
Increased Confidence in Concept Design through

Trade Space Exploration and Multiobjective

Optimization
by

Ryan Glenn Odegard
B.S., Mechanical Engineering
University of Arizona, 2006

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2008

@ Massachusetts Institute of Technology 2008. All rights reserved.

A uthor ...................

Certified by

Certified by

Accepted by...........

MASSACHUSETTS INiSTT-N -'
OF TECHNO'LOGY

OCT 15 2008

LIBRARIES

........................ ., ........... . . ....

Department of Aeronautics and Astronautics
7May 23, 2008

. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .

David W. Miller
Professor of Aeronautics and Astronautics

Thesis Supervisor

" Jaa L. Schwartz
Senior Member of the Technical Staff

The- harles Stak DrapeA aboratory, Inc.
I\\\ I esis Supervisor

Associate Department Head
Chair, Committee on Graduate Students

ARCHIVES

., .
4vid L. Darmofal





Increased Confidence in Concept Design through Trade Space

Exploration and Multiobjective Optimization

by

Ryan Glenn Odegard

Submitted to the Department of Aeronautics and Astronautics
on May 23, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

The growing size, complexity and demands of engineering systems requires paying greater attention
to the initial design of the system concept. To improve the process by which concept design is carried
out, this thesis develops an Engineering Framework for Concept Development. The Engineering
Framework is applicable to a diverse range of concept design problems. It helps guide the otherwise
haphazard process of the early stages of design to provide confidence that the chosen concept is
superior to a large set of alternatives. Accompanying the Engineering Framework is a collection of
tools which aid the designer in analyzing different options. Two tools in particular are demonstrated
for their mutually beneficial characteristics: 1) Object-Process Network is used to explore the
full space of options, revealing the relationships among design decisions and system performance,
and 2) a particle.swarm optimization algorithm is implemented to efficiently search through the
design space. The use of such an optimization algorithm becomes especially advantageous when
higher fidelity models are included in the analysis because it is able to quickly identify the most
favorable families of designs. The complementary approaches of exploring the entire trade space
and then efficiently searching for the best groups of designs are shown to provide valuable insights in
concept design problems. Two case study examples are presented as applications of the Engineering
Framework and design tools. The first is an air-launched sounding rocket propulsion system design.
The second is the design of a responsive disaster monitoring system. In each case, the use of the
Engineering Framework and concept design tools give the designer increased confidence that quality
concept designs have been identified.
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Chapter 1

Introduction

"You can use an eraser on the drafting table or a sledge hammer on the construc-

tion site."

- Frank Lloyd Wright

1.1 Motivation

Today's engineering systems are becoming larger, more complex, and more challenging to

design. As the demands placed on a wide variety of systems continue to increase, it is

important to understand the design implications early on. Even the small but sophisticated

devices that fit in our pockets are becoming more complex - they send messages via the

Internet to users on the opposite side of the world, all with the aid of communications

systems that span the globe and extend into space. With additional functionality and

interconnections between systems, the list of requirements for many large, complex systems

is growing.

The design of these new systems can be a difficult and inexact undertaking. For

those systems that are direct descendants of another, it may be straightforward to design

an alternate version that will be successful. For more innovative or complex designs, the

risk involved in the task increases significantly. This is mainly due to the uncertainties that



exist, both in how the concept will be implemented (what it looks like and what it does)

and the environments that will exist when it is finally developed (physical, dynamic, social,

economic, etc.). Furthermore, the interactions with existing systems adds another layer of

complexity.

In addition to being the most uncertain, the beginning stages of concept design are

also the most important. It is at this stage that the fundamental aspects of the system

are decided and developed. If the initial concept is flawed, it is likely that implementing

a successful system will prove difficult. The importance of early decisions is illustrated in

Figure 1-1. This graph shows the classic relation between up-front decision making and

total life-cycle costs. When a problem is first defined, the number of possible solutions is the

largest it will ever be; that is, there is a large amount of design freedom. Exploring this large

set of design choices occurs before committing to one particular design solution. Eventually

decisions are made and the design is refined. As decisions are made in determining what the

system design will be and how it will work, the freedom in design diminishes. Simultaneously,

the commitment of the overall life-cycle costs is established. This loss of design freedom and

commitment to life-cycle costs make the early stages of concept design among the most

important phases of a program. This is especially true for large systems, where 80-90%

100%

0%

Figure 1-1: Life-cycle costs committed and incurred throughout phases of the design. [5]



of the development cost is predetermined by the time 5-10% of the development effort has

been completed [27]. Therefore, an efficient, orderly process for defining and designing large

systems is essential.

1.1.1 Apollo LOR Decision

The Apollo space program of the 1960s and early 1970s provides an example of the im-

portance of early design decisions on the success of a large program. Tasked in 1961 by

President John F. Kennedy to land a man on the Moon and return him safely to the Earth,

NASA had many crucial decisions to make under uncertain circumstances. Up to that point

little or no previous knowledge existed for many of the challenges that the program faced.

One of the most critical decisions was made in 1962, when less than 1% of what would be

the total cost of the program had been spent. It was then that NASA decided to use lunar

orbit rendezvous (LOR) as the mission mode. Occurring seven years before Neil Armstrong

set foot on the lunar surface, the selection of LOR is still today a hallmark decision of the

program [12, 40].

30003 0 0 0 -----------------------------------------------------------------------------------------------.. ----.. -----.. ----------------------------------..------------------------------------------..-------------..---------..-..-..------..-...LOR decision Moon landing

2500

S2000 -

O 1500

500-! oook

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

Figure 1-2: Annual breakdown of Apollo program funding. [80]



1.1.2 Space Shuttle Requirements

There are also historical cases in which poor decisions early in concept design caused unneces-

sary growth in life-cycle costs. A good example is taken from the U.S. Space Shuttle program.

Initial requirements for the Shuttle led to the design of a two-stage reusable spacecraft with

a payload capacity of 25,000 lb to orbit. Additional requirements were then adopted from

the Air Force, which demanded a 40,000 lb polar orbit capability from Vandenburg Air Force

Base and a 1,100 nautical mile crossrange capability. As a result of the adoption of these

new requirements, the redesigned concept was a delta wing configuration, heavier and more

expensive than the initial design. In the end the Shuttle never utilized Vandenburg AFB

as a launch platform, nor did it ever fulfill the design mission envisioned by the Air Force.

By avoiding the additional burdensome requirements that were never actually required, the

program could have saved billions of dollars over its lifetime [31].

1.1.3 Orion Design Changes

More recent programs continue to display the need for thorough early examination of design

decisions. The Orion Crew Exploration Vehicle is the spacecraft NASA is currently designing

to replace the Shuttle fleet. In August of 2006, Lockheed Martin was selected as the prime

contractor to design, develop, and build Orion [36]. About a year into the contract, the

vehicle was exceeding its allocated weight budget. To counter this problem, the project

created a "Zero Base Vehicle" [28]. The goal was to remove all of the components of the

spacecraft except those required for minimum capability. Any features not essential had to

demonstrate their worthiness, with weight being the overriding objective. The Orion design

was thus reworked with redefined priorities and loss of capabilities. It continues to face

challenges that originated with the initial conceptual design.

1.1.4 Emerging Engineering Design Approaches

In addition to the importance of early decisions on the success of programs, there is also the

need to be able to design complex and collaborative systems. There is general agreement



that the increasing complexity of today's systems is a pivotal issue and the source of the

toughest challenges for systems architects and engineers [51]. As more is demanded of the

next generation of complex engineering systems, quality up-front design becomes paramount.

The advances of computer technology in recent decades have revolutionized engineer-

ing design. In the span of a generation, computers have shrunk from room-sized pieces

of equipment down to devices that fit in our pockets and contain orders of magnitude im-

provements in performance. With this rapid advancement of technology comes the ability

of engineers to more effectively and more quickly analyze designs. Instead of relying on

tedious hand calculations to verify the feasibility of a design, today's engineers have access

to design tools that allow rapid simulations. Plus, the sophistication of analysis tools allows

much more innovative designs to be considered. For instance, the advent of finite element

programs has facilitated in depth analysis of complicated geometries in structure design that

were extremely arduous in the past.

With the time required for design iterations continually decreasing, it is easier for

the designer to explore many different design options. Rather than selecting a baseline or

reference design and trying to improve individual aspects of the design, the designer should

examine a large set of alternatives to understand the effects of design decisions across the

design space. Often times, a design team shrinks the range of design options by falling back

on past design experience [26]. This is limiting as these options may be sub-optimal for the

current design problem. Furthermore, engineers tend to latch on to concepts, spending large

amounts of time trying to rework a design rather than considering alternative solutions [6].

Therefore, it is important to consider as many alternatives as possible early in the design

process to avoid potential redesign work, cost overruns, and schedule delays later on.

In the conceptual design phase, computer power has been increasingly leveraged to

manage not only the subsystem engineering design, but also system-level optimization. Mul-

tidisciplinary Design Optimization (MDO) approaches have shown great value in concentrat-

ing on optimization at the system level [59, 60]. As a complementary approach to trade space

exploration in concept design, optimization allows the designer to efficiently and quickly iden-

tify families of designs that exhibit superior features. The tandem utilization of trade space



exploration and optimization in concept design is a powerful approach to identifying the best

families of designs.

1.2 Objectives

In an effort to improve the way concept design is carried out, the goal of this thesis is to

develop an Engineering Framework for Concept Development and to demonstrate a set of

design tools that work collaboratively within that Engineering Framework. The use of the

Engineering Framework and concept design tools increase the confidence of the designer

that high-quality concepts are identified early in the process. Specifically, the Engineering

Framework for Concept Development is demonstrated with the use of the following concept

design tools:

* Object-Process Network (OPN) is used to explore a full range of possible concept

alternatives. Its ability to visually represent the design space aids in understanding

the relationships among design options. Additionally, OPN incorporates mathematical

features to model the space of feasible combinations of alternatives.

* Particle swarm optimization (PSO) is a heuristic search algorithm that efficiently iden-

tifies regions in the design space that contain the best designs, and - with the in-

corporation of higher fidelity models - provides the designer a means of reducing

computational effort without limiting the search space.

Further knowledge of the trade space is gained with the use of two additional tools,

which in this thesis supplement the trade space exploration and optimization tools:

* Pugh analysis is a qualitative method that involves pair-wise comparisons between

different concepts and provides a systematic way to make subjective tradeoffs early in

concept design.

* Analysis of variance (ANOVA) and trade space sensitivity techniques are used in the

later phases of concept design. ANOVA is a statistical means of identifying the most



important design variables in a set of design experiments. Sensitivity studies involve

the post-processing of results to better understand the underlying uncertainties in the

models and parameters.

1.3 Overview

The remainder of this thesis is organized as follows. Chapter 2 is a review of the literature

relevant to trade space exploration and optimization in concept design. Chapter 3 discusses

the Engineering Framework for Concept Development, Pugh, OPN, PSO, and ANOVA.

Chapter 4 contains two examples of applications in demonstrating the value of the Engineer-

ing Framework and concept design tools in the early stages of design. Chapter 5 provides a

summary and conclusion on the topics and application examples, as well as a discussion on

future work that can be pursued in this area.



Chapter 2

Literature Review

"We are searching for some kind of harmony between two intangibles: a form

which we have not yet designed, and a context which we cannot properly describe."

- Christopher Alexander

This chapter presents a review of the literature relevant to concept design, trade space

exploration, multiobjective optimization, and trade space sensitivity analysis. Prominent

design processes are presented for context to the Engineering Framework. Then strategies

for exploring trade spaces are discussed. The role of optimization in concept design and

the development of particle swarm optimization is introduced. Lastly a review of sensitivity

analysis for understanding uncertainty in trade spaces is presented.

2.1 Design Processes

Design, as indicated by the opening quote from Christopher Alexander, takes vague ideas and

notions of something novel, and transforms them into a useful product. The process of taking

a concept through design, development, and implementation has different names depending

on the field. These terms include the system acquisition process, the product development

process, and the product design process. Besides having different names, the processes also

have specific phases that can be domain-dependent. In general, the design process consists



of the steps shown in Figure 2-1. These major steps are: conceptual design, preliminary

design, detail design and development, production/construction, operational use and system

support, and retirement. Other generic models for describing the design process are the

"vee" process model, the spiral model, and the waterfall model [5]. The "vee" model, shown

in Figure 2-2, represents how the focus of work goes from the top-level design of the entire

system, down to the details of the components, and then up again when the components are

integrated together to constitute the full system. Figure 2-3 shows the spiral process model.

This representation emphasizes the iterative nature of design, where the same steps are

visited multiple times. In each cycle the design becomes more refined. The waterfall model

in Figure 2-4 shows the forward path of steps to take in designing and implementing a new

system. The feedback portion of the model allows iterations and refinement as necessary.

Conceptual Preliminary Detail Design and
Design Design Development

Production/ Opaional Use and trement
Consrutio 5yte m Support

Figure 2-1: General process [5] Figure 2-2: "Vee" Process Model [5]

Over the years different people and organizations have adopted their own tailored

versions of the design process. For spacecraft design, Larson and Wertz [47] define a space

mission analysis and design process that consists of the following steps: define objectives,

characterize the mission, evaluate the mission, define requirements. Raymer [67] gives an

overview of the aircraft design process, which has three phases - conceptual design, prelimi-

nary design, and detail design. The iterations on design include evaluating the requirements,

developing design concepts to meet the requirements, conducting design analysis, and doing

sizing and trade studies.

Many organizations have developed processes for the design of large systems and

missions. The NASA systems engineering process consists of the following phases: mission

feasibility, mission definition, system definition, preliminary design, final design, fabrication



Figure 2-3: Spiral Process Model [5] Figure 2-4: Waterfall Process Model [5]

and integration, preparation for deployment, deployment and operational verification, mis-
sion operations, and disposal [76]. For NASA's programs, the mission design is the early
conceptual work, followed by deeper levels of design before the system is built and flown.
The U.S. Department of Defense (DoD) has a process that includes the following phases:
Pre-Phase 0 (determination of mission need), Phase 0 (concept exploration), Phase I (pro-
gram definition and risk reduction), Phase II (engineering and manufaturing development),
and Phase III (production, fielding/deployment and operational support) [27].

