)), which is given as

P(ut | xt)=π(ut | xt). Hence, we set μt
π : Ht

d→R 1 to denote the total expected reward obtained by
using Eq. (50) at decision epochs t , t + 1, ⋯ , T −1. With an assumption that the history at
decision epoch t is h t

d∈Ht
d , the decision rule follows μt

π for t < T such that

( ) ( ) ( )
1

,
t

T
d

t t h k k k k T
k t

h E r x u r xp pm
-

=

é ù
ê ú= +
ê úë û
å (51)

In particular, if the SMD processes (i) to (iii) are stationary, then, for a given rule π and an
initial state x, the future rewards can be estimated. Let V π(x) be the value function; then, the
expected discounted return could be measured as

( ) 0
0

| ;t

t

V x E rt x xp q p
¥

=

é ù
ê ú= =
ê úë û
å (52)

However, the entire cast of players involved in oil spill control (the contingency planners,
response officials, government agencies, pipeline operators, tanker owners, etc.) shares keen
interest in being able to anticipate oil spill response costs for planning purposes according to
Arapostathis et al. [9]. This means that the type of decision and/or action chosen at a given
point in time is a function of the clean-up cost. In other words, the clean-up/response cost is a
key indicator for the optimal control. Thus, to set a pace for rapid response, it is important to
introduce cost concepts into the control paradigm as discussed in the next section.
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5. Optimal costs model

Considered the following synthesis: the system starts in state x 0 and the response team takes
a permitted actionut(x0), resulting in an output (reward) r t. This decision determines the cost

to incur. Now, defining a cost function that assigned a cost to each sequence of controls as

( ) ( ) ( )
1

0 0: 1
0

, , ,
T

T t t T
t

C x u t x u xb w
-

-
=

= +å (53)

where β(t , x, u) is the cost associated with taking action u at time t in state x and ω(xT ) is the

cost related to actions taken up to time T; the optimal control problem is to find the sequence
u0:T −1, that minimizes Eq. (53). Thus, we introduce the optimal cost functional:

( ) ( ) ( )
: 1

1
, min , ,

t T

T

t k k Tu
k t

C t x k x u xb w
-

-

=

æ ö
ç ÷= +
ç ÷
è ø
å (54)

which solves the optimal problem from an intermediate time t until the fixed end time T,
starting at an arbitrary state x t. Here, the minimum of Eq. (53) is denoted by C(0, x0). Hence,

a procedure to compute C(t , x) from C(t + 1, x) for all x recursively using dynamic program‐
ming is given as follows:

Set

( ) ( ),C T x xw=

So that

( ) ( ) ( )

( ) ( ) ( )

( ) ( ){ }

( ) ( )( ){ }

: 1

1: 1

1

1

1

1

, min , ,

min , , min , ,

min , , 1,

min , , 1, , ,

t T

t t T

t

t

T
t k k Tk tu

T
t t k k Tk tu u

t t tu

t t t t tu

C t x k x u x

t x u k x u x

t x u C t x

t x u C t x f t x u

b w

b b w

b

b

-

+ -

-

=

-

= +

+

ì ü= +í ý
î þ
ì üé ù= + +í ýê úë ûî þ

= + +

= + + +

å

å
(55)
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It could be seen that the reduction to a sequence of minimizations over ut from the minimization
over the whole path u0:T −1 is due to the Markovian nature of the problem: the future depends
on the past and the past depends on the future only through the present. Thus, it could be seen
that, in the last line of Eq. (55), the minimization is done for each x t separately and also explicitly
depends on time. The procedure for the dynamic programming is illustrated as follows:

Step 1: Initialization: C(T , x)=ω(x)

Step 2: Backwards: For t =T −1, ⋯ , 0 and for all x, compute

( ) ( ) ( )( ){ }
( ) ( )( ) ( )( )( )

*

* *

arg min , , 1, , ,

, , 1, , ,

t
u

t t

u x t x u C t x f t x u

C t x t u x C t x f t x u x

b

b

= + + +

= + + +

Step 3: Forwards: For t =0, ⋯ , T −1, compute

( )( )* * * * * *
1 0 0, , ,t t t t tx x f t x u x x x+ = + =

Lemma 2: Let π *→ u0
*, u1

*, ⋯ , uT −1
*  be an optimal control policy for the control problem and

assume that, when using π *, a given state xi occurs at time i, (i ≥ t) a.e. Suppose that the state

is at stage x i at time i, and we wish to minimize the cost functional from time i to T:

( ) ( )( )
1

,
T

T t t t
t i

E x x u xw b
-

=

é ù
ê ú+
ê úë û

å (56)

Then, ui
*, ui+1

* , ⋯ , uT −1
*  is the optimal path for this problem and ut

* is the optimal control.

