211 research outputs found

    A new shielding effectiveness measurement method based on a skin-effect transmission line coupler

    Get PDF
    We propose a new convenient material shielding effectiveness measurement method based on a skin-effect transmission line coupler. The method is somewhat similar to the arrangement with two coupled TEM cells known from literature. The transmission line coupler consists of a pair of identical transmission line 2-port devices. Each device contains a coaxial waveguide, with a circular inner conductor and an outer conductor having a square cross section. One side of the outer conductor is left completely open as a slot. The slot is surrounded by a large metal housing to contact the two halves. As a measure for the shielding effectiveness the coupling between the two devices is measured in terms of scattering parameters after the test material is brought between the two halves. The devices can be used in a range from low frequencies to a few GHz

    Radiative Reference Plane Estimation and Uncertainty for THz Path Loss Measurements

    Get PDF

    Analysis of Non-Idealities in the Generation of Reconfigurable Sinc-Shaped Optical Nyquist Pulses

    Get PDF
    Optical sinc-shaped Nyquist pulses are widely used in microwave photonics, optical signal processing, and optical telecommunications due to their numerous advantages, like rectangular shape in the frequency domain, the orthogonality and the consequential possibility to use these pulses to transmit data with the maximum possible symbol rate. Ideal sinc pulses with the rectangular spectrum are just a mathematical construct. However, high-quality sinc pulse sequences offer the same advantages and can be generated by a phase-locked rectangular frequency comb with mode-locked lasers, intensity modulators, and integrated devices. Nevertheless, any non-idealities in the pulse and comb generation might lead to a degradation of the system performance, especially for metrology. Here, we investigate and analyze the effect of three major non-idealities, namely, the roll-off factor, the side band suppression ratio (SSR), and the ripple of sinc-shaped reconfigurable optical Nyquist pulse sequences based on 3, 5, and 9-line optical phase-locked frequency combs. We compare these results with the existing literature for the three-line comb followed by the experimental verification of the simulation results. We illustrate that by increasing the number of comb lines, the pulse sequences have superior performance and contribute to lesser root-mean-square (r.m.s.) error. We also discuss the trade-off between the r.m.s. error and the optical power loss for increasing the SSR

    Airborne field strength monitoring

    Get PDF
    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper

    Measurement comparison among Time-Domain, FTIR and VNA-based spectrometers in the THz frequency range

    Get PDF
    In this paper we present the outcome of the first international comparison in the terahertz frequency range among three different kinds of spectrometers. A Fourier-Transform infrared spectrometer, a vector network analyzer and a time-domain spectrometer have been employed for measuring the complex refractive index of three travelling standards made of selected dielectric materials in order to offer a wide enough range of parameters to be measured. The three spectrometers have been compared in terms of measurement capability and uncertainty

    High-resolution signal-in-space measurements of VHF omnidirectional ranges using UAS

    Get PDF
    In this paper, we describe measurement results of the signal-in-space of very high frequency (VHF) omnidirectional range (VOR) facilities. In aviation VOR are used to display the current course of the aircraft in the cockpit. To understand the influence of wind turbines (WT) on the signal integrity of terrestrial navigation and radar signals, the signal content and its changes, respectively, must be investigated. So far, only numerical simulations have been carried out on the frequency-modulation (FM) part of the Doppler-VOR (DVOR) signal to estimate the influence of WT on DVOR. Up to now, the amplitude-modulated (AM) part of the DVOR was not assessed at all. In 2016, we presented an unmanned aerial system (UAS) as a carrier for state-of-the-art radio-frequency (RF) measurement instrumentation (Schrader et al., 2016a, c; Bredemeyer et al., 2016), to measure and to record the true signal-in-space (both FM and AM signal) during the flight. The signal-in-space (which refers to time-resolved signal content and field strength, respectively) is measured and sampled without loss of information and, furthermore, synchronously stored with time stamp and with precise position in space, where the measurements were taken

    Safety Checkpoints

    Get PDF
    partially_open9sìopenKazemipour, Alireza; Kleine-Ostmann, Thomas; Schrader, Thorsten; Allal, Djamel; Charles, Michael; Zilberti, Luca; Borsero, Michele; Bottauscio, Oriano; Chiampi, MarioKazemipour, Alireza; Kleine Ostmann, Thomas; Schrader, Thorsten; Allal, Djamel; Charles, Michael; Zilberti, Luca; Borsero, Michele; Bottauscio, Oriano; Chiampi, Mari

    Terahertz time-domain spectroscopy and imaging of artificial RNA

    Get PDF
    This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsexpress.org/abstract.cfm?id=84667. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.We use terahertz time-domain spectroscopy (THz-TDS) to measure the far-infrared dielectric function of two artificial RNA single strands, composed of polyadenylic acid (poly-A) and polycytidylic acid (poly-C). We find a significant difference in the absorption between the two types of RNA strands, and we show that we can use this difference to record images of spot arrays of the RNA strands. Under controlled conditions it is possible to use the THz image to distinguish between the two RNA strands. We discuss the requirements to sample preparation imposed by the lack of sharp spectral features in the absorption spectra.Bernd Fischer, Matthias Hoffmann, Hanspeter Helm, Rafal Wilk, Frank Rutz, Thomas Kleine-Ostmann, Martin Koch, Peter Jepse

    Exposure Setup and Dosimetry for a Study on Effects of Mobile Communication Signals on Human Hematopoietic Stem Cells in vitro

    Get PDF
    In this paper we describe the design of an exposure setup used to study possible non-thermal effects due to the exposure of human hematopoietic stem cells to GSM, UMTS and LTE mobile communication signals. The experiments are performed under fully blinded conditions in a TEM waveguide located inside an incubator to achieve defined environmental conditions as required for the living cells. Chamber slides containing the cells in culture medium are placed on the septum of the waveguide. The environmental and exposure parameters such as signal power, temperatures, relative humidity and CO2 content of the surrounding atmosphere are monitored permanently during the exposure experiment. The power of the exposure signals required to achieve specific absorption rates of 0.5, 1, 2 and 4 W kg−1 are determined by numerical calculation of the field distribution inside the cell culture medium at 900 MHz (GSM), 1950 MHz (UMTS) and 2535 MHz (LTE). The dosimetry is verified both with scattering parameter measurements on the waveguide with and without containers filled with cell culture medium and with temperature measurements with non-metallic probes in separate heating experiments
    • …
    corecore