
Strigini, L. (2005). Fault Tolerance Against Design Faults. In: H Diab & A Zomaya (Eds.), Dependable

Computing Systems: Paradigms, Performance Issues, and Applications. (pp. 213 - 241). John Wiley

& Sons.

City Research Online

Original citation: Strigini, L. (2005). Fault Tolerance Against Design Faults. In: H Diab & A Zomaya

(Eds.), Dependable Computing Systems: Paradigms, Performance Issues, and Applications. (pp. 213

- 241). John Wiley & Sons.

Permanent City Research Online URL: http://openaccess.city.ac.uk/278/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. Users may download and/ or print

one copy of any article(s) in City Research Online to facilitate their private study or for non-

commercial research. Users may not engage in further distribution of the material or use it for any

profit-making activities or any commercial gain. All material in City Research Online is checked for

eligibility for copyright before being made available in the live archive. URLs from City Research

Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/2707704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk
http://www.city.ac.uk/

Copyright © 2004 Lorenzo Strigini

Fault Tolerance Against Design Faults

Lorenzo Strigini

Centre for Software Reliability, City University
Northampton Square, London EC1V OHB, U.K.

E-mail: strigini@csr.city.ac.uk

Abstract
This chapter surveys techniques for tolerating the effects of design defects in computer systems, paying
special attention to software. Design faults are a major cause of failure in modern computer systems,
and their relative importance is growing as techniques for tolerating physical faults gain wider
acceptance. Although design faults could in principle be eliminated, in practice they are inevitable in
many categories of systems, and designers need to apply fault tolerance for mitigating their effects.
Limited degrees of fault tolerance in software – “defensive programming” – are common, but
systematic application of fault tolerance for design faults is still rare and mostly limited to highly
critical systems. However, the increasing dependence of system designers on off-the-shelf components
often makes fault tolerance a necessary, feasible and probably cost-effective solution for achieving
modest dependability improvements at affordable cost. This chapter introduces techniques and
principles, outlines similarities and differences with fault tolerance against physical faults, provides a
structured description of the space of design solutions, and discusses some design issues and trade-offs.

1. Introduction
“Systematic failures” - failures that are not due to random physical decay but to defects in the design or
manufacturing of products, and therefore happen systematically when certain circumstances occur in
the use of the product - are a common problem in engineering. Among their causes are design faults:
avoidable defects due to human error or lack of foresight in developing the system. The advent of
software gave new prominence to design faults, since software products are uniquely defined as being a
purely intellectual construction, immune from physical damage or decay, and yet they were seen to fail
often, to the point of being the main cause of failure of many systems. For computer systems, design
faults – in software, less often in hardware, and in organizations and procedures of use – are reported to
account for a large fraction of failures, including high consequence ones, in anecdotal evidence [1], and
published statistics (e.g. in [2], between 25% and 65% of failures in different categories of systems).
The importance of physical faults in determining unreliability of computer systems is decreasing
compared to that of design faults and human error in operation and maintenance. (If some human
errors were attributed to faults in the design of user interfaces and procedures, the relative weight of
design faults would increase further.) This trend may be due in part to some categories of software
becoming less reliable, but also to an increasing ability to achieve high reliability against physical
faults of hardware, in part via fault tolerance. Techniques for avoiding or removing design faults have
improved over the years, but the problem of design faults is still serious in at least two respects: i) there
are safety- and mission-critical systems that require better dependability than current methods can
verify, or possibly even achieve [3]; and ii) for a large part of the industry that produces hardware and
software components for purchase “off the shelf”, dependability has low priority [4], so that users, or

This is a chapter written for the book “Dependable Computing Systems: Paradigms, Performance
Issues, and Applications", edited by Hassan B. Diab and Albert Y. Zomaya, to be published by Wiley
(ISBN: 0-471-67422-2).

Strigini / Fault Tolerance Against Design Faults 2

system integrators, often find that these components (especially software components) do not deliver
the dependability levels they require, even when these are comparatively modest. Hence the appeal of
fault tolerance techniques, which use redundancy to eliminate, reduce or make less harmful the
disruption caused by design faults in the service provided by a system. The principle of fault tolerance
against software faults was first advocated, and possible structures proposed, in the ‘70s [5, 6].

This paper - like most research so far - puts special emphasis on fault tolerance for software design
faults, although many of the principles involved apply just as well to tolerating, e.g., design faults in
computer hardware. These are also widespread [7] and probably growing in importance with the
increasing scale of integration and complexity of hardware systems, but their documented contribution
to system unreliability is generally far less important than that of software bugs.

From one viewpoint, software fault tolerance is just “defensive programming”, which has always been
part of software practice, possibly with some added emphasis on structuring principles to guide its
application and contain its complexity. From a different point of view, any emphasis on providing fault
tolerance for design faults is, in this author’s experience, a radical change from the common attitudes
of many practitioners and researchers alike. Many see fault tolerance to design faults as a low-quality
solution, compared to the more desirable goal of fault-free software. According to this view, fault
tolerance may be necessary in hardware because physical faults are inevitable; but in software the only
reason for failures is design error, something that should be tracked and eliminated. So, emphasis on
techniques for “getting things right” has sometimes led to neglecting the need for systems to survive
even if design errors slip through the process and lead to design faults in the final product. This
negative attitude is – luckily – receding. One reason is the recognition that most system designers and
users simply cannot obtain software that is free of design faults. As more system designers use “off-
the-shelf” software - or whole computer systems - as components, which they cannot change, they have
to confront the fact that these components may fail, and yet their systems must be dependable enough
despite these failures. A parallel can be drawn with the evolution of attitudes towards operator error,
and the increasing recognition that designers of automation must take into account the natural error-
proneness of operators [8]. This change is noticeable even in areas, like security, where the preference
for seeking “perfect” solutions used to be most pervasive [9, 10]. Methods for designing correctly, for
removing design faults during the evolution of systems, and for tolerating the failures they cause are all
necessary.

There is no sharp boundary between fault-tolerant designs that apply against design faults and against
physical faults, as the consequences of design faults are often similar to those of physical faults
(especially transient faults). For instance, a programmer error or compiler error may create a design
fault that in certain conditions of execution (created by chance or by malicious attack) will cause a
wrong jump in the program control flow or corrupt the value of a variable: consequences that could
also be caused by a physical cause, e.g. electromagnetic interference. What is different is the kind of
precautions needed so that faults do not cause the fault tolerance mechanisms themselves to fail when
their intervention is required: hence an emphasis on “diversity” of design within a redundant system,
when the redundancy is meant to tolerate design faults.

This chapter focuses on what is specific to tolerating design faults. Even so, the topic cannot be
surveyed in depth in the space available. The references at the end of the chapter point to several
survey and reference works which provide more extensive coverage and further bibliography [11, 12,
13].

The rest of the chapter is organized as follows. Section 2 will propose some examples of fault-tolerant
design as they apply to design faults, and discuss the principles applied, in particular the role of
diversity and the trade-offs between different dependability goals. Section 3 deals with assessing the
dependability levels that these techniques can or do achieve, and their practical desirability in various
contexts. Section 4 goes into more detailed aspects of design, discussing the design choices available to
a designer of a software fault-tolerant system, the constraints imposed by the characteristics of the
applications, and the design problems that they require to be solved. Section 5 contains a summary of
established results and open issues.

Strigini / Fault Tolerance Against Design Faults 3

2 Examples and principles

2.1 Fault-tolerant components
If creating or obtaining components without design faults (fault avoidance) is infeasible, a designer
must assume that errors will happen, and build additional “checks and balances” – redundancy – so that
errors in the operation of a system are detected in time and their effects corrected as far as possible.
Ideally, the aim is to correct an erroneous internal state of the system before it propagates to cause an
externally observable failure1. For simple examples of such redundancy (more complex design issues
will be discussed in Section 4), let us consider the example in Fig. 1: within a system S, we look at a
component C1, which receives inputs from other components and produces outputs which are used as
inputs by other components – in this instance just one other component, C2. These “components” may
be of any size and nature: complete digital computers with the software running on them, hardware
logic modules, software subsystems, individual processes, or individual instantiations of procedures,
objects or smaller program modules, including sections of execution of sequential processes. C1 is
represented in Fig. 1 as a black box, which performs a certain computation (specified here as
computing an output as a function fC1 of the component’s input and internal state).

C2
C1

(fC1(input,state))
Inputs to C1

Fig. 1: Reference scenario for examples of fault-tolerant design

A system designer who feared that C1 could perform incorrectly too often could substitute for it the
“C1 (self-checked)” component in Fig. 2. “C1” is still meant to perform the task specified for it. The
“checker” block applies tests to its output to detect at least some of the possible erroneous results. The
“switch” block forwards the result to its intended user (C2) if no error has been detected, otherwise it
sends an error message (in some designs) or nothing (in others, where for instance C2 has the ability to
recognize the absence of a message and deal with the problem). This scheme can be applied at all
levels of scale, from in-line run-time checks in the code of every program unit, familiar to most
programmers, to encapsulating complete, complex products.

