10,898 research outputs found

    Recent developments in 2D materials for energy harvesting applications

    Get PDF
    The ever-increasing demand for energy as a result of the growing interest in applications, such as the Internet of Things and wearable systems, etc, calls for the development of self-sustained energy harvesting solutions. In this regard, 2D materials have sparked enormous interest recently, due to their outstanding properties, such as ultra-thin geometry, high electromechanical coupling, large surface area to volume ratio, tunable band gap, transparency and flexibility. This has given rise to noteworthy advancements in energy harvesters such as triboelectric nanogenerators (TENGs), piezoelectric nanogenerators (PENGs) and photovoltaics based on 2D materials. This review introduces the properties of different 2D materials including graphene, transition metal dichalcogenides, MXenes, black phosphorus, hexagonal boron nitride, metal-organic frameworks and covalent-organic frameworks. A detailed discussion of recent developments in 2D materials-based PENG, TENG and photovoltaic devices is included. The review also considers the performance enhancement mechanism and importance of 2D materials in energy harvesting. Finally, the challenges and future perspectives are laid out to present future research directions for the further development and extension of 2D materials-based energy harvesters

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Multi-Robot Multi-Room Exploration with Geometric Cue Extraction and Spherical Decomposition

    Full text link
    This work proposes an autonomous multi-robot exploration pipeline that coordinates the behaviors of robots in an indoor environment composed of multiple rooms. Contrary to simple frontier-based exploration approaches, we aim to enable robots to methodically explore and observe an unknown set of rooms in a structured building, keeping track of which rooms are already explored and sharing this information among robots to coordinate their behaviors in a distributed manner. To this end, we propose (1) a geometric cue extraction method that processes 3D map point cloud data and detects the locations of potential cues such as doors and rooms, (2) a spherical decomposition for open spaces used for target assignment. Using these two components, our pipeline effectively assigns tasks among robots, and enables a methodical exploration of rooms. We evaluate the performance of our pipeline using a team of up to 3 aerial robots, and show that our method outperforms the baseline by 36.6% in simulation and 26.4% in real-world experiments

    An empirical investigation of the relationship between integration, dynamic capabilities and performance in supply chains

    Get PDF
    This research aimed to develop an empirical understanding of the relationships between integration, dynamic capabilities and performance in the supply chain domain, based on which, two conceptual frameworks were constructed to advance the field. The core motivation for the research was that, at the stage of writing the thesis, the combined relationship between the three concepts had not yet been examined, although their interrelationships have been studied individually. To achieve this aim, deductive and inductive reasoning logics were utilised to guide the qualitative study, which was undertaken via multiple case studies to investigate lines of enquiry that would address the research questions formulated. This is consistent with the author’s philosophical adoption of the ontology of relativism and the epistemology of constructionism, which was considered appropriate to address the research questions. Empirical data and evidence were collected, and various triangulation techniques were employed to ensure their credibility. Some key features of grounded theory coding techniques were drawn upon for data coding and analysis, generating two levels of findings. These revealed that whilst integration and dynamic capabilities were crucial in improving performance, the performance also informed the former. This reflects a cyclical and iterative approach rather than one purely based on linearity. Adopting a holistic approach towards the relationship was key in producing complementary strategies that can deliver sustainable supply chain performance. The research makes theoretical, methodological and practical contributions to the field of supply chain management. The theoretical contribution includes the development of two emerging conceptual frameworks at the micro and macro levels. The former provides greater specificity, as it allows meta-analytic evaluation of the three concepts and their dimensions, providing a detailed insight into their correlations. The latter gives a holistic view of their relationships and how they are connected, reflecting a middle-range theory that bridges theory and practice. The methodological contribution lies in presenting models that address gaps associated with the inconsistent use of terminologies in philosophical assumptions, and lack of rigor in deploying case study research methods. In terms of its practical contribution, this research offers insights that practitioners could adopt to enhance their performance. They can do so without necessarily having to forgo certain desired outcomes using targeted integrative strategies and drawing on their dynamic capabilities

    ABC: Adaptive, Biomimetic, Configurable Robots for Smart Farms - From Cereal Phenotyping to Soft Fruit Harvesting

