
A Synthesis of Logic and Bio-inspired techniques in the Design of Dependable

Systems

Yiannis Papadopoulos*, Martin Walker, David Parker, Septavera Sharvia,

Leonardo Bottaci, Sohag Kabir, Luis Azevedo, Ioannis Sorokos

University of Hull, Hull, HU6 7RX, UK

(*corresponding author: +44 (0)1482 465981, e-mail: Y.I.Papadopoulos@hull.ac.uk).

Abstract: Much of the development of model-based design and dependability analysis in the design of

dependable systems, including software intensive systems, can be attributed to the application of

advances in formal logic and its application to fault forecasting and verification of systems. In parallel,

work on bio-inspired technologies has shown potential for the evolutionary design of engineering

systems via automated exploration of potentially large design spaces. We have not yet seen the

emergence of a design paradigm that effectively combines these two techniques, schematically founded

on the two pillars of formal logic and biology, from the early stages of, and throughout, the design

lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to

enable optimal refinement of new designs which can be driven effectively by dependability requirements.

The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the

scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their

combined potential benefits. The article begins by identifying current challenges in MBSA and then

overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span

from allocation of dependability requirements, through dependability analysis, to multi-objective

optimisation of system architectures and maintenance schedules.

Keywords: dependability, safety integrity levels, genetic algorithms, MBSA, HiP-HOPS

1. INTRODUCTION

Dependability is an umbrella term that covers safety,

reliability, availability, maintainability and security.

Integrated and effective dependability assessment has

become increasingly important as modern safety-critical

systems become more heterogeneous and complex.

Dependability assessment should begin early in the

design so that potential problems can be identified and

rectified early to avoid expensive changes later in the

system lifecycle. Traditional dependability analysis

techniques like fault tree analysis (FTA) and Failure Modes

and Effects Analysis (FMEA) are well-established and

widely used during the design phase of safety-critical

systems. However, these techniques are manual processes

and often performed on informal system models which may

rapidly become out of date as the system design evolves. This

presents challenges in maintaining the consistency and

completeness of the assessment process.

Over the past 20 years, new developments in the field of

dependability engineering have led to a body of work on

model-based assessment and prediction of dependability

which has come to be known as Model-Based Safety

Assessment (MBSA). MBSA focuses on safety but extends

to other attributes of dependability including reliability,

availability, and even assessment of implications of security

on safety. Model-based techniques offer significant

advantages over traditional approaches as they utilise

software automation and integration with design models to

simplify the analysis of complex safety-critical systems.

The various MBSA techniques generally fall into two leading

paradigms. The first focuses on the automatic construction of

predictive system failure analyses, such as fault trees or

FMEAs, from local failure logic stored in the architectural

model of the system, or a parallel error model. This approach

is typically compositional, meaning that system-level failure

analyses can be generated from component-level failure logic

and the topology of the system. This compositionality lends

itself well to automation and reuse of component failure logic

across applications, and this is beneficial to dependability

analysis in ways similar to those introduced by reuse of

trusted software components in software engineering.

Techniques which are based upon this paradigm include the

Failure Propagation and Transformation Notation (Fenelon

and McDermid, 1993) and Calculus (Wallace, 2005),

Hierarchically Performed Hazard Origin and Propagation

Studies (HiP-HOPS) (Papadopoulos and McDermid, 1999),

Component Fault Trees (Kaiser et al., 2003) and State-Event

Fault Trees (Grunske et al., 2005).

The second prominent MBSA paradigm focuses on

automatically analysing potential failures in a system model,

typically represented as a state machine, using formal

verification techniques such as model-checking. This

generally works by injecting possible faults into an

executable formal specification of a system and studying the

effects of faults on the system behaviour. The results are then

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

used by model checking tools to verify whether system

dependability requirements are being satisfied or whether

violations of the requirements exist in normal or faulty

conditions. Techniques in this category include Altarica

(Arnold et al., 2000), FSAP-NuSMV (Bozzano and

Villafiorita, 2007), SAML (Ortmeier et al., 2012) and

PRISM (Kwiatkowska et al, 2009)

Much of this recent work on dependability analysis has a

natural synergy with a wider trend towards model-based

design, particularly domain-specific languages. In many

industries, particularly transport and aerospace, designers are

increasingly adopting Architecture Description Languages

(ADLs) to capture architectural and behavioural information

about the system. Such ADLs may not only represent the

architecture of the system, but also its functional and non-

functional requirements; they may also provide facilities for

the refinement of the system throughout the design lifecycle,

showing how the requirements are being met at each stage.

One important goal of such ADLs is to represent safety

requirements and the failure logic of the system, and this has

naturally led to integration with MBSA techniques.

Some of this work has been transferred to the context of

model-based design. For instance, ADLs have incorporated

error modelling semantics that enable dependability analysis.

Recent work has demonstrated that dependability analysis of

EAST-ADL models (Chen et al., 2011) and SysML models

(Andrews et al., 2013) is possible via HiP-HOPS while

dependability analysis of AADL models is possible via

conversion to combinatorial (Joshi et al., 2007) and temporal/

dynamic fault trees (Mahmud et al., 2012; Merle et al., 2014)

or Generalised Stochastic Petri Nets (GSPN) (Feiler and

Rugina, 2007).

This work is very much ongoing and there are specific

challenges to be addressed within individual techniques and

the field as a whole.

In this paper, we firstly discuss a set of challenges that in our

view cannot be addressed by MBSA in its current state.

These challenges mainly refer to design problems where

there are many potential design options to be considered.

Secondly, we argue that a synthesis of these techniques with

modern metaheuristics for search and optimisation can

potentially address these challenges. Finally, we describe our

work towards this goal within the HiP-HOPS method and

tool, and we show how this work can support cost-optimal,

dependability-directed design refinement and optimisation of

system architectures.

The paper is an extension of Papadopoulos’ plenary DCDS

2015 paper (Papadopoulos, 2015) and is structured as

follows: in Section 2, we discuss challenges; in Section 3, we

present an extension of MBSA with metaheuristics; in

Section 4, we discuss some of the technical challenges and

limitations of the work; in Section 5, we discuss related work

elsewhere in the literature, and in Section 6 we conclude by

discussing how this work could inform the evolution of

MBSA.

2. CHALLENGES

MBSA techniques can answer important questions regarding

the quality of individual design proposals, and in that sense

they can enrich a model-driven development process.

However, MBSA is neither a panacea in its various forms nor

is it a static field of research. Rather it is a set of techniques

which are continuously evolving to address current and new

challenges. Below we identify four such challenges which

MBSA techniques cannot fully address at present.

2.1. Controlling dependability from the early stages

There is increasing agreement that to achieve high

dependability in complex systems, design processes should

move in a direction where dependability and other quality

attributes are controlled from the early stages rather than left

to emerge (or not) at the end. This is clearly a very desirable

goal that would greatly benefit several industries, and it is

enshrined in contemporary standards like the aerospace and

the automotive safety standards, ARP4754-A and ISO 26262.

These documents prescribe processes in which dependability

requirements, captured early through system level hazard

analysis and risk assessment, are rationally allocated to

progressively more refined subsystem elements of the

architecture in the form of Development Assurance Levels,

Safety Integrity Levels, or other similar concepts.

A study of the problem (Parker et al., 2013) has shown that

the manual processes described in the standards become

complex when applied to large or even medium-sized

networked architectures which deliver multiple functions;

such systems lead to huge numbers of potential allocation

solutions and exploring these manually is infeasible. Current

standards do not advise on how this type of allocation can be

done effectively, for example with the support of automated

algorithms and tools. This is an area where research

opportunities arise to address important questions: for

instance, which architectural proposals will fulfil

dependability requirements better in the context of design

refinement, and, given a proposed architecture, how integrity

requirements can be optimally allocated to its elements.

2.2 Controlled design refinement over a complex value chain

The controlled refinement of a design for new dependable

systems must be achieved in the context of a value chain over

which the design and procurement of subsystems and

components is typically distributed. Indeed, in practice,

complex systems are developed in value chains using a

combination of existing and commissioned subsystems and

components that become parts of the overall architecture.

Distributing a design in such a way that properties are

verifiably maintained is a significant challenge that

encompasses two aspects. On the one hand, effective top-

down mechanisms are needed to ensure that the allocation

and transmission of requirements during refinement is done

in a way that satisfies overall requirements at the end. On the

other hand, bottom-up mechanisms are needed to provide

evidence that requirements have been met when the system is

finally put together in its final form.

2.3 Dealing with the inevitable design changes

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

There is always a degree of uncertainty in early design, which

often contributes to disruptive design changes. Some of the

uncertainty comes as existing requirements are modified and

new requirements are added, causing changes in the current

design and allocation of requirements. These changes need to

propagate in a top-down manner through the design

refinement as new and modified requirements for the

elements of the design. For example, a previously

undiscovered hazard may cause design changes aimed at

addressing the hazard and these may need to propagate

through subsystems to the low levels of design and to the low

level tiers of the value chain. Uncertainties in design may

also propagate bottom up, for example in cases where

assumptions about certain properties of elements cannot be

satisfied. The challenge here is in being able to respond

effectively and efficiently to the changes that need to follow.