Proof: Define C *(t , x)=ω(x) as the optimal cost-to-go:

( ) ( ) ( ) ( )* *min , , , , 0t xu
g x u C t x C t x f x ué ù¢+ Ñ +Ñ =ê úë û

(57)

where C *(T , x)=ω(x). We can say that ∇x C *(T , x)=∇ω(x). If we define ∇x C *(t , xt
*) =λt , then,

by introducing the Hamiltonian, H (x, u, λ)= g(x, u) + λ ′ f (x, u), where λ̇t = −∇x H (xt
*, ut

*, λt); it
follows from the optimality principle that
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( ) ( )* * *arg min , , 0,é ù¢= + " Îé ùë ûê úë ût t t t
u

u g x u f x u t Tl (58)

Theorem 2 : Let min
u

g(x, u) +∇t V (t , x) +∇x V (t , x)′ f (x, u) =0 ∀ t , x (59)

with the condition that V (T , x)=ω(x) ∀ x

Suppose that ut
* attains the minimum in Eq. (59) for all t and x. Let (xt

* | t∈ 0, T ) be the oil

trajectory obtained from the known quantity of spill at the initial state denoted by x 0, when

the control trajectory,ut
*→V (t , xt

*), is used and ẋ t = f (xt
*, u *(t , xt

*)) ∀ t∈ 0, T . Then,

( ) ( )*, , ,V t x C t x t x= " (60)

and {ut
* | t∈ 0, T } is optimal control [7].

6. Conclusion

This chapter presents the mathematical abstractions of optimal control process where decisions
must be made in several stages following an optimal control path to minimize the apparent
toxicological effect of oil spill clean-up technique by determining the control measure that will
cause a process to satisfy the physical constraints and at the same time optimizing some
performance criteria for all future earnings from marine biota. Hence, in the future, if the
optimal policy is followed, the recursive method for the sequential optimization will converge
to optimal costs control and value function, which optimizes the probable future value at any
node of the decision tree.
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Abstract

This chapter presents a tool for analysis of robust stability, consisting of a graphical method
based on the construction of the value set of the characteristic equation of an interval plant
that is obtained when the transfer function of the mathematical model is connected with
a feedback controller. The main contribution presented here is the inclusion of the time
delay in the mathematical model. The robust stability margin of the closed-loop system
is calculated using the zero exclusion principle. This methodology converts the original
analytic robust stability problem into a simplified problem consisting on a graphic
examination; it is only necessary to observe if the value-set graph on the complex plane
does not include the zero. A case of study of an internal combustion engine is treated,
considering interval uncertainty and the time delay, which has been neglected in previous
publications due to the increase in complexity of the analysis when this late is considered.

Keywords: robust stability, robustness margin, polynomials of Kharitonov, value set,
interval uncertainty

1. Introduction

The automatic control systems that are applied on the industrial process or on any production
plant are previously analyzed, before they can be physically implemented. This analysis consists
of obtaining some properties of interest such as qualitative and quantitative that are very helpful
to achieve good performance in the closed-loop control system. The analysis is realized with
the intention to predict the behavior that the control system will have when this is implement‐
ed. However, most of the time, this prediction lacks precision such that analysis is strongly based

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
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on the mathematical model of the physical process, and this does not represent in an exact way
its dynamic behavior. This problem has been of great interest for scientific researchers in the
last years, because it is desirable to get the best results when the control system is implement‐
ed but depends on these properties. A way of solving this problem is through the considera‐
tion of uncertainty on the mathematical model of the physical process. This uncertainty can be
dynamic (see references [1–3]) or parametric (see references [4–6]). This chapter describes the
qualitative property analysis of robust stability of a system. A case of study of an internal
combustion engine is analyzed considering parametric uncertainty in the mathematical model.
This case of study process is taken from references [5, 7], where conditions are obtained to verify
the robust stability of the control system.