In addition, modern systems engineering is adopting improved process management
techniques initially developed in software engineering, including the CMMI (Capability Ma-
turity Model@ Integration) approach [55]. In Ref. [48], Lee uses a top-down approach to
architecting software systems. Lee considers a two-phase process. This process first ad-
dresses the quality goal requirements and maps those requirements to strategic architectural
decisions. Then an architectural tradeoff analysis assesses correlations between architectural
decisions and quality goal requirements. The next phase consists of determining the quality
factor requirements, which is a refinement of the quality goal requirements. These require-
ments are mapped to tactical decisions (rather than the more general strategic decisions
made in the first phase). Finally, a tradeoff analysis is performed in the same manner as the



first phase, concluding the software system design process.

Many of these processes have specific gates and milestones that must be met before

proceeding to the next phase. Unfortunately, each of these customized processes may not

translate across domains, which can pose a problem during the design of very innovative con-

cepts or large, interacting systems. The Engineering Framework for Concept Development

proposed in this thesis, explained further in Chapter 3, is an abstraction of the specific con-

cept design processes. It serves as a guide for constructing an appropriate process suitable

to a specific design problem, regardless of maturity or domain.

2.2 Trade Space Exploration

At the outset of design, there are many possible ways to meet the needs of the customer,

user, and stakeholders. In essence, there are different tradeoffs to consider when selecting a

concept to design and develop. The set of all possible design options is referred to as the

design space, and choosing the most favorable design based on its attributes is carried out in

the trade space. To give an example of the difference between the design space and the trade

space, consider options for getting to work. The design space might include traveling by car,

train, plane, bike, or by walking. The trade space (also referred to as the objective space or

attribute space) would show how each of these options performs - walking is slower than

driving, but also cheaper; taking the train is safer than driving, but does not offer as much

flexibility in picking a final destination.

Gries [26] gives an overview of methods available for use in exploring the space of

design options. He provides as motivation for searching through many possible designs (op-

posed to conducting a limited search of only a few options) the following future trends:

increasing complexity of designs, heterogeneous architectures, and decreasing time to mar-

ket. Since an exhaustive search of the design space is generally prohibitive, Gries provides

examples of the tradeoffs that must be considered in choosing which designs to evaluate.

These tradeoffs include the total number of designs to evaluate, the accuracy of the evalu-

ation, the analysis time for each, the precision or granularity of the design space coverage,



and automation in trade space exploration.

These tradeoffs are discussed in subsequent subsections. To illustrate two of the

tradeoffs that are present in trade space exploration, Figure 2-5 shows the balance between

the objectives of obtaining highly accurate results and doing so in a time-efficient manner.
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Figure 2-5: Tradeoff between evaluation accuracy and analysis time.

2.2.1 Point design

The quickest but most limited exploration of the design space is done via single point de-

sign optimization. Often an existing concept is used as a baseline and the subsystems then

optimized for new requirements. This approach may demonstrate the feasibility of the new

concept, but it does not provide information on whether it is the best option or even how

to find a more optimal system-level solution. Benchmarks, simulations and analytical ap-

proaches can all be used in evaluating a single design [26]. Analytical approaches often

provide less precision than simulation, but simulations require an executable model. Unlike

the methods of this thesis that demonstrate the value of trade space exploration, point design

analysis does not provide the knowledge that is gained by analyzing many different design

options.

2.2.2 Random search

A Monte Carlo simulation randomly samples the design space [26]. This allows the designer

to look at more options and obtain a better understanding of the space than with a single



point design evaluation. Random searches are hindered by the fact that there is not, in

general, evenly distributed coverage of the design space, and local regions may be over- or

under-explored [14]. The principles of Tabu search [20, 21] improve upon random searches.

The Tabu search technique enforces diversification into unexplored regions of the design

space by avoiding evaluation of the same design twice, and also incorporates mechanisms to

explore the vicinity around promising design points [26, 14].

2.2.3 Design of Experiments

A collection of statistical techniques that provide a more structured approach to exploring the

design space falls under the heading of Design of Experiments (DoE). Originally developed

by R.A. Fischer in the 1920s and later employed by Genichi Taguchi in his revolutionary

approaches to Quality Engineering, experimental design aims to reduce the number of design

evaluations needed to obtain information on the design decisions [93]. Without having to

exhaustively search the design space, DoE has the advantages of being able to study the

effects of multiple input variables on one or more output parameters, identify key drivers

among potential design drivers variables, identify appropriate design variable ranges, identify

achievable objective function values, and study the robustness and sensitivity in the context

of uncertainty [14].

Full Factorial Design of Experiments

A full factorial run of DoE evaluates every level for every factor in the design space. A

factor, also called a design variable, is something the designer controls in evaluating different

designs. An example might be the size of a component. Examples of the levels associated

with a factor may be dimensions such as 1 m or 2 m. A two-level full factorial DoE includes

a high and low level for each factor. A three-level full factorial DoE has a low, moderate,

and high level for each factor. The full factorial DoE technique provides the coverage of the

vertices of the design space. It is therefore able to capture the main effects (averaged effects

due to individual factors) as well as interaction effects (when the effect of one factor depends

on the level of another) [14].



The Object-Process Network (OPN) tool [44] provides this full coverage of the space.

OPN has been used to evaluate the complete space of architectural options for NASA's

return to the Moon [77]. Simmons describes the use of OPN to enumerate the space of

design options, which include the number of crew, propulsion type, trajectories, types of

vehicles, and the ultimate destination. OPN can be used to enumerate all of the design

options in a full factorial experiment while providing additional capabilities not explicit in

DoE. These capabilities, explained further in Section 3.3, include logical rules and constraints

to eliminate infeasible options. In Ref. [78], Simmons and Koo present an application of

OPN for enumerating the design space for a Shuttle-derived launch vehicle. They show how

searching the space using OPN to enumerate all the feasible combinations allows greater

information on the trade space than if a small set of designs were evaluated.

Gralla et. al [24] use a full factorial search to examine metrics for the optimal launch

vehicle size for Moon and Mars transportation architectures. The full factorial search is used

in combination with an integer optimization formulation to minimize cost. This approach

utilizes DoE for its trade space exploration perspective and optimization for the benefit of

lower total evaluation time. Lamassoure and Hastings [45] also search an entire trade space

using generalized metrics and first-order models to examine the cost-effectiveness of on-orbit

servicing for several types of space systems. Lamassoure, Wall and Easter [46] utilize a full-

factorial search in the design of deep space missions, paying particular attention to capturing

sensitivities to key requirements early in the design.

Fractional Factorial Design of Experiments

One disadvantage of the full factorial Design of Experiments approach is that it leads to com-

binatorial explosion [14]. Consider a problem with 7 factors with 3 levels each. This requires

37 = 2187 evaluations; adding 3 factors increases the number of evaluations to 59,049. Frac-

tional factorial design aims to reduce the number of evaluations while maintaining coverage

of the space and the ability to capture the effects of the factors. Some fractional factorial

experimental design techniques include orthogonal arrays, half-fractional, Latin hypercubes,

parameter study, and the one-at-a-time method [58, 14].



2.2.4 Trade Space Visualization

The idea of exploring a large trade space implies the need to intelligently interpret the re-

sults. These results can include hundreds or thousands of unique designs. This extensive

amount of information is only useful if it can be understood. In single point design meth-

ods, the numerical data can be interpreted in a tabular format. With many designs and

many variables to track, however, this approach becomes impractical. Instead, visualization

techniques can be used to gain understanding into the problem.

The approach of exploring and visualizing the trade space before the designer ex-

presses his or her design preferences is the design strategy used in this thesis. First outlined

by Balling [1], the idea of "design by shopping" refers to this a posteriori articulation of

preference. Likened to buying a car, the design by shopping paradigm advocates providing

a "car lot" of engineering designs from which the customer can form opinions and choose

the design he or she feels is the best. This approach is the opposite of a priori articulation

of preferences in which the customer expresses up-front priorities in what design attributes

are most important. If the customer knows what these attributes of the design are, relative

importance weightings on the design objectives can be used to find a design that is optimized

to those preferences. On the other hand, the design by shopping paradigm relies on forming

opinions subsequent to seeing the trade space of designs. This adds flexibility in making

decisions and offers additional insights to the design problem.

With the design by shopping paradigm as motivation, Stump and colleagues at the

University of Pennsylvania use glyph visualization to find key trends and relationships in

multidimensional data sets. They present applications involving the visualization of trade

spaces that include Mars satellite missions [83, 84] and autonomous underwater vehicle

models [83, 82]. The glyph visualization technique that they use is one in which designs

are presented in a trade space with different properties representing certain parameters or

variables. These properties include color, shape, size, transparency, etc. Ward [92] provides

a thorough summary of the use of glyphs in multidimensional data visualization.

A number of other sources in the literature utilize visualization techniques to in-

terpret the trade space data. The work by Cornford et. al. [11] encompasses both design



and development choices in the design space. They argue that making decisions based on

a posteriori preferences enhances the selection of preferred designs, provides the means to

evaluate "what-if" scenarios for revised requirements, and allows a visual examination of the

sensitivities of designs. Kanukolanu, Lewis and Winer [41] use visualization techniques such

as blocking together portions of the trade space and multidimensional scatterplots to assess

tradeoff decisions for coupled systems. Another example showing the value of representing

trade space information visually is given in Ref. [8]. Here Cohan et. al. use different colored

glyphs in two-dimensional trade space plots for each design variable of a modular optical

space telescope. In Ref. [54], McManus and Schuman explore a utility-versus-cost trade

space for an orbital transfer vehicle. They highlight distinct propulsion options to visually

divide the space according to different types of vehicles.

These examples all exhibit deliberate use of visualization techniques to understand

the trade space implications of decisions. There remain challenges in presenting multi-

dimensional information in a way that proves useful and understandable to the designer

and decision-maker, especially with media restricted to two dimensions. Yet the previous

research and the work in this thesis demonstrate the value in visualizing trade spaces to

build insight into the design problem.

2.3 Optimization in Concept Design

The words "optimization" and "concept design" do not seem suitable to appear in the

same sentence. When a concept is initially designed, the large amount of uncertainty in its

description prohibits it from being optimized in the traditional sense of the word. The role

of optimization in concept design is not to "optimize" the concept. Rather, there are many

techniques from the operations research and optimization communities that can be leveraged

in the search for good concept designs.

Much of the work involving optimization early in the design process has been in

the field of Multidisciplinary Design Optimization (MDO). Two of the goals outlined in a

white paper issued by the AIAA Technical Committee on MDO in 1991 [9] are: 1) improve



optimization algorithms for effective handling of very large numbers of design variables,

disjoint and nonconvex design spaces, multiple extrema, and multiobjectives; and 2) improve

post-optimum sensitivity analysis for greater computational efficiency. While progress has

been made since that time, there is still much work that can be done.

As discussed further in Chapter 3, many types of conceptual engineering design prob-

lems, especially for large, integrated systems, prove challenging for optimization algorithms.

The first goal mentioned from the AIAA MDO white paper addresses this point directly.

The most successful to date have been: gradient-based algorithms with backtracking mecha-

nisms (to avoid local extrema) and evolutionary search algorithms such as genetic algorithms

(GAs) [32]. The heuristic optimization method of simulated annealing (SA) has also been

shown to work well [43]. Jilla [39] outlines a methodology for conducting trade space ex-

ploration of distributed satellite systems that utilizes simulated annealing to intelligently

search the space. Schuman and de Weck [71] use system-level optimization with both neural

networks and genetic algorithms for the multiobjective design of a Space Shuttle external

tank model. These cases are examples of the successful implementation of optimization in

the context of concept design.

The following subsections discuss the two points taken from the AIAA MDO white

paper further. First lessons learned from the MDO community are presented to validate

the use of optimization in concept design. Then a review of the literature for a recent

optimization algorithm - particle swarm optimization - is discussed. The following section

on sensitivity in concept design trade spaces addresses the second goal from the AIAA MDO

white paper.

2.3.1 Multidisciplinary Design Optimization

In recent years the advances in computing power have ushered in the growth in popularity

of MDO. The field of MDO first gained traction in the aerospace industry. The physics

dictating aircraft design inherently involves many coupling characteristics. For instance, in

both rotary and fixed wing aircraft, there are strong interactions between the aerodynamics

and complex structural dynamics that cause the phenomenon known as flutter. The flutter



of the aerodynamic surfaces is further complicated by direct coupling with the flight control

system used to trim the aircraft [9]. There is a necessary balance that must occur, and

finding the optimal design requires full consideration of all the interacting elements.

The demand for multidisciplinary optimization in aerospace engineering stems from

two primary sources [9]:

1. Major new aircraft designs occur less often, limiting the role of past experience in the

decision making process.

2. Advanced aircraft tend to be enormously complex systems, and finding an optimal

design (or knowing how to get there) is beyond the power of human judgment when

"everything influences everything else."

These motivations for MDO from the aircraft industry are justifying its application

to other fields as well. Mosher [59] explains how, in the case of spacecraft design, a man-

ually optimized design does not guarantee a system level focus, and the collection of high-

performance subsystems may not integrate into a highly efficient system implementation.

MDO techniques, on the other hand, combine a multidisciplinary approach with optimiza-

tion methods to direct the search through the design space in an intelligent manner. This

reduces the set of candidate designs that must be evaluated, focusing effort on better areas

of the space and sometimes leading to counterintuitive results.

2.3.2 Particle Swarm Optimization

Particle swarm optimization is one of the more recent heuristic search algorithms. It was

conceived in 1995 by Kennedy and Eberhart [42, 15] with the goal of modeling the social

interactions of flocks of birds. Subsequent work by Eberhart and Shi [16], as well as Venter

and Sobieszczanski-Sobieski [89], tested the algorithm's efficacy and input parameters, and

verified the algorithm's advantages over gradient-based optimization techniques.