C1 (self-checked)

Approve/
reject

Approved
result or
error
messageC1

(fC1(input,state)) C2

Checker

Switch

Fig. 2: System with self-checking design of C1

1 Defining a few terms at this point is appropriate to avoid ambiguity. In this chapter, a system is made
up of components, which can be seen as “systems” (i.e., further subdivided in components) in their own
right (in which case they are often referred to as subsystems). A system is meant to provide services (to
other systems, which may include human users), and fails when its behavior departs from what was
intended. When it is useful to identify a cause of failures, this is called a fault. The terms “design fault”,
“design defect”, “bug” are used as synonyms. Faults may lead to erroneous states, or errors, inside a
system, which do not become system failures until they manifest themselves as deviations of the
system’s externally visible behavior from the intended service. Thus, fault tolerance is meant to prevent
errors inside a system, or failures of its components, from becoming system failures. Dependability is
an umbrella term for qualities like reliability, availability, safety, which can be characterized by various
attributes and quantitative measures. These terms are drawn from the IFIP Working Group 10.4’s work
[14], and from [15].

Strigini / Fault Tolerance Against Design Faults 4

With this design scheme, the system designer substitutes the original C1 with a slightly more complex
“self-checked component” which, upon most invocations, produces the same output as C1 would, but
which produces uncontrolled erroneous outputs less often. When the checker detects an error, the
output of “C1 (self-checked)” will not be the proper value of the function fC1. But it will be a behavior
that does not masquerade as correct behavior, and the rest of the system can then be designed to react
to this special behavior in a more desirable way than if C1 simply delivered an incorrect output without
warning. For instance, batch programs may be designed to terminate with an error message for a
human to take charge of the problem; safety-critical processes may be designed to switch to a safe
state; etc.

Of course, the designer will need to address many problems. For instance, can one invent suitable
checks for detecting most possible errors of C1? Might the “checker” require too much time for its
operation? How easy is it to devise an adequate reaction by the rest of the system to an error message?

Another scheme, “multiple-version software” (or “N-version software”) is represented in Fig. 3. Here,
in an architecture similar to “multiple modular redundancy”, there are several (three in the figure)
parallel “channels”, each one computing function fC1, but, instead of using three copies of C1, they use
two additional “versions” or “variants” of C1. These are other components that have to satisfy the same
specification as C1, but are developed separately from it and from each other. All receive copies of the
input, and all perform the computation. Normally, all three will produce identical, correct results2.
Even if one of them fails, but the other two are correct, the output of the majority voter will be the
correct value of fC1. If, among the situations in which at least one version fails, those in which only one
fails are more frequent than those in which two or more fail, then, again, this fault-tolerant component
will be one that produces uncontrolled erroneous outputs less often than C1 alone, and, besides,
produces exactly the specified output more often than C1 alone. To secure this improvement, one
attempts to procure the multiple versions in ways that should make it unlikely that they contain similar
bugs.

C1 (multiple-version)

Majority
result if it
exists, or
error
message

C1, variant C
(fC1(input,state))

C1
(fC1(input,state))

C1, variant B
(fC1(input,state))

C2
Majority

voter

Fig. 3. System with multiple-version fault-tolerant design of component C1

 Many more design solution are possible, but these two allow some early, general, observations:
• both examples illustrate a “component-structured” approach to fault tolerance: the designers

applies some form of protective redundancy to the whole component, by adding fault-tolerant
mechanisms that act at the interfaces between these components. This creates a fault containment
unit, i.e., the redundancy is there to prevent the consequences of faults in the component from
propagating outside it. The other components that would use this unit’s results see either a correct
result or a “clean” failure, like absence of output or an explicit error message. Making C1 fault-
tolerant does not change its role in the system, i.e., those properties of its behavior that are
assumed in the design of the other components (except perhaps in details of its reactions to errors),
and thus does not change the way a designer would go about verifying that system S satisfies its
specifications (at least in the absence of faults) or selecting or designing the other components.

2 Multiple version software can also be used if the specification of C1 is such that results of correct
versions need not be identical. Section 4 discusses the implications in more detail. The specification of
the “voter” component can be generalized to that of an “adjudicator” that can cope with consistent
though different results [16].

Strigini / Fault Tolerance Against Design Faults 5

Each interaction is therefore a decision point, where error detection, masking or recovery may be
initiated3;

• these schemes may be applied to any component, and may, in principle, be repeated in a nested
fashion. If the system S of which Figures 1-3 represent a detail is a component of a larger system,
its failures are still internal errors for the larger system, and can still be confined inside a fault-
tolerant variant of S;

• in both examples, it is possible for the fault tolerance at times to fail, i.e., to allow a failure of a
functional component to become a failure of the whole fault-tolerant component. In the self-
checked component, component C1 may sometimes fail with an erroneous result of a kind that the
checker will not recognize; in the multiple-version component, it may happen that two or all three
variants produce consistent, wrong outputs on the same invocation, so that the voter will produce
an incorrect majority result. So, a fault-tolerant component fails on certain forms of common
failure between its redundant components. To decide whether a fault-tolerant system or component
is dependable enough, one needs to estimate the probabilities of these common failures. These
probabilities can be improved (reduced) either by making C1 less likely to fail, or by increasing
the effectiveness of the fault-tolerant mechanisms: by providing more effective checkers, in Fig. 2,
or by reducing the similarity among the situations in which the variants fail, in Fig. 3. What
improvements are feasible and cost-effective will depend on the details of each design, and
especially of the function that the component is specified to perform; e.g., whether, in Fig. 2,
checkers can be re-designed to improve their effectiveness (coverage) against the specific (but
usually unknown to the designers) failure modes of C1;

• achieving fault tolerance has thus two aspects: building a structure that includes the necessary
redundancy, and ensuring that this redundancy is sufficiently effective. These two aspects are
discussed next.

2.2 Fault-tolerant design: redundancy and failure diversity
Designing fault tolerance for design faults will require the same steps as the design of fault tolerance
against any other type of fault for any other purpose [15, 19, 20]:
• identifying dependability requirements and threats to their satisfaction: probable fault types and

where they would cause erroneous states or signals;
• deciding which errors would cause failures with high enough probability and/or severity of effects

that fault tolerance should be applied against them
• identifying fault-tolerant mechanisms that appear feasible and practical for coping with those

errors. A fault tolerance strategy will usually combine some of these steps:
• error detection
• error confinement, preventing propagation of the erroneous information, and/or error masking,

guaranteeing correct service despite the error
• damage assessment and diagnosis of the origin of the error, to guide the following steps
• reconfiguration, to exclude erroneous components from further computation
• recovery, to correct an erroneous system state. This may be achieved directly, exploiting

redundancy in the data, so as to allow the subsequent computation to proceed without
propagating the effects of the error (forward recovery); or by undoing all the computation
performed after the error, in order to redo it without repeating the error (backward error
recovery);

• fault treatment: correcting the design faults identified thanks to the errors detected,
• reintegration of components that were excluded for recovery or fault treatment

• verifying the effectiveness of fault tolerance, usually in two stages:
• deterministic checks that the fault-tolerant mechanisms, if completely effective, would

block all the error types and combinations that they are intended to defend against;
• probabilistic assessment, i.e., checking that, based on the available evidence about the

probabilities of the various error types and the effectiveness of the mechanisms, the
probabilities of the various kinds of system failures have been reduced to acceptable
levels. This is by far the more difficult step.

3 This does not exclude the possibility of error detection taking place inside the component as well. In
some proposed designs for applications with long-lived processes, the decision points can be between
segments of execution of a process [17]. With real-time embedded systems based on repetitive tasks,
the decision points can be between successive executions of the same task[18].

Strigini / Fault Tolerance Against Design Faults 6

The design process will usually iterate these steps to seek a solution with satisfactory effectiveness and
cost.

In most of the steps listed, the designer is only concerned with the properties indicated under
“deterministic checks”. The design goal will be to ensure that mechanisms are in place wherever they
are thought necessary, and that the way they are added does not add excessive complexity to the
system’s design. We can call this “design for redundancy”, as opposed to “design for failure diversity”,
which is instead concerned with the effectiveness of these mechanisms: how likely they are actually to
prevent system failures, i.e., not to fail when they are needed. It should be noted that designers of
fault-tolerant systems use “design diversity” between redundant components inside a fault-tolerant
component (for instance, they complement component C1 in the examples above with additional,
different versions of C1, or with a checker that does not depend on repeating C1’s computation) to
achieve a high degree of “failure diversity”: a low (ideally 0) probability of these redundant
components failing at the same time4, and secondarily, if they do fail at the same time, a high
probability of their failures being detectable (e.g., if two or three versions in a 3-version component
fail, their erroneous outputs should differ so that the voter will detect the lack of a majority). The
distinction between “design diversity” and “failure diversity” – between means and goals – is
important, and the next section will examine it in more detail.

2.3 The role of diversity
It is often said that diversity between the design of redundant components (as opposed to simple
redundancy, provided by replicating identically designed components) is a necessary condition for
tolerating design faults: “diversity” or “dissimilarity” is often used as a synonym for “software fault
tolerance”. Indeed, in a simple fault-tolerant system as in Fig. 3, if all the versions were identical, one
would expect that a demand5 that makes one of them fail would make them all fail in identical ways. It
is to avoid these common mode failures that the variants are required to be diverse, so that they will not
be too likely to contain identical bugs that cause identical errors on the same inputs.