    Get PDF
    Currently, numerous factors, such as demographics, migration patterns, and economics, are leading to the critical labour shortage in low-skilled and physically demanding parts of agriculture. Thus, robotics can be developed for the agricultural sector to address these shortages. This study aims to develop an adaptive, biomimetic, and configurable modular robotics architecture that can be applied to multiple tasks (e.g., phenotyping, cutting, and picking), various crop varieties (e.g., wheat, strawberry, and tomato) and growing conditions. These robotic solutions cover the entire perception–action–decision-making loop targeting the phenotyping of cereals and harvesting fruits in a natural environment. The primary contributions of this thesis are as follows. a) A high-throughput method for imaging field-grown wheat in three dimensions, along with an accompanying unsupervised measuring method for obtaining individual wheat spike data are presented. The unsupervised method analyses the 3D point cloud of each trial plot, containing hundreds of wheat spikes, and calculates the average size of the wheat spike and total spike volume per plot. Experimental results reveal that the proposed algorithm can effectively identify spikes from wheat crops and individual spikes. b) Unlike cereal, soft fruit is typically harvested by manual selection and picking. To enable robotic harvesting, the initial perception system uses conditional generative adversarial networks to identify ripe fruits using synthetic data. To determine whether the strawberry is surrounded by obstacles, a cluster complexity-based perception system is further developed to classify the harvesting complexity of ripe strawberries. c) Once the harvest-ready fruit is localised using point cloud data generated by a stereo camera, the platform’s action system can coordinate the arm to reach/cut the stem using the passive motion paradigm framework, as inspired by studies on neural control of movement in the brain. Results from field trials for strawberry detection, reaching/cutting the stem of the fruit with a mean error of less than 3 mm, and extension to analysing complex canopy structures/bimanual coordination (searching/picking) are presented. Although this thesis focuses on strawberry harvesting, ongoing research is heading toward adapting the architecture to other crops. The agricultural food industry remains a labour-intensive sector with a low margin, and cost- and time-efficiency business model. The concepts presented herein can serve as a reference for future agricultural robots that are adaptive, biomimetic, and configurable

    Bildung in der digitalen Transformation

    Get PDF
    Die Coronapandemie und der durch sie erzwungene zeitweise Übergang von Präsenz- zu Distanzlehre haben die Digitalisierung des Bildungswesens enorm vorangetrieben. Noch deutlicher als vorher traten dabei positive wie negative Aspekte dieser Entwicklung zum Vorschein. Während den Hochschulen der Wechsel mit vergleichsweise geringen Reibungsverlusten gelang, offenbarten sich diese an Schulen weitaus deutlicher. Trotz aller Widrigkeiten erscheint eines klar: Die zeitweisen Veränderungen werden Nachwirkungen zeigen. Eine völlige Rückkehr zum Status quo ante ist kaum noch vorstellbar. Zwei Fragen bestimmen vor diesem Hintergrund die Doppelgesichtigkeit des Themas der 29. Jahrestagung der Gesellschaft für Medien in der Wissenschaft (GMW). Erstens: Wie ‚funktioniert‘ Bildung in der sich derzeit ereignenden digitalen Transformation und welche Herausforderungen gibt es? Und zweitens: Befindet sich möglicherweise Bildung selbst in der Transformation? Beiträge zu diesen und weiteren Fragen vereint der vorliegende Tagungsband

    Tourism and heritage in the Chornobyl Exclusion Zone

    Get PDF
    Tourism and Heritage in the Chornobyl Exclusion Zone (CEZ) uses an ethnographic lens to explore the dissonances associated with the commodification of Chornobyl's heritage. The book considers the role of the guides as experience brokers, focusing on the synergy between tourists and guides in the performance of heritage interpretation. Banaszkiewicz proposes to perceive tour guides as important actors in the bottom-up construction of heritage discourse contributing to more inclusive and participatory approach to heritage management. Demonstrating that the CEZ has been going through a dynamic transformation into a mass tourism attraction, the book offers a critical reflection on heritagisation as a meaning-making process in which the resources of the past are interpreted, negotiated, and recognised as a valuable legacy. Applying the concepts of dissonant heritage to describe the heterogeneous character of the CEZ, the book broadens the interpretative scope of dark tourism which takes on a new dimension in the context of the war in Ukraine. Tourism and Heritage in the Chornobyl Exclusion Zone argues that post-disaster sites such as Chornobyl can teach us a great deal about the importance of preserving cultural and natural heritage for future generations. The book will be of interest to academics and students who are engaged in the study of heritage, tourism, memory, disasters and Eastern Europe
    • …
    corecore