It is important to mention that in these research works several simplifications of the mathe‐
matical model were made, which may affect the real behavior of the system; one simplification
performed by the authors is the cancellation of time delay in a part of the mathematical model,
which has an influence that affects the stability property. The main contribution presented
here is the consideration of the time delay on the mathematical model of an internal combustion
engine, which is taken into account to obtain the property of robust stability. The methodology
used is based on the application of the value-set concept to the particular case of the internal
combustion engine (see reference [5]); to be more precise, it consists of the characterization of
the value set of the resulting characteristic equation of the closed-loop system when the
controller is connected. This controller assigns the poles in a position previously defined. Using
this characteristic and applying the zero exclusion principle [8], it is possible to obtain robust
stability conditions through a visual inspection of a graphic in the complex plane.

This chapter is organized as follows: Section 2 presents the elements used to verify the robust
stability, Section 3 provides an abstract regarding obtaining the mathematical model of the
internal combustion motor, in Section 4 the problem statement is set, in Section 5 the robust
stability tools are used in simulation to verify robustness margin, and finally in Section 6 the
conclusions of this work are presented.

2. Preliminary

In this section, we give the value-set concept, which is widely used to verify robust stability
(see references [5, 9, 10]). The methodology that will be used consists of obtaining the value
set for the characteristic equation, which results from the interval plants including time delay
that are defined using the following definition:

Definition 1. A transfer function type interval plant is composed in the following manner:
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Now, if the interval plant includes the time delay, then it can be denoted by the following
expression:

( ) ( ) maxg , , , g , , 0,s ss e s et t t t- -= Î é ùë ûq r q r (2)

Notice that m < n, then g(s,q, r) is a set of strictly proper rational functions, Q and R are sets
that represent the parametric uncertainty and are defined as follows:
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These kinds of sets are called as boxes. Equation (2) represents a type of systems known as
interval plants. Both the numerator and the denominator of the transfer function have
coefficients of uncertain values, which reside in a closed interval. The main interest in the study
of this chapter is the robust stability analysis of feedback control systems, as the one depicted
in Figure 1, whose main process is represented by an interval plant, with time delay and
negative unitary gain feedback. The characteristic equation of this feedback system can be
expressed in terms of the numerator, denominator, and time delay as follows:

p( , , , ) d( , ) n( , )s ss e s s et t- -= +q r r q (3)

Figure 1. Uncertain interval plant with time delay in negative feedback.

The term quasi-polynomial is used to describe these types of functions. Note that the above
characteristic Eq. (3) is not a single equation but rather a family of an infinite number of
characteristic equations. Then, this whole family must be considered if robust stability
verification is carried out. This family is defined as follows:

( ){ }maxp , , , ; ; 0,sP s e t
t t t- = Î Î Îé ùë û@ Q Rq r q r (4)
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The robust stability property is guaranteed if and only if the following equation is satisfied:

(5)

where C+ is used to denote the set of complex numbers with real part positive or equal to zero.
From Eq. (3), it can be comprehended that the robust stability property of the dynamic system
is very hard to verify using analytical methods, because this equation contains an endless
number of equations. The goal of this work is to show a simple method to validate the robust
stability property of time delay systems. The contribution of this work is based on the value-
set characterization of the family of characteristic equations Pτ. The value set is defined here
as follows:

Definition 2. The value set, denoted as Vτ (ω), of the characteristic equation of an interval
polynomial with time delay is the set of complex numbers obtained by substituting s = jω in
the polynomial:

(6)

where Q and R represent the set containing all possible values of the uncertainty of the
parameters qi and ri expressed in a vector form as elements of the vector q and r. It is clear that
the value set of Pτ is a set of complex numbers plotted on the complex plane for values of qi, ri,
ω, and τ inside the defined boundaries. An important result that is applied in this chapter is
the characterization of the value set for a characteristic equation as the one considered in the
previous definition; this result is represented in references [11] and [12] with the following
lemma:

Lemma 1. For each frequency ω, the value set Vτ(ω) is formed by octagons, where each one
changes their geometry in function of the time delay τ. The coordinates in the complex plane
of the vertices or corners of each octagon are given by the following formulas:

( ) ( )1 1
j

i i kd j n j e wtu w w -
+ += + (7)
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j

i i hd j n j e wtu w w -
+ += + (8)

where

0,1,2,3,i =

( ) 4mod 1k ig= + +

Robust Control - Theoretical Models and Case Studies152



The robust stability property is guaranteed if and only if the following equation is satisfied:

(5)

where C+ is used to denote the set of complex numbers with real part positive or equal to zero.
From Eq. (3), it can be comprehended that the robust stability property of the dynamic system
is very hard to verify using analytical methods, because this equation contains an endless
number of equations. The goal of this work is to show a simple method to validate the robust
stability property of time delay systems. The contribution of this work is based on the value-
set characterization of the family of characteristic equations Pτ. The value set is defined here
as follows:

Definition 2. The value set, denoted as Vτ (ω), of the characteristic equation of an interval
polynomial with time delay is the set of complex numbers obtained by substituting s = jω in
the polynomial:

(6)

where Q and R represent the set containing all possible values of the uncertainty of the
parameters qi and ri expressed in a vector form as elements of the vector q and r. It is clear that
the value set of Pτ is a set of complex numbers plotted on the complex plane for values of qi, ri,
ω, and τ inside the defined boundaries. An important result that is applied in this chapter is
the characterization of the value set for a characteristic equation as the one considered in the
previous definition; this result is represented in references [11] and [12] with the following
lemma:

Lemma 1. For each frequency ω, the value set Vτ(ω) is formed by octagons, where each one
changes their geometry in function of the time delay τ. The coordinates in the complex plane
of the vertices or corners of each octagon are given by the following formulas:

( ) ( )1 1
j

i i kd j n j e wtu w w -
+ += + (7)

( ) ( )5 1
j

i i hd j n j e wtu w w -
+ += + (8)

where

0,1,2,3,i =

( ) 4mod 1k ig= + +

Robust Control - Theoretical Models and Case Studies152

( ) 41 mod 1h ig= + + +

The term mod4 represents the whole module base four operation, for example, mod4 (3). γ can
take integer values 0, 1, 2, and 3 depending on ωτ, see reference [9]:
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The corresponding Kharitonov polynomials for the numerator and denominator of the interval
plant are denoted by ni (s) y di (s), respectively.

An example of a particular value set for fixed frequency and time delay is presented in Figure
2.

Figure 2. Value set for a fixed frequency and time delay.
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From the definition given for the value set, one can conclude that it includes all the values that
the infinite family Pτ can take when it is evaluated in s = jω. Then, if the complex plane origin
is contained in the value set Vτ(ω), this means that Pτ has roots located over the imaginary axis
jω for some values of ω∈R. This, in fact, causes instability in the time delay feedback system.
Consequently, the value-set technique can be used as an instrument that serves to validate the
robust stability property. A question that arises in this point is how to show that Pτ does not
have roots on the right half plane when a sweep over jω is done. The answer to this question
is sustained in the following result known as the zero exclusion principle, see references [5, 11,
12]. This result will be applied to verify robust stability property.

Theorem 1: Suppose that p(s, q, r, e‒τs) has at least one member stable for τ = 0, then p(s, q, r, e‒

τs) is robustly stable only if the value set satisfies:

( )0 0TV w wÏ " ³ (9)

Proof: See reference [8]

From the previous theorem, the robust stability problem is transformed into a problem where
it only needs to verify that the value-set plot just avoids the zero of the complex plane.

3. Case of study mathematical model

In this section, the internal combustion motor is modeled. The idle mode operation condition
is considered, which means the vehicle engine is running without accelerating; this is because
the original objective is to reduce the fuel consumption when the vehicle is on and stopped,
such as waiting for the green of the traffic light when circulating in the city. This fuel economy
can be achieved increasing the air ratio of the fuel mixture, but this action causes instability in
engine operation, resulting in a variation in the angular speed of the motor shaft. The mathe‐
matical model was compiled from article [7] and it is divided into three parts for better
comprehension: (a) manifold chamber, (b) internal combustion chamber, and (c) rotational
motion system.

3.1. Manifold chamber

The rate of chance of the pressure in the manifold chamber is affected by the current chamber
pressure, the opening position of the throttle valve d (t), which controls the incoming air mass
flow in a proportional way, and the outgoing flow that is proportional to the motor angular
velocity n (t). The output of the chamber is the relative air pressure p (t). Then, the equation
that gives the relationship between these two inputs and the output is given as the first-order
differential equation as follows:

( ) ( ) ( ) ( )2 1 3p t k p t k d t k n t+ = -& (10)
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where k1, k2, y k3 are the respective proportionality constants. Applying the Laplace transform
to previous equation, the following transfer function corresponding to the manifold chamber
is obtained:

( ) ( ) ( )1 3
2

1 [ ]p s k d s k n s
s k

= -
+ (11)

3.2. Internal combustion chamber

The combustion chamber produces the necessary torque to move the motor shaft. The torque
generation subsystem can be modeled in a simple way having as inputs the spark advance
(forward position of the rotor) a(t), the relative air pressure on the chamber p(t), the motor
angular velocity n(t), and the fuel flow f (t). These variables contribute to the torque generation
in a linear form. There is a time delay τd called induction-to-power-stroke delay, which affects the
fuel control and the chamber pressure variables; this delay τd depends on the motor speed and
the number of cylinders activated independently (denoted by nc) as given by the following
formula:

120
( )d

cn n t
t = (12)

Thus, the Laplace transform of the engine torque delivery Te (s) generated for the combustion
block is represented by the following equation:

( ) ( ) ( ) ( ) ( )4 5 6
d s

e fT s e k p s k n s k f s k a st- é ù= + + +ë û (13)

Most of the time the delay is neglected, but when parameter uncertainty is considered, this
has an influence on the control system stability, which is the reason this has been taken into
account for analysis in this work.

3.3. Shaft rotational dynamics

Finally, the equations that represent the rotational can be obtained using Newton’s second law
for rotational movement as follows:

( ) ( ) ( ) ( )7e LJn t T t T t k n t= - -& (14)

where J represents the rotational inertia, TL is the torque of external load including its distur‐
bances, and k7 is an attenuation constant of the viscous friction that depends on the tempera‐
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ture, type of lubricant, and the gear that the motor uses. Therefore, the Laplace transform of
the engine speed n (s) can be described as follows:

( ) ( ) ( )
7

1
e Ln s T t T s

Js k
é ù= -ë û+ (15)

Then, considering the transfer functions for each subsystem, the complete block diagram
representing the mathematical model of the internal combustion motor can be obtained and
implemented in Simulink MATLAB, for numerical simulation as shown in Figure 3.

Figure 3. System block diagram in Simulink MATLAB.

The interest in this case of study is the relation between the variables d (s) and n (s) taking into
account the time delay; then using block diagram algebra, the corresponding transfer function
is given as follows:

( )
( )

1 4
2

2 7 2 7 3 4 2 5 5[ ]

d

d
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s
k k eg s

Js k J k s k k k k k k k s e
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t
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+ + + + - -

(16)

The previous transfer function will be considered as the mathematical model of the internal
combustion motor.

4. Problem statement

It is important to mention that the engine mathematical model is expressed in terms of the
parameters ki and J. These parameters depend on the motor operating point; therefore, they
cannot be considered as constant in the transfer function and they will be considered as
uncertain terms that change depending on the operation point, but around the nominal
parameters. The nominal values considered here are the same values as [7]: k1 = 3.4329, k2 =
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0.1627, k3 = 0.1139, k4 =0.2539, k5 = 1.7993, k7 =1.8201, and the inertia J = 1. Making a change on
the variables, the transfer function on the mathematical model can be simplified as follows:

( )
( )

1
2

2 3 4 5

d

d

s

s
a eg s

s a s a a s a e

t

t

-

-=
+ + + +

(17)

where the uncertain parameters are the ones included in ai, the inertia J will be considered as
a fixed number and equal to 1. Comparing the transfer functions (16) and (17), it can be
observed that the new nominal parameters take the following values: a1 = 0.8716, a2 = 1.9828,
a3 = 0.2961, a4 = 1.7993, a5 = ‒0.2638.

A controller can be connected in the closed-loop system, as shown in Figure 4, with two
objectives: the first one to regulate the angular speed and the second to improve the perform‐
ance of the process. This controller is given by the following function:

( ) 2
50.0194 26.3065

9.8165 33.1664
sc s

s s
+

=
+ +

(18)

which assigns the system poles of the feedback control, considering a unitary feedback [13],
at the following position: {−1, −2, −3, −4} on the complex plane. The controller was designed
with the nominal parameters and time delay equal to zero. The characteristic equation of the
closed-loop control system considering the uncertain parameters and the time delay has the
following structure:

( ) ( ), , , , ( , )d dT s sp s q r e d s r n s q e t- -= +

where

( ) ( )
( )

4 3
2 3 2

2
3 2 3

, 9.82 9.82

33.17) 9.82 33.17 33.17

d s r s a s a a

s a a s a

= + + + + +

+ + +
(19)

( ) ( )3 2
4 5 4 5

4 1 5 1

, 9.82 (9.82

33.17 50.02 ) 33.17 26.31

n s q a s a a s a
a a s a a
= - + - + -

+ + +
(20)

The problem considered in this work is to determine the property of robust stability of the
internal combustion motor when uncertainty is included in the new nominal parameters ai.
This property is directly related to the characteristic equation.
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Figure 4. Control for angular velocity of the internal combustion motor.