In practice, some degree of software fault tolerance is often obtained without design diversity. This
usually depends on a form of “data diversity”. For instance, if replicated embedded computer systems
as in Fig. 3 read data from replicated sensors, their readings will usually differ slightly: even if one
replica of the software fails, another, identical one, receiving slightly different inputs, may perform
correctly. It is also often possible to repeat a desired computation without repeating exactly the same
demand. It is common experience that if a text processor crashes the user can often restart it and
successfully re-enter the same command that previously caused the crash. By not repeating the
identical sequence of previous commands, the user prevents the reoccurrence of the same internal state,
so that the specific command that caused the failure before does not cause a failure again. Ammann and
Knight experimented [21] with small perturbations on numerical inputs to programs, and confirmed
that, after a randomly selected input caused a failure, submitting a slightly changed input would be less
likely – sometimes drastically so – to cause failure; their paper proposes several other applications of
the same principle. A similar phenomenon explains the success of “software rejuvenation” [22]:
improving software reliability by frequent restarts, which reset the software’s internal state. Gray [23]
observed that Tandem systems, with two computers running identical copies of software tolerated
many software failures. Thanks to the loose synchronization between the replicated computations,
complex failure-causing conditions of the combined application and operating system states would
often affect only one replica. An analysis of Tandem system operation found that 82% of the detected
software-caused component failures were tolerated [24].

The empirical evidence cited, however, still shows that a sizeable fraction of the design-caused failures
would affect all the redundant copies of a computation, if performed by identical code.

To seek diversity between program versions for software fault tolerance, researchers have
recommended various measures [25]: strict separation between the developers of the different versions,

4 I.e., at the same invocation of the fault-tolerant component, or more generally, at times near enough
to each other to allow a failure of the fault-tolerant component.

5 The word “demand” will be used to designate the values of all the variables that affect the behavior of
a component: typically, for software, its inputs, its memory variables and program counter, and the
states of any other components that affect its behavior.

Strigini / Fault Tolerance Against Design Faults 7

avoiding the use of common libraries or compilers (which may induce similar bugs into the two
designs) and also “forced” diversity, i.e., imposing the use of different language and tools, as well as
different design solutions, to avoid possible causes of common mistakes. The diversity may extend
where possible (as in certain process control or safety applications) to having software-based versions
in parallel with others that use hard-wired logic or analog hardware implementations; and/or to feeding
the diverse versions inputs from sensors measuring different aspects of the physical process controlled
(this is sometimes called “functional diversity”).

Though these all appear reasonable recommendations, their effectiveness is difficult to demonstrate and
compare: they aim to influence the likelihood of similar mistakes, hoping thus to decrease the
probability of such faults in the design of the multiple versions that might cause common failures.
These are three distinct causal mechanisms that are imperfectly understood and need further
investigation, combining the study of human error with that of the effects of faults on failures [26, 27 ,
28]. A potential difficulty is that the goal of forcing diversity may conflict with that of obtaining high
reliability from the individual versions. It may be that the design and development methods most
suitable for producing a reliable component lead to similar implementations, where the most likely
bugs are similar and likely to cause similar errors in all versions. This leads to a dilemma: it seems
undesirable to compromise the quality of the individual versions, but, on the other hand, a redundant
system made from more diverse, though individually less reliable versions may exhibit fewer failures
than one made from more reliable, but more similar ones. It is easy to describe the possible trade-off in
mathematical, probabilistic terms [29], but the available empirical knowledge is insufficient for guiding
choices among specific alternative combinations of development methods.

2.4 Possible dependability goals
Design fault tolerance approaches can be used for all kinds of dependability objectives.

From the viewpoint of design for redundancy, the same spectrum of requirements can be defined, with
respect to any given type of component failure, as with all fault-tolerant design. At one end of the
spectrum, the “multiple version” solution in Fig. 3 aims to completely mask faults: no system failure
is caused, so long as the numbers and combinations of component failures do not exceed some
specified threshold (one version failure, in Fig. 3). It is also common to have requirements for graceful
degradation: when the system cannot provide the intended service, it should still provide some kind of
reduced service. The extreme case of requirement for degraded service is that the fault-tolerant
component at least avoid those types of failure behaviors that would be too difficult for the designer to
control through actions in the rest of the system, leading to solutions like the “self-checking
component” of Fig. 2. Such guarantees of “clean” component failures can greatly simplify the task of
designing a fault-tolerant system [30 , 31].

From the viewpoint of how system failures affect people and organizations, dependability requirements
are often grouped into three (overlapping) groups: guaranteeing continuity of service (in the form of
avoiding failures – reliability, or limiting their overall duration – availability6), avoiding those failures
that are considered especially dangerous (safety); and protecting against failures that are due to, or
would open the way to, malicious activities against the system (security). Fault tolerance can be applied
towards all three kinds of goals7.

6 Towards the goal of improving availability, fault tolerance may be used directly to reduce the
probability of system failure, or instead to reduce the duration of down-time subsequent to a failure.
For instance, a designer can increase the availability of a server by providing additional copies (or
diverse versions) of the server as “stand-by” servers, to take over in case the “primary” server fails. If
the switch-over to a stand-by server is immediate, users perceive no failure, i.e., they enjoy improved
reliability and availability of the server; if the switch-over is not immediate, but still faster than waiting
for the primary server to be readied for resuming service, users still experience improved availability.
For the sake of completeness the case should be mentioned in which the additional servers are always
active and share the load of the primary, i.e., they improve performability (the statistics of the service’s
performance).

7 Some authors reserve the name “fault tolerance” for designs that aim at continuity of service,
excluding those that provide safety at the expense of availability, like the one in Fig. 5. But, as the
examples that we will describe show, identical design principles at the component level can serve
either goal at the system level. It is sound practice to keep the concerns of safety distinct from those of

Strigini / Fault Tolerance Against Design Faults 8

Two additional examples will illustrate the interplay of these properties at the component and system
levels.

Self-checking pair 2

Self-checking pair 1

Channel A

Channel B Comparator

Switch

Channel C

Channel D Comparator

Switch

Signals from
the pair that is
active control
actuators for
aircraft control
surfaces

inputs

Fig. 4 A configuration of two self-checking pairs, common in aviation applications. When used with
diversity, it can tolerate (hardware- or software-caused) failures of any one of the four parallel

channels.

Fig. 4 represents a scheme similar to that applied to provide flight-critical functions in the Airbus
family of “fly-by-wire” aircraft [32], following a common fault-tolerant configuration. but also often
used in non-diverse applications. It uses four parallel channels (built on separate hardware, with
separate power sources and all other usual precautions for tolerating physical faults), with different
versions of hardware and software. Instead of using voting as in Fig. 3, the channels are arranged in
two self-checking pairs (an “N self-checking programming” design [33]). In each pair, one channel
plus a comparator act as the “checker” of Fig. 2, preventing the pair from outputting erroneous
commands. So, any one failure of a channel is tolerated by a pair going silent, and so the other pair
takes over in controlling the aircraft. The individual pair satisfies a safety-like requirement (avoiding
potentially dangerous outputs), to satisfy a reliability and availability requirement on the whole control
system (continuous provision of correct control outputs), to satisfy a safety requirement of the
surrounding controlled system (keeping the aircraft safely airborne).

A standard architecture for safety is similar to Fig. 2, with C1 representing the active control system for
a physical process and the checker (“protection system” or “interlock”) verifying that C1’s commands
do not violate safety requirements for the controlled process, and usually able to order the controlled
system to a safe state. Focusing the checks on safety properties, rather than on correct execution of the
intended control algorithm, is a way of both improving the reliability achievable for the checker (by
simplifying its specification) and making it more diverse from the control system, thus decreasing the
probability of common failures of the two causing accidents. In a railway application [34], for
instance, the checker is implemented as a rule-based system designed directly from the pertinent safety
regulations for railway operation.

Protection system

Sensed
plant state
variables

Parallel
(OR,
1-out-of-2)
actuators for
plant shut-down

Channel A

Channel B

Fig. 5 A safety-oriented architecture using diversity.

availability in the management process, but trying to separate designs according to the same criteria
would hide useful common principles.

Strigini / Fault Tolerance Against Design Faults 9

The protection systems themselves may require fault tolerance against design faults. Fig. 5 represents a
protection system for a potentially dangerous plant (e.g., a chemical plant or nuclear reactor). The plant
has a separate control system, meant to keep it operating in a near-to-optimal regime, and to keep it
within a safe “envelope” of operation. The protection system’s function is to detect any departure from
the safe envelope – a potentially hazardous situation – and issue commands to shut down the plant.
There are two diverse channels (again protected against physical faults by various precautions), each
one controlling actuators that can shut down the plant, irrespective of what the other channel orders.
“Functional diversity” may be applied, monitoring different physical variables (e.g., the temperature
and pressure of the reactor) which would give warning of hazards. In some designs, one of the channels
is software-based, the other one being a simpler, hardware design. The software-based channel can
implement more refined algorithms for handling plant shut-down with lower stress on the protected
plant, and so it can be configured to intervene before the hardware channel does, to reduce the cost and
risk of shut-down events. The simplicity of the hardware channel, in turn, provides assurance for its
role as the last line of defense.