The impact of such changes should be localised and any

necessary reallocation of requirements must be done

efficiently and with minimum disruption to the contractual

relationships between the various stakeholders in the tiers of

the value chain.

2.4 Trading off dependability versus cost & other properties.

In complex distributed systems, rich functionalities and their

distribution across shared hardware and communication

channels allow a large number of configuration options at

design time and a large number of reconfiguration options at

runtime. This creates challenges in design because, as

potential design spaces expand, their exploration for suitable

or optimal designs becomes increasingly difficult.

When a number of different architectural configurations can

potentially deliver the functions of a system, designers are

faced with a difficult optimisation problem. Assuming that it

is technically and economically possible to fulfil all

dependability requirements, they must find an architecture

that entails minimal development and other lifecycle costs.

On the other hand, if fulfilling or optimising all dependability

and other requirements is infeasible, then they must find the

architecture or architectures that achieve the best possible

tradeoffs among quality attributes and cost. The problem is

compounded by the fact that attributes are often conflicting,

e.g. improving safety often means not only increasing costs

but also reducing availability.

It is widely accepted that these trade-offs represent hard,

multi-objective optimisation problems that require

optimisation algorithms that can search in large design

spaces.

Although many design problems can be tackled effectively

only by the human intellect, as design spaces expand, finding

optimal designs in terms of quality and cost becomes

increasingly difficult and some automation is needed.

Modelling languages, emerging ADLs, and MBSA

techniques could therefore benefit from concepts and

technological support that enable this type of optimisation.

3. SYNTHESIS OF MBSA WITH METAHEURISTICS

The above challenges go beyond the capabilities of current

MBSA techniques. We believe one step towards addressing

them is to achieve a synthesis of MBSA and contemporary

metaheuristics, i.e., moving into an area where formal logic

can meet biology and nature-inspired techniques.

In recent years, we have been working in this direction in the

context of HiP-HOPS, an MBSA technique which has been

developed since the late 90s (Papadopoulos and McDermid,

1999). While HiP-HOPS started as a technique for model-

based synthesis of fault trees and FMEAs, it has

progressively evolved into a more sophisticated method in

which heuristics are used to address the design problems

highlighted in section 2 — see for instance (Papadopoulos

and Grante, 2003 & 2006), (Zeng et al., 2007), (Adachi et al.,

2011), (Papadopoulos et al., 2011) (Walker et al., 2013) and

(Azevedo et al., 2014).

The approach has been implemented as a prototype tool of

the same name with a broad spectrum of capabilities for

dependability analysis, architectural optimisation, and safety

requirement allocation. Versions are in use by industrial

partners including Volvo, Honda, Toyota, Embraer,

Honeywell, and others.

3.1 Scope of HiP-HOPS

HiP-HOPS aspires to support both sides of the V engineering

lifecycle with techniques that are model-based and automated

(Fig. 1).

Fig. 1. Scope of HiP-HOPS in the V-lifecycle

At the early stages, HiP-HOPS supports a dependability

driven mode of design in which system requirements are

captured early and are allocated to sub-systems and

components of the architecture. In a typical design the

possibilities for allocation are numerous, so the process is

partly automated via use of metaheuristics. The goal is to find

an optimal allocation of system requirements to elements of

the architecture within the space of all possible such

allocations. Optimality here is defined mainly in terms of

minimising the projected costs that would be associated with

the different levels of integrity demanded from components

to meet system requirements (Azevedo et al., 2014), thereby

assisting the designers in developing a solution that meets

dependability requirements but minimising costs within the

constraints of an established cost budget. This process can be

repeated as the system design continues to evolve and is

described in section 3.2.

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

As the architecture of the system is refined and more detailed

models of the system are produced, more detailed qualitative

and quantitative dependability analysis can also be

performed. Such analyses may be used as evidence that the

system requirements have been met. The process is

automated via algorithms for synthesis and analysis of fault

trees and FMEAs (Papadopoulos et al., 1999 & 2011) and is

described in section 3.3.

Moving to the right of the V-lifecycle, and assuming that

dependability analysis shows that requirements cannot be met

by the current system architecture, it is possible to initiate a

process of architecture and maintenance optimisation in

which the goal is to arrive at an improved architecture which

meets dependability and other requirements with minimal

additional costs. The process is once more driven by meta-

heuristics and can be used to address problems such as the

optimal selection of components and subsystems between

available alternatives, decisions on the location and level of

replication of components (Adachi et al., 2011), and

decisions on maintenance scheduling (Nggada, et al., 2013).

This is described in section 3.4.

Finally, in section 3.5, we also discuss how the HiP-HOPS

approach can be used in conjunction with architecture

description languages (ADLs), which provide an integrated

framework and systematic methodology for the kind of V-

lifecycle described here.

3.2 Dependability-driven Design Refinement with HiP-HOPS

Many MBSA approaches are bottom up in that they rely on

the prior existence of detailed system models that can be

subjected to analysis or optimisation. As a counterpoint, we

would like to pose a set of fundamental questions about

system design.

a) Why should designers need to produce detailed designs

before they can assess whether dependability

requirements have been met, e.g. via MBSA?

b) Why should designers risk failing to meet requirements

and then need to redesign?

c) Why not employ a top-down dependability-driven design

process in which dependability requirements can be

optimally allocated to sub-systems and components

during refinement of the architecture?

The aspirations implied in the above questions concur with

those expressed in modern safety standards. Using ISO

26262 (ISO, 2011) as an example, the standard defines a V-

shaped safety lifecycle (shown below in Fig. 2). On the left of

the 'V', safety requirements are established on the basis of a

hazard analysis of the item being developed. These are then

allocated in a top-down fashion to emerging system elements

as the system architecture is continually refined from an

abstract functional model to a more concrete hardware &

software architecture. On the right of the 'V', the resulting

architecture is then validated against the original

requirements through a process of analysis and safety

assessment.

Fig. 2. ISO 26262 V-model development process (ISO, 2011)

However, the guidance provided by these standards assumes

requirements allocation is a manual process. We believe that

an automated approach can better support the application of

these standards and yield important improvements in the

ongoing pursuit of improved design processes for dependable

systems.

Standards such as IEC 61508 (IEC, 1998), ISO 26262, and

ARP4754-A (SAE, 2010) introduce a system of classification

for different levels of safety-integrity. IEC 61508 popularised

the Safety Integrity Level (SIL), while ISO 26262 and

ARP4754-A introduced domain-specific versions of this

concept — the Automotive Safety Integrity Level (ASIL) for

the automotive domain and the Development Assurance

Level (DAL) for the aerospace domain. Integrity levels serve

as a qualitative indication of the required level of safety or

integrity of a function or component. Generally they are

broken down into 5 levels, ranging from strict requirements

(e.g. SIL4, ASIL D, DAL A) to no special requirements (e.g.

SIL0, QM, DAL E). In some cases, quantitative targets are

also associated with different levels, e.g. maximum failure

rates for random hardware faults.

These integrity levels are employed as part of a top-down

requirements allocation process as well as a bottom-up

verification of those requirements. For example, as Fig. 2

shows, ISO 26262 describes a detailed safety process to be

applied to automotive systems. The first step is a hazard

analysis, which identifies the various malfunctions that may

take place and the hazards that may arise as a result. The

severity, likelihood, and controllability of these hazards are

then considered. On the basis of this risk analysis, safety

requirements — with associated ASILs — are applied to the

various top-level functions of the system. The higher the risk

of the function’s hazard, the higher the ASIL that is applied.

During the subsequent development of the system,

traceability to these original ASILs must be maintained at all

times. As the system design is refined into more detailed

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

architectures, those original ASILs are allocated and

decomposed to the subsystems and terminal components of

the design. During the verification and validation, analyses

(e.g. fault trees) must be produced to ensure that the refined

system and — eventually — the final implemented system

still meets the original requirements.

The process of allocating and decomposing ASILs across the

architecture is far from straightforward. In general, the sub-

components are responsible for providing the required

integrity level of their parent. To avoid every element of the

entire system having to meet the highest level of integrity, the

different contribution of elements of the architecture to the

numerous hazards predicted must be accurately established.

Fault tolerant architectures (e.g. parallelism, redundancy,

monitoring etc) can also be employed to spread the burden of

meeting a high SIL across a number of components. While in

some cases there is guidance on how this is to be done,

achieving it in practice is often significantly more difficult.

For example, ISO 26262 provides an "ASIL algebra", which

indicates how a strict integrity level like ASIL D can be met

by two independent subsystems which each individually

meet lower ASILs, as shown in Table 1.

Table 1- Possible ASIL allocations for two subsystems

To meet ASIL D Subsystem 1 Subsystem 2

Option 1 QM D

Option 2 A C

Option 3 B B

Option 4 C A

Option 5 D QM

Note that there are many other possible combinations, but

either these will not meet the overall ASIL D requirement or

they will exceed it and thus incur unnecessary expense. The

ASIL algebra can be thought of as a set of integer values for

each ASIL (see Table).

