16 research outputs found

    A sequential handwriting recognition model based on a dynamically configurable CRNN

    Get PDF
    Handwriting recognition refers to recognizing a handwritten input that includes character(s) or digit(s) based on an image. Because most applications of handwriting recognition in real life contain sequential text in various languages, there is a need to develop a dynamic handwriting recognition system. Inspired by the neuroevolutionary technique, this paper proposes a Dynamically Configurable Convolutional Recurrent Neural Network (DC-CRNN) for the handwriting recognition sequence modeling task. The proposed DC-CRNN is based on the Salp Swarm Optimization Algorithm (SSA), which generates the optimal structure and hyperparameters for Convolutional Recurrent Neural Networks (CRNNs). In addition, we investigate two types of encoding techniques used to translate the output of optimization to a CRNN recognizer. Finally, we proposed a novel hybridized SSA with Late Acceptance Hill-Climbing (LAHC) to improve the exploitation process. We conducted our experiments on two well-known datasets, IAM and IFN/ENIT, which include both the Arabic and English languages. The experimental results have shown that LAHC significantly improves the SSA search process. Therefore, the proposed DC-CRNN outperforms the handcrafted CRNN methods

    Performance Evaluation of Ingenious Crow Search Optimization Algorithm for Protein Structure Prediction

    Get PDF
    Protein structure prediction is one of the important aspects while dealing with critical diseases. An early prediction of protein folding helps in clinical diagnosis. In recent years, applications of metaheuristic algorithms have been substantially increased due to the fact that this problem is computationally complex and time-consuming. Metaheuristics are proven to be an adequate tool for dealing with complex problems with higher computational efficiency than conventional tools. The work presented in this paper is the development and testing of the Ingenious Crow Search Algorithm (ICSA). First, the algorithm is tested on standard mathematical functions with known properties. Then, the application of newly developed ICSA is explored on protein structure prediction. The efficacy of this algorithm is tested on a bench of artificial proteins and real proteins of medium length. The comparative analysis of the optimization performance is carried out with some of the leading variants of the crow search algorithm (CSA). The statistical comparison of the results shows the supremacy of the ICSA for almost all protein sequences

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems

    Optimization Methods Applied to Power Systems Ⅱ

    Get PDF
    Electrical power systems are complex networks that include a set of electrical components that allow distributing the electricity generated in the conventional and renewable power plants to distribution systems so it can be received by final consumers (businesses and homes). In practice, power system management requires solving different design, operation, and control problems. Bearing in mind that computers are used to solve these complex optimization problems, this book includes some recent contributions to this field that cover a large variety of problems. More specifically, the book includes contributions about topics such as controllers for the frequency response of microgrids, post-contingency overflow analysis, line overloads after line and generation contingences, power quality disturbances, earthing system touch voltages, security-constrained optimal power flow, voltage regulation planning, intermittent generation in power systems, location of partial discharge source in gas-insulated switchgear, electric vehicle charging stations, optimal power flow with photovoltaic generation, hydroelectric plant location selection, cold-thermal-electric integrated energy systems, high-efficiency resonant devices for microwave power generation, security-constrained unit commitment, and economic dispatch problems

    Increased confidence in concept design through trade space exploration and multiobjective optimization

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.Includes bibliographical references (p. 134-143).The growing size, complexity and demands of engineering systems requires paying greater attention to the initial design of the system concept. To improve the process by which concept design is carried out, this thesis develops an Engineering Framework for Concept Development. The Engineering Framework is applicable to a diverse range of concept design problems. It helps guide the otherwise haphazard process of the early stages of design to provide confidence that the chosen concept is superior to a large set of alternatives. Accompanying the Engineering Framework is a collection of tools which aid the designer in analyzing different options. Two tools in particular are demonstrated for their mutually beneficial characteristics: 1) Object-Process Network is used to explore the full space of options, revealing the relationships among design decisions and system performance, and 2) a particle.swarm optimization algorithm is implemented to efficiently search through the design space. The use of such an optimization algorithm becomes especially advantageous when higher fidelity models are included in the analysis because it is able to quickly identify the most favorable families of designs. The complementary approaches of exploring the entire trade space and then efficiently searching for the best groups of designs are shown to provide valuable insights in concept design problems. Two case study examples are presented as applications of the Engineering Framework and design tools. The first is an air-launched sounding rocket propulsion system design. The second is the design of a responsive disaster monitoring system. In each case, the use of the Engineering Framework and concept design tools give the designer increased confidence that quality concept designs have been identified.by Ryan Glenn Odegard.S.M

    Novel Memetic Computing Structures for Continuous Optimisation

    Get PDF
    This thesis studies a class of optimisation algorithms, namely Memetic Computing Structures, and proposes a novel set of promising algorithms that move the first step towards an implementation for the automatic generation of optimisation algorithms for continuous domains. This thesis after a thorough review of local search algorithms and popular meta-heuristics, focuses on Memetic Computing in terms of algorithm structures and design philosophy. In particular, most of the design carried out during my doctoral studies is inspired by the lex parsimoniae, aka Ockham’s Razor. It has been shown how simple algorithms, when well implemented can outperform complex implementations. In order to achieve this aim, the design is always carried out by attempting to identify the role of each algorithmic component/operator. In this thesis, on the basis of this logic, a set of variants of a recently proposed algorithms are presented. Subsequently a novel memetic structure, namely Parallel Memetic Structure is proposed and tested against modern algorithms representing the state of the art in optimisation. Furthermore, an initial prototype of an automatic design platform is also included. This prototype performs an analysis on separability of the optimisation problem and, on the basis of the analysis results, designs some parts of the parallel structure. Promising results are included. Finally, an investigation of the correlation among the variables and problem dimensionality has been performed. An extremely interesting finding of this thesis work is that the degree of correlation among the variables decreases when the dimensionality increases. As a direct consequence of this fact, large scale problems are to some extent easier to handle than problems in low dimensionality since, due to the lack of correlation among the variables, they can effectively be tackled by an algorithm that performs moves along the axes

    Computational intelligence techniques for maximum energy efficiency of cogeneration processes based on internal combustion engines

    Get PDF
    153 p.El objeto de la tesis consiste en desarrollar estrategias de modelado y optimización del rendimiento energético de plantas de cogeneración basadas en motores de combustión interna (MCI), mediante el uso de las últimas tecnologías de inteligencia computacional. Con esta finalidad se cuenta con datos reales de una planta de cogeneración de energía, propiedad de la compañía EnergyWorks, situada en la localidad de Monzón (provincia de Huesca). La tesis se realiza en el marco de trabajo conjunto del Grupo de Diseño en Electrónica Digital (GDED) de la Universidad del País Vasco UPV/EHU y la empresa Optimitive S.L., empresa dedicada al software avanzado para la mejora en tiempo real de procesos industriale

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Computational intelligence techniques for maximum energy efficiency of cogeneration processes based on internal combustion engines

    Get PDF
    153 p.El objeto de la tesis consiste en desarrollar estrategias de modelado y optimización del rendimiento energético de plantas de cogeneración basadas en motores de combustión interna (MCI), mediante el uso de las últimas tecnologías de inteligencia computacional. Con esta finalidad se cuenta con datos reales de una planta de cogeneración de energía, propiedad de la compañía EnergyWorks, situada en la localidad de Monzón (provincia de Huesca). La tesis se realiza en el marco de trabajo conjunto del Grupo de Diseño en Electrónica Digital (GDED) de la Universidad del País Vasco UPV/EHU y la empresa Optimitive S.L., empresa dedicada al software avanzado para la mejora en tiempo real de procesos industriale
    corecore