This “1-out-of-2” configuration8 for the shut-down function gives lower probability of failure on
demand (pfd, i.e., failure to shut down the plant when necessary) than one would obtain by adding a
third version, channel C, to create a voted, 2-out-of-3 configuration: on any demand on which the 1-
out-of-2 system fails (i.e., both channels A and B fail), so would the 2-out-of-3 system; plus the
presence of C may cause the 2-out-of-3 system to fail on additional demands, on which only one
among A and B fails, but C also does. The 1-out-of-2 configuration’s strong guarantee against unsafe
failures (i.e., high reliability of the safety shut-down service) comes at the cost of higher probability of
safer, but still expensive, failures: any time one of the two channels erroneously decides that there is a
hazard, the plant will shut down. This example illustrates the common situations in which safety and
availability concerns create opposite requirements on design, requiring a reasoned trade-off. Similar
trade-offs exist at the component level. For instance, in the self-checking configuration of Fig. 2, a
designer may consider that software often produces correct results despite internal errors: a stringent
check used to command a clean failure of the whole application, or a thorough recovery before
operation can continue, while reducing the probability of unpredictable, potentially expensive failure
modes, will also reduce its probability of delivering a correct service, or its performance in doing so.

Similar conflicts between different dependability requirements can arise when the purpose of fault
tolerance is security. For instance, a service can be provided on the World-Wide Web via multiple
servers, which use different operating systems and application software [35]. This redundancy can be
used to enhance continuity of service, as an attack is less likely to disable all the servers at the same
time than to disable a single server. However, concern for avoiding catastrophic damage to the servers’
content might recommend shutting down the service when discrepancies between the servers indicate a
possible successful attack on one of them, thus using the redundancy to improve data integrity at the
expense of availability.

3. Potential and actual benefits

3.1 Potential benefits
The purpose of fault tolerance is to reduce the frequency of failures (or of specific kinds of failures),
and/or to mitigate the severity of their effects. Designs like those in Figures 2 through 5, if working as
intended, will achieve this. The main concern is how often they will avoid or mitigate failures that
would otherwise happen: whether fault tolerance will produce enough of a reliability gain to be worth
its cost. Studying the effectiveness of fault tolerance serves multiple purposes:
• deciding on adopting a technique: how effective is a certain form of fault tolerance going to be? In

particular:
• is it cost effective when compared to other methods for achieving the same dependability

improvement? 9

8 In the sense that correct operation of one out of the two channels is sufficient for correct operation of
the shut-down function.

9 For most software engineering methods that promise to increase already high quality, costs are easier
to predict than effectiveness. Software fault tolerance is no exception. Costs include development and

Strigini / Fault Tolerance Against Design Faults 10

• is it effective as an extra precaution, added to the other available methods?
• acceptance of a product by a customer, or licensing of a critical system by a safety regulator: how

can one judge the dependability of a specific system built with design fault tolerance, without
waiting for the (possibly enormous [3]) length of operational experience needed to assess it by
purely statistical methods?

• deciding, once it is accepted that some form of fault tolerance is necessary, which form to apply:
which form of redundant design, which measures to promote diversity.

Answers to these questions tend to address separately the two aspects of redundancy in the architecture,
and failure diversity. The reliability that can be achieved by a given component-structured fault-
tolerant architecture can be assessed via probabilistic models of kinds that are standard in computer
reliability engineering [19], e.g. Markov chains. Examples for software fault tolerance are e.g. in [33 ,
39] and references therein. The solutions of the models will depend on the values of their parameters,
including probabilities of failure of the individual components, and, crucially, the probabilities of
common failures between the redundant parts of fault-tolerant components10. The main difficulties lie
in this latter part.

3.2 Models and empirical evidence
The effectiveness of any fault-tolerant architecture depends crucially on the probability of common
failure between its redundant parts. Substantial research effort has been spent on studying this factor in
the case of N-version software (summaries are in references [40, 11, 41]). Empirical studies ranged
between the two extremes of case studies attempting to approximate realistic development processes,
producing few program versions, and statistically controlled experiments made affordable by using
student programmers. All experiments showed software fault tolerance to produce some reliability
advantage.

An early question was whether “independently developed” software versions could be trusted to fail
independently. This would be good news from two viewpoints: to assess the probabilities of joint
failures of two or more components, one could just use the products of their individual probabilities of
failure, without any special effort; and the reliability gains would be massive, because these
probabilities are small. Checking this conjecture was the goal of a famous experiment run by Knight
and Leveson [42], in which 27 versions were developed and then run on one million test cases. On
average, it turned out that a 2-out-of-3 voted configuration would be about 20 times less likely to fail,
per demand, than an individual version, but this was far short of what failure independence would have
produced. This experiment established that to claim failure independence in any specific multiple-
version system, one would need to find evidence of it for that system, rather than relying on a supposed
general law11.

Further insight was provided by probabilistic models developed by Eckhardt and Lee (EL model), and
Littlewood and Miller (LM model) (and by Hughes for physical failures). Surveys and references are in
[13, 43]. These authors considered that the outcome of a development process is uncertain, and studied

run-time costs of redundant components, offset in part by savings on common parts of the development
and on verification phases. Development costs for fault-tolerant software are discussed e.g. in [36 , 33 ,
37 , 38].

10 These will appear in the model directly as probabilities of common failure (per unit of time or per
demand on the component), or as “coverage factors”: an error coverage factor is defined as the
conditional probability of a fault-tolerant mechanism (e.g., the checker in Fig. 2) reacting appropriately
to an error (i.e., for the checker, detecting the error), given that the error occurred. For the case of error
detection by comparison of results, and correction by voting, it matters not only whether two versions
fail on the same invocation, but also whether they produce results that the comparator/voter considers
equivalent.

11 This result is still often cited as proving that N-version software is not effective. In fact, diversity
improved reliability in this experiment, albeit less than if failures of diverse versions were independent.
The only negative result concerning the efficacy of diversity is that one cannot depend on it having
spectacular effects on dependability. In the practice of safety engineering, positive correlation between
failures of redundant components is often assumed, unless there are very cogent arguments for
excluding it.

Strigini / Fault Tolerance Against Design Faults 11

the average effect that should be expected from diverse, independent developments of software
versions. These models indicate that if the two development processes are similar, though rigorously
independent, the average pfd of two-version systems will be greater than the product of the average
pfds of the versions, as observed in the Knight and Leveson experiment. An intuitive explanation is that
for the builders of diverse versions of a program some demands will presumably be “more difficult”
than others, in the sense of being more likely to be demands on which the delivered programs will fail.
So, even if diverse versions are built “independently”, their failures are more likely to happen on
certain demands than on others, which in turn leads to this “average positive correlation”. Using
versions produced by the same process is actually the worst case: the average reliability of two-version
systems can only improve if one manages a project so as to “force” diversity (to make easier for the
developers of one version those demands that are more difficult for the developers of the other),
provided that this does not reduce the average reliability of each version. The LM model shows that
achieving even zero average pfd for a two-version system, despite comparatively large pfd for the
individual versions, cannot be excluded. However, the model cannot practically be used to forecast
such a result in a specific case. This is a limitation of the EL and LM models: while they give useful
insight into the relationship between design diversity and the reliability of fault-tolerant systems, in
particular avoiding fallacies in arguments for failure independence that may otherwise look intuitively
correct, direct practical applications to assessing a specific system, or directing the choice of
architectures and development methods, are problematic. The reason is that these models rely on an
idealized, extremely detailed probabilistic description of the failure processes, whose parameters
cannot be directly evaluated in practice. However, my colleagues at City University and I have found
the same general modeling approach to be useful for many questions about the effectiveness of
diversity in various contexts, including some applications to assessing specific systems12.

Although diversity proved beneficial in all experiments, and the models give some understanding of the
parameters that determine its efficacy, one would want evidence of it being beneficial in actual
industrial use. Here, although users appear to have been generally satisfied with the results [40], data
are hard to obtain. In particular, the more widely publicized applications are for “ultra-high reliability”
applications, in which failures of even one version would be rare and make statistical assessment
difficult. It should be noticed that, even if these systems were actually free of design faults, the decision
to use fault tolerance as a precaution could still be right: the role of fault tolerance is to protect against
faults that may end up being present in the delivered system, although unnoticed, and despite the effort
spent in avoiding them.

3.3 Other potential advantages and concerns
Fault tolerance against design faults also has some secondary advantages. It usually gives improved on-
line error detection and thus supports testing and debugging. The increased confidence this gives may
reduce the delay between the completion of a system and the time it can be confidently put into
operation, with possibly substantial economic gains.

Fault-tolerant designs also bring some additional concerns: added complexity, which may bring
additional design faults, either in additional components (e.g., voters) or in the system design
connecting them. This makes “component-structured” approaches attractive, to give designers clear,
and separate, views of a system’s composition from the viewpoints of “functional” behavior and of
fault tolerance. It also usually requires added hardware, and thus higher likelihood of physical faults:
the design must provide enough fault tolerance against these to offset their increased probability.

3.4 Adoption of fault tolerance methods against design faults
So long as its cost is moderate, fault tolerance can be seen as a necessary part of reasonable engineering
practice. So, some degree of defensive programming is considered a part of all good software practice.

Conveniently, fault tolerance mechanisms can be used to measure their own usefulness, by logging
their interventions and the system failures thus prevented. These logs also help diagnosis and repair of
faults, and feedback on the development and procurement processes. This feedback would also allow a
manager of the software development process to find a reasonable balance between expenditure in

12 Summaries of recent research are currently maintained on the Web at
http://www.csr.city.ac.uk/diversity.

Strigini / Fault Tolerance Against Design Faults 12

avoiding faults and in fault tolerance, or a system developer to estimate roughly the degree of fault
tolerance needed in newly developed systems.