Hassan and Cohanim [29] present a comparison between genetic algorithms and par-

ticle swarm optimization. In addition to several test cases, they examine applications for



spacecraft reliability design and radio telescope array configuration optimization. Their find-

ings indicate that the particle swarm algorithm performs as well in its effectiveness (finding

the global optimum) as the genetic algorithm, and that it requires fewer function evaluations

(better computational efficiency).

In trade space exploration, there is the implicit need for the problem to have multiple

objectives. For instance, if the only goal is to minimize cost, then the design with the

lowest cost should be chosen. Tradeoffs arise when other characteristics of the design are

factored into the decisions. There is the need then for optimization algorithms that can solve

multiobjective problems.

Coello Coello and Lechuga [7] introduce a multiobjective formulation of the particle

swarm algorithm. This algorithm uses a repository that divides the population of particles

and guides them toward multiple objectives. The space is divided into hypercubes where

selection of the "best" particles is inversely proportional to the number of non-dominated

solutions in the cube.

Grant and Mendeck [25] apply a multiobjective particle swarm technique to trajectory

optimization for atmospheric entry of the Mars Science Laboratory. The algorithm handles

both two-objective and three-objective cases. Their multiobjective particle swarm optimiza-

tion (MOPSO) algorithm uses an external archive (similar to the repository in Ref. [7]) of

non-dominated solutions to communicate information between particles of the swarm for

finding the Pareto front in multiobjective problems.

Other multiobjective approaches have been developed as well. Mostaghim et. al. [61]

introduce the sigma method, which directs particles along different directions based on rela-

tive importances of the objectives. Fieldsend et. al. [18] proposes a dominated tree for storing

particles and moving in the direction of the Pareto front. Lastly, Hu et. al. [33] develop a dy-

namic neighborhood strategy for picking the best particle in multiobjective problems. This

approach is simple in its implementation but requires the selection of one objective as the

optimization objective. It therefore suffers from sensitivity to that selection.

A variety of hybrid algorithms that incorporate other optimization methods have

been investigated in the literature. These applications are numerous and will not be listed



here, but hybrid PSO examples related to concept design include the use of sequential

quadratic programming and neural networks [66]; combination of dynamic niche technology

with PSO [49]; and a hybrid of simulated annealing, Kriging meta-modeling, and PSO [37].

2.4 Sensitivity in Trade Spaces

The large amount of uncertainty early in a design prompts the need for ways to measure how

sensitive the design options are to changes. Similar in their application to exploring a design

space, Taguchi methods are often used for achieving robust designs [93]. These techniques

make early designs more reliable and more robust to uncertain conditions in manufacturing

and the marketplace.

Walton and Hastings [91] outline a framework that explores the implications of un-

certainty in conceptual design architectures. The first step is to identify and quantify the

uncertainty sources. The next step is to develop distributions of outcomes. This is done by

taking the best, the worst and the expected states and evaluating each one in a full factorial

Design of Experiments.

Uebelhart [86] examines uncertainty in conceptual design by using Design of Experi-

ments tools and propagating parametric uncertainties through analytic models. He is then

able to place bounds on the resulting designs in the trade space. Comparisons are made

between the vertex and Monte Carlo methods for bounding the uncertainty range, where

the vertex method reproduced the bounds of the Monte Carlo analysis in 99% of 700 trials.

Each of these has particular applications, and both are demonstrated in this thesis.

Masterson [52] describes a methodology for developing robust designs in the face of

high levels on uncertainty. Her approach of Robust Performance Tailoring and Tuning uses

optimization and isoperformance analysis techniques to make adjustments during design as

well as on the physical hardware. This allows better compensation for uncertainties. The

resulting design is more robust, thus less sensitive to variations.



2.5 Literature Review Conclusion

This chapter presented a review of the literature related to concept design processes, trade

space exploration, multiobjective optimization, and trade space sensitivity techniques.

Many versions of the design process exist, and they have evolved over time to meet the

needs of various industries and organizations. Some particular models are the "vee" process

model, the spiral process model, and the waterfall process model. Particular design processes

have been promoted in different vehicle design strategies (satellites, aircraft), in various

organizations (NASA, DoD), and in different fields (CMMI from software engineering).

Trade space exploration can be carried out in a number of ways, including random

search, full factorial experimental design and fractional factorial experimental design. To help

interpret the resulting trade space(s), various visualization techniques have been developed

to allow the designer to make decisions based on a posteriori preference information.

Optimization in the context of concept design has seen increasing popularity with the

development of the field of MDO. As systems become more complex and the interactions

among subsystems unpredictable, a systems-level optimization is increasingly important.

Particle swarm optimization is an algorithm that is well-suited to handle the types of prob-

lems often seen in concept design stages. Multiobjective algorithms have been developed

that enable an efficient search for Pareto front designs.

Sensitivity is an important consideration in concept design because of the large

amount of uncertainty present. The previous work of several authors was reviewed for their

relevance to trade space uncertainty and sensitivities.



Chapter 3

Engineering Framework and Concept

Design Tools

"To dismiss front-end design as mere icing is to jeopardize the success of any

site."

- Curt Cloninger

This chapter describes the Engineering Framework for Concept Development, as well

as the concept design tools of Pugh analysis, Object-Process Network, particle swarm opti-

mization, and analysis of variance.

3.1 Engineering Framework for Concept Development

The opening quote to this chapter, though referring to website design, is representative of

the importance of the initial concept design in many different types of projects. This is

where the advantages of a guide for approaching the early stages of design becomes most

useful.

In Chapter 2, the design process and several tailored versions of it were discussed.

At the beginning of all of those processes was a period dedicated to determining the design



concept. Then a series of iterations refine this concept and add detail to its description.

The numerous customized design processes, however, contain domain-dependent steps for

carrying this out. An Engineering Framework for Concept Development has been proposed

at The Charles Stark Draper Laboratory, Inc., as a guide for conducting the difficult and

important early design stages, regardless of concept domain. This Engineering Framework

is an abstraction of the more specific concept design processes. It enables a user to create a

process tailored to the specific problem at hand.

3.1.1 Engineering Framework Activities

The Engineering Framework* is defined by four problem-solving activities. The successful

execution of these activities constitutes a phase. Each phase requires all four activities, but

the number of phases and the type of data considered in each phase differ depending on the

domain and resolution of the problem.

The four activities, described below, are necessary to successfully complete a phase.

They should be performed in the order listed since downstream activities often rely on those

upstream, and jumping ahead can result in hasty decisions that diminish the quality of the

final design. Issues that arise in any one or more activities can be resolved by revisiting

upstream activities if necessary; as in most iterative design, the flow is not intended to be

purely linear, but rather a guide for progression.

1. Problem Characterization involves gathering necessary information on the problem

to correctly characterize it. This can include descriptors of value, external influences

and constraints, distinguishing attributes, stakeholders and their objectives, and a pri-

ori preference information.

2. Alternative Generation is the activity in which distinct alternative solutions to the

problem are generated. Cataloging of alternatives can occur by directly specifying

a potential solution, or by enumerating and combining design options into feasible

*The Engineering Framework for Concept Development is currently being developed at Draper Labora-
tory, with collaboration taking place through http://collab.draper.com/projteams/cdmc



alternatives. The design options can take discrete values (such as technology choices

and binary decisions) or have continuous ranges (e.g., dimensions, power levels, mass

distributions).

3. Model Development and Evaluation consists of mapping the alternatives to the

criteria from the Problem Characterization activity. This activity measures how well

the alternatives deliver value while not violating the constraints and meeting the ob-

jectives of the stakeholders. Depending on the type of data available, this can be done

with expert opinion, empirical evidence, or simulation models to represent system per-

formance.

4. Decision Analysis is the last activity and constitutes building intuition and insight

about the alternatives. This is done by evaluating the data on each alternative with

respect to the problem criteria. The goal is to learn about the important tradeoffs

and how design decisions affect the achievement of the objectives. Insights can include

a posteriori preference modification (what was considered important may change),

assessment of feasibility of alternatives (non-viable solutions are discarded), and com-

parison to external references (benchmarks). If a subset of alternatives appears to

satisfy constraints, not conflict with external influences, and achieve acceptable value,

then this subset can be carried through a more detailed iteration of the activities until

a sufficient level of detail has been reached that adequately describes a solution to the

original problem.

3.1.2 Engineering Framework Phase Classes

The set of four Engineering Framework activities constitutes one iteration of design. While

the activities can be repeated any number of times until a fully described concept emerges,

it is convenient to include a description of the level of detail one might be working at for a

given iteration through the problem. The Engineering Framework incorporates phase classes

that describe and classify levels of refinement in the design. The phase class descriptions

are:



1. Exploration involves the least precise data. In this phase class the problem is not well-

defined in terms of measures of value, external influences, or distinguishing attributes.

Idea generation is highly creative and identifies high-level classes of solutions. Mission

options are far-ranging and include few specifics. Relationship evaluation is imprecise

and results in highly qualitative comparisons. Decision analysis is based on subjective

assessments and user judgment. If analysis is used, it is often heuristic, based on

empirical data, or based on a limit analysis of fundamental theorems. The results

should indicate which concepts are clearly inferior or infeasible, and should point to

those which merit further investigation.

2. Selection involves a deeper understanding of a smaller set of candidate solutions.

The overall problem is understood, and the external influences, including outside con-

straints, limitations, and competition should come into play. Alternative generation

focuses on combining different components that constitute the design. Mission op-

erations are explored in greater detail. Relationships may be established based on

fundamental theorems, empirical data, and expert opinion, and will result in mixed

quantitative-qualitative values. Decisions require more rigorous ranking of the alter-

natives based on the data. The results should describe how alternatives perform with

respect to one another and indicate which to examine in more depth.

3. Refinement involves the most detailed analysis of alternatives. The problem is clearly

defined, complete with a concept of operations, identified stakeholders, constraints,

and competitors. The concept is parameterized and the parameters explored within

reasonable ranges to generate alternatives. Relationships are built on physics-based,

detailed models, and may require the integration of subsystems. The mission or mission

envelope is fully quantified. The data are highly quantitative and held to a fair degree

of precision. The decisions should be more focused and may rely on numerical or

graphical techniques. The end result describes a feasible system concept design.

One other note to the phase classes is that there may be more than one iteration necessary in

a phase class. The descriptions of the phase classes, however, remain sufficient for classifying

the level of detail and the type of data with which one is working.



3.1.3 Engineering Framework Design Tools

The Engineering Framework for Concept Development makes it possible to organize and

classify various design tools. The arrangement of the Engineering Framework in a matrix

structure provides a clear representation of this, as shown in Table 3.1. Pugh analysis,

Object-Process Network, particle swarm optimization, and analysis of variance are included

in the cells in the matrix in which they are applied.

Table 3.1: Matrix representation of the Engineering Framework for Concept Development
with Pugh, OPN, PSO, and ANOVA included.

Exploration

Selection

Refinement

Problem
Characterization

Alternative
Generation

OPN

Model Development
& Evaluation

Pugh

OPN

Decision
Analysis

ANOVA

PSO
ANOVA

Having concept design tools organized with respect to the Engineering Framework

makes it easy to identify what tools are available at different stages of design. Pugh analysis,

for example, is best used when concept evaluation is necessary at a qualitative level. On the

other hand, OPN is well suited for developing models and evaluating the results when the

type of data is a mix between qualitative and quantitative. Particle swarm optimization and

analysis of variance are useful for examining the results, extracting useful information, and

building insight into the problem when the models have been refined.

It is worthwhile to highlight some nuances to concept design tool placement in the

Engineering Framework. Optimization techniques can be considered a nested iteration of

the activities of Alternative Generation, Model Development & Evaluation, and Decision

Analysis. A particular optimization algorithm will pick, evaluate, and assess one or more

designs with respect to the criteria from the Problem Characterization activity, and then

repeat the final three activities based on the result found, attempting to find a better solution.

Because the ultimate goal of the algorithm will be to find good results on which to make

decisions, it is best classified under Decision Analysis. As an example of a tool that spans



phase classes, ANOVA is applicable to the Selection phase class as well as the Refinement

phase class. OPN is well suited for generating combinations of feasible design options, an

Alternative Generation activity, and also evaluating the design combinations, which is Model

Development and Evaluation.

Other design tools can also be organized to fit in the Engineering Framework. Ex-

amples of tools applicable in Problem Characterization include the Delphi method [22], the

Analytical Hierarchy Process [70], and stakeholder analysis [13]. Some design tools for Al-

ternative Generation are affinity diagrams [22], morphological matrices [13], trade trees [22],

and Design of Experiments techniques [90]. For Model Development and Evaluation, useful

design tools include Design Structure Matrices [81], axiomatic design [79], regression anal-

ysis, and risk assessment matrices [22]. Finally, some examples that fall in the Decision

Analysis activity are utility theory [85], Physical Programming [56, 57], as well as a variety

of other optimization and statistical tools.

By selecting appropriate design tools to use in the Engineering Framework, a tailored

design process can be developed for specific applications. An example of a custom process

that fits this description is the design process formulated by Ross et. al. [68]. This process

for designing space systems, Multi-Attribute Tradespace Exploration (MATE), involves tools

such as stakeholder analysis, full factorial DoE, utility theory based on formal interviewing

techniques, and sensitivity analysis. The MATE process also includes an iteration that

involves a detailed, concurrent engineering session. The phase classes of the Engineering

Framework support this tailoring of the design process to particular applications.

3.2 Pugh Analysis

The first design tool demonstrated as part of the Engineering Framework is Pugh anal-

ysis [65]. This is an Exploration phase class design technique used to compare different

concepts. It therefore falls in the Model Development and Evaluation activity. Pugh analy-

sis helps guide subjective, qualitative pair-wise comparisons of various concepts. The result

is a relative ranking of the concepts, which can be used to select a smaller set of concepts



to explore in greater detail. In addition to the ranking of alternatives that Pugh analysis

provides, the other important aspect is the dialogue that is stimulated when team members

collaborate to discuss the merits of competing concepts. When the problem, the concept

alternatives, and the goals are vague, structuring the discussion to clarify these ideas is very

useful.