Table 2- The ASIL algebra

ASIL Value

QM 0

A 1

B 2

C 3

D 4

Assigning ASIL C and ASIL D to both subsystems would

meet the overall requirement, i.e., 3 + 4 ≥ 4, but is inefficient.

Assigning ASIL A and ASIL B would not meet the overall

requirement, i.e., 1 + 2 < 4. The most efficient allocations

precisely meet the overall requirement, and these are shown

in Table 1.

Thus there are problems in ensuring that constraints about

components' failure independence are met, working through

the many possible allocations, and ensuring that the

decomposed low-level requirements still add up to the

original high-level requirements. When dealing with the

types of detailed electronic architectures that are common in

modern safety-critical systems, following safety standards

like ISO 26262 and ARP4754-A manually with respect to

SIL allocation requires additional time and expense and is

often infeasible. Even when considering only two

subsystems, there are 25 (i.e., 5
2
) possible ASIL allocations,

of which only 5 are 'optimal' in the sense that they precisely

meet the overall requirement. The scope of the problem only

grows when more subsystems and more system-wide

requirements are considered.

Standards are naturally focused on safety and SIL allocation

is presented as a problem where the single goal is to find an

allocation of integrity requirements to components of the

system architecture that meets system level integrity targets.

HiP-HOPS, however, explores an additional dimension of the

problem, which is very relevant for developers of systems:

cost. Consider the earlier example where there are 5 different

options to decompose an ASIL D across two redundant

components. Which one should be selected? While all of the

options are valid with respect to ISO 26262, some will likely

be more costly — typically those assigned high ASILs such

as C and D. Clearly, the allocation that minimises SIL-

dependent costs is preferred, and in this case that might mean

allocating ASIL B to both subsystems. Table shows how an

abstract measure of cost can be observed using a simple cost

heuristic in which QM has a cost of 0, ASIL A has a cost of

1, ASIL B a cost of 10, C a cost of 100, and D a cost of 100.

Table 3- Allocating ASILs with a cost heuristic

Subsystem 1 Subsystem 2 Overall cost

QM (cost = 0) D (cost = 1000) 0 + 1000 = 1000

A (cost = 1) C (cost = 100) 1 + 100 = 101

B (cost = 10) B (cost = 10) 10 + 10 = 20

C (cost = 100) A (cost = 1) 100 + 1 = 101

D (cost = 1000) QM (cost = 0) 1000 + 0 = 1000

When considering an isolated decomposition decision, as in

the example above, this might seem like a trivial problem of

comparing the costs between a few options. Components,

however, often participate in assuring multiple functions, and

when trying to find cost-optimal solutions, numerous chains

of conflicting constraints involving many components need

to be taken into account. Furthermore, as the number of

components increases, the number of allocation combinations

to examine grows, often exponentially. This is a complex

combinatorial problem where the satisfaction of integrity

requirements from safety standards is a constraint that must

be met but where the real objective is the minimisation of

development costs (Azevedo et al., 2014).

In HiP-HOPS, a largely automated process for SIL allocation

and decomposition is available, which is built on the

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

dependability analysis framework presented in section 3.3.

HiP-HOPS can establish the potential contribution of

combinations of component faults to system level failures.

From this information, it is then possible to automatically

perform a allocation and decomposition of requirements.

HiP-HOPS takes into account the component dependencies

and can therefore automatically apply the type of SIL

'algebra' described by ISO 26262 and ARP4754-A. This

allows SIL allocations to individual components, component

ports, or even component failure modes. Allocating SILs to

failure modes allows a more efficient refinement of

requirements because when a component can fail in multiple

ways, only the sub-components causing its most severe

failures are assigned the higher SIL; sub-components causing

less serious failures can receive lower integrity levels.

Work in this area has shown that the number of different

potential allocation schemes that can meet a complex set of

system requirements often produces a vast search space, and

exploring this exhaustively with deterministic optimisation

algorithms for a cost-optimal allocation can be problematic

(Parker et al., 2013). Recent work has therefore focused on

the use of metaheuristics to efficiently explore this large

space. The resulting allocations of SILs meet the system

requirements with significantly reduced costs for

procurement, development and verification of components.

We have applied and evaluated a range of metaheuristic

optimisation algorithms in this context:

 (Parker et al., 2013) applied genetic algorithms to

allocate SILs in an automotive hybrid braking

system. Genetic algorithms rely on processes of

natural evolution to find promising solutions and

incorporate a random "mutation factor" to avoid

being caught in local optima. The search space in

this instance was 5.96 x 10
16

, small enough to

exhaustively determine that there were 125 optimal

allocations. 4 out of 10 runs found the optimal

solutions, while the other 6 runs found non-optimal

but very low cost solutions (within a percent or two

of optimal). Each run took a few seconds.

 In (Azevedo et al., 2013), Tabu Search was applied

to the same hybrid braking system according to a

variety of different cost heuristics. Tabu search is a

metaheuristic optimisation method which utilises

memory structures known as the Tabu Tenure,

applied over a local search heuristic. The Tenure

allows memorisation of recently found candidates

which can then be avoided in some of the search’s

upcoming iterations, allowing more opportunities to

explore new regions of the search space and helping

to avoid being trapped in local optima. 9 out of 10

runs provided optimal solutions for all cost

heuristics and each run took only a few

milliseconds.

 In (Sorokos et al., 2015), a Tabu search-based

approach was applied to an aircraft wheel brake

system, using DALs and the different decomposition

logic set out in ARP4754-A. In this case every run

of the algorithm produced an optimal solution,

although the search space was considerably smaller.

More recently, we have also begun to investigate Particle

Swarm-based approaches. These use a strategy to explore the

solution space based on the social behaviour of flocks of

birds, or schools of fish, in their search for food. The position

visited by a particle represents a candidate solution; when

choosing the next position to visit, a particle is influenced by

the best position it has so far visited and by the best position

encountered by its neighbours.

As shown in the above papers, this work has produced

promising results that indicate good scalability. Prototype

implementations of the different metaheuristics have been

incorporated into experimental versions of the HiP-HOPS

tool and even the slowest (genetic algorithms) can find

optimal allocations for medium-sized problems in a few

seconds. Exhaustive search methods and techniques like

integer linear programming have been shown to take longer

but with the trade-off that they find a set of solutions that are

guaranteed optimal (Murashkin et al, 2015). In all cases, even

when the costs are not optimal, the allocations found always

meet the overall safety requirements.

In most cases, HiP-HOPS can now calculate optimal

allocations of dependability requirements to subsystems and

components of a system, taking into account their

dependencies and assumptions about their intended behaviour

in conditions of failure. Stakeholders in a value chain are able

to apply this capability iteratively in order to specify

procurement contracts for the development or purchase of

sub-components that define increasingly refined

dependability requirements to suppliers in lower tiers of a

value chain. The process guarantees that a system will meet

its dependability requirements at the end of the design

process providing the various contracts, such as requirements

on basic components; assumptions of independence etc., have

been met

The concept is recursive and can be applied in exactly the

same fashion between any two tiers of a value chain. It is

independent of industry and can incorporate different rules

and algebras, which makes it compatible with a variety of

contemporary standards from different domains.

Note that at this stage, the process of SIL decomposition and

allocation does not involve any changes to the architecture

itself: we are only allocating requirements to existing sub-

elements of the model, on the basis of overall safety

requirements derived from system-level hazards. Later, if

these requirements are shown not to be met by the refined

system design, we can modify the architecture accordingly,

as described in section 3.4.

3.3 Modelling and Dependability Analysis

At various stages through the V-lifecycle, it is useful to be

able to perform dependability analysis on the system

architecture — whether an initial abstract feature model, a

more refined functional architecture, or a concrete

hardware/software architecture — to obtain information

about the possible causes of failures in the system and how

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

likely those failures are. This information can be used to

verify that decomposed safety requirements are being met

and, if performed iteratively, can also inform the direction of

the design by highlighting potential weakpoints in the

system.

All analysis and optimisation processes in HiP-HOPS are

performed on an architectural system model which identifies

material, energy, and data transactions among components

(Fig. 3).

Fig. 3. Modelling and Dependability Analysis in HiP-HOPS.

The model can be hierarchical if necessary to manage

complexity. In the case of a hierarchical model, subsystems

enclose architectures of more basic subsystems and

components.

The dependability analysis process in HiP-HOPS then

proceeds in three phases. The first phase is the annotation

phase: each component in the model is annotated with its

local error logic, describing the errors that can occur in the

component and how it responds to deviations of its inputs.

HiP-HOPS defines a language for the description of this error

logic. In the basic version of this language, the error logic of

a component can be specified as a list of internal failure

modes of the component and a list of errors or deviations as

they can be observed at component outputs. Each component

failure mode is optionally accompanied by quantitative data,

for example a failure and a repair rate. Output errors carry

Boolean expressions which describe their causes as a logical

combination of component faults and similar errors observed

at component inputs. For example, to describe an omission of

output from a component caused by either an omission of

corresponding input or an internal failure mode, we can say:

 omission-component.outputPort =

 internalFailure OR

 omission-component.inputPort

Here internalFailure is a failure mode of that

component and may have probabilistic failure data attached,

e.g. a failure rate in terms of failures per hour. omission-

component.inputPort represents an error or deviation

at the component's input port of type "omission", i.e., a lack

of input. The logical OR operator indicates that the output

deviation — omission of output — is caused by either the

internal failure mode or the lack of input to the component.

