761 research outputs found

    Distributed Parameter Estimation via Pseudo-likelihood

    Full text link
    Estimating statistical models within sensor networks requires distributed algorithms, in which both data and computation are distributed across the nodes of the network. We propose a general approach for distributed learning based on combining local estimators defined by pseudo-likelihood components, encompassing a number of combination methods, and provide both theoretical and experimental analysis. We show that simple linear combination or max-voting methods, when combined with second-order information, are statistically competitive with more advanced and costly joint optimization. Our algorithms have many attractive properties including low communication and computational cost and "any-time" behavior.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    A Low Density Lattice Decoder via Non-Parametric Belief Propagation

    Full text link
    The recent work of Sommer, Feder and Shalvi presented a new family of codes called low density lattice codes (LDLC) that can be decoded efficiently and approach the capacity of the AWGN channel. A linear time iterative decoding scheme which is based on a message-passing formulation on a factor graph is given. In the current work we report our theoretical findings regarding the relation between the LDLC decoder and belief propagation. We show that the LDLC decoder is an instance of non-parametric belief propagation and further connect it to the Gaussian belief propagation algorithm. Our new results enable borrowing knowledge from the non-parametric and Gaussian belief propagation domains into the LDLC domain. Specifically, we give more general convergence conditions for convergence of the LDLC decoder (under the same assumptions of the original LDLC convergence analysis). We discuss how to extend the LDLC decoder from Latin square to full rank, non-square matrices. We propose an efficient construction of sparse generator matrix and its matching decoder. We report preliminary experimental results which show our decoder has comparable symbol to error rate compared to the original LDLC decoder.%Comment: Submitted for publicatio

    Gibbs Sampling for (Coupled) Infinite Mixture Models in the Stick Breaking Representation

    Full text link
    Nonparametric Bayesian approaches to clustering, information retrieval, language modeling and object recognition have recently shown great promise as a new paradigm for unsupervised data analysis. Most contributions have focused on the Dirichlet process mixture models or extensions thereof for which efficient Gibbs samplers exist. In this paper we explore Gibbs samplers for infinite complexity mixture models in the stick breaking representation. The advantage of this representation is improved modeling flexibility. For instance, one can design the prior distribution over cluster sizes or couple multiple infinite mixture models (e.g. over time) at the level of their parameters (i.e. the dependent Dirichlet process model). However, Gibbs samplers for infinite mixture models (as recently introduced in the statistics literature) seem to mix poorly over cluster labels. Among others issues, this can have the adverse effect that labels for the same cluster in coupled mixture models are mixed up. We introduce additional moves in these samplers to improve mixing over cluster labels and to bring clusters into correspondence. An application to modeling of storm trajectories is used to illustrate these ideas.Comment: Appears in Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (UAI2006
    • …
    corecore