Decisions become far more difficult for highly dependable systems for critical applications. Some
safety-critical applications use multiple-version (custom-built) systems or similar high-cost forms of
fault tolerance. The cost of developing multiple versions is justified by the high cost of failure and the
consequent very low probabilities required. But there may be no statistical knowledge for judging the
advantages achieved, because the concern is with very rare, and thus seldom observed, failures, which
yet are important because they may lead to serious accidents. Examples include civil aviation: Airbus
has used diversity in software and hardware [32], and Boeing in hardware [44]. Other applications
include various railway signaling and control systems [40 , 45, 46, 34, 47]. Fault tolerance is applied on
top of stringent and expensive precautions for fault avoidance. For neither set of precautions is there a
quantified assessment of effectiveness, e.g., in terms of the mean number of dangerous failures avoided
per year. Fault tolerance is an added “safety margin” in the operation of already very dependable
systems. This is similar to “safety margins” in other areas of engineering. A baseline design is
demonstrated to be satisfactory under certain assumptions; the safety margin is a defense against all
kinds of unanticipated departures of the real world from the assumptions. It is impossible to quantify
this protection with any precision, but it is believed necessary to err, in case, on the side of excessive
prudence. These industrial sectors adopted software fault tolerance when first introducing software in
safety-critical roles, and facing the need to preserve the good safety record which had previously been
achieved with non-software technologies that were thought to be better understood.

Another viewpoint is that fault tolerance may make it possible to obtain reliability levels that would be
infeasible by other means, regardless of the accepted cost. For high-quality development practices,
there may be an upper bound on the reliability obtainable without fault tolerance, simply because
people are fallible, and increasing the resources spent on a project beyond some threshold would only
increase overhead and human communication problems, without improving the results. This bound
may change with breakthroughs in software engineering, but if it exists, fault tolerance will be a more
effective way of using extra effort for system dependability.

There is another situation in which designers cannot improve the dependability of their components as
needed, and thus fault tolerance becomes necessary. It is when components are obtained “off the shelf”,
as is increasingly common. This is arguably the correct way of building most engineered systems, but
in the computing sector system developers often have to deal with components that are built to
insufficient standards, and lack proper documentation of their dependability. The problem has existed
for a longer time for hardware, as system developers could not afford, e.g., to develop their own high-
integrity processors, but cannot trust industrial standard processors to be sufficiently free from design
faults. So, for instance, both Airbus and Boeing use diverse processors in fault-tolerant, flight-critical
computers on their aircraft. As the practice of using off-the-shelf software components even in critical
systems becomes more common, so does concern about their dependability. For a system integrator, it
will usually be impossible or impractical to modify off-the-shelf components, or to verify them
extensively. On the other hand, fault tolerance can be applied without requiring access to the internals
of the off-the-shelf item by:
• procuring additional off-the-shelf items with similar functionality, to build an N-version or similar

architecture. The difficulty of doing so will vary between applications, being easiest when a “1-
out-of-N” structure (as in the example of Fig. 5) is possible: e.g., for complete communication or
alarm systems, with a human users “adjudicating” among the alternative results available, or for
servers operating in distributed systems with good “fail-stop” properties. While N-version software
for custom-built systems is expensive, multiple off-the-shelf software versions will usually be
cheaper than even a single custom-made version. Preliminary investigations about both the
feasibility and the reliability gain of such designs have produced encouraging results [48, 49];

• or alternatively, by producing “checker” components that, although custom-made, may be simple
and cheap enough to produce.

A form of fault tolerance that has become common with off-the-shelf components is that of
“wrappers”: small components that, for instance, intercept calls to functions that the system designer
does not intend to be used, or to functions known to be defective [50 , 51]13, or that act as checkers

13 These deliver true “fault tolerance”, in that they isolate the fault directly, rather than reacting to the
errors that the fault causes.

Strigini / Fault Tolerance Against Design Faults 13

[52]. The concern about the vulnerabilities of off-the-shelf systems is also central to interest in fault
tolerance for security (cf e.g. references in [53] and [54]).

4. Design Solutions
Software fault tolerance has been applied and studied for a long time. Many proposed design schemes
can be found, e.g., in the proceedings of the IEEE conferences FTCS, ISSRE, and DSN. Additional
schemes, not documented in the open literature, are used in industry. Useful reference books are [15 ,
11 , 12]. Rather than enumerating design variations, this chapter outlines the range of design
approaches from which specific designs can be synthesized.

Many mechanisms for tolerating the effects of physical faults will also help to some extent against
design faults, but it is important that the possibility of design faults be actually taken into account by
system designers. An example documenting this need is the accident during the first launch of the
Ariane V rocket [55], in which an exception handler reacted to a simple data error by shutting down
operation of a critical processor. This behavior was programmed on the assumption of physical faults
only, and would allow an identical back-up processor to continue providing the critical functions.
However, this particular data error was due to a system design fault (the designers had kept in Ariane V
some software functions designed for Ariane IV that were no longer appropriate). Both the primary and
the back-up processors thus became unavailable for their flight-critical function, leading to
inappropriate control signals to the rocket and its subsequent destruction. To tolerate design faults, a
designer may use the redundant resources that are available for tolerating physical faults, but must take
into account types of failure behavior that physical faults would be unlikely to produce.

It is convenient to organize this discussion in three parts: the role of standard, general-purpose fault-
tolerant mechanisms; algorithm- and application-specific techniques; and the component-structured
schemes that have been devised especially for tolerating component design faults.

4.1 The role of generic fault tolerance techniques
Most fault tolerance techniques for physical faults will also help to tolerate some design faults. For
instance, many computer platforms have built-in features for error detection. Hardware will detect
attempts to divide a number by 0, or to violate a process’s address space; hardware or software checks
may check type violations or array overflow at run time. These mechanisms give fine-grained checks:
applied frequently during the computation, and on almost every data item. But they will only detect
attempts to perform actions that are “illegal” for the abstractions they protect. For instance, an array
overflow check will detect a program’s attempt to violate the rules for operating on arrays, but cannot
detect an attempt to write, within the bounds of the array, a word that has the wrong value according to
the program’s specification. So, they cannot be expected to give high coverage for design-caused
errors. Programs can also be instrumented with “executable assertions” or “run-time checks” on
necessary properties of correct executions, which, being based on the specification of the specific
programs, can be more effective.

In addition to detecting errors, fault tolerance requires recovery or error masking, and so on. Here
again, structuring concepts developed for other forms of fault tolerance are relevant:
• support for exception handling and rules for exception propagation in language implementations;
• primitives for checkpointing and recovery;
• atomic transactions, provided as standard features in components such as database servers.

4.2 Algorithm- and application-specific techniques
Many algorithms lend themselves to specialized forms of fault tolerance. Compared to more generic
methods, these may deliver better coverage, lower run-time cost(requirements of CPU time and other
resources) or other advantages. On the other hand, their specialized nature means that each new
problem requires a specialized, effective and computationally affordable error detection or correction
algorithm; for some problems, none may be found. Some algorithms (e.g., for iterative approximation,
or heuristic search, or process control) have “natural” fault tolerance properties, in that corruption of
part of their data will not prevent the algorithm from converging to the correct solution, possibly with
some extra delay. Everything else being equal, a designer would prefer an algorithm that satisfies the
specification and has this property, i.e., some degree of fault tolerance at no extra cost, over one that

Strigini / Fault Tolerance Against Design Faults 14

lacks it. The literature on intentionally designed robust algorithms includes a few (imprecisely
delimited) categories:
• “self-stabilizing [56, 57] algorithms, guaranteed to reach a state defined as acceptable, starting

from any state: such an algorithm can tolerate corruption of its internal data, at the possible cost of
extra delays. The literature provides many examples of such algorithms with proofs of their self-
stabilizing property, as well as impossibility results, i.e., characteristics that make it impossible to
transform an algorithm to achieve self-stabilization;

• “robust data structures”, extensively used, e.g., in disk storage. A complex data structure is
protected against corruption of its physical implementation. For instance, a linked list may be
complemented with additional links, so that the loss of the information describing one link can be
detected and, possibly, the list can be reconnected. The amount of redundancy provided determines
the maximum numbers of data errors for which detection, or correction, can be guaranteed.
Robust data structures are a special case of error detecting and/or correcting codes;

• “algorithm-based fault tolerance” techniques (see e.g. [58]), akin to arithmetic codes. For instance,
the contents of matrices can be protected by adding redundant lines and columns, such that the
augmented matrix, unless corrupted by faults, will satisfy some invariant properties even after
processing through standard operations of matrix arithmetic;

• the “complex checkers” studied by Blum and co-authors [59, 60]. These rely on a form of “data
diversity”. Given a component that has to compute a mathematical function f of its input, such that
a known invariant property I links its values on different values of its arguments, a “complex
checker” will, when the component is invoked with an argument x, produce additional invocations
on arbitrarily chosen argument values x1, x2, ... and verify that the invariant I(f(x), f(x1), f(x2), ...)
holds.