3.2.1 Pugh Implementation

The necessary inputs to conduct a Pugh analysis are the attributes of the design and a set

of concept alternatives. The attributes are what the stakeholders of the system care about.

These are used to measure the "goodness" of the concept alternatives. The attributes and

concepts are arranged in a matrix, with the attributes in the first column and the concepts

along the top row. An example matrix is shown in Table 3.2.

Table 3.2: Example Pugh Matrix
Concept 1 Concept 2 Concept 3 Concept 4

Baseline
Attribute 1 0 1 -1 0
Attribute 2 0 1 -1 0
Attribute 3 0 0 0 1
Attribute 4 0 1 1 0
Attribute 5 0 1 -1 0
Score 0 4 -2 1

Ref. [65] outlines the procedure for using the Pugh matrix. It is summarized here.

The first step in the analysis is to select a baseline concept. This concept will be the datum

against which the others are compared. For each attribute, the concepts are compared to

the baseline concept and given a score of (+1) if it performs better in that attribute, (-1) if it

performs worse, or (0) if there is negligible difference between it and the baseline concept. By

comparing concepts over all of the stakeholder attributes, it becomes evident which concepts

are the "winners" and which are the "losers." The simplest way to quantitatively measure

the goodness of each concept is to sum the numbers in each concept's column. The highest

score represents the best rankings relative to the baseline concept.



In the example matrix shown in Table 3.2, there are four concepts being evaluated

for five attributes. The scores indicate that Concept 2 is the best choice compared to the

baseline Concept 1. Concept 3 has the worst relative performance, while Concept 4 tends to

be about the same as the baseline.

To enhance the Pugh approach, this thesis implements a cumulative scoring technique

in which multiple baselines are selected and Pugh matrices completed for each baseline.

By selecting more than one baseline concept, the scores and rankings represent a fuller

description of the tradeoffs among the concepts. This is evident by considering an example

case in which two concepts that both score better than the baseline have different scores when

compared to one another. Carrying out analyses with multiple baselines reveals additional

information that better ranks the relative attractiveness of the each of the concepts.

Completing a Pugh analysis results in [65]:

* Greater insight into the requirements,

* Greater understanding of the problem,

* Greater understanding of the potential solutions,

* An understanding of the interaction between the proposed solutions, which can give

rise to additional solutions,

* A knowledge of the reasons why one concept is stronger or weaker than another.

Also, the ranking of the concepts allows the designer to prioritize which concepts are most

promising. The Pugh method formalizes a concept comparison procedure that works ef-

fectively in practice. Pugh argues that it avoids the false confidence instilled by weighting

matrices of other methods, and stimulates creative, unconstrained thinking as well [65].

3.3 Object-Process Network

The Object-Process Network software tool was developed by Ben Koo as a domain-neutral,

executable meta-language designed to represent, generate, and manipulate simulation mod-



els [44]. What it is best used for is exploring a large space of design alternatives. In the

manner of a full factorial design of experiments, OPN generates and evaluates all the possi-

ble combinations of design alternatives. User-defined mathematical functions calculate the

attributes for all of the design combinations. OPN also has the ability to use the inter-

nal functions to reduce the number of alternative possibilities. This is useful for constrained

problems in which some combinations of alternatives result in infeasible designs. This unique

aspect of OPN makes it superior to full factorial design since only feasible alternatives are

evaluated. Finally, the object-oriented, visual aspect of OPN makes it easy for the designer

to understand the design space, relationships between design options, and the constraints

that exist.

An example of how a model can be set up in OPN is shown in Figure 3-1, which

shows an OPN model representing decisions that accompany designing a car. The decisions

are represented by the boxes and the alternatives by ellipses.

Figure 3-1: An example OPN model that enumerates and models all of the combinations of
alternatives that produce feasible car designs.

The execution of an OPN model can be thought of as a set of tokens propagating

through the network [77]. In the car OPN model example, an initial token starts at the up-

per left with initialization of the model. The token duplicates itself whenever it encounters

a decision with more than one alternative. Here the first token moves to the first decision

- "Body Style." At this point the token duplicates itself to create four instances of de-

sign possibilities, one each for "Minivan," "Sedan," "Sport," and "Convertible." This split



represents a tradeoff in the design space. The tokens then repeat this duplication for each

decision; thus the set of tokens that pass through the OPN model represents all the possible

combinations of alternatives.

3.3.1 Logic and Model Relationships

An interesting feature of OPN is its ability to to handle interrelated decisions and rules

of logic to prune the feasible space. Alternatives may be dependent on other decisions,

and OPN provides a visual representation in which to view these relationships. In the car

OPN model, the "Body Style" alternative of "Convertible" is linked to the "Engine Type"

decision, bypassing the "Number of Doors" decision. This is because convertibles are modeled

as having two doors. There is no decision to make at that point in the model, and the token

entering the "Convertible" ellipse proceeds directly to the decision for choosing the "Engine

Type."

The logic rules built into OPN models are contained in the arrows connecting decisions

and alternatives. When these Boolean expressions are codified, the arrow changes color to

blue instead of the default black. An implementation of this is exemplified by the arrow

pointing from the decision for "Number of Doors" to the alternative of "2." In this case

the alternative selection of "Minivan" requires four doors, so the token proceeding from

"Minivan" cannot propagate through the choice of "2" doors, and the space is trimmed of

infeasible combinations.

After enumerating the possibilities for "Engine Type" and "Engine Size," the tokens

reach the "Brakes" decision in the model. A loop in the OPN models at this decision

demonstrates another unique feature. Here the decision for type of brakes is made as either

"Disc" or "Drum." After this decision there is the option to choose back brakes that are

different from the front. The token will proceed through the arrow pointing to "Back Brakes"

and then choose the set of brakes different from its initial decision. The logical rules contained

in the arrows allow these choices to be made.



3.3.2 Resulting Design Space Combinations

A particular path through the network of decisions and alternatives yields a design concept.

An example of one such car design resulting from the OPN model is shown in Figure 3-

2. This set of alternatives represents a sedan which has a 3.5 L gasoline engine, standard

transmission, and a luxurious interior. A different feasible combination of alternatives is

shown in Figure 3-3, and represents a convertible design with different sets of front and back

brakes, a stiff suspension and a luxurious interior to accompany the standard transmission.

Depending on user-defined measures of "goodness," the OPN model can also be used to rate

and rank each of the possible design combinations.

* of doors 3

Init state 1 Body Style_2 d
Engine type_,4

-Tra-n io ... O.. . Gasoline 4

Standard_8

Different back brakes? 7

D_ _s___ Dtse6 Engine Size_

i Suspension 3.5 L

Figure 3-2: ExamIntple caror design of a sedaEn11 obtained as a path through the OPN model.

Figure 3-2: Example car'design of a sedan obtained as a path through the OPN model.

Figure 3-3: Example car design of a convertible obtained as a path through the OPN model,

with the unique use of OPN features such as skipping decisions and looping to visit a decision

again.



3.3.3 Advantages and Disadvantages

OPN is tool that has many unique and advantageous features, as well as some disadvantages.

Traditional Design of Experiment techniques enumerate all (full factorial) or some (fractional

factorial) of the combinations of alternatives. Any constraints, coupling or interrelated

decisions are handled after all the combinations have been enumerated. OPN provides a

means of modeling these interactions before the full enumeration and execution are complete.

This allows only feasible combinations to be evaluated. The other appeal of OPN is its visual

representation of the decision space. OPN gives the designer the ability to visually identify

what alternatives match with others, in addition to being able to execute the model and

enumerate the possibilities. In a vein similar to the usefulness of using Simulink instead of

writing m-files in MATLAB@, OPN provides a user-friendly interface with which to build

models for conducting trades.

One of the disadvantages of OPN is its inability to perform detailed mathematical

operations. Granted many "architecture"-level decisions may be based entirely on analytical

correlations, when the need for higher fidelity evaluations of concepts is required, other

tools are better suited to this than OPN. The mathematical capabilities of OPN consist of

closed-form analytic expressions, which may or may not be sufficient.

The biggest hindrance currently to the implementation of OPN models is the need for

improved memory management. Models which generate a total number of combinations on

the order of 1000 use about 1 gigabyte of RAM, depending on the particular specifications in

the model. For applications in which the number of combinations in the space exceeds this,

significant time and effort is required to manipulate the models to prevent memory overflow.

In addition, OPN models take longer to run than with other programs. While the features of

OPN such as its visual representation of interrelated decisions and rules to prune the design

space are quite useful, its limitations motivate the incorporation of optimization techniques.



3.4 Optimization Techniques

Trade space exploration with OPN provides a systematic approach to exploring many trade-

offs. This full view of the space is important in understanding the drivers of a system design.

Instead of selecting a point design and optimizing to what could be merely a local optimum,

searching a larger set of options and seeing how coupling between combinations affects the

quality of the design gives additional insight to the concept design process. As the fidelity

of the models used to evaluate candidate designs necessarily improves as more knowledge is

gained, running a full-factorial search can become unmanageable. It is then desirable to im-

plement a way of conducting trades that identifies the better designs more quickly, hopefully

without narrowing the search space.

Optimization methods are, in general, founded on rigorous mathematical principles,

where ideas such as global optimality, uniqueness, convergence, and the number of function

evaluations are important [4]. When considering the incorporation of optimization in the

context of concept design, however, these notions are blurred and lose their strict interpreta-

tion due to the fact that there is so much uncertainty. In designing a new car, for instance,

an "optimized" design early in the process may turn out to be clearly inferior if additional

information is gained on the engine performance, overall weight, or body design. Thus, the

use of optimization in the early concept design stages is not intended to find the single best

design, but to identify groups or families of good designs in an efficient manner.

For problems with more than one objective, the idea of Pareto optimality dictates how

to identify which solutions are the best. While Chair of Political Economy at the University of

Lausanne in Switzerland, Vilfredo Pareto introduced his eponymous concept: "The optimum

allocation of the resources of a society is not attained so long as it is possible to make at least

one individual better off in his own estimation while keeping others as well off as before in

their own estimation." [63] In a multiobjective problem, a Pareto optimal solution is one in

which improvement in one objective cannot be achieved without a simultaneous worsening in

another objective. The solutions that are Pareto optimal are referred to as non-dominated

solutions since any other solutions are worse in at least one other objective. These non-

dominated solutions form what is called the Pareto front. Visual examples of Pareto fronts



and non-dominated solutions are shown in Figure 3-10 and in Chapter 4.

The Pareto front comprises many "optimal" solutions, and choosing one depends on

which objective(s) is (are) considered more important. When the problem is fully character-

ized in the problem formulation, a dominated solution (one not on the Pareto front) should

not be preferred to a non-dominated one, since at least one of the objectives can be im-

proved by selecting a different solution. It is worth noting, however, that in the presence of

uncertainty, the Pareto front may not in fact accurately describe all of the "best" solutions.

Changes in assumptions or conditions may cause other solutions to become constituents of

the Pareto optimal set of solutions, and others to leave the set. For this reason, the opti-

mization techniques used in this thesis focus on the history of the solutions found that cover

the space and on the region around the Pareto front.

3.4.1 Problem Formulation

Though sometimes trivialized when doing optimization exercises, problem formulation is

one of the most important steps in setting up an optimization algorithm. The Problem

Characterization activity from the Engineering Framework, as discussed in Section 3.1, is

used to directly formulate the problem in mathematical terms. The standard form for a

problem can be expressed as shown in Equation 3.1 [4, 14],

minimize J(x)

subject to gj(x) 0 j= 1,...,(31)

hk(x) = 0 k = 1,..., m 2
S< xi< x i--l,. n

where x is a vector of the design variables (called the design vector), J is a vector of objective

functions, gj is the jth inequality constraint, hk is the kth equality constraint, x is the lower

bound of the i th variable in the design vector, and xy is the upper bound of the ith variable

in the design vector. The bounds on the design vector are called side constraints. The

goal is to minimize the objective function(s), usually directly related to the attributes of the



system, such as the performance, cost, or risk. If the desire is to maximize an objective,

inserting a negative sign into the objective function easily handles this situation. There are n

design variables and a total of m = mi + m 2 constraints (not including the design vector

side constraints).

The design vector is a set of design choices. From the car example in Section 3.3, the

design vector representing the sedan shown in Figure 3-2 would be x = [Sedan, Gasoline,

3.5 L, Disc, Standard, Soft, Luxury]T . An example of a constraint may be that the car

needs to get at least 20 miles per gallon fuel efficiency, which could be expressed as: g (x) =

MPG > 20. It may be useful as well to define another vector of inputs to the mathematical

models, but whose values do not change from design to design. This constants vector, k,

consists of values that are defined to be nonvarying, or are assumed fixed for the duration

of the simulation.

Many engineering and concept design problems prove difficult for optimization tech-

niques due to two main reasons: nonconvexity and nondifferentiability [14]. A convex set is

one in which any two points in the set can be connected by a line which is also completely

within the set. Figures 3-4 and 3-5 illustrate convex sets and functions. Formally, the set

S E R' is convex [4] if for x' E S and x 2 e S,

Axi + (1 - A)x2 E S, VA E (0, 1) (3.2)

and a function f(x) bounding a convex set is convex if

f (Ax' + (1 - AX)2) < Af(x1 ) + (1 - A)f(x 2 ), VA E (0, 1) (3.3)

Many (or most) engineering problems are naturally non-convex [14].

Commonly used optimization methods such as the Simplex method, Newton's method,

and the conjugate gradient method utilize gradient information to determine direction of im-

provement in the problem [87, 4]. Analytic functions allow straightforward determination

of derivatives, but for problems without closed-form expressions, finite difference approxi-

mations can be costly. Furthermore, discontinuity is another problem gradient-based search



f(x)

Figure 3-4: (a) Convex set: a line con-

necting any two points in the set is in the Figure 3-5: Convex function: between

set. (b) Nonconvex set: the orange seg- any two points xi and x2 , the value of

ment of the line connecting two points in the function is not greater than the point

the set is outside the set. on the line connecting f(x') and f (x2 ).

algorithms face [87]. This can surface in the form of discontinuous functions, or with the

presence of integer variables. Techniques such as branch and bound exist for handling in-

teger programming problems [4]. This method systematically enumerates every candidate

integer solution, or stops after a specified number of branches have been explored. Problems

that incorporate look-up tables pose the problem of discontinuity and may not fit an integer

programming formulation.

