20,666 research outputs found

    Study of fault-tolerant software technology

    Get PDF
    Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance

    Dynamic state reconciliation and model-based fault detection for chemical processes

    Get PDF
    In this paper, we present a method for the fault detection based on the residual generation. The main idea is to reconstruct the outputs of the system from the measurements using the extended Kalman filter. The estimations are compared to the values of the reference model and so, deviations are interpreted as possible faults. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. The use of this method is illustrated through an application in the field of chemical processe

    Correct and Control Complex IoT Systems: Evaluation of a Classification for System Anomalies

    Full text link
    In practice there are deficiencies in precise interteam communications about system anomalies to perform troubleshooting and postmortem analysis along different teams operating complex IoT systems. We evaluate the quality in use of an adaptation of IEEE Std. 1044-2009 with the objective to differentiate the handling of fault detection and fault reaction from handling of defect and its options for defect correction. We extended the scope of IEEE Std. 1044-2009 from anomalies related to software only to anomalies related to complex IoT systems. To evaluate the quality in use of our classification a study was conducted at Robert Bosch GmbH. We applied our adaptation to a postmortem analysis of an IoT solution and evaluated the quality in use by conducting interviews with three stakeholders. Our adaptation was effectively applied and interteam communications as well as iterative and inductive learning for product improvement were enhanced. Further training and practice are required.Comment: Submitted to QRS 2020 (IEEE Conference on Software Quality, Reliability and Security

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules
    • …
    corecore