4.3 Component-structured fault tolerance
In contrast with these techniques, most research on software fault tolerance has dealt with “component-
structured” fault tolerance, introduced here in section 2, in which diversity is explicitly sought between
redundant variants of a component, and/or between a component and checkers of its results. This
approach brings some advantages of modularity, in that system design deals with the interfaces of
components, not their internal details. System designers can proceed in top-down fashion from the
system-level requirements of the system being designed (say, a car, a therapy machine), to choose the
levels of decomposition at which they wish to apply fault tolerance, and which configuration gives the
required trade-off between, e.g., performance, reliability, safety, cost. Adapting programs so that they
can act, e.g., as channels in a multiple-version component may require no special provision at all to the
program’s source code (this is especially desirable when designing with off-the-shelf components), or
limited changes [17] that do not increase much the burden on component programmers. System
designers may also choose the technologies for different components in ways that appear to reduce
common vulnerabilities, as in the examples cited in discussing Fig. 5; some of the components may be
implemented as pure hardware with hard-wired or analog functions, or they may be human operators.
Last, these techniques allow “end-to-end” error detection. By situating error detection at the interfaces,
the designer can check all possible paths for error propagation between components, and, if desired,
avoid the cost of many error detection checks inside the components (at the possible cost of higher
error latency).

A specific fault-tolerant design implies a combination of choices with respect to a set of binary or
multiple-choice design decisions: it corresponds to a point in a multidimensional “decision space”.
Many of these decisions imply trade-offs or design difficulties to be solved. Such a list of essential
design decisions would include:
• numbers of redundant (diverse or identical) instances of components, and additional components

(like checkers). These decisions are often constrained by other design aspects, especially
development and run-time cost, and other fault tolerance requirements, and in turn affect the cost
and feasibility of most other decisions;

• type of components: e.g., for software, long-lived processes vs repetitive short-lived tasks, with or
without a permanent state separate from their short-lived program variables, etc;

• error detection methods: run-time checks vs comparison among results of diverse versions, or
combinations of the two;

• error correction methods for error masking and/or state recovery, which can use backward
recovery and retry, or various forms of forward recovery;

• size of fault containment units, for each different method applied;

Strigini / Fault Tolerance Against Design Faults 15

• allocation of redundant executions to hardware modules, and combinations of redundancy of
execution in space (multiple processors) and in time (multiple executions on each processor);

• scheduling of redundant executions: unconditional vs upon detection of errors. The latter reduces
the cost of error-free computations, at the cost of increased delays for error recovery.

A brief discussion follows of some of the salient issues for designers.

Error detection and confinement
The choice of methods can be guided by rough estimates of development and run-time cost, which are
comparatively easy to obtain, and of coverage, which has to be roughly assessed on the basis of the
specifications of the components to be made fault-tolerant: e.g., run-time checks will appear desirable
if a theoretically perfect check exists that also allows a simple (i.e., cheap and probably reliable)
implementation with acceptable run-time cost, while multiple-version comparison will be preferred if
no reasonably thorough, simple and cheap check seems possible but apparently very diverse algorithms
are available for computing the same function (which removes a likely cause of common failures,
although it does not guarantee their absence). In the intermediate cases between these two extreme
situations, decisions will depend in part on educated guesses about the component failure modes that
can be expected and the effectiveness against them of the alternative mechanisms.

Another issue is the allocation of the error detection and confinement mechanisms between
components. In Figures 2-3, the fault-tolerant mechanisms are bundled in the augmented C1
component to prevent the generation of erroneous outputs. Actually, these mechanisms can be shared
with, or even completely moved to, the recipients of those outputs (here, C2). This may be helpful for
guaranteeing error confinement even if fault tolerance in C1 is made ineffective, e.g., by hardware
failure. In terms of project management, it is helpful in that it allows checks in C1 and C2 to be based
on the different information available to their designers, and to the modules themselves at run time. For
instance, checks in C1 can use data in the internal state of C1, invisible to C2, while checks in C2 can
use predicates that must be true about the combination of inputs that C2 receives from C1 and from
other components.

Discrepancies between correct computations
In many applications, it is possible for diverse variants to produce results that are different, even if all
correct. This may be due, for instance, to different rounding errors in floating-point computations. As
an effect of this, two versions that nominally obey the same specification may take opposite decisions
when, e.g., comparing a numerical variable against a threshold [61]. Such discrepancies are also
possible in replication without diversity, if, for instance, copies of the same software read sensor inputs
asynchronously, or if their behavior depends on that of other software in a distributed system [62].
These discrepancies affect various aspects of design. They may cause comparison between version
outputs to signal an error, despite all versions being correct. So, voting and comparison (adjudication)
algorithms must take into account these allowable discrepancies between correct results. They may also
cause the versions to diverge over time so that a voter can no longer find a majority output. In a control
system, they may cause dangerous discontinuity in control signals if, for instance, control is switched
to a back-up version.

A solution is to require the versions to explicitly reach a consensus at each critical point identified in
the specification. This, however, may require specifying in great detail the internal structure and
algorithms of the versions, and thus decreasing the degree of diversity achievable. An alternative is to
allow such discrepancies to happen. If they are rare enough, they can be treated as if they were actual
component failures, using the same mechanisms that deal with the latter.

Error correction and state recovery
It is useful to distinguish between the correction of errors in the outputs of components (masking) and
in the internal states of components (recovery). The latter may involve more data and time than the
former and thus require different methods. In any case, erroneous values can be corrected by: backward
recovery followed by re-execution of the failed computation (by the same software, or by a different
version of the software written to the same specification, as in recovery blocks [63, 64]); voting or
adjudication (generalized voting, taking into account discrepancies between correct results, the nature
of the data to be decided upon, and possibly extra evidence about the dependability of the individual
versions: see [16]) among the results from multiple versions; or by kinds of (application-specific)
forward recovery other than voting.

Strigini / Fault Tolerance Against Design Faults 16

Some techniques for the recovery of the internal state can be applied to broad categories of systems and
components:
• backward recovery, which may rely on checkpointing (libraries of checkpointing and rollback

functions exist for popular programming environments), or “atomic action” capabilities designed
into the components and allowing specified operations to be rolled back completely and without
side effects (for instance the “atomic transactions” provided by database management systems);

• forward recovery via components “re-learning” the correct state of the computation from an
uncorrupted global state (data base, sensor readings), or from voted results of other versions,
possibly after termination and restart of the erroneous component;

• forward recovery assisted by one or more other versions of the same component that have correct
states. To accomplish this, each version needs to offer an interface for transmitting a copy of its
internal state, on demand, or accept such a copy to effect its own recovery. Since the
representations of the internal states (e.g., the variables defined in their code) will differ between
the diverse versions, the specifications need to prescribe a set of abstract state variables whose
values are sufficient for any version to reinitialize its internal state, and a standard format for their
transmission between versions. Each version needs to include translation functions between this
transmission format and the internal representation of this information [65].

Distribution and scheduling of executions
The components of a fault-tolerant software component (variants, checkers, adjudicators) can be
executed in parallel or sequentially, on the same or on separate computers. Separate computers give
protection against hardware faults, and the possibility of parallel execution for higher throughput,
shorter average response time, and faster correction of version errors. If there are multiple variants,
their execution may be unconditional or conditional on error detection. For instance, given three
variants of a (stateless) component, an alternative solution to that of Fig. 3 is to run two at every
invocation of the component, and only call the third one if the first two produce conflicting results.
Resources are saved during error-free execution, in exchange for extra delay when an error is detected.
More flexible execution schemes are possible, with various trade-offs between these costs and
reliability [66, 67].

Granularity of components or fault containment units
The partitioning of a system into error containment units is constrained by many factors: some
components cannot be partitioned because procured “off the shelf”, or because there is no natural way
of dividing them into subcomponents with clean interfaces, or because such subdivision would badly
reduce performance. Even so, there are trade-offs open to the designer. Choosing smaller units usually
improves (decreases) error latency, for a given error coverage provided by the detection mechanisms,
and thus reduces error propagation, and the cost of recovery: error-free computations cost more
because more checks are run and – usually – more synchronization overhead is incurred; errors cost
less. The more frequent checks also help in diagnosing the bug responsible for the detected errors.
From the viewpoint of failure diversity, smaller units imply the testing of more intermediate results.
This reduces the potential for dissimilarity among diverse variants, which is the main guarantee both of
effective error detection through comparison, and of proper recovery (either through re-execution or
through voting). On the other hand, reducing diversity reduces the problem of discrepancies between
correct outputs from different versions.

Combinations of design decisions
Many combinations of these design decisions are described in the literature [12]. For instance, in the
“recovery block” scheme, error detection is via checking; correction of the outputs and state recovery
are via rollback and retry by a different variant. Additional variants are only executed on demand,
sequentially. Proposed variations include the parallel, unconditional execution of variants in a recovery
block-like fashion: error detection via acceptance tests and time-outs (avoiding the problem of inexact
voting), but with alternate results available immediately upon detection of an error.