Optimization problems with the characteristics of nonconvexity, discontinuity, and/or

nondifferentiability usually fall under the class of NP-hard (nondeterministic polynomial-

time hard) problems, and many engineering challenges have these traits [14]. Methods

to handle these types of problems are limited, but the most promising approach is often

heuristic-based optimization, of which particle swarm optimization is an example. These

heuristic search algorithms generally rely on stochastic parameters that perturb a guided

search in order to avoid local extrema and span nonconvex and discontinuous spaces. The

most popular heuristic search technique to date has been Genetic Algorithms (GAs), which

use a population of solutions that is refined based on ideas borrowed from biological evolution

to search through the space for better solutions [23].

To quickly arrive at "good" solutions in concept design, the formal components of

optimization may not be necessary, and heuristic searches are viable alternatives. By defini-

tion heuristic search algorithms are not guaranteed to find the optimal solution(s). Instead,

x



they are methods to guide the search for better solutions, and can be used to handle the

hard problems that other optimization methods cannot.

3.5 Particle Swarm Optimization

Particle swarm optimization is a heuristic search algorithm originally based on modeling the

social interaction of a flock of birds in flight [42, 15]. Similar to how a population of birds will

hone in on a search (for food, for example), the PSO algorithm consists of a set of particles

that "fly" through the design space searching for the best solution. By incorporating the

exchange of information between particles, the population as a whole can find better regions

in which to look and avoid getting trapped in local extrema.

3.5.1 Single Objective Formulation

Each particle is equivalent to a design vector, x, and the design solution that it describes

is known in PSO parlance as a "position." How the particles search through the space is

determined by each particle's "velocity," which is influenced by three factors. The position

of each particle is then updated based on this movement. For a single objective problem,

this movement is described mathematically in Equation 3.4 [33, 89].

k k k

Vk+1 k Vk + Ck - + C2 Xi (3.4)
i i 1 t 2  At

inertial component
cognitive component social component

The new velocity of particle i at step k + 1 is a sum of its current velocity, vt,

multiplied by an inertia weighting coefficient wk; its relative position compared to the best

position visited by particle i; and its relative position compared to the best position in the

entire swarm. These three components are referred to as the inertial component, cognitive

component, and social component, respectively. The variables are defined in Table 3.3. An

illustration of how these three components contribute to the velocity update for each particle

is shown in Figure 3-6 [29].



Table 3.3: PSO variables

v : velocity of particle i at step k wk: inertia weighting coefficient at
step k

x : position of particle i at step k cl: cognitive constant

p : best position visited by particle i c2: social constant
up to step k

p: best (global) position from all r , r : random values at step k se-
particles in population up to lected from uniform distribution
step k between 0 and 1

At -1

The Inertial Component, first introduced by Shi and Eberhart [73], acts to move the

particle in the same direction as the last step. The suggested value of the weighting

coefficient, wk, has varying interpretations in the literature. Shi and Eberhart [73]

originally tested a constant weighting coefficient between w = 0 and w = 1.4, and Shi

and Eberhart [75] suggest using 0.8 < w < 1.4. Shi and Eberhart [75] show improved

convergence using an adaptive inertia weight. They suggest that a decreasing wk

provides large initial velocities for a global search of the space to start followed by

localized search. Others, such as Zheng [94], make a case for the opposite: an initially

randomly distributed swarm can adequately cover the space with a low wk, but as the

particles converge, there is a greater need to increase the inertia to prevent premature

convergence in a local minimum. Their tests indicate that an increasing inertia weight

outperforms the decreasing inertia weight in convergent speed. The work in this thesis

has found a constant weighting coefficient to be sufficient.

The Cognitive Component refers to the memory of each individual particle. Like an

individual bird remembering where it found its last meal, this component of the velocity

is a measure of how far away the current position is from the best position the particle

has found up to the current step, k. The coefficient is comprised of a constant, cl, and a

random variable, ri, uniformly distributed between 0 and 1. Kennedy and Eberhart [42]

originally proposed using cl = c2 = 2, so that the mean of the stochastic coefficient,

ricl, is equal to 1. Venter and Sobieszczanski-Sobieski [89] proposed giving more trust

to the social parameter, using cl = 1.5 and c2 = 2.5. The physical interpretation of



these parameters is explained with the aid of Figure 3-7 [25]. If cl = 2, the maximum

value of the stochastic coefficient, rici, is 2, the mean is 1, and the minimum is 0. This

sets the range over which the cognitive component of the velocity vector can vary. The

mean value places the position at pk, the best position in the particle's memory.

The Social Component of the velocity is the contribution of the current globally optimal

position - the best position found by all the particles in all the previous iteration

steps. This is analogous to the birds sharing their food discovery with all the others

so they can move toward that location. It varies with each time step, k, as the swarm

flies around, but ideally converges to the global optimum. The same reasoning behind

the coefficient c2r2 holds for the social component as for the cognitive component, and

is also shown in Figure 3-7.

Xk+1

Pg

tA fk

ak
°'-.

*% 4''o°..

i Inertial
component

Figure 3-6: Illustration of the velocity components in the PSO algorithm (Eq. 3.4), showing
the inertial, cognitive and social influences on the particle's movement through the design
space [29].

Because the velocities and positions are vectors, the updates in movement are done

for each design variable in the design vector. Thus the diagrams in Figures 3-6 and 3-7 would

need to be extended to n dimensions.



wM, at mm
compone70l t

Figure 3-7: Illustration of how the coefficients of the velocity terms in Eq. 3.4 affect the

magnitude of each velocity component.

Constrained optimization problems are more difficult than unconstrained ones. Sev-

eral approaches to side constraint violation exist. For handling the position of the particles

in the design space, there are several approaches. When a side constraint on the design

variable is violated, the particle can be reset to its last feasible position [17]. Alternately,

only the feasible solutions are retained in the population [34], or a penalty function can be

applied that degrades the objective value of the particle so it does not gain favor in the

swarm [64]. The approach found to be most effective in this thesis is resetting the particle's

position to its last feasible position.

The other issue for particles that violate the side constraints is their velocities. The

first method is to set the velocity equal to zero for the design variable that violated the

constraint. This has the effect of stopping the motion which sent the particle toward the

iX



infeasible region, and the next step would return the particle in the direction of the global

best and/or the particle's best position. The other approach is to set the velocity equal to

its negative upon side constraint violation. This effect would turn the particle around 180

degrees, avoiding further exploration of the infeasible region. Both approaches are used in

the case studies of Chapter 4, where either the "rest" or "bounce" method is chosen with an

equal probability [25].

What is referred to as "velocity explosion" is a drawback of the algorithm that is

related to how constrained the problem is [14]. This is exhibited by velocities that grow

increasingly large with respect to the expected design space range; divergence characteristics

prevent the particles from finding good solutions. A quadratic exterior penalty function on

the objective function is implemented by Venter and Sobieszczanski-Sobieski [88] to reduce

this effect. The work in this thesis found that resetting the positions of particles that violated

the constraints to the boundaries of the design space was sufficient in preventing velocity

explosion.

Whereas the genetic algorithm is inherently a discrete algorithm, PSO is inherently

continuous. Handling discrete problems is easily and successfully done by rounding those

design variables whose values must take integer quantities. Venter and Sobieszczanski-

Sobieski [89] show that the integer version of PSO runs faster than the continuous one.

The variables in this thesis include both continuous and discrete values. Therefore, only the

discrete variables, which represent choices among technology options, are rounded.

3.5.2 Multiobjective Formulation

The particle swarm algorithm has inherent advantages for problems with multiple objec-

tives. These derive from its property of having a population of particles. An example of a

multiobjective problem is one in which a design must maximize performance while simul-

taneously minimizing cost or risk. The goal in multiobjective optimization problems is to

identify the Pareto front. A common approach to multiobjective problems is to form a (sin-

gle) composite or aggregate objective function, which is generally a convex combination of

the objective functions. That is, each objective is given a relative importance, or weight,



and the composite objective function is optimized. By sweeping through different relative

importance values, the Pareto front can be approximated. This technique however, suffers

from the inability to handle non-convex problems, as described in Section 3.5.3.

There are different approaches for implementing a multiobjective PSO. Most consist

of either handling separate objectives independently or by using the non-dominated solutions

to alter what particles are considered the cognitive and social bests.

One approach, first introduced by Coello Coello and Lechuga [7] is to establish a

repository of non-dominated solutions with the design space separated into hypercubes.

For each simulation step, the global optimum, pg, is chosen from this repository using

tournament selection, which is a random selection criterion. As described further by Grant

and Mendeck [25], pg is determined based on a particle's crowdedness distance, a measure

of proximity to other particles in the objective space. This directs the exploration toward

sparsely populated regions of the Pareto front.

Another approach, which has not been utilized in the literature, to the best knowledge

of the author, is to divide the swarm population evenly into subswarms. The performance of

the particles in each subswarm is measured according to separate objectives. For instance,

one subswarm may attempt to minimize the mass of the system while the objective of another

is to maximize stiffness. If left separate they would both carry out independent problems.

By manipulating the social components of the particles, they receive competing information

that tends to move them in a direction toward the Pareto front of the multiple objectives.

The social exchange is accomplished by substituting the pgk of each subswarm i (or objective

i) with that of subswarm/objective (i + 1) - where the final subswarm uses the pk of the

first subswarm.

In tests conducted in this thesis, the multiobjective algorithm using the repository

suffers from increased complexity and computational expense as compared to the subswarm

formulation. For the ease of formulation and speed of execution, the subswarm algorithm is

implemented with excellent results.



3.5.3 Algorithm Test Cases

To verify the effectiveness of the particle swarm algorithm, two test cases are conducted: a

single-objective problem and a multiobjective problem. Both test functions have multiple

local extrema and thus are non-convex, a traditionally difficult characteristic to overcome.

The single-objective formulation is:

maximize J(xl,x 2) =

3(1 - xz)2e - x - (x2+1)2 - 10 (x1/5 - xI - x5) e - x- _e -(x1+1) 2-x

subject to -3 < xl < 3 (3.5)

-3 x2 < 3

where J is the objective function that is to be maximized, and x and z 2 are the design

variables with side constraints limiting the range of each to the interval [-3, 3]. This function

is also the peaks function in MATLAB(.

Figures 3-8 and 3-9 show contour plots and surface plots, respectively, of the objective

function. The blue points are the particles of the PSO algorithm. The sequence of plots

represent the procession of the algorithm through time steps as the population searches the

space for the best values of the objective function. Examination of the particles through

the steps reveals how the swarm adjusts its motion based on its most current information.

In Time Step 1, the population is randomly distributed throughout the design space. By

Time Step 7, the swarm is concentrating on the local maximum around (X1 , X2) = (1.5,0).

In this time step, however, there is one particle that has migrated to the region of (xl, x2 ) =

(-0.5, -0.5) where another local maximum exists, except this one is better than (x, x 2) =

(1.5, 0). By Time Step 10, the majority of the population has moved in the vicinity of this

better solution. The population again finds and migrates to the local (and global) maximum

close to (x 1, x2) = (0, 2). Time Step 13 shows slight overshooting of a number of the particles

due to their inertia, but they all begin to converge on this globally optimal solution through

the remaining time steps.

The second test case is a multiobjective problem. Instead of the objective, J, being a

single function, it is a vector of two functions for which there is not a single optimal solution.
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Figure 3-8: Contour plots of the single objective test case for the PSO algorithm

In fact, for most regions of the design space, the values of the objective functions conflict

with one another. That is, for many values of (x1 , x2), the value of J is high while the value

of J2 is low. The problem formulation is:

minimize J(x)= J(X 2)1, 2)

LJ2 (1, X2)

3(1 - XI)2e-1-(2+1) - 10(xi/5 - x - Xz)e- -

- 3e - (x1+2)2 - x 2 + (2xl + X2)

3(2 - z 2 )2e--(+1)2 - 5(-X 2 /5 - x - X)

- 10e-( 1-2) 2 :

(3.6)

subject to -3 < x < 3

where J = [J1, J2]T is a vector of the first and second objective functions (J and J2, respec-
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Figure 3-9: Surface plots of the single objective test case for the PSO algorithm

tively), both of which are minimized, and x = [z1 , x 2]T is a vector of the design variables,
x and X2.

Figure 3-10 shows the design and objective spaces. The top two plots show the con-
tours of Ji and J2 as functions of x1 and x2, along with the whole history (all time steps)
of the PSO particles. The bottom plot is the objective or trade space, where J is plotted
against J2. To visualize how the true design space maps to the objective space, a grid of
points along the x and x2 directions at equally spaced intervals of 0.05 is evaluated for J1
and J2 and plotted as the black dots in the objective space. It is clear that this multiob-
jective space is non-convex. This non-convexity proves challenging for many optimization
techniques. For instance, the green squares represent the optimized solution to a series
of convex combinations of the two objectives. They are found by creating a single objec-
tive function by using a series of weighted summations of the two objective functions. For
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increments of 0.05 for A between 0 and 1, the green solutions are minimizations of:

J = AJ1 + (1 - A)J2  (3.7)

These solutions of J, are valid, but it is evident that the use of the convex combination

of J1 and J2 to obtain the single Jx misses a lot of interesting, non-dominated solutions. In

fact this approach cannot find any of the non-convex solutions. Plus there is a clear lack

of uniformity of solutions across the space in this problem, evidenced by the large jump

between solutions at the bottom right and top left portions of the objective space.

The blue points represent the history of the population of PSO particles, both in the

design spaces and the objective space. There are three characteristics of interest: 1) the

initial random distribution helps establish a wide, global search of the whole space, 2) the

particles then tend to search the regions that perform well in both objectives, and 3) the

efficiency with which the PSO algorithm finds non-dominated solutions is evident by the

number of PSO function evaluations compared to evaluation of the full space with a grid.