Input and output errors referenced in the error logic are

described qualitatively and typically represent different

classes of failures, such as the omission or commission of

parameters or qualitative deviations from correct value (i.e.

hi/low) and expected timing behaviour (i.e. early/late). These

are not fixed and analysts may use whatever nomenclature

they wish as long as the usage is consistent across the model.

Collectively, a set of failure expressions that logically explain

all possible errors at all output ports of a component provides

a model of the error logic of the component under

examination. This model can be stored in a library. For

simple components, e.g. sensors and actuators, such models

could be re-used across different applications to simplify the

manual part of the analysis and the overall application of the

proposed technique.

The second phase of the HiP-HOPS dependability analysis

process is the synthesis phase. Using the error logic

associated with components, computerised algorithms

automatically determine how errors propagate through

connections in the model to cause functional failures at

system outputs. These are the failures that analysts are

typically interested in identifying and analysing. For

example, in a car, such functional failures may include the

loss of steering or braking. Since HiP-HOPS shows how

individual failure modes in components can combine and

lead to functional failures at system outputs, a system failure

such as loss of braking may be seen to be the result of an

actuator failure.

This global view is captured in a set of interconnected fault

trees. These fault trees show how the leaf nodes of the trees

— representing the component failure modes and their local

effects — can logically combine and propagate though the

system to cause the top events of the fault trees, which

represent the functional failures of the system (Veseley et al.,

2002). The interconnections between the trees represent

dependencies in model, e.g. the failure of a common power

supply or a global condition that may affect more than one

system function. Common cause failures, such as flooding of

physically co-located components, can also be represented in

HiP-HOPS.

Once this is done, the third phase of HiP-HOPS is to perform

analyses of this global system error model: the analysis

phase. First, an automated fault tree analysis is performed for

each of the functional failures in the system. HiP-HOPS can

perform both qualitative and quantitative analysis of fault

trees. Qualitative analysis is used to establish the minimal cut

sets of the fault trees — the smallest combinations of failure

events necessary to cause system failure — which more

readily indicate how system failures may occur. Quantitative

analysis is also possible when probabilistic parameters have

been provided at component level and is used to predict the

reliability and availability of the system.

In the final stage of the analysis, the complex body of logic

encoded in the set of interconnected fault trees is simplified

by an automated algorithm which translates it into a simple

table of direct relationships between component and system

failures. In a similar way to a classical FMEA, this table

determines, for each component in the system and for each

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

failure mode of that component, the effect of that failure

mode on the system. The table shows which system failures

(if any) each failure mode causes, both by itself and in

conjunction with other events.

Note that in a classical manual FMEA only the effects of

single failures are typically assessed. Thus, one advantage of

generating an FMEA from fault trees is that fault trees record

the effects of combinations of component failures and this

useful information can also be transferred into the FMEA.

The FMEA shows all the functional effects to which a

particular component failure mode contributes, both

individually and as part of a combination. This is particularly

useful as a failure mode that contributes to multiple system

failures is potentially more significant than those that only

cause a single top event. Consequently, this type of FMEA

can also help analysts to determine the level of fault tolerance

in the system, i.e., to determine whether the system can

tolerate any single failure or any combination of two, three or

more component failures.

It is clear that both quantitative and qualitative analyses in

HiP-HOPS can play a dual role: either to help verify

requirements or stimulate useful design iterations by

highlighting weak areas of the design.

We should note that experimental versions of the tool enable

use of an extended language where it is also possible to

express a wider range of failure semantics. For example,

wildcards can also be used to describe more abstract patterns

of relationships between output and input deviations. This

allows statements such as "there will be an omission of all

outputs in response to any input error" (Wolforth et al.,

2010), which assists in the reuse of error logic descriptions

across components with different interfaces but similar

failure behaviour.

More significantly, recent work has extended the range of

systems that can be effectively analysed by HiP-HOPS.

Because it is based on classical Boolean fault tree analysis

algorithms, traditionally HiP-HOPS was limited to analysing

only those systems that could be represented with Boolean

failure behaviour. However, many safety-critical systems

exhibit more complex behaviour: they may be dynamic, rely

on sparse or uncertain probabilistic data, or express non-

coherency in their failure logic.

Experimental versions of HiP-HOPS provide support for all

of these types of scenarios, as will be explained next.

3.3.1 Dependability Analysis of Non-Coherent Systems

Some safety critical systems exhibit non-coherent failure

behaviour, which means that certain system failures can only

occur if another event has not occurred. This other event may

be an ordinary system event or it could be another failure

event. Such scenarios may occur in multitask or multi-phase

systems where the causes of system failures can only be

identified once the system successes have been taken into

account (Andrews, 2000). For example, a failure in task A

may only occur if another task B has succeeded: failure of

task B therefore prohibits failure of task A. In fault trees, this

condition is typically represented using a NOT gate.

HiP-HOPS has been extended with the capability to model

and analyse this type of scenario (Sharvia & Papadopoulos,

2008). HiP-HOPS failure expressions can include NOT gate

conditions so that the effects of failures not occurring can

also be taken into account during system analysis. This

involves the generation of the prime implicants, i.e., the

effects of different failure states of multiple components in

combination, at the expense of a slight performance

overhead. The resultant fault trees and FMEA tables then

show that some system failures may only occur if certain

system conditions or events do not occur.

3.3.2 Dependability Analysis of Dynamic Systems

In a dynamic system, the system behaviour changes over

time. This could be because there are multiple phases of

operation, e.g. as in an aircraft with distinct take-off, flight,

and landing phases, or it could be because the system

behaviour changes in response to different events (whether

normal system events or failure events). Safety-critical

systems are increasingly dynamic in nature as they frequently

include the capacity for partial self-repair in response to

failure, e.g. through the use of backup components, fallback

to degraded modes of operation, or automatic detection and

correction of certain types of errors.

Classical safety analysis techniques such as FTA and FMEA

struggle to model these types of scenario. The key

shortcoming is the inability to distinguish between the effects

of different sequences of events, not just combinations of

events.

Consider the triple redundant system of Fig.4:

 Fig. 4. Dynamic system with two backup components.

System functionality is initially provided through component

'A', which is the primary component. The monitor 'S1'

observes component A for any deviation of its outputs. If

detected, the sensor activates component 'B', the first backup

component, and moves to a degraded mode of operation.

Similarly, once component B has been activated, monitor 'S2'

begins monitoring B for output deviations and, if any are

detected, activates the final backup component 'C'.

Component 'D' represents the system output.

A standard FTA of this system might indicate the following

causes of system failure:

1. Omission of input to the system

2. Failure of A and Failure of S1 to detect failure of A

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

3. Failure of A and Failure of B and Failure of S2 to

detect failure of B

4. Failure of A and Failure of B and Failure of C

At first glance, these causes would seem to make sense.

However, they do not take into account the sequence of

events. For example, consider the second cut set: if

component A failed first, allowing S1 to activate component

B, a subsequent failure of S1 would have no further effect on

the system — it is already running in its degraded mode

using backup component B. Therefore this cut set is

pessimistic, as only one sequence (failure of S1 before failure

of A) will lead to system failure. Similarly, a failure of

component B before component A means that B will never be

activated by S1, and thus monitor S2 will never be able to

activate the final backup component C. In this case, the last

cut set is optimistic, because some sequences of events will

result in system failure even without the failure of C.

To remedy this general problem, a range of temporal and

dynamic extensions to fault trees have been proposed, such as

the Dynamic Fault Tree approach (Dugan et al., 1992;

Veseley et al., 2002). For HiP-HOPS, we have developed an

extension to the fault tree analysis known as Pandora (Walker

et al., 2007). The Pandora technique is included as part of

HiP-HOPS and adds new temporal logic gates to enable fault

trees to model sequences of events and thus better capture the

failure behaviour of dynamic systems.

In particular, Pandora adds three new gates:

 Priority AND gate (PAND): X < Y

 Simultaneous AND gate (SAND): X & Y

 Priority OR gate (POR): X | Y

The PAND gate represents a sequence: event X must occur

before event Y, but both must occur. The SAND gate

represents simultaneous occurrence. The POR gate represents

a condition: event X must occur before event Y if event Y

occurs at all.

By defining a set of new temporal laws that apply to these

gates, analogous to the laws of Boolean logic, Pandora makes

it possible to perform a qualitative analysis of temporal fault

trees and obtain the minimal cut sequences — the smallest

sequences of events necessary to cause the system failure.

Using Pandora, the minimal cut sequences of the example

triple redundant system would be as follows:

1. Omission of input to the system

2. Failure of S1 before Failure of A

3. Dormant failure of B before Failure of A

4. Failure of S2 before Failure of B or A

5. Failure of A before Failure of B and Failure of C

These cut sequences better capture the dynamic behaviour of

the system. The failure of a monitor after the failure of the

monitored component is no longer modelled as a system

failure and the scenario where B can fail dormant before A is

properly represented.