In safety-critical applications, whole control or safety systems are often structured in simple
architectures like those in Fig. 4 and Fig. 5. Different degrees of redundancy may be applied to
different “levels” in an architecture: for instance, the Boeing 777 “fly-by-wire” computer uses diversity
at the hardware level but a single high-level application program; while the Elektra railway system uses
diversity at the application level, and non-diverse redundancy at the hardware and operating system

Strigini / Fault Tolerance Against Design Faults 17

level. If the system is inherently complex, it may require more than a uniform application of one
scheme to the whole system to be both effective and cost-effective. We should expect that different
parts of the system naturally lend themselves to the use of different techniques, including different
amounts of redundancy and diversity. When multiple variants are used, the degree of redundancy and
diversity may differ for different functions, according to their criticality and to the difficulty of
guaranteeing good dependability through fault avoidance. Platform architectures have been developed
to support such flexible configurations, e.g. [68, 69].

An example of a hybrid algorithm-specific scheme is the use of certification trails [70]. Within an
application algorithm, a set of intermediate results is identified that can be checked with coverage close
to 100%. Two versions of software are then used, but only one normally needs to compute these
intermediate results (called the “certification trail”); if this version then fails, the other version can
check whether the “certification trail” is correct, and if it is, it only needs to perform the remaining part
of the algorithm.

5. Summary
Fault tolerance against design faults is a necessary part of dependable design. It encompasses many
techniques for detecting and correcting errors, and for structuring the redundancy thus added to a
system. The structuring concepts are the same that govern fault tolerance against physical faults, and
many architectural solutions for redundant design have been published or can be devised from these
basic principles, as a function of the dependability requirements and threats. However, the probability
of common design-caused failures between redundant components is affected by more complex factors
than affect physical failures: the required “diversity” is a less understood set of phenomena than simple
isolation from common causes of physical failure. Common sense informed by simple mathematical
models, together with practical constraints, will inform choices about how to pursue diversity.
However, there is ample room for improving our knowledge about how to drive development so that
design faults, if present, are unlikely to cause common failures in redundant components, and thus
system failure. This requires more empirical research, supported by improved ties with research on
human error.

All empirical evidence is that software fault tolerance, in experiments or in practical use in which
failures of the non-fault-tolerant components could be observed, has provided dependability
advantages. The open questions concern how the cost-effectiveness of these techniques compares with
that of possible alternatives. Predicting the effect of these techniques on a specific system before it is
built, as well as on the completed system before it is used, is difficult, as it is for most other techniques
against design-caused undependability. However, N-version programming has been studied extensively
and a basic mathematical understanding reached.

 “Component-structured” software fault tolerance, especially with multiple versions of software, has
long been practiced only by developers of highly safety-critical systems. With the trend to use “off-the-
shelf” components for many applications, all kinds of software fault tolerance become more attractive
for system integrators, and schemes requiring multiple versions of the software may become cost-
effective even for systems of limited criticality. However, the many lower cost solutions based on
exploiting standard error detection methods, loosely coupled replication without design diversity, and
software “rejuvenation” are worth considering as well. An essential factor for dependability is a “fault-
tolerant design attitude”: the knowledge that design faults are almost certainly present in the
components we buy, and therefore the system integrators must make sure that they do not cause high-
consequence system failures. Developing appropriate system design solutions within the constraints
imposed by using off-the-shelf components, as well as collecting empirical measurements of the
efficacy of various fault-tolerant solutions and producing ways for informing the choice of
architectures and of redundant components, are important areas for current practical research.

Acknowledgments
This work was supported in part by the U.K. Engineering and Physical Sciences Research Council
(EPSRC) through projects DOTS (Diversity with Off-The-Shelf components, grant GR/N23912/01 and
DIRC (Interdisciplinary Research Collaboration on the Dependability of computer-based systems,

Strigini / Fault Tolerance Against Design Faults 18

grant GR/N13999/01). The author wishes to thank his colleagues Peter Popov, Peter Mellor and Ilir
Gashi for their comments on previous versions of this paper.

References
[1] RISKS, "Forum On Risks To The Public In Computers And Related Systems".
[2] J.-C. Laprie, "Dependability of Computer Systems: from Concepts to Limits,", in Proc. IFIP
International Workshop on Dependable Computing and its Applications, Johannesburg, 1998, pp. 108-
126.
[3] B. Littlewood and L. Strigini, "Validation of Ultra-High Dependability for Software-based
Systems", Communications of the ACM, 36, 1993, pp. 69-80.
[4] B. Littlewood and L. Strigini, "Software Reliability and Dependability: a Roadmap", in A.
Finkelstein (Ed.) "The Future of Software Engineering - State of the Art Reports given at the 22nd Int.
Conference on Software Engineering, Limerick, June 2000", ACM Press, 2000, pp. 177-188.
[5] L. Chen and A. Avizienis, "On the Implementation of N-Version Programming for Software Fault
Tolerance during Program Execution", in Proc. 1st International Computer Software and Applications
Conference, COMPSAC 77, New York, 1977, pp. 149-155.
[6] J. J. Horning, H. C. Lauer, P. M. Melliar-Smith and B. Randell, "A Program Structure for Error
Detection and Recovery", in Proc. Operating Systems, International Symposium, Rocquenfourt, 1974,
pp. 172-187.
[7] A. Avizienis and H. Yutao, "Microprocessor entomology: a taxonomy of design faults in COTS
microprocessors", in Proc. 7-th IFIP International Working Conference on Dependable Computing for
Critical Applications (DCCA-7), San Jose, California, USA, 1999, pp. 3-23.
[8] D. A. Norman, "Commentary: Human error and the design of computer systems", Communications
of the ACM, 33, 1990, pp. 4-7.
[9] C. Meadows and J. McLean, "Security and Dependability: Then and Now", in Proc. Workshops on
Computer Security, Dependability, and Assurance: From Needs to Solutions, York, England and
Washington DC, USA, 1998, pp. 166-170.
[10] Y. Deswarte, L. Blain and J.-C. Fabre, "Intrusion tolerance in distributed systems", in Proc. IEEE
Symposium on Research in Security and Privacy, Oakland, CA, USA, 1991, pp. 110-121.
[11] M. R. Lyu (Ed.), "Software Fault Tolerance", Wiley, 1995.
[12] L. Pullum, "Software Fault Tolerance Techniques and Implementation", Artech House, 2001.
[13] B. Littlewood, P. Popov and L. Strigini, "Modelling software design diversity - a review", ACM
Computing Surveys, 33, 2001, pp. 177-208.
[14] J.-C. Laprie (Ed.), "Dependability: Basic Concepts and Associated Terminology", Springer-
Verlag, 1991.
[15] P. A. Lee and T. Anderson, "Fault Tolerance: Principles and Practice", Wien - New York,
Springer-Verlag, 1990.
[16] B. Parhami, "A Paradigm for Adjudication and Data Fusion in Dependable Systems", this volume.
[17] A. Avizienis, P. Gunningberg, J. P. J. Kelly, L. Strigini, P. J. Traverse, K. S. Tso and U. Voges,
"The UCLA DEDIX System: A Distributed Testbed for Multiple-Version Software", in Proc. 15th
IEEE International Symposium on Fault-Tolerant Computing (FTCS-15), Ann Arbor, Michigan, USA,
1985, pp. 126-134.
[18] T. Anderson and J. C. Knight, "A Framework for Software Fault Tolerance in Real-Time
Systems", IEEE Transactions on Software Engineering, SE-9, 1983, pp. 355-364.
[19] D. P. Siewiorek and R. S. Schwartz, "Reliable Computer Systems Design and Evaluation",
Bedford, MA, Digital Press, 1998.
[20] D. K. Pradhan (Ed.), "Fault-Tolerant Computing: Theory and Techniques", Prentice-Hall, 1986.
[21] P. E. Ammann and J. C. Knight, "Data Diversity: An Approach to Software Fault Tolerance",
IEEE Transactions on Computers, C-37, 1988, pp. 418-425.
[22] Y. Huang, C. Kintala, N. Kolettis and N. D. Fulton, "Software Rejuvenation: Analysis, Module
and Applications", in Proc. 25th International Symposium on Fault-Tolerant Computing (FTCS-25),
Pasadena, California, U.S.A., 1995, pp. 381-390.
[23] J. Gray, "Why do computers stop and what can be done about it?", in Proc. 5th Symposium on
Reliability in Distributed Software and Database Systems (SRDSDS-5), Los Angeles, CA, USA, 1986,
pp. 3-12.
[24] I. Lee and R. K. Iyer, "Faults, Symptoms and Software Fault Tolerance in the Tandem
GUARDIAN90 Operating System", in Proc. 23rd Int. Conference on Fault-Tolerant Computing
(FTCS-23), Toulouse, France, 1993, pp. 20-29.