The pink stars represent the non-dominated solutions of the PSO set. The yellow points

(some of which are below other points) are the non-dominated solutions of the full grid of

the design space (black points). The cyan stars are the points in the PSO population history

that are non-dominated with respect to the true, full grid space of points. For the full grid,

14,641 evaluations of each of the functions are required (one for each point in the design

space) in order to find the 126 non-dominated solutions over the full grid space. Compare

that with the particle swarm algorithm, which identifies 102 non-dominated solutions with

respect to the full grid, needing just 1500 function calls (50 time steps for a population of 30

particles). This is an order of magnitude improvement in the number of function evaluations

to find 81% as many non-dominated solutions.

3.5.4 Advantages and Disadvantages

As described previously, heuristic search algorithms are very appropriate for finding "good"

solutions and identifying promising regions of trade spaces, which is the focus in conceptual
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Figure 3-10: Multiobjective test case for the PSO algorithm

design. Specifically, PSO has been shown to outperform the popular Genetic Algorithm [29]

in the number of required function evaluations, and still finds the optimal solution with the

same frequency. In addition, GAs have many more parameters which the designer must

control, sometimes a burdensome task as much as a guessing game. Granted PSO has been

implemented in "hybrid" algorithms that incorporate other methods, thereby increasing its

complexity, the essence of the algorithm is simple conceptually and there are few parameters

to control. PSO is also ideally suited for parallel computing applications [89]. Since the

evaluation for each particle is done independently, multiple processors can be used to reduce

the run-time.

The disadvantages of PSO also derive mostly from its status as an heuristic algorithm.
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It is not guaranteed to find the optimal solution(s), nor converge in any strict interpreta-

tion of the term. The literature reports excellent repeatability in finding global optima for

benchmark functions [74], but its performance in problems whose solutions are unknown

a priori is unverifiable. Highly constrained problems are a challenge for many optimization

algorithms is, including particle swarm optimization. However, constrained optimization is

a common application area for PSO [72].

PSO is able to effectively search for optimal (or close to optimal) solutions - which

correspond to the most promising designs in engineering a new system - for problems that

are traditionally hard to solve. It is has much merit in concept design, as will be demonstrated

in Chapter 4.

3.6 Sensitivity Analysis

The goal of a sensitivity analysis is to identify which aspects of a system are most susceptible

to variation in the inputs, and to measure the degree to which each aspect is influenced by

each source of variation.

3.6.1 Analysis of Variance

Analysis of variance (ANOVA) is a statistical method that decomposes the contributions

in the output to variation among the inputs. In combination with an organized Design of

Experiments, ANOVA indicates which are the most important factors affecting the perfor-

mance characteristics [90]. In examining concept design trade spaces, ANOVA techniques

are used to identify how observed variations in the attributes correspond to choices of design

variables. The method works by apportioning the total variation in the outputs to individual

design variables. It is based on summing the squares of the deviation from the mean for each

design variable.

Recall that a design vector, x, is composed of design variables such that x = [Xl, x 2,

x3 ... xn]T . Each xi represents a design choice, such as a 3 L engine size (e.g., xl = 3). The



first calculation in using ANOVA is the total sum of squares, ST, which gives the sum of the

squares of the differences between each observation yi (an attribute of one particular design)

and the mean of the entire set of observations (total number of designs evaluated):

T T

ST = 2yi-E(y)2 - y (3.8)
i=1 i= 1 i=1

where E(y) = E=1 yi is the mean of all observations and T is the total number of obser-

vations.

Next the variation from the overall mean for each setting of the design variables is

calculated. For each design variable, its sum of squares, S,,, is given by:

P 2

Si = n r (xixi = x )[E(yrxi = )- E(y) (3.9)
j=1

where p is the total number of possible settings for design variable xi, n(xilxi = xj) is the

number of observations for which the design variable xi is at setting xj, and E(ylxi = xj)

is the mean of the observations at which the design variable xi is at setting xj. This is

calculated for each design variable in the design vector (i = 1,..., n).

Given the variation for each design variable, the ratio of the sums of squares tells how

each design variable influences the overall variation. The relative influence, RI,, gives how

much variation is attributable to each design variable:

RI, = Sx (3.10)
ST

For multiple attributes, this procedure would be repeated for other sets of observa-

tions, such as for zi, i = 1, . . .,T.

3.6.2 Uncertainty Characterization

Identifying important design variables with ANOVA is critical if those design variables are

also sensitive to uncertainty, such that design decisions have the possibility of being greatly



affected by future changes. There are a number of ways that uncertainty comes into play in

system design. Drawn largely from Ref. [30], Table 3.4 lists a number of sources of uncertain-

ties, possible mitigation strategies, and desired outcomes for the system when uncertainties

are reduced early in the design and development.

Table 3.4: Uncertainty sources, mitigation strategies, and desired outcomes
Statistical variation
Systematic error and subjective judgment
Linguistic imprecision

Sources of uncertainty VariabilityVariability
Randomness
Disagreement in interpretation
Approximations
Margins
Redundancy
Verification and Testing

Mitigation strategies Generality (multi-functionality, commonality)
Serviceability/Upgradeability
Modularity
Trade Space Exploration
Portfolio and Real Options
Reliability (probability system will work)
Robustness (ability to perform under variety of circumstances)

Desired outcomes Versatility (ability to do unintended functions)
Flexibility (ability to be modified to do unintended functions)
Evolvability (ability to serve as basis to meet new needs)
Interoperability

3.6.3 Sensitivity Analysis Techniques

To better understand the sensitivities of a design to possible uncertainties, the results from

the analysis of variance can be combined with a sensitivity sweep in which the important

design parameters are varied and the resulting change in output is examined. The ANOVA

tells the designer which design elements contribute most to the variation for a particular

attribute. A sensitivity analysis on this design variable gives the expected variation in

performance for a range of inputs, based on the extent of the uncertainty for that design

variable.



There are two main approaches to conducting the sensitivity study, both closely

related to methods used for trade space exploration. The first is to use a Monte Carlo simu-

lation to select values from a given probability distribution. This would be most appropriate

for a parameter whose variation is well characterized by a given distribution. However, it

often requires many simulation runs to obtain adequately distributed and statistically sig-

nificant results. The other alternative is to utilize a Design of Experiments approach. With

this method, extreme cases are chosen to represent worst-case scenarios; for example, a 3-a

deviation from the nominal mean could be the value used for the sensitivity analysis. This

would require far fewer runs than the Monte Carlo, but may not be as representative of real

world cases [26]. In this thesis, the two approaches are used for the two different case studies.

The Air-Launched Sounding Rocket problem, described in Section 4.1, has a short simula-

tion time, which makes a Monte Carlo run reasonable. The disaster monitoring problem,

described in Section 4.2 has a much longer simulation time, thus motivating the use of the

DoE method. In general, many concept design problems will not have verifiable probability

distributions on various parameters, and with the exception of assuming a uniform or normal

(or other) distribution, the Design of Experiments approach should be sufficient [86].



Chapter 4

Case studies

"However beautiful the strategy, you should occasionally look at the results."

- Winston Churchill

"A lot of times, people don't know what they want until you show it to them."

- Steve Jobs

Two cases are presented to demonstrate the value of using the Engineering Frame-

work for concept design problems. In particular, Pugh analysis, Object-Process Network,

particle swarm optimization, and analysis of variance are used together to effectively and

systematically approach these concept design examples. The greatest value in using the En-

gineering Framework and the design tools is the ability of the designer to find a concept that

is superior to a large set of alternatives. Accompanying the final concept design selection

is the aggregation of insight and better understanding of the problem and the design space.

The interplay between the designer's reasoning abilities and the computational advantages

of the concept design tools is a key aspect of the Engineering Framework. The tools do not

create the design, and they should not choose the design either. Rather, intelligent decision-

making through the design process is aided by the structure of the Engineering Framework

and the computational resources of the design tools.



The Engineering Framework is applicable to problems of varying type and scope. Both

of the case studies presented are conceptual designs, but they have distinct differences that

demonstrate the generality of the approach outlined in this thesis to solving other concept

design problems. The first case study is the design of the propulsion system for an Air-

Launched Sounding Rocket (ALSR). The emphasis in this example is on the Selection and

Refinement phase classes of the Engineering Framework. The design tools linked together

are OPN, PSO, and ANOVA. These enable exploration of the trade space and knowledge

about the tradeoffs among different design choices. The ALSR propulsion system design

involves choices in geometry, propellant options, and staging choices, and is generally a

tightly defined problem.

The second problem considered is the design of a multi-vehicle system for providing

surveillance in a disaster response scenario. The proposed problem is to design a system that

provides high-quality, rapid coverage of an area affected by a recent disaster. This open-ended

problem statement is given in such a way as to not bias a particular solution. Thus there is

a large amount of design freedom. At the same time there is little knowledge on the problem

and how to solve it. Therefore, a significant amount of work in the Exploration phase class

is needed, utilizing Pugh analysis for selecting among high-level concept alternatives. The

Selection phase class analysis incorporates preliminary modeling of a system design using

OPN. Then refined models are evaluated with the use of PSO. Finally, the most important

aspects of the design are identified using ANOVA, and sensitivity studies reveal how to select

a design that is robust to uncertainty.



4.1 Air-Launched Sounding Rocket

The first application problem to demonstrate the Engineering Framework and concept de-

sign tools is an Air-Launched Sounding Rocket (ALSR). Focusing on the elements of the

propulsion system, this design study evaluates at a total of 13,488 designs to identify which

are the most promising and what are the main design drivers and their effects.

Also referred to as research rockets, sounding rockets carry scientific instruments to

almost any altitude, ranging from a few kilometers to a few thousand kilometers. They are

especially useful for collecting experimental data in regions of the atmosphere above the

heights balloons can reach (about 40 km) and below the orbits of satellites (about 160 km).

Other advantages of sounding rockets include their simplicity, low costs, short lead times,

and flexibility in launch locations and launch dates [10].

Research groups in the 1950s started firing sound-

ing rockets from airborne platforms. Many "rockoons"

- named because they consist of a rocket lifted by a

balloon to launch above the thickest part of the atmo-

sphere - were fired between 1952 and 1960. James Van

Allen led one of the first teams to put rockoons to prac-

tical use when his group lofted an 11-kg payload to over

80 km. With the goal of detecting radiation at high

altitudes, Van Allen's rockoon experiments ultimately

helped him better understand and explain the charac-

teristics of Earth's magnetic field. With the successes of

rockets launched from balloons, the Air 'orce and INavy
Figure 4-1: A Navy rock-

started looking into using high-altitude aircraft. This
oon just after a shipboard

concept took on the name "rockaire." In 1955, the Navy launch [10].

successfully tested launching a rocket from an F2H2 air-

craft. The Air Force conducted a test in 1956. No important scientific experiments were

done using rockaires, however, and the rockaire concept never garnered as much attention

as the rockoon did during the 1950s [10].



These previous research endeavors with sounding rockets launched from airborne plat-

forms all come from the nascent days of the space age. Since that time, improvements have

been made in rocket technology, as well as great advances in the computational capabilities

of computers. There is interest, then, in investigating the benefits of air-launched sounding

rockets using today's technologies and computational resources. The automated features of

computer-based design can shed additional light on the possibilities for a new ALSR design.

4.1.1 ALSR Selection

Because the Engineering Framework for Concept Development is designed to be a guide for

solving various concept design problems, each problem will naturally adopt certain features

to customize an appropriate design strategy. Examination of the information on the problem

determines the most suitable starting point in the Engineering Framework. The Exploration

phase class deals with problems that are ill-defined and includes qualitative notions of concept

alternatives. The ALSR problem definition is beyond this level. For example, if the need

was to obtain data on the upper atmosphere, this problem statement would require starting

in the Exploration phase class. Since the design class is given as an air-launched rocket, this

leads to the placement of the ALSR problem in the Selection phase class.

ALSR Selection: Problem Characterization

Despite the fact that different problems may start in different phase classes, each prob-

lem starts with the Problem Characterization activity. Even if the criteria of the problem

are already defined, it is crucial to verify these are correct by reviewing what are the im-

portant characteristics of the problem. In the Problem Characterization activity for the

ALSR problem, the important attributes are identified as altitude at apogee and per unit

cost. Certainly other attributes of the system can be considered (such as risk, reliability, or

manufacturability), but these two are sufficient in differentiating the concepts in this study.

Altitude at apogee, or the highest point the rocket reaches in its flight, is an indication of

the performance of the vehicle and determines which types of scientific experiments can be

flown. Cost is a common metric to track, and here is modeled as a per unit cost based on



mass. In addition to the identification of the attributes, constraints are also defined in the

Problem Characterization activity. In the ALSR case, the primary design constraint is that

the rocket is launched from the air, rather than the ground.

ALSR Selection: Alternative Generation

The second activity consists of generating design options for the rocket. Through the study

of existing concepts as well as iterative brainstorming sessions, a set of design variables and

alternatives are selected, as shown in Table 4.1.

Table 4.1: ALSR Selection Design Variables and Alternatives
Design Variable Design Alternatives
Release velocity, m/s 0 20 40
Body length, ft 15 17
Diameter, in 10 14

liquid: RP-1/0 2  HAN MMH/N 20 4
solid: ORBUS 6E Castor IVA PBAN

Number of stages 1 2
Length distribution of stages 1:1 3:2 2:1

The release velocity represents what different airborne platforms could potentially

provide. The propellant options are taken from Ref. [35]. The length distribution of the two

stages refers to the first being the same length as the second, 1.5 times as long, or twice as

long.

ALSR Selection: Model Development and Evaluation

The set of alternatives is then used in the construction of an OPN model. The OPN model

includes the series of design decisions between the alternatives, as well as the mathematical

formulation and logic necessary to evaluate the various combinations of alternatives. The

OPN model for the Air-Launched Sounding Rocket is shown in Figure 4-2.