In the absence of quantitative data, Pandora can provide

useful insight into system failure. Where quantitative

component failure data is available, quantitative analysis of

Pandora fault trees is possible. The analytical approach

(Edifor et al., 2012, 2013) uses mathematical expressions to

probabilistically evaluate the Pandora temporal fault tree

gates based on exponentially distributed failure data. Using

this approach, analysts can determine the overall reliability of

a system. They can also identify the critical parts of the

system by determining the relative contributions of the

various system components to the causes of system failure.

Once the critical parts are identified, reliability may be

improved by e.g. including redundant components or using

components with lower failure rates.

Petri Nets (PNs) have also been used to develop an approach

for probabilistic evaluation of Pandora fault trees based on

exponentially distributed data (Kabir et al., 2015). In this

approach, the fault trees are quantified by translating them

into Generalised Stochastic Petri Nets (Marsan et al., 1996).

Similar to the analytical solution, this approach can evaluate

system reliability and criticality of components. In addition, it

can also verify the correctness of the qualitative analysis. To

allow the analysts to perform quantitative analysis of Pandora

fault trees with any kind of distributions of data, Kabir et al.

(2014a) have developed a methodology based on Bayesian

Networks. Although others have developed approaches to

convert Boolean fault trees to Bayesian Networks (Bobbio et

al., 2001), this approach instead transforms Pandora temporal

fault trees to evaluate system reliability and criticality of

system components. In addition to the predictive analysis,

this approach allows the analysts to perform post-hoc

diagnostic analysis, a process which involves calculating and

updating the posterior probability of basic events given

observed evidence of the system failure.

3.3.3 Dependability Analysis in Conditions of Uncertainty

As already mentioned, HiP-HOPS can perform quantitative

analysis to predict the reliability and availability of systems if

the probabilistic parameters of system components (e.g.

failure rate or failure probability) can be provided. However,

this means that the quantitative analysis is entirely dependent

on the availability of this quantitative failure data. For many

complex systems, it is often difficult to obtain precise failure

data of components from past occurrences due to lack of

knowledge about the systems, scarcity of statistical data, and

changes in operating environment of the systems (Tanaka et

al.,1983; Singer, 1990). This situation is particularly relevant

in the early design phases when system analysts consider new

or undetermined components for which there is no

quantitative data. In such situations, expert human judgement

in linguistic terms, e.g. ‘very low, low, high’ may be used to

determine uncertain failure data of components.

Fuzzy Logic is a branch of mathematics which has the

capability to deal with linguistic variables and it provides

efficient way to draw conclusions from imprecise data. A

variety of approaches (e.g. Suresh et al. (1996); Yang (2012))

have been proposed based on fuzzy set theory to allow

classical and dynamic fault tree analysis with uncertain data.

Recently, a fuzzy set theory based methodology has been

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

proposed by Kabir et al. (2014b) to quantify Pandora fault

trees with uncertain data. In this method, fuzzy operators for

the new fault tree gates have been developed and fuzzy data

have been used in the quantitative analysis instead of fixed

data. As a result, the system unreliability is obtained as fuzzy

numbers. This methodology can also determine the criticality

of system components based on their relative contributions to

the occurrence of the system failure. By more explicitly

highlighting the areas of uncertainty in the failure data, this

method can lead to a more effective quantification of

uncertainty in dynamic systems. It is important to highlight

that the results of quantitative analysis can only be as reliable

as the input data, and the inclusion of fuzzy data cannot

improve the accuracy of the results. However, techniques

such as importance measures allow analysts to see the

relative contribution of different system elements to the

overall failure probability. This helps to overcome the

limitations of uncertain quantitative analysis results by

focusing on the relative values rather than exact values,

identifying the areas of the system design most sensitive to

improvement.

3.4 Architecture and Maintenance Optimisation

Let us assume now that a team of analysts is designing a

system, that we have decomposed the dependability

requirements across the architecture, and that an analysis

from a MBSA tool suggests that the system does not meet all

of those dependability requirements. At this stage we need to

improve the design somehow so that it does meet the

requirements, as shown by a second round of analysis. There

is typically a range of options available to improve a design,

including:

a) replacing a component with a more reliable and expensive

component

b) replacing part of the architecture with a more dependable

alternative

c) replicating components in fault tolerant schemes so that

failures are tolerated

d) increasing the frequency of maintenance, an action that

prolongs the useful life of components and thereby

increases the reliability of the system.

The difficulty is that in a typical system design, there is a

very large number of possibilities for substitution, replication

and maintenance scheduling. For instance, in a system of n

components, if there are two suppliers for each component

then there are 2
n
 configurations which equates to 1.26e

30

configurations when n=100. Each configuration will have its

own dependability and cost performance. It is clear that in

such situations analysts are confronted with a multi-objective

optimisation problem, where the objectives may include

dependability, cost, weight and other properties.

It would be prohibitively expensive to investigate more than a

handful of these possible configurations manually. Therefore,

to optimise such designs, we have developed an extension of

HiP-HOPS that employs genetic algorithms to perform multi-

objective optimisation of architectures with respect to

dependability and other attributes (Papadopoulos and Grante,

2006; Papadopoulos et al., 2011). This is a separate

optimisation process to the allocation of dependability

requirements; architectural optimisation takes place as a way

of finding a design that meets the devolved dependability

requirements, which may themselves have been set as a result

of an allocation optimisation process.

The architectural optimisation concept is illustrated in Fig 5.

As with dependability analysis in HiP-HOPS, the process

starts from a model of the system. However, this time the

model is not fixed — it has variability, i.e., components can

have multiple alternative implementations. These points of

variability may involve different parameters of components

or may involve architectural changes, e.g. replacing a single

component with a more fault-tolerant design using primary

and backup components. For example, a sensor can be chosen

from two different suppliers, with each choice having its own

cost, weight, performance, and failure characteristics.

Subsystems can also carry alternatives, e.g. a subsystem can

have two different implementations that provide the functions

using different sets of components and different architectures.

There can be options for replication of components with

known patterns of fault tolerance, e.g. a primary-standby

configuration, or multiple parallel channels with majority

voting. Finally, there can be options for the scheduling of

component maintenance.

 Fig. 5. Architecture optimisation in HiP-HOPS.

Once the system model has been annotated to include these

variable possibilities and any further required information,

including associated cost and failure data etc, the model is

given to HiP-HOPS, which then applies an evolutionary

optimisation process. In the context of this process, HiP-

HOPS creates a population of candidate designs by resolving

the variability of the model, i.e., fixing variation points in the

model by selecting particular design options. Each candidate

design is then evaluated with respect to the objectives of the

optimisation. The evaluation is performed using the analysis

algorithms of HiP-HOPS. The reliability and availability of a

candidate design are automatically calculated from the

generated fault trees. A quantitative measure of safety is

established from the FMEA, using, for instance, the number

of single points of failure that contribute to severe system

failures. HiP-HOPS also includes simple summative cost and

weight functions. External plugins can also be designed to

enable more precise evaluation of cost, weight or other

objective functions. For example, experiments with timing

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

and schedulability have been reported in (Walker et al.,

2013).

Once candidate designs have been evaluated, they are ranked

according to their performance and a Pareto frontier is

formed showing the best designs in the current population.

Roulette wheel selection, a random process biased towards

the better performing designs, is used to select candidates to

form the parents of the next generation. Through application

of classic genetic operators such as mutation and crossover, a

new population is then formed and the process of evaluation

and ranking is iterated. The result of this process over a

number of successive generations is a gradual improvement

of the average performance of the population that is evident

in the progressive improvement of the Pareto frontier. The

process is terminated on meeting certain constraints or after a

specified number of generations. The result is a set of models

that give optimal or near optimal trade-offs among the

objectives of the optimisation.

Via this process, designers can take informed decisions about

the selection of components, subsystems, the location and

type of replication, and about maintenance scheduling, all the

while making sure that dependability requirements can be

met whilst minimising costs.

As an example of this architectural optimisation process,

HiP-HOPS was applied to a high-level abstract design of a

vehicle pre-collision system and an evolutionary optimisation

technique was used to achieve balanced solutions with

respect to dependability and cost (Adachi et al., 2011).

The pre-collision system is an automotive safety technology

that avoids or reduces the damage caused by a collision. The

system supports drivers by issuing warnings when a potential

collision threat is identified and activates emergency braking

if the driver fails to apply the brakes. To improve system

fault tolerance, a number of fault tolerance mechanisms were

considered. These mechanisms may be applied to various

locations in the system architecture to achieve greater

dependability, albeit at an increased cost. The mechanisms

include self-protection, self-checking, checkpoint-restart and

process-pair. Self-protection and self-checking are functions

which can be used for error detection. In self-protection, the

component protects itself from external disturbances by

detecting errors propagated from other components. In self-

checking, a component detects internal errors and prevent the

propagation of those errors to other components.

