325 research outputs found

    A Closed-loop capacitance to pulse-width converter for single element capacitive sensors

    Get PDF
    A novel closed-loop capacitance-to-pulse width converter (CPC) suitable for single element capacitive sensors that use sinusoidal excitation is presented in this paper. Its operation is realized using a new configuration based on a simple, yet effective, auto-balancing scheme. The hardware prototype of the proposed CPC is relatively less complex to implement than those presented so far in the literature. It provides a quasi-digital output at a high update rate. Additionally, the output is insensitive to parasitic capacitances of the sensor. The output possesses high linearity, with respect to change in the sensor capacitance, ranging +/-5 pF, with a nominal capacitance as high as 200 pF. It exhibits a maximum non-linearity error of 0.061%FS. The output of the prototype has a resolution of 13.31 bits. Also, its response time for a step-change in the sensor capacitance is about 13 ms. This sophisticated and inexpensive closed-loop CPC is a perfect fit as an interfacing circuit for single element capacitive sensors.Peer ReviewedPostprint (author's final draft

    An auto-balancing capacitance-to-pulse-width converter for capacitive sensors

    Get PDF
    A novel auto-balancing capacitance-to-pulse- width converter (CPC) that uses sinusoidal excitation, and operates in a closed-loop configuration, is presented in this paper. Unlike most of the existing CPCs, the proposed interface circuit is compatible with both single-element and differential capacitive sensors. In addition, it provides a pulse-width modulated (PWM) signal which can easily be digitized using a counter. From this PWM signal, a ratio output is derived when a single-element sensor is interfaced, and a ratiometric output is obtained for a differential sensor.The authors would like to thank the Department of Science and Technology (DST), Govt. of India, for its financial assistance (Grant Number SERB/F/4573/2016-17) in carrying out the research activities presented in this paper.Postprint (published version

    Informe mensual d'articles publicats. Campus Baix Llobregat. Base de dades Scopus. Juny, juliol i agost 2019

    Get PDF
    Informe bibliomètric mensual Campus Baix Llobregat. Base de dades Scopus. Juny, juliol i agost 2019. EETAC i DEAB, ESAB.Postprint (published version

    Power Angle Control Scheme for Integration of UPQC in Grid Connected PV System

    Get PDF
    The quality of electric power is greatly affected by the proliferation of non-linear loads in electrical energy processing applications like switched mode power supplies, electric motor drives, battery chargers, etc., The custom power devices like UPQC has gained more importance in power quality arena as it gives the best solution for all power quality issues. UPQC is the combination of both shunt and series active power filters connected through a common DC link capacitor. The shunt active power filter is the most corrective measure to remove the current related problems, power factor improvement by supplying reactive power and regulates DC link voltage. The series APF acts as controlled voltage source and corrects voltage related problems, like sag or swell, flickering, harmonics, etc.,. As a combination of both of these, UPQC improves service reliability. In the present work, shunt inverter control is based on modified active- reactive (p-q) power theory, uses High selectivity filter (HSF) for reference current generation. The series APF uses Power Angle Control (PAC) scheme for compensating sag/swell, interruption and voltage related problems along with sharing a part of load reactive power demand with shunt APF and thus ease its loading and makes the utilization of UPQC to be optimal. The topology uses three phase three leg inverters for both shunt APF and series APF. The gating signals were generated using Hysteresis controller. The output of High step-Up DC-DC Converter is used to work as DC voltage source for both APFs. The input voltage for the converter is provided by Photo Voltaic array incorporated with P&O MPPT technique. The use of high step-up DC-DC converter is for high voltage gain with better efficiency. The present topology avoids the PLL in shunt active power filter. The simulation results are presented to show the effectiveness of the three phase, three-wire PV-UPQC and here obtained an acceptable THD for source current and kept load voltag

    The behaviour and analysis of a three-phase AC-DC step-down unity power factor converter

    Get PDF
    Abstract unavailable please refer to PD

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    Chemicapacitors as a versatile platform for miniature gas and vapor sensors

    Get PDF
    Recent years have seen the rapid growth in the need for sensors throughout all areas of society including environmental sensing, health-care, public safety and manufacturing quality control. To meet this diverse need, sensors have to evolve from specialized and bespoke systems to miniaturized, low-power, low-cost (almost disposable) ubiquitous platforms. A technology that has been developed which gives a route to meet these challenges is the chemicapacitor sensor. To date the commercialization of these sensors has largely been restricted to humidity sensing, but in this review we examine the progress over recent years to expand this sensing technology to a wide range of gases and vapors. From sensors interrogated with laboratory instrumentation, chemicapacitor sensors have evolved into miniaturized units integrated with low power readout electronics that can selectively detect target molecules to ppm and sub-ppm levels within vapor mixtures
    corecore