The ALSR OPN model begins with initialization of the model. Then OPN enumerates

all of the combinations for the first three decisions (Release Velocity, Body Length, and

Diameter). At the Propellant decision, there is some logic to determine for which of the



initstate

Done
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Figure 4-2: Air-Launched Sounding Rocket OPN model

two stages the propellant is being decided. The sounding rocket can either have one or

two stages for propulsion, but there is a constraint encoded - the first stage can only be

a solid propellant choice. The second can be either solid or liquid. OPN has the ability to

model these constraints so enumerating all the possible first-stage liquid combinations is not

necessary. This ability of OPN is beneficial as additional time and effort would be required

to model these designs and then sort through and remove them from the data. After the

propellant is chosen, a mass fraction is assigned (Mfl = 0.2 or Mf2 = 0.3) based on the

propellant type chosen. At the Stages decision, the single-stage designs proceed through the

1 Stage ellipse to calculate the attributes. The two-stage designs continue upward through

the Staging ellipse where a loop enables the second stage properties to be enumerated.

The ratio of first stage length to second stage length is decided at the Length Distribution

decision, and then the choices are made for the second stage Diameter and second stage

Propellant. These two-stage designs continue through the 2 Stage ellipse to compute the

attributes of altitude at apogee and per unit cost.



The calculation of the attributes for the OPN modeling is done using analytic ex-

pressions with some simplifying assumptions on the trajectory parameters. Based on the

dimensions, propellant types, mass fractions, and stage distribution, the rocket equation is

used to calculate the delta-V (AV). The trajectory is modeled as a vertical ballistic flight

starting from 45,000 feet. The initial velocity is the release velocity plus 65% of its AV,

where the reduction is to account for drag and gravity losses. The per unit cost is modeled

as a function of total mass.

ALSR Selection: Decision Analysis

The outputs of the OPN model are the attributes for 11,988 ALSR designs, which represent

all of the feasible combinations of alternatives. At this point the challenge is to understand

the differences, drivers, and distinguishing characteristics within the design space. The

process of building the insight that comes from understanding these facets falls under the

Decision Analysis activity.

To better understand the designs generated using OPN, the results are plotted in

Figure 4-3. The arrows next to the axis labels point in the direction of improvement. The

non-dominated (best) designs are therefore toward the upper-left portion of each plot. Where

the designs fall in the trade space is itself interesting, but more useful information is extracted

by identifying which design variables affect which designs. This is accomplished by high-

lighting these options in the trade space.

In the plot highlighted by Stage Diameter in Figure 4-3, the most noticeable feature

is how the single stage designs are the worst performing designs, being dominated by the rest

of the space of options. These are the blue (10" diameter) and green (14" diameter) designs

along the bottom of the plot (lowest altitude). (These designs are also evident in the Length

Division plot.) The cyan designs with a 10" first stage and 14" second stage do not have any

non-dominated designs. The other options, however, have points that are non-dominated at

different portions of the Pareto front. In the Total Length plot, the longer rockets are shifted

up and to the right of the shorter rockets, which means they go higher but also cost more. For

the First Stage Propellant design highlighting, there is a distinct region associated with the
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ORBUS 6E solid propellant, toward the lower-flying and cheaper region of the trade space.

The other two options show little difference in their attributes. The Second Stage Propellant

plot shows three propellant options that perform better than the rest: ORBUS 6E, RP-1,

and MMH/N 20 4, which is hidden behind the ORBUS 6E designs. Interestingly, ORBUS 6E

has shown good performance as both a first-stage and second-stage propellant choice. In

the final two plots, there are slight differences in the design options. Faster release velocities

give higher apogee altitudes, which is intuitive. Higher ratios between the first stage length

and the second stage length gain higher altitudes than lower ratios.

Identifying the effects of different design choices in the trade space informs the de-

signer as to what design choices impact the attributes the most, as well as which designs

perform the best. To help sort through the numerous design tradeoffs in a statistical fashion,

ANOVA reveals which design choices are the most important contributors to variation in

the attributes. Figure 4-4 shows the ANOVA results for Selection phase class analysis of the

ALSR problem.
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Figure 4-4: ALSR Selection ANOVA

The ANOVA results show the importance of each design variable for the two at-

tributes, where the order of the design variables is total length, first stage diameter, second
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stage diameter, length division between the stages, release velocity, first stage propellant,

and second stage propellant. The apogee altitude attribute, for example, shows the first

stage diameter having the largest relative influence. This means that the choice of the first

stage diameter largely determines where in the trade space the design will be. This can be

seen in the trade space plot by noticing the distinct regions that stand out for each diameter

choice. Note that the first stage diameter also has the highest relative influence in the per

unit cost attribute. The designer therefore must closely examine the tradeoffs when choosing

the diameter of the first stage, since it an important factor in determining both how high

the sounding rocket will fly and how much it will cost. An example of a design variable

exhibiting low relative influence is the release velocity. The release velocity does not factor

into the cost calculation, and it results in a small shift in apogee altitude.

The information and insights from both the trade space exploration and the analysis

of variance results are used to select a set of design options to carry forward to the next phase

class. That knowledge is also used to reduce the number of design variables the optimization

algorithm must search through, and is done by setting the less important ones to constants

(moved to the constants vector, k). These include the number of stages (set to two), the

total length (set to 15 ft.), the length division (set to 1:1), and the release velocity (set to

40 m/s). The remaining design variables are carried forward in the detailed analysis of the

Refinement phase class.

4.1.2 ALSR Refinement

After completing the four Selection phase class activities, the next iteration of analysis

is in the Refinement phase class. The additional modeling detail comes in the form of

a two degree-of-freedom trajectory simulation. The increased fidelity is important when

the accuracy of the models must be verified with respect to more advanced simulations or

empirical data. Particle swarm optimization is implemented to enhance the efficiency in

searching the design space for good families of designs.



ALSR Refinement: Problem Characterization

Re-examination of the problem definition, attributes, and constraints results in no modifi-

cation from the Selection characterization of the problem. In other cases, this step might

include redefining the key attributes. For example, if in Selection the downrange distance

from the release point were also calculated as an attribute and found to be highly correlated

with altitude, then the designer may choose to drop downrange distance from the set of

attributes.

ALSR Refinement: Alternative Generation

While there may be instances where additional alternatives are added to the design space

in the Refinement phase, most cases will involve narrowing the space to reduce the number

of model runs needed. In the ALSR case, the single stage designs are eliminated from the

design space, and the length, stage length division, and release velocity are set to constants.

Since the model evaluation in this phase is done with the aid of PSO, the design variables

that are inherently continuous values are given a range rather than discrete choices.

ALSR Refinement: Model Development and Evaluation

The analysis of the sounding rocket design now moves

from the analytic, closed-form solutions implemented in

OPN to a more detailed, flyout simulation. A two degree-

of-freedom (DoF) - horizontal and vertical components

of motion - trajectory code is written in MATLAB® to

simulate the flight. It numerically integrates the equa-

tions of motion (Eqs. 4.1 and 4.2) via 4 th order Runge-

Kutta integration.

= mx =

= mj =

(T - D) cos(3)

(T - D) sin(P3)

Y

Figure 4-5: ALSR geometry for

equations of motion

- Fg sin()

- Fcos()

(4.1)

(4.2)

Fx
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Figure 4-5 shows the geometry for the equations of motion, and the variables are defined as:

T is the thrust, D is the drag, y is the flight path angle with respect to the local horizontal,

b is the angle between the local horizontal and the inertial z-direction, = 7 - 0, and Fg is

the gravitational force.

In the simulation, the rocket launches vertically at the prescribed release velocity and

its velocity and position are calculated as a function of time. The flight profile assumes a

gravity turn.

ALSR Refinement: Decision Analysis

As mentioned in Section 3.1.3, optimization methods encompass a repetition of the three

activites of Alternative Generation, Model Evaluation, and Decision Analysis. The opti-

mization algorithm takes the attributes and preferences from the Problem Characterization

activity and iterates on the other three activities. It starts with a design, evaluates that

design using the models, identifies how that design ranks in terms of the a priori prefer-

ences, and then repeats the process to find better solutions. This is the approach used for

the ALSR Refinement PSO algorithm.

The multiobjective particle swarm optimization algorithm described in Section 3.5.2 is

used to search the design space of the refined, 2-DoF ALSR flyout simulation. The attributes

are used as the two objectives. The particle swarm population size is 30 and the maximum

number of time step iterations is set to 50.

Figure 4-6 shows the trade space of designs found with the PSO algorithm. The top

left plot shows the designs evaluated by the PSO algorithm over its entire history (30 particles

over 50 iterations) with the non-dominated solutions highlighted. The other three plots

highlight the designs by their design variables. Since the stage diameter was a continuous

variable and not selected from discrete choices, the colors are for dimensions either less than

12" or greater than or equal to 12." The smaller first stage designs (blue and green points)

occupy almost the entire Pareto front. Note that this is slightly different from the analytic

results of the Selection phase class. In that analysis, the smaller first stage designs only

were non-dominated on the low-cost end of the Pareto front. The more detailed analysis was
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Figure 4-6: ALSR Refinement PSO Trade Spaces

necessary to differentiate the aerodynamic effects on the smaller configurations. In the first

stage propellant variable, the optimizer clearly identified ORBUS 6E as the best. The large

gap between the points near the Pareto front and those scattered throughout the rest of the

trade space is due to the dominance of ORBUS 6E as the first stage propellant. The other

propellant choices are entirely dominated and the optimization algorithm does not spend

time populating those choices. The non-dominated designs with respect to the second stage

propellant are RP-1, MMH/N 20 4, and ORBUS 6E. Both of these propellant results are in

agreement with the Selection results.

To see how the particle swarm optimization algorithm performed relative to the full set

of design combinations generated in the Selection phase, the 11,988 designs generated in the

manner of a full factorial design of experiments are analyzed with the more detailed 2-DoF

trajectory code. Figure 4-7 shows these designs and the 1500 PSO designs. It is evident that

the PSO algorithm quickly populated designs along the Pareto front. The PSO algorithm

J A



needed far fewer function evaluations to find almost the exact same set of non-dominated
designs. Furthermore, the presence of PSO points distributed throughout the trade space
means that it conducted a global search. In this case the length of the simulation time was
short enough that the full space of 11,988 designs could be evaluated with the higher fidelity
simulation. With more time-intensive and computationally expensive models, this may not
be practical. This ALSR case, however, verifies that the PSO algorithm is efficient in its
search to find the Pareto front.
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Figure 4-7: ALSR Refinement Comparison between DoE Full Factorial and PSO

The next important consideration for evaluating the ALSR designs is to examine the
sensitivity to uncertainties. Depending on the particular study, a number of different factors
and parameters can be varied to determine the sensitivities to those changes. This can be
done for values in the constants vector, k, or for values in the design vector, x. For the
former, an example might be the constant value assumed for the instrument payload mass.
This is not involved in any of the design decisions, yet its value may dramatically affect the
performance of certain rocket designs. ANOVA is particularly well suited for identifying the
design variables that are most important and should be considered in sensitivity studies. For
a variable that effects large variation in the trade space, looking at the sensitivity to changes
in that value can reveal how important it is to accurately determine the real world value of
that variable.
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Referring again to Figure 4-4, the ANOVA results show that the propellant choices

have high relative influence in both the cost and altitude attributes. Comparing this to

the trade space plots, it is evident that ORBUS 6E is a propellant choice that could have

significant effects on both of the attributes. It is clear winner for the first stage choice of

propellant, and one of the three best choices for the second stage propellant. The effects on

the attributes due to variation in that choice is therefore of great interest to the designer.

The approach then is to see how changes in the propellant properties affect the resulting

trade space, particularly the Pareto front designs. The change in propellant properties is

done by varying the propellant density and specific impulse independently. Since there is

not an empirical uncertainty model for this case, the probability distribution is taken as

a uniform distribution between 90% and 110% of the nominal property values. Because

the non-dominated designs are the focus of the trade space, 100 Monte Carlo sensitivity

simulations are run for each non-dominated design.

Figure 4-8 shows how the non-dominated designs are affected by variation in the

propellant properties. The green points represent the mean value (for each attribute) for

.4J dl
14U

130
1'

- 120

110

S100

90

S* PSO points
+ Nnn.dnm

-1-a bounds
+ MC Means

. *

* . .**

80 1 . ' 
1 1.5 2 2.5 3

1 - Per Unit Cost $M

Figure 4-8: ALSR Refinement Monte Carlo sensitivity analysis conducted for designs along

Pareto front under 10% variation in ORBUS 6E propellant properties. The boxes represent

one standard deviation from the mean.



the 100 simulations. The red boxes represent one standard deviation from the mean in each

attribute direction, which help visualize uncertainty in the trade space [86].

There are several insights the designer can gain from this sensitivity information.

The first is to notice the shape of the boxes for different designs along the Pareto front. For

instance, the boxes near the upper right portion of the Pareto front have smaller bounds than

those near the lower left. This indicates that those near the lower left are more sensitive to

changes in the propellant properties. Secondly, the sizes of the boxes tell the designer about

the uncertainty tradeoffs. Depending on whether the box is narrow and tall or wide and

short, the designer can gauge the relative effects on the attributes, helping make the decision

whether a certain variation in cost is acceptable with respect to the expected variation in

altitude. Finally, it is quite interesting to note how the mean values of the attributes move

from the nominal Pareto set design points. The designs near the lower left, which have

ORBUS 6E as both the first and second stage propellant have mean altitudes which drop

substantially more than those near the upper right.

The sensitivity study helps direct the decisions of the designer. If the designer is look-

ing to choose a design on or near the Pareto front that is least susceptible to variation, then

the sensitivity information identifies these designs. Alternately, the sensitivity information

can be used to direct further research into reducing the uncertainty for a parameter that

results in large variation in the trade space.

4.1.3 ALSR Conclusions

The Refinement phase class results provide additional information about the trade space

beyond that of the Selection phase class. Using the trade space insights and the sensitiv-

ity information for understanding the uncertainties, the designer can feel confident that a

concept chosen for a further design development will be superior to a large number of other

options.

Finally, a quick examination is made into the benefit gained by opting for an airborne

launch. The trajectory flyout code is used to carry out a PSO run with the starting altitude



at sea level. Figure 4-9 shows the difference between the two scenarios.