Checkpoint-restart not only detects failures, but also recovers

from errors by restarting the component. Finally, process-

pair is a fault tolerance technique which uses redundancy

realised by two identical software components. These are

typical mechanisms for detection and correction of errors

which give a sophisticated range of options to consider in

early design. To model situations where these fault tolerant

components miss some failures which need to be detected, an

additional event miss was included in the analysis. Fault

tolerant mechanisms may also experience failure, so the event

failure is used to represent internal malfunction for the fault

tolerant components. Information on failure expression and

failure rate were included for each of the components in the

system with reasonable assumptions about plausible

hardware and software failures. The HiP-HOPS optimisation

algorithm was finally employed to select the optimal location

and types of fault-tolerance mechanisms in an improved

version of the system. From a total design space of about 12
7

 3.6×10
7
, in just 5 minutes it was able to find 8 Pareto

optimal solutions that provided a good trade-off between risk

and cost while meeting the required constraints (see Adachi

et al (2011) for further information).

The case study showed that insight into the optimal use of

fault tolerance can be arrived at much more rapidly with the

aid of automated tool support. The vast number of different

options, let alone the time required to evaluate and compare

these options, would make an equivalent manual process

infeasible. Thus metaheuristic approaches allow a designer to

obtain significant improvements in reliability and cost

performance.

3.5 Model transformations from Architecture Description

Languages

HiP-HOPS has also been used to support the development

and analysis of systems modelled using Architecture

Description Languages (ADLs), particularly the Architecture

Analysis & Design Language (AADL) (www.aadl.info) and

the automotive EAST-ADL (www.east-adl.info).

EAST-ADL provides an integrated and systematic support

for the modelling of automotive systems. The growing

adoption of model-based engineering techniques like

EAST-ADL is driven by the need to better-manage advances

in functionality and corresponding increases in the

complexity of modern safety-critical embedded systems. The

specification of EAST-ADL includes an error model which

describes potential failures of design elements.

To enable advanced analysis capabilities like FTA, FMEA,

optimisation and safety requirement allocations, the

EAST-ADL error model is extended with HiP-HOPS

semantics. This integration requires translation of models in

the automotive domain to models in the safety analysis

domain, i.e., a transformation of an EAST-ADL error model

to a corresponding HiP-HOPS model. The concrete source

and destination models are both represented in XML-based

formats, which are EAXML and HiP-HOPS XML

respectively. The translator tool is described in (Sharvia et

al., 2014). It involves conceptual semantic mapping between

the domains and the representation of concrete models.

The benefits of ADL’s such as EAST-ADL and AADL

depend crucially on the availability of tools. Model

transformation has been used make the optimisation

capabilities of HiP-HOPS available to AADL models (Mian

et al., 2014). At the highest level of abstraction, the

transformation consists of two parts. One part is concerned

with the component specific error behaviour and the other

part is concerned with the inter-component error propagation.

AADL uses an Error Model Annex for modelling component

failure behaviour. Error models in AADL are state machines

which specify how the state of a component changes in

response to events or the states of other components. The

model transformation incorporates a state machine to fault

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

tree conversion algorithm described in Mahmud et al. (2012).

This preserves the temporal properties captured in the state-

machine.

The Atlas Transformation Language (ATL) (Jouault et al.,

2008) is used to implement the transformation which has

been developed as a plug-in for the AADL model

development tool OSATE

(https://wiki.sei.cmu.edu/aadl/index.php/Osate_2, accessed

2015).

4. TECHNICAL DISCUSSION

Key to all of the approaches presented in section 3 is the

underlying system model in HiP-HOPS. At its core this is a

architectural model that shows system elements and possible

data, material, or energy flows between them. In the HiP-

HOPS tool, this model can be exported from widely-used

system modelling packages including Matlab Simulink

(Mathworks, 2016), SimulationX (ITI, 2016), and various

Eclipse-based UML modelling platforms such as Papyrus

(Eclipse Foundation, 2016). As described in section 3.3, this

model is further annotated with logical descriptions of the

local failure behaviour of system elements. HiP-HOPS can

then use this information to build a failure propagation

network, describing how failures propagate through the

system and revealing the dependencies between the different

system elements. Because HiP-HOPS models are generated

automatically from existing engineering models, it is easy to

make modifications to the actual system model and then very

quickly observe the effect this has on the analysis results.

Similarly, to support the different optimisation processes,

HiP-HOPS requires information about the different

possibilities. For decomposition of dependability

requirements, it requires data on the system-level functional

safety requirements, the cost heuristic to be used, and also

what SIL algebra is to be used. For architectural optimisation,

more detailed information is required in the form of different

alternative implementations for each component to be used as

a variability point, whether in the form of different

parameters (e.g. cost, weight, reliability, maintenance

schedules) or different sub-architectures (e.g. series, parallel,

fault tolerance schemes).

Clearly, it is important for the model and its associated

information to be correct. The failure propagation model is

used to ensure independence between decomposed sub-

elements of the system, without which the analysis results

will be in error and the allocation of dependability

requirements will be invalid. Consequently, we have made

efforts towards improving the expressiveness of the HiP-

HOPS model and its annotations, including modelling

dynamic behaviour as explained in section 3.3.2 and for

uncertain data as in 3.3.3.

However, due to the fact that analysis takes no more than a

few seconds even for large systems with hundreds of

components and many thousands of cut sets, it is relatively

easy to identify errors, correct them in the model, and

regenerate the analysis results compared to the effort that

would be required to repeat a full manual safety analysis. The

HiP-HOPS tool also performs a range of checks and reports

various warnings and errors when it detects potential errors in

the modelling or the failure annotations.

There are other limitations to our current work, typically

consequences of being based on an easy-to-use Boolean logic

rather than more complex state-based approaches. Logical

loops in the failure propagation can be problematic (though

are often symptomatic of modelling errors) and for this

reason the tool works better at higher levels rather than on

low-level electronic circuits. Repairable components are

supported by the core safety analysis but not by all of the

experimental extensions to the tool. Nevertheless, we are

continually undertaking further work to try to address many

of these limitations.

Ultimately any analysis is only as good as the data it is based

on, and we rely upon the designers to provide accurate failure

data for their system models.

5. RELEVANT WORK

There is very little work reported in linking MBSA to

metaheuristics. In (Konak et al., 2007) systems are

represented as Reliability Block Diagrams (RBDs) which are

subsequently optimised using meta-heuristics. HiP-HOPS

enables optimisation of models which may have a networked

architecture, i.e. they are not necessarily in parallel or series

configurations as RBDs, and overcome the traditional

assumption made in RBDs that a component or system either

works or fails in a single failure mode. HiP-HOPS has been

the first approach to direct optimisation of dependability on

an architectural model. Other tools for architecture

optimisation, with the possibility of adding arbitrary quality

properties as objectives, include ArcheOpteryx (Aleti et al.,

2009) and PerOpteryx (Koziolek, 2011). The scope of these

tools includes architecture optimisation but does not include

the requirements allocation problem.

These tools require a reliability evaluation model such as a

fault tree, RBD or Markov Chain for evaluating reliability.

HIP-HOPS re-synthesises this model during the evolution of

the system architecture by operating directly on an

architectural model augmented with failure data. HiP-HOPS

has also incorporated the first effort directed towards

automatic allocation of dependability requirements

(Papadopoulos et al., 2010) and remains the only application

of metaheuristics in this area.

Mader et al. (2012) proposed an approach for ASIL

allocation where a linear programming optimisation problem

is formulated to discover a solution that minimises the sum of

ASILs as-signed across the system architecture. Zhang et al.

(2010) proposed a workflow for embedded system

development, which includes fault trees, FMEA and ASIL

allocation based on a qualitative risk graph method. Dhouibi

et al. (2014) introduced a method for ASIL allocation which

is based on interpreting the allocation problem as a system of

linear equations. Bieber et al. (2011) presented a theory to

formalise the ARP4754-A DAL allocation rules and the

DALculator tool to support automatic DAL allocation via

integer programming optimisation. The starting point for

these approaches are minimal cut sets of fault trees. Instead,

HiP-HOPS starts from architectural models, offering the

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

https://wiki.sei.cmu.edu/aadl/index.php/Osate_2

advantage of being able to assess explicit or implicit

dependencies in the model and its environment that may

cause common mode failures.

 6. CONCLUSIONS

The technologies of model-based design, dependability

analysis and the application of heuristics to the design of

dependable systems, including software intensive systems,

have advanced in recent years. However, we have not yet

seen the emergence of a design paradigm that employs these

techniques synergistically and systematically from the early

stages of design to enable cost-effective, dependability-driven

optimal design refinement.

In this paper, we have outlined four challenges that remain

unaddressed and sketched a model-centric paradigm for the

design of dependable systems that brings these technologies

together to realise their potential benefits. These benefits

include:

 controlling dependability from the early stages via

optimal allocation of requirements;

 effective top-down distribution and then bottom-up

composition of dependable designs in collaborative

environments, distributed across complex value chains;

 automation in the assessment of design proposals and

prediction of dependability;

 decision support on optimisation of architectures for

component selection, fault tolerance and maintenance

scheduling;

 reuse of repositories of models and analyses both during

design refinement and across projects.

