398 research outputs found

    A Localization Method Avoiding Flip Ambiguities for micro-UAVs with Bounded Distance Measurement Errors

    Full text link
    Localization is a fundamental function in cooperative control of micro unmanned aerial vehicles (UAVs), but is easily affected by flip ambiguities because of measurement errors and flying motions. This study proposes a localization method that can avoid the occurrence of flip ambiguities in bounded distance measurement errors and constrained flying motions; to demonstrate its efficacy, the method is implemented on bilateration and trilateration. For bilateration, an improved bi-boundary model based on the unit disk graph model is created to compensate for the shortage of distance constraints, and two boundaries are estimated as the communication range constraint. The characteristic of the intersections of the communication range and distance constraints is studied to present a unique localization criterion which can avoid the occurrence of flip ambiguities. Similarly, for trilateration, another unique localization criterion for avoiding flip ambiguities is proposed according to the characteristic of the intersections of three distance constraints. The theoretical proof shows that these proposed criteria are correct. A localization algorithm is constructed based on these two criteria. The algorithm is validated using simulations for different scenarios and parameters, and the proposed method is shown to provide excellent localization performance in terms of average estimated error. Our code can be found at: https://github.com/QingbeiGuo/AFALA.git.Comment: 14 pages, 8 figures, IEEE Transactions on Mobile Computing(Accepted

    Optimization and Sequence Search Based Localization in Wireless Sensor Networks

    Get PDF
    Localization is critical for various applications of Wireless Sensor Networks. This paper presents a 3D localization algorithm for high accuracy localization of a wireless sensor network, which consists of three parts: pre-localization, refinement and sequence search. It is clear that the localization accuracy partly depends on the localization sequence of the unknown nodes, which has not been investigated so far. The proposed novel algorithm aims to address this problem by searching a localization sequence corresponding to a high localization accuracy and a robust algorithm. The simulation results show that the proposed algorithm can get rid of the flip ambiguity and is more robust than several existing algorithms in terms of the localization accuracy

    Anchor Self-Calibrating Schemes for UWB based Indoor Localization

    Get PDF
    Traditional indoor localization techniques that use Received Signal Strength or Inertial Measurement Units for dead-reckoning suffer from signal attenuation and sensor drift, resulting in inaccurate position estimates. Newly available Ultra-Wideband radio modules can measure distances at a centimeter-level accuracy while mitigating the effects of multipath propagation due to their very fine time resolution. Known locations of fixed anchor nodes are required to determine the position of tag nodes within an indoor environment. For a large system consisting of several anchor nodes spanning a wide area, physically mapping out the locations of each anchor node is a tedious task and thus makes the scalability of such systems difficult. Hence it is important to develop indoor localization systems wherein the anchors can self-calibrate by determining their relative positions in Euclidean 3D space with respect to each other. In this thesis, we propose two novel anchor self-calibrating algorithms - Triangle Reconstruction Algorithm (TRA) and Channel Impulse Response Positioning (CIRPos) that improve upon existing range-based implementations and solve existing problems such as flip ambiguity and node localization success rate. The localization accuracy and scalability of the self-calibrating anchor schemes are tested in a simulated environment based on the ranging accuracy of the Ultra-Wideband modules

    Comparative node selection-based localization technique for wireless sensor networks: A bilateration approach

    Get PDF
    Wireless sensor networks find extensive applications, such as environmental and smart city monitoring, structural health, and target location. To be useful, most sensor data must be localized. We propose a node localization technique based on bilateration comparison (BACL) for dense networks, which considers two reference nodes to determine the unknown position of a third node. The mirror positions resulted from bilateration are resolved by comparing their coordinates with the coordinates of the reference nodes. Additionally, we use network clustering to further refine the location of the nodes. We show that BACL has several advantages over Energy Aware Co-operative Localization (EACL) and Underwater Recursive Position Estimation (URPE): (1) BACL uses bilateration (needs only two reference nodes) instead of trilateration (that needs three reference nodes), (2) BACL needs reference (anchor) nodes only on the field periphery, and (3) BACL needs substantially less communication and computation. Through simulation, we show that BACL localization accuracy, as root mean square error, improves by 53% that of URPE and by 40% that of EACL. We also explore the BACL localization error when the anchor nodes are placed on one or multiple sides of a rectangular field, as a trade-off between localization accuracy and network deployment effort. Best accuracy is achieved using anchors on all field sides, but we show that localization refinement using node clustering and anchor nodes only on one side of the field has comparable localization accuracy with anchor nodes on two sides but without clustering

    Nature Inspired Range Based Wireless Sensor Node Localization Algorithms

    Get PDF
    Localization is one of the most important factors highly desirable for the performance of Wireless Sensor Network (WSN). Localization can be stated as the estimation of the location of the sensor nodes in sensor network. In the applications of WSN, the data gathered at sink node will be meaningless without localization information of the nodes. Due to size and complexity factors of the localization problem, it can be formulated as an optimization problem and thus can be approached with optimization algorithms. In this paper, the nature inspired algorithms are used and analyzed for an optimal estimation of the location of sensor nodes. The performance of the nature inspired algorithms viz. Flower pollination algorithm (FPA), Firefly algorithm (FA), Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO) for localization in WSN is analyzed in terms of localization accuracy, number of localized nodes and computing time. The comparative analysis has shown that FPA is more proficient in determining the coordinates of nodes by minimizing the localization error as compared to FA, PSO and GWO

    Analysis of Improved Particle Swarm Algorithm in Wireless Sensor Network Localization

    Get PDF
    WSN localization occupies an important position in the practical application of WSN. To complete WSN localization efficiently and accurately, the article constructs the objective function based on the target node location constraints and maximum likelihood function. It avoids premature convergence through the PSO algorithm based on chaos search and backward learning. Based on linear fitting, the node-flipping fuzzy detection method is proposed to perform the judgment of node flipping fuzzy phenomenon. And the detection method is combined with the localization algorithm, and the final WSN localization algorithm is obtained after multi-threshold processing. After analysis, it is found that compared with other PSO algorithms, the MTLFPSO algorithm used in the paper has better performance with the highest accuracy of 83.1%. Different threshold values will affect the favorable and error detection rates of different WSNs. For type 1 WSNs, the positive detection rate of the 3-node network is the highest under the same threshold value, followed by the 4-node network; when the threshold value is 7.5 (3 ), the positive detection rate of the 3-node network is 97.8%. Different numbers of anchor nodes and communication radius will have specific effects on the number of definable nodes and relative localization error, in which the lowest relative localization error of the MTLFPSO algorithm is 3.4% under different numbers of anchor nodes; the lowest relative localization error of MTLFPSO algorithm is 2.5% under different communication radius. The article adopts the method to achieve accurate and efficient localization of WSNs
    corecore