Strigini / Fault Tolerance Against Design Faults 19

[25] A. Avizienis, "The Methodology of N-Version Programming", in M. Lyu (Ed.) "Software Fault
Tolerance", John Wiley & Sons, 1995, pp. 23-46.
[26] B. Littlewood and L. Strigini, "A discussion of practices for enhancing diversity in software
designs", Centre for Software Reliability, City University DISPO project technical report LS-DI-TR-
04, 2000, www.csr.city.ac.uk/diversity.
[27] P. Popov, L. Strigini and A. Romanovsky, "Choosing effective methods for design diversity - how
to progress from intuition to science", in Proc. SAFECOMP '99, 18th International Conference on
Computer Safety, Reliability and Security, Toulouse, France, 1999, pp. 272-285.
[28] F. Saglietti, "A Classification of Software Diversity Degrees Induced by an Analysis of Fault
Types to be Tolerated", in Proc. 5th International GI/ITG/GMA Conference on Fault-Tolerant
Computing Systems. Tests, Diagnosis, Fault Treatment, Nuernberg, Germany, 1991, pp. 383-95.
[29] B. Littlewood and D. R. Miller, "Conceptual Modelling of Coincident Failures in Multi-Version
Software", IEEE Transactions on Software Engineering, SE-15, 1989, pp. 1596-1614.
[30] R. D. Schlichting and F. B. Schneider, "Fail-Stop Processors: An Approach to Designing Fault-
Tolerant Computing Systems", ACM Transactions on Computing Systems, 1, 1983, pp. 222-238.
[31] D. Powell, "Failure Mode Assumptions and Assumption Coverage", in Proc. 22nd International
Symposium on Fault-Tolerant Computing (FTCS-22), Boston, Massachusetts, USA, 1992, pp. 386-
395.
[32] D. Briere and P. Traverse, "Airbus A320/A330/A340 Electrical Flight Controls - A Family Of
Fault-Tolerant Systems", in Proc. 23rd International Symposium on Fault-Tolerant Computing (FTCS-
23), Toulouse, France, 1993, pp. 616-623.
[33] J.-C. Laprie, J. Arlat, C. Beounes and K. Kanoun, "Definition and Analysis of Hardware-and-
Software Fault-Tolerant Architectures", IEEE Computer, 23, 1990, pp. 39-51.
[34] H. Kantz and C. Koza, "The ELEKTRA Railway Signalling-System: Field Experience with an
Actively Replicated System with Diversity", in Proc. 25th IEEE Annual International Symposium on
Fault -Tolerant Computing (FTCS-25), Pasadena, California, 1995, pp. 453-458.
[35] J. Reynolds, J. Just, E. Lawson, L. Clough, R. Maglich and K. Levitt, "The Design and
Implementation of an Intrusion Tolerant System", in Proc. DSN 2002, International Conference on
Dependable Systems and Networks, Washington, D.C., USA, 2002, pp. 285-292.
[36] G. E. Migneault, "The Cost of Software Fault Tolerance", NASA Langley Research Center
Technical Memorandum TM-84546, September, 1982,
[37] U. Voges, "Software diversity", Reliability Engineering and System Safety, 43, 1994, pp. 103-110.
[38] K. Kanoun, "Real-World Design Diversity: A Case Study on Cost", IEEE Software, 18, 2001, pp.
29-33.
[39] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico and L. Strigini, "A Contribution to the
Evaluation of the Reliability of Iterative-Execution Software", Software Testing, Verification and
Reliability, 9, 1999, pp. 145-166.
[40] U. Voges (Ed.), "Software diversity in computerized control systems", Wien, Springer-Verlag,
1988.
[41] M. A. Vouk and D. F. McAllister, "Fault-tolerant software reliability engineering", in M. R. Lyu
(Ed.) "Handbook of Software Reliability Engineering", IEEE Computer Society Press and McGraw-
Hill, 1995, pp. 567-614.
[42] J. C. Knight and N. G. Leveson, "An Experimental Evaluation of the Assumption of Independence
in Multi-Version Programming", IEEE Transactions on Software Engineering, SE-12, 1986, pp. 96-
109.
[43] B. Littlewood, "The impact of diversity upon common mode failures", Reliability Engineering and
System Safety, 51, 1996, pp. 101-113.
[44] Y. C. B. Yeh, "Design Considerations in Boeing 777 Fly-By-Wire Computers", in Proc. 3rd IEEE
High-Assurance Systems Engineering Symposium (HASE), Washington, DC, USA, 1998, pp. 64-73.
[45] G. Mongardi, "Dependable Computing for Railway Control Systems", in Proc. 3rd IFIP Int.
Working Conference on Dependable Computing for Critical Applications (DCCA-3), Mondello, Italy,
1993, pp. 255-277.
[46] D. B. Turner, R. D. Burns and H. Hecht, "Designing micro-based systems for fail-safe travel",
IEEE Spectrum, 24, 1987, pp. 58-63.
[47] J. F. Lindeberg, "The Swedish State Railways' Experience with n-version Programmed Systems",
in F. Redmill and T. Anderson (Ed.) "Directions in Safety-Critical Systems", Springer-Verlag, 1993,
pp. 36-42.
[48] I. Gashi, P. Popov, L. Strigini, "Fault diversity among off-the-shelf SQL database servers", in
Proc. 2004 International Conference on Dependable Systems and Networks (DSN 2004), Florence,
Italy, 2004, pp. 389-398..

Strigini / Fault Tolerance Against Design Faults 20

[49] I. Gashi, P. Popov, V. Stankovic and L. Strigini, "On Designing Dependable Services with Diverse
Off-The-Shelf SQL Servers", in R. de Lemos, C. Gacek and A. Romanovsky (Ed.) "Architecting
Dependable Systems", Springer-Verlag, 2004, pp. 196-220.
[50] J.-C. Fabre, F. Salles, M. R. Moreno and J. Arlat, "Assessment of COTS microkernels by fault
injection", in Proc. Seventh IFIP International Working Conference on Dependable Computing for
Critical Applications (DCCA-7), San Jose, California, USA, 1999, pp. 25-44.
[51] C. Fetzer and Z. Xiao, "HEALERS: A Toolkit for Enhancing the Robustness and Security of
Existing Applications", in Proc. DSN 2003, International Conference on Dependable Systems and
Networks, San Francisco, U.S.A., 2003, pp. 317-322.
[52] P. Popov, L. Strigini, S. Riddle and A. Romanovsky, "Protective Wrapping of OTS Components",
in Proc. 4th ICSE Workshop on Component-Based Software Engineering: Component Certification
and System Prediction, Toronto, 2001,
[53] B. Littlewood and L. Strigini, "Redundancy and diversity in security", in Proc. ESORICS 2004,
9th European Symposium on Research in Computer Security, Sophia Antipolis, France, 2004, in print.
[54] T. Fraser, L. Badger and M. Feldman, "Hardening COTS Software with Generic Software
Wrappers", in Proc. 1999 IEEE Symposium on Security and Privacy, Oakland, CA , USA, 1999, pp.
2-16.
[55] J. L. Lions, "Report by the Inquiry Board on the Ariane 5 Flight 501 Failure", ESA/CNES 19 July,
1996, http://www.esa.int/tidc/Press/Press96/ariane5rep.html.
[56] M. Schneider, "Self-stabilization", ACM Computing Surveys, 25, 1993, pp. 45-67.
[57] S. Dolev, "Self-Stabilization", MIT Press, 2000.
[58] "Special issue on Algorithm-Based Fault Tolerance and Result-Checking", IEEE Transactions on
Computers, C-45, 1996,
[59] H. Wasserman and M. Blum, "Software reliability via run-time result-checking", Journal of the
ACM, 44, 1997, pp. 826-849.
[60] M. Blum and S. Kannan, "Designing programs that check their work", Journal of the ACM, 42,
1995, pp. 269-291.
[61] S. S. Brilliant, J. C. Knight and N. G. Leveson, "The Consistent Comparison Problem in N-
Version Software", IEEE Transactions on Software Engineering, SE-15, 1989, pp. 1481-1485.
[62] S. Poledna, "Fault-Tolerant Real-Time Systems: The Problem of Replica Determinism", Kluwer
Academic Publishers, 1996.
[63] B. Randell, "System Structure for Software Fault Tolerance", in Proc. International Conference on
Reliable Software, Los Angeles, California, April 1975, (in ACM SIGPLAN Notices, Vol. 10, No. 6,
June 1975), 1975, pp. 437-449.
[64] B. Randell and J. Xu, "The Evolution of the Recovery Block Concept", in M. R. Lyu (Ed.)
"Software Fault Tolerance", Wiley, 1995, pp. 1-21.
[65] K. S. Tso and A. Avizienis, "Community Error Recovery in N-Version Software: A Design Study
with Experimentation", in Proc. 17th International Symposium on Fault-Tolerant Computing (FTCS-
17), Pittsburgh, Pennsylvania, USA, 1987, pp. 127-133.
[66] K. H. Kim and H. O. Welch, "Distributed Execution of Recovery Blocks: An Approach for
Uniform Treatment of Hardware and Software Faults in Real-Time Applications", IEEE Transactions
on Computers, 38, 1989, pp. 626-636.
[67] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico and J. Xu, "An adaptive approach to
achieving hardware and software fault tolerance in a distributed computing environment", Journal of
System Architecture, 47, 2002, pp. 763-781.
[68] J. H. Lala and L. S. Alger, "Hardware and Software Fault Tolerance: a Unified Architectural
Approach", in Proc. 18th International Symposium on Fault-Tolerant Computing, Tokyo, 1988, pp.
240-245.
[69] D. Powell, J. Arlat, L. Beus-Dukic, A. Wellings, A. Bondavalli, P. Coppola, A. Fantechi, E. Jenn
and C. Rabejac, "GUARDS: a generic upgradable architecture for real-time dependable systems", IEEE
Transactions on Parallel and Distributed Systems, 10, 1999, pp. 580-599.
[70] D. S. Wilson, G. F. Sullivan and G. M. Masson, "Certification of Computational Results", IEEE
Transactions on Computers, 44, 1995, pp. 833-847.