Tackling the wide range of requirements to obtain these

benefits requires a model-based design paradigm that draws

upon state-of-the-art developments and knowledge from

multiple fields, building on classical and temporal logic,

biology-inspired metaheuristic techniques and modern

model-based engineering principles. In this paper, we have

shown that such a paradigm is feasible by discussing its

embryonic incarnation within the HiP-HOPS method and

tool. HiP-HOPS is presently the only MBSA method that

applies metaheuristics across the lifecycle including the very

early stages, addressing both requirements and architecture.

The transferability of this work in model-based design has

been demonstrated in the context of architecture description

languages such as EAST-ADL (Walker et al., 2013) and

AADL (Mian et al., 2014).

We do not claim that we have addressed the enormous

challenges discussed in section 2. Our modest aim was to

show that this synthesis of bio-inspired techniques with logic

has the potential to improve the field of MBSA by enabling

useful functionalities that were previously unexplored. This is

where we see the value of the paper and we hope that this

modest claim has been substantiated. Our experiments, which

are described in many of the references, show practical

improvement in design using these functionalities. One can

see Pareto fronts of generated solutions moving towards

better and better tradeoffs. We have still not attempted a

systematic quantification of these improvements. One way to

achieve this is by tasking engineers with developing solutions

to problems also solved with the aid of metaheuristics. One

could then plot these solutions on Pareto fronts and could

measure the distance in performance between manually

derived and automatic solutions.

There are of course many other challenges that remain to be

addressed as this work develops further within the field of

model-based design and MBSA. These include the

representativeness and completeness of models, the relation

of models to code, the modelling and analysis of commercial

off-the-shelf or legacy systems, the efficacy of automatic

model-transformations in the context of optimisation and the

scalability of models with respect to computational cost of

analyses.

ACKNOWLEGEDMENTS

This work was supported by the EU Projects SAFEDOR

(Grant 516278), ATESST2 (Grant 224442), and MAENAD

(Grant 260057)

REFERENCES

Adachi M., Papadopoulos Y., Sharvia S., Parker D., Tohdo T.

2011. An approach to optimization of fault tolerant

architectures using HiP-HOPS, Software Practice and

Experience, 41:1303-1327, Wiley.

Aleti A., Bjoernander S., Grunske L., Meedeniya I. 2009.

ArcheOpterix: An extendable tool for architecture

optimization of AADL models, ICSE 2009: 61-71.

Andrews J.D. 2000. To Not or Not to Not. In Proceedings of

the 18th International System Safety Conference,

September 11-16, Fort Worth, USA, pp 267-275.

Andrews Z., Fitzgerald J. S., Payne R., Romanovsky A.

2013. Fault modelling for systems of systems, In 11th

Int'l Symposium on Autonomous Decentralized Systems,

ISADS 2013:1-8, Mexico City, Mexico IEEE.

Arnold A., Griffault A., Point G. and Rauzy A. 2000. The

AltaRica formalism for describing concurrent systems.

Fundamenta Informaticae, 40 (2-3):109-124,

Amsterdam, IOS Press.

Azevedo L.S., Parker D., Walker M., Papadopoulos Y.,

Araujo R. 2013. Automatic Decomposition of Safety

Integrity Levels: Optimization by Tabu Search. 2nd

Workshop on Critical Automotive applications:

Robustness & Safety (CARS) of the 32nd Int’l Conf. On

Computer Safety, Reliability and Security (SAFECOMP),

September, Toulouse.

Azevedo L.S., Parker D., Walker M., Papadopoulos Y.,

Araujo R. 2014. Assisted Assignment of Automotive

Safety Requirements. IEEE Software 31(1):62-68, Jan-

Feb. 2014, IEEE.

Azevedo L.S., Parker D., Papadopoulos Y., Walker M.,

Sorokos I., Araujo R. 2014. Exploring the impact of

different cost heuristics in the allocation of safety

integrity levels. Model-Based Safety and Assessment: 70-

81, Springer.

Bieber P., Delmas R., Seguin C. 2011. DALculus: Theory

and Tool for Development Assurance Level Allocation,

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Lecture Notes in Computer Science 6894:43-56,

Springer.

Bobbio, A., Portinale, L., Minichino, M., Ciancamerla, E.

2001. Improving the analysis of dependable systems by

mapping fault trees into Bayesian networks. Reliability

Engineering & System Safety March 71(3):249–260.

Bozzano M. and Villafiorita A. 2007. The FSAP/NuSMV-

SA Safety Analysis Platform. International Journal on

Software Tools for Technology Transfer, February

9(1):5-24, Springer.

Chen D., Johansson R., Lönn H., Blom H., Walker M.,

Papadopoulos Y., Torchiaro S., Tagliabo F., Sandberg A.

2011. Integrated Fault Modelling for Safety-Critical

Automotive Embedded Systems, E&I Elektrotechnik und

Informationstechnik, June 128(6):196-202, Springer.

Dhouibi M.S., Perquis J. M., Saintis L., Barreau M. 2014.

Automatic Decomposition and Allocation of Safety

Integrity Level Using System of Linear Equations. 4th

Int'l Conf. on Performance, Safety and Robustness in

Complex Systems and Applications, PESARO February,

France, :1-5.

Dugan J.B., Bavuso S.J., Boyd M.A. 1992. Dynamic fault-

tree models for fault-tolerant computer systems. IEEE

Transactions on Reliability, September 41(3):363-377.

Eclipse Foundation (2016) Papyrus modelling environment.

Available online at: http://www.eclipse.org/papyrus/

Edifor E., Walker M. Gordon N. 2012. Quantification of

Priority-OR Gates in Temporal Fault Trees,

SAFECOMP’12, Computer Safety, Reliability and

Security: Lecture Notes in Computer Science 7612:99-

110, Springer.

Edifor E., Walker M. Gordon N. 2013. Quantification of

Simultaneous-AND Gates in Temporal Fault Trees.

DepCos-RELCOMEX’13, Advances in Intelligent

Systems and Computing 224:141-151, Springer.

Feiler P. H. and Rugina A.E. 2007. Dependability Modelling

with the Architecture Analysis and Design Language

(AADL). Technical report, CMU/SEI-2007-TN-04.

Fenelon, P., & McDermid, J. 1993. An integrated toolset for

software safety analysis. The Journal of Systems and

Software 21(3):279-290, Elsevier.

Grunske L., Kaiser B. and Papadopoulos Y. (2005) Model-

driven Safety Evaluation with State-Event-Based

Component Failure Annotations. CBSE'05, Lecture

Notes in Computer Science 3489:33-48, Springer.

Int’l Electrotechnical Comission (2010) IEC 61508:

Functional safety of electrical/electronic/programmable

electronic safety related systems, 2nd edition. Geneva:

IEC

Int’l Organization for Standardization (2011) ISO 26262:

Road vehicles - functional safety. Geneva: ISO.

ITI GmbH. (2016) SimulationX Safety Designer. Available

online at: https://www.simulationx.com/simulation-

software/beginners/safety-designer.html

Joshi A., Vestal S., Binns P. 2007. Automatic Generation of

Static Fault Trees from AADL Models. DSN’07

Workshop on Architecting Dependable Systems.

Jouault, F., Allilaire, F., Bezivin, J. & Kurtev, I., 2008. ATL:

A model Transformation tool. Science of Computer

Programming , June, 72(1-2):31-39.

Kabir S., Walker M., Papadopoulos Y. 2015. Quantitative

evaluation of Pandora Temporal Fault Trees via Petri

Nets. 9
th

 IFAC Symposium on Fault Detection,

Supervision and Safety of Technical Processes, Paris,

France, 48(21):458-463.

 Kabir S., Walker M., Papadopoulos Y. 2014a. Reliability

Analysis of Dynamic Systems by Translating Temporal

Fault Trees into Bayesian Networks, IMBSA’14, Lecture

Notes in Computer Science 8822:96-109.

Kabir S., Edifor E., Walker M., Gordon N. 2014b.

Quantification of Temporal Fault Trees Based on Fuzzy

Set Theory. DepCos-RELCOMEX’14, Advances in

Intelligent Systems and Computing 286:255-264,

Springer

Kaiser, B., Liggesmeyer, P., & Mäckel, O. 2003. A new

component concept for fault trees. 8th Australian

Workshop on Safety Critical Systems, 33:37-46.

Konak, A., Coit, D.W., Smith, A.E. 2007. Multi-objective

optimization using genetic algorithms. Reliability

Engineering & System Safety, September 91(9):992-

1007.

Koziolek A., Koziolek H., Reussner R. 2011. PerOpteryx:

automated application of tactics in multi-objective

software architecture optimization. ACM SIGSOFT

symposium on Quality of Software Architectures,

ISARCS: 33-42, ACM.

Kwiatkowska M., Norman G., Parker D. 2009. PRISM:

probabilistic model checking for performance and

reliability analysis. SIGMETRICS Performance

Evaluation Review 36(4): 40-45. ACM.

Mader R., Armengaud E., Leitner A., Steger C. 2012.

Automatic and optimal allocation of safety integrity

levels, Reliability and Maintainability Symposium,

RAMS: 1-6, IEEE.

Mahmud N., Walker M., Papadopoulos Y. 2012,

Compositional synthesis of Temporal Fault Trees from

State Machines. ACM SiGMETRICS Performance

Evaluation Review, 39(4):79-88.