5. Robust stability verification

First, the characteristic equation is considered without uncertainty, taking into account the
nominal parameters and the time delay, which means:

( ) ( )4 3 2 3 2
1 2 3 4 1 2 3 4, , d dT s sp s q e s r s r s r s r q s q s q s q e t- -= + + + + + + + +

where r1 = 11.80, r2 = 52.93, r3 = 68.67, r4 = 9.82, q1 = −1.80, q2 = −17.93, q3 = −18.67, q4 = 14.18.

Using Lemma 1, the corresponding value set for ω∈ 0, .5 y τd ∈ 0, 9.9  is obtained, which is
represented on the graphic shown in Figure 5.

Figure 5. Value set without uncertainty in the parameters.
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From the previous graphic, it can be appreciated that the value set does not reach the zero of
the complex plain, but is very close; thus, it can be determined that the maximum delay the
control system supports to preserve the stability is 9.9 s. Several numerical simulations can be
run for different time delay limits to appreciate more clearly if the value set reaches the origin,
for instance, considering the time delays τ1 =2.5, τ2 =9.9, τ3 =13, which correspond to the stable,
oscillatory, and unstable system responses, respectively, as shown in Figures 6–8, respectively.

Figure 6. Transient response for stable behavior.

Figure 7. Transient response for oscillatory behavior.
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Figure 8. Transient response for unstable behavior.

Finally, considering an uncertainty of 10% in each of the parameters, the following character‐
istic equation is obtained, where an overestimation was made to obtain interval polynomials
with time delay:

( ) ( )4 3 2 3 2
1 2 3 4 1 2 3 4, , , d dT s sp s q r e s r s r s r s r q s q s q s q e t- -= + + + + + + + +

where r1 = [11.60,11.99],, r2 = [50.95, 54.90], r3 = [61.80,75.53], r4 = [8.84,10.80], q1 = −1.98, −1.62],
q2 = [−19.72, −16.13], q3 = −29.25, −8.08], q4 = [11.01,17.35].

Once again, using the lemma, the value set of the characteristic equation is obtained now with
uncertainty in the coefficients; This can be appreciated in the graphic of the figure 9.

Figure 9. Value set with uncertainty in the parameters.
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The previous value set was obtained for a value range of ω∈ 0, 1.5 , τd∈ 0, 2.8  and like the
previous case it can be observed that it barely reaches the zero of the complex plain; therefore,
it can be assumed that the maximum time delay the control system supports is 2.8 s. Therefore,
it can be clearly appreciated that parameter uncertainty decreases the delay margin that the
control system supports and it is important to take this into account when the robust stability
property is being verified. It is necessary to note that due to the overestimation about the
parameters to represent the characteristic equation as a polynomial delay interval, the results
obtained only warranty enough robust stability conditions; nevertheless, the next simulation
shows how instability is presented for each of the values contained in the uncertainty, on the
control system, when having a delay of τd = 4.1 s (see Figure 10).

Figure 10. Step response with uncertainty in both parameters and time delay.

6. Discussion and conclusion of results

A robust stability verification methodology based on a graphic method was mentioned in this
chapter. First, the mathematical model with nominal approximated parameters must be
obtained; then, a control algorithm connected in feedback with the plant is analyzed when in
the plant of the closed-loop system, uncertainty is introduced in both parameters and time
delay. The main tools used are the value-set graph and the zero exclusion principle, then the
analytical problem to verify the robust stability is transformed into a graphical problem, which
consist of checking if the value-set plot for frequency interval does not include the origin. The
case of study of an internal combustion motor was presented. The time delay appears when
modeling the corresponding section of the engine combustion chamber of the motor. It is
important to note that by considering the uncertainty in the parameters of the mathematical
model, the time delay influences more in the control stability system; so, it can become
significant even when it is very small and therefore the inclusion in the analysis is important.
Then, with the tools presented here, a robustness margin for parameters and time delay can
be obtained.
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