Marsan, M.A., Balbo, G., Conte, G., Donatelli, S. and

Franceschinis, G. 1996. Modeling With Generalized

Stochastic Petri Nets. West Sussex: Wiley.

Mathworks (2016) Matlab Simulink. Available online at:

www.mathworks.com/products/simulink/

Merle G., Roussel J.-M., Lesage J.-J. 2014. Quantitative

Analysis of Dynamic Fault Trees based on the Structure

Function. Quality and Reliability Engineering Int'l,

February 30(1) 143–156.

Mian Z., Bottaci L., Papadopoulos Y., Sharvia S., Mahmud

N. 2014. Model Transformation for Multi-objective

Architecture Optimisation of Dependable Systems.

Advances in Intelligent Systems and Computing 307:91-

110, Springer.

Murashkin, A., Azevedo, L.S., Guo, J., Zulkoski, E., Liang,

J.H., Czarnecki, K. & Parker, D. (2015) Automated

decomposition and allocation of automotive safety

integrity levels using exact solvers. SAE International

Journal of Passenger Cars - Electronic and Electrical

Systems, 8(1), 14 April.

[Accessed 30/4/2015].

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Nggada, S. H., Papadopoulos, Y., Parker, D. J. 2013.

Combined Optimisation of System Architecture and

Maintenance. IFAC DCDS'13: 4:1 (25-30).

Ortmeier F., Güdemann M., Lipaczewski M.. 2012. Unifying

Probabilistic and Traditional Formal Model Based

Analysis. 8th Dagstuhl-Workshop on MBEES: 123-132.

Papadopoulos Y., 2015. A Synthesis of Logic and Biology in

the Design of Dependable Systems, 5th IFAC

International Workshop on Dependable Control of

Discrete Systems — DCDS 2015, IFAC-PapersOnLine

48(7):1-8

Papadopoulos Y., McDermid J. A., 1999. Hierarchically

Performed Hazard Origin and Propagation Studies,

Lecture Notes in Computer Science 1698:139-152.

Papadopoulos Y., Grante C. 2003. Techniques and tools for

automated safety analysis & decision support for

redundancy allocation in automotive systems, 27
th

 Int’l

Conf. on Computer Software and Applications,

COMPSAC’03: 105-110.

Papadopoulos Y., Walker M., Reiser M.-O., Weber M., Chen

D., Törngren, Servat D., Abele A., Stappert F., Lönn H.,

Berntsson L., Johansson R., Tagliabo F., Torchiaro S.,

Sandberg A. 2010. Automatic Allocation of Safety

Integrity Levels, CARS'10: 7-10, ACM.

Papadopoulos Y., Walker M., Parker D., Rüde E., Hamann

R., Uhlig A., Grätz U., Lien R. 2011. Engineering

Failure Analysis & Design Optimisation with HiP-

HOPS, Journal of Engineering Failure Analysis, 18 (2):

590-608, Elsevier Science.

Parker D., Walker M., Azevedo L., Papadopoulos Y., Araujo

R. 2013. Automatic Decomposition and Allocation of

Safety Integrity Levels using a Penalty-based Genetic

Algorithm., Lecture Notes in Computer Science

7906:449-459. Springer.

Sharvia S., Papadopoulos Y. 2008. Non-coherent Modelling

in Compositional Fault Tree Analysis. In Proceedings of

the 17th International Federation of Automatic Control,

IFAC World Congress, Seoul, South Korea. Jul 2008.

Sharvia, S. et al., 2014. Enhancing the EAST-ADL Error

Model with HiP-HOPS Semantics. Athens Journal of

Technology Engineering, June 119-136

Singer D. 1990. A fuzzy set approach to fault tree and

reliability analysis. Fuzzy Sets and Systems, January

34(2):145-155.

Society of Automotive Engineers (2010) ARP4754-A:

Guidelines for development of civil aircraft and systems.

Warrendale: SAE International.

Sorokos I., Papadopoulos Y., Azevedo L., Parker D., Walker

M., 2015. Automating Allocation of Development

Assurance Levels: an extension to HiP-HOPS. IFAC

Dependable Control of Discrete Systems, 48(7):9-14.

Suresh P., Babar A., Raj V. 1996. Uncertainty in fault tree

analysis: A fuzzy approach. Fuzzy Sets and Systems,

October 83(2):135-141.

Tanaka H., Fan L.T., Lai F.S., Toguchi K. 1983. Fault Tree

Analysis by Fuzzy Probability. IEEE Transactions on

Reliability, R-32(5), pp. 453-457.

Vesely, W., Stamatelatos, M., Dugan, J., Fragola, J.,

Minarick, J. and Railsback, J. 2002. Fault tree handbook

with aerospace applications. NASA office of safety and

mission assurance, Washington DC, USA.

Walker M., Bottaci L., Papadopoulos Y. 2007.

Compositional Temporal Safety Analysis. Lecture Notes

in Computer Science 4680:105-119, Springer.

Walker M., Reiser M-O., Tucci S., Papadopoulos Y., Lonn

H., Parker D., Chen D.-J. 2013. Automatic Optimisation

of System Architectures using EAST-ADL Journal of

Systems & Software, October 86(10):2467–2487.

Wallace M. 2005. Modular architectural representation and

analysis of fault propagation and transformation.

Electronic Notes Theoretical Computer Science,

141(3):53–71.

Wolforth I., Walker M., Grunske L., Papadopoulos Y. 2010.

Generalisable Safety Annotations for Specification of

Failure Patterns, Software Practice and Experience,

April 40(5):453-483.

Yang L.2012. Analysis on Dynamic Fault Tree Based on

Fuzzy Set. Applied Mechanics and Materials, 110-

116:2416-2420.

Zeng W., Papadopoulos Y., Parker D. (2007), Reliability

Optimization of Series-Parallel Systems Using

Asynchronous Heterogeneous Hierarchical Parallel

Genetic Algorithm. Journal of Mind and Computation,

1(4):403-412, China Academic Electronic Publishing

House.

Zhang H., Li W., Qin J. 2010. Model-based Functional

Safety Analysis Method for Automotive Embedded

System Application. Int'l Conf. on Intelligent Control

and Information Processing: IEEE 761-765.

BIOGRAPHIES

Professor Yiannis Papadopoulos is leader of the Dependable

Systems research group at the University of Hull. He

pioneered the HiP-HOPS model-based dependability analysis

and optimisation method and contributed to the EAST-ADL

automotive design language, working with Volvo, Honda,

Continental, Honeywell and DNV-GL, among others. He is

actively involved in two technical committees of IFAC (TC

1.3 & 5.1). Contact him at Y.I.Papadopoulos@hull.ac.uk.

Dr Martin Walker is a lecturer in Computer Science at the

University of Hull. His research interests focus on software

engineering to support model-based safety analysis

techniques and tools, particularly as they apply to dynamic

systems. He has worked in EU projects on safety including

SAFEDOR (maritime industry), ATESST2 (automotive), and

MAENAD (also automotive) and is one of the creators of the

HiP-HOPS analysis tool.

Dr David Parker is a member of the Dependable Systems

research group at the University of Hull. He has played a key

role in the development of HiP-HOPS for over a decade and

his particular research interests are optimisation techniques,

particularly meta-heuristics, and how they can be applied to

real problems in the dependability domain.

Dr Septavera Sharvia is a lecturer and a member of the

Dependable Systems research group at the University of Hull.

She works closely with HiP-HOPS, and her research interests

include model checking, EAST-ADL integration and

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:Y.I.Papadopoulos@hull.ac.uk

Complex Event Processing. Prior to this, she was a Research

Associate at the University of York, working on the safety

analysis of Air Traffic Management project.

Dr Leonardo Bottaci is a Senior Lecturer in the Department

of Computer Science at the University of Hull where he is a

member of the Dependable Systems Research Group. He

gained a mathematics degree from the University of Essex

and a PhD in computer science from Brunel University. He

worked for a short time for Prime Computer (UK) Ltd before

becoming a lecturer in the Computer Science department at

the University of Hull. He has published research in software

testing and Model-based dependability analysis. More

generally, his interests include the application of heuristic

techniques to problems in software engineering and quality

assurance.

Dr Sohag Kabir received his PhD in Computer Science from

the University of Hull, UK in 2016. He received the MSc

degree in Embedded Systems from the University of Hull in

2012 and BSc degree in Computer Science and Engineering

from Military Institute of Science and Technology (MIST),

Bangladesh in 2010. His research interests include model-

based safety assessment, probabilistic risk and safety

analysis, dynamic safety and reliability analysis, stochastic

modelling and analysis, and information encoding.

Dr Luis Silva Azevedo recently received his PhD in the

Dependable Systems research group at the University of Hull.

His research focuses on the optimisation of requirements

allocation in safety-critical systems. Azevedo was actively

involved in the European FP7 Project MAENAD for model-

based analysis of dependable electric vehicle architectures.

Ioannis Sorokos is a PhD student studying at the University

of Hull's Department of Computer Science, in the

Dependable Systems Group. He received his BSc in

Computer Science at the Athens University of Economics

and Business and his MSc in Games Programming at the

University of Hull.

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