For an air-launched release at 45,000 ft. (13,716 m), the gain in apogee altitude is

around 20-30 km. This 10-15 km net gain over the ground launch is an advantage, but

perhaps smaller than expected. This may influence the initial decision to pursue an air

launch over a ground launch. The knowledge of the trade space tells the designer that the

diameter and propellant selections may be about as important as whether to pursue an air

launch. In either launch decision, the primary goal of exploring the trade space has revealed

many interesting insights into the propulsion system design.
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Figure 4-9: ALSR Comparison Between Ground-Launched and Air-Launched



4.2 Operationally Responsive System

The second design problem examined is a responsive disaster monitoring system. The prob-

lem is to design a system that provides high-quality, rapid coverage of an area of the world

where observation capabilities do not exist or were not previously required. The system

would gather information on a recent disaster site to help in the immediate recovery. Satel-

lites are often utilized in these scenarios for imaging, and a responsive satellite is one option

to include in the design space of solutions. To not limit the design space of options, how-

ever, this study will evaluate other approaches, as well as the combined effects of different

vehicles working within the same system (aircraft and satellites, for example). The goal of

the study is less about optimizing the design of a particular concept. Instead, the focus is

on exploring the options for a system architecture incorporating several different concepts

working together, called an Operationally Responsive System (ORS).

4.2.1 ORS Exploration

In contrast to the ALSR problem that started in the Selection phase class, the ORS problem

starts in Exploration. The objectives are vague; the constraints are few; the problem itself

is even unclear. This requires a pass through the Engineering Framework activities that is

at a high level and of a qualitative nature.

ORS Exploration: Problem Characterization

In the Problem Characterization activity, the task is to determine what is important about

the problem. There is only a small amount of qualitative information at this point, so a

better characterization of the problem is necessary. The first consideration is to assess which

disaster types and locations would be within the domain of a responsive monitoring system.

A full list of many different disasters is generated to help identify patterns and characteristics

of disaster types. This list is then narrowed down to those that only require rapid response (a

drought, for instance, is a potential disaster that takes place over long time scales) and ones

that affect human lives (i.e., they occur in populated areas). This compiled list of disasters



Table 4.2: Types of Disasters for an Operationally Responsive System
Forest fire Hurricane

Thunderstorm Tornado
Flood Earthquake

Tsunami Volcano
Riots Oil spill

Asteroid (impact debris, etc.) Avalanche/mudslide

is shown in Table 4.2.

This list of disasters is then used to identify people or organizations that would be

interested in a responsive system. It is important to identify these stakeholders because

the value that the system provides is based on who derives benefit and at what cost [13].

Overlooking who would be the important parties in either supporting or opposing the system

could be more costly in the long run than a poor design. Compiling a list of stakeholders

also helps the system designer figure out what capabilities the system needs to provide in a

disaster situation. The list of stakeholders is shown in Table 4.3.

Table 4.3: Stakeholders for an Operationally Responsive System
Firefighters Police

FEMA Insurance Companies
Local volunteers Property owners

Paramedics Military/uniformed services
Red Cross ORS owner

Another purpose of identifying possible stakeholders is to work toward determining

what the requirements of the system should be. This is done by deriving the needs of the

stakeholders and then the attributes of the system that meet those needs. The attributes

are characteristics of the system that the stakeholders care about, which they use to judge

the "goodness" of the system. From the stakeholder needs comes the derived set of at-

tributes [68], shown in Table 4.4, which is used to measure and compare different concepts.

The procedure of identifying stakeholders and deriving attributes of the system can

be seen as unimportant, but determining what value the system must deliver and to whom

is crucial in designing a system that will meet the needs of the users/stakeholders.

This set of disasters, stakeholders and attributes is considered representative of what



Table 4.4: Attributes of an Operationally Responsive System
Attribute Description
Acquisition Cost Initial cost to acquire the system
Cost/Day Operating cost of the system
Time to IOC Lead time to initial operating capability (IOC)
Responsiveness Time from first request to reach area of interest (AOI)
Max Coverage Maximum coverage of an AOI, expressed as a fraction
Time to Max Coverage Time it takes to reach maximum coverage
Time Between AOIs Time it takes to retask the system to another AOI
Imaging Capability How good the images or observations of the disaster are
Data latency How long from user data request to acquisition

a responsive system must be designed for. With respect to the scope of this study, however,

a particular disaster scenario is used for modeling and for obtaining the attributes of the

system. The example disaster scenario is a hurricane similar to Hurricane Katrina that hit

the city of New Orleans in August of 2005.

ORS Exploration: Alternative Generation

After determining what is important for the Operationally Responsive System, the next

activity in the Engineering Framework is to generate alternatives. In the Exploration phase

class, a wide range of alternatives is considered that could potentially meet the goals of the

system. Table 4.5 shows this list of alternatives and gives a short description of each.

Table 4.5: Alternatives for an Operationally Responsive System
Alternative
Satellite
Crewed fixed wing
Crewed rotor
Uncrewed fixed wing
Uncrewed rotor
Airship
Distributed swarm

Balloon
Land vehicle
Personal sensors

Description
single imaging satellite or satellite constellation
airplane with pilot in the aircraft
helicopter with pilot inside
drone airplane, unmanned air vehicle (UAV)
UAV helicopter
piloted dirigible or blimp
series of low-cost sensors/cameras launched over the AOI
that parachute or glide down to the ground
uncontrolled balloon, either tethered or untethered
roving vehicle on the ground
sensors given to personnel on the ground to make obser-
vations or measurements



ORS Exploration: Model Development and Evaluation

The next activity is to try to assess which of the concept alternatives are most promising

and which are clearly inferior to the rest. At this stage the alternatives have very general

descriptions, so the modeling and evaluation is qualitative and subjective. The technique

most applicable for this case is Pugh analysis. As described in Section 3.2, Pugh analysis is a

technique in which pair-wise comparisons are made between the different concept alternatives

to determine which rank better in terms of the attributes.

Table 4.6 shows the Pugh matrix analysis with a satellite concept as the baseline. The

other concepts are scored better (+1), worse (-1), or the same (0) for each of the attributes.

The total sum is given in the bottom line. With the satellite as the baseline concept, the

other concepts all had total scores above zero. For the given set of attributes, this subjective

assessment indicates that there are probably better ways to get cost-effective, rapid, and

large coverage data on a disaster than with a satellite.

To enhance the discrimination between the concepts, a multi-baseline Pugh analysis

approach is used. After making pair-wise comparisons for the satellite baseline, three other

Table 4.6: Pugh Analysis for ORS: Satellite Baseline

Attribute o < m

Acquisition Cost 0 1 1 1 1 1 1 1 1 1
Cost/day 0 -1 -1 -1 -1 0 1 1 0 1Time to IOC 0 1 1 1 1 1 1 1 1 1

Responsiveness 0 0 0 0 0 0 1 1 0 1
Max Coverage 0 0 0 0 0 0 -1 -1 -1 -1
Time to Max Coverage 0 -1 -1 -1 -1 -1 0 -1 -1 -1
Time Between AOIs 0 1 1 1 1 1 1 1 1 -1
Imaging Capability 0 1 1 1 1 1 -1 0 1 -1
Data Latency 0 1 1 1 1 1 1 1 1 1

Total Score 0 3 3 3 3 4 4 4 3 1



Table 4.7: Pugh Analysis for ORS: Crewed Fixed Wing Baseline

Cost/day 1 0 -1 1 0 1 1 1 1 1

Max Coverage 0 0 0 0 0 0 -1 -1 -1 -1

Time to Max Coverage 1 0 -1 -1 -1 -1 1 -1 -1 -1

Time Between AOls -1 0 -1 -1 -1 -1 -- 1 -1 -1

Imaging Capability -1 0 0 0 0 -1 -1 -1 0 -1Data Latency -1 0 0 1 1 1 1 1 1 1

Total Score -3 0 -2 0 -1 -2 0 -2 -1 -2

baselines are chosen to better distinguish the advantages and disadvantages of the various

concept alternatives. The crewed fixed wing baseline Pugh matrix is shown in Table 4.7, the

uncrewed fixed wing baseline in Table 4.8, and the land vehicle baseline in Table 4.9.

ORS Exploration: Decision Analysis

The final activity in the Exploration phase class is to examine and learn about the results,

and then make a decision on which concepts to carry forward to the Selection phase class

of the Engineering Framework. To examine the Pugh results, the scores for each baseline

are added to give the cumulative effect. Figure 4-10 shows the scores of each concept for

each baseline, as well as the cumulative score across all the baselines. The height of each

colored portion in the stacked bar chart represents the score for that baseline. If it is above

the zero line on the vertical axis, it performed better than the baseline; if it is below it

performed worse. The black diamond gives the final cumulative score summed from all of

the baselines. This cumulative score is the best metric on which to evaluate the overall

ranking of each concept. Both the crewed aircraft and the uncrewed fixed wing score well.
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Table 4.8: Pugh Analysis for ORS: Uncrewed Fixed Wing Baseline

Attribute
Acquisition Cost -1
Cost/day 1
Time to IOC -1
Responsiveness 0
Max Coverage 0
Time to Max Coverage 1
Time Between AOIs -1
Imaging Capability -1
Data Latency -1
Total Score -3
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Table 4.9: Pugh Analysis for ORS: Land Vehicle Baseline
bD

Attribute c U
Acquisition Cost -1 -1 -1 -1 -1
Cost/day 0 -1 -1 -1 -1
Time to IOC -1 0 0 0 0

Responsiveness 0 -1 1 1 1
Max Coverage 1 1 1 1 1

Time to Max Coverage 1 1 1 1 1

Time Between AOls -1 1 1 1 1
Imaging Capability -1 0 -1 -1 -1
Data Latency -1 1 1 1 1
Total Score -3 1 2 2 2

0

1 0 1
1 0 1

0 0 0
1 0 1
0 0 -1

-1 0 -10 0 -1
-1 0 -1
0 0 -1
0 0 -1
1 0 -2
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Figure 4-10: Cumulative baseline scores for ORS Pugh analysis

The scores for the uncrewed rotor, balloon, land vehicle, and personal sensor concepts are

worse. The distributed swarm is the highest and the satellite concept is the lowest. This is a

reflection primarily of their responsiveness and costs - expensive satellites may take a while

for the orbit to align with the location on Earth where the disaster is, and a low-cost suite

of cameras can be quickly dispersed over an area of interest. There are, however, hard-to-

capture aspects of satellites that warrant their consideration in further investigations, such

as their sustainability in orbit and potentially global coverage. The other concepts all need

to be pre-positioned at specific sites. With these results as a basis for decision-making, the

following concept alternatives are selected for deeper analysis in the Selection phase class

of the Engineering Framework: satellites, crewed fixed wing, crewed rotor, uncrewed fixed

wing, and distributed swarms.

6

4

2

0

-2

-4

-6i

-8

• 10 
_ Ei

f
P3



4.2.2 ORS Selection

While the Exploration phase class of the Engineering Framework is focused on defining the

problem and gauging initial limits on what can or cannot be used in the design, the Selection

phase class aims to refine where in the trade space concept alternatives lie relative to one

another. It includes more quantitative assessments with objective measures of performance.

ORS Selection: Problem Characterization

The ORS problem started with fairly vague, notional ideas of what the system should do,

and no indication of what it should be. The problem became much better defined through

the Exploration phase class. The Selection phase class Problem Characterization leverages

those results heavily. For the purposes of modeling and attribute calculations, however, the

attribute set is reduced slightly. The Cost/Day, Time to IOC, and Data Latency attributes

are viewed as the less important attributes of the complete set, and are not considered in

further investigations.

ORS Selection: Alternative Generation

The approach for Alternative Generation is to select existing systems whose roles are similar

to what the Operationally Responsive System would be required to do. This includes crewed

and uncrewed reconnaissance aircraft, imaging satellites, and distributed swarm examples.

With this approach, the alternatives selected are shown in Table 4.10.

In addition to these alternatives, other design variables are included in the design

space to increase the design freedom and measure their effects on the system performance.

The number of individual assets considered at once is either 1, 2, or 3 vehicles for both

satellites and aircraft. For the distributed swarms, a similar design variable is included, but

these numbers are increased to 10, 20, and 30. For the aircraft alternatives (both crewed

and uncrewed), different instrument payloads are considered, which have various options for

aperture diameter and sensing wavelength.



Table 4.10: ORS Selection Baseline Alternatives
Imaging Satellites Crewed Fixed Wing

IKONOS® Proteus
QuickBird Cessna 206
OrbView-3 P-3 Orion
SPOT-5

Crewed Rotor Uncrewed Fixed Wing
UH-60 Black Hawk RQ-1 Predator
Robinson R44 ScanEagle

Distributed Swarm Global Hawk
Camera Swarm RQ-11 Raven
CanSats RQ-2 Pioneer

ORS Selection: Model Development and Evaluation

The Selection phase class modeling incorporates an additional level of detail over that of

the Exploration phase class. Concept evaluation via Pugh analysis is fairly subjective; more

objective measures of the concepts are now implemented. The attributes of the concepts are

determined by calculating how fast they can cover areas of interest, how good their imaging

systems are, and how much they cost. Highly accurate calculations are not needed because

the concept descriptions are still generally broad. Appropriate model fidelity among concepts

is more useful at this point than highly precise data. The accuracy of detailed simulations

may be completely overshadowed by the uncertainty in less precise models. The aim is for

consistent measures of the attributes to provide objective comparisons of the concepts.

Low-order models are set up to evaluate the attributes of each of the satellite, aircraft

and distributed swarm concepts. The baseline alternatives (Table 4.10) provide represen-

tative performance specifications for the concepts. This information, available in through

websites in the public domain, includes satellite orbits, resolution, and revisit rates; aircraft

cruise speeds, cruise altitudes, service ceilings, and endurances; and CanSat altitudes and

payload capabilities.

The models incorporate these specifications to determine how each concept would

perform in an ORS mission scenario. For instance, the time it takes for an aircraft to cover

a given area is calculated based on the imaging footprint area and the speed of the aircraft.



The satellite models use the revisit rate to determine how long it takes to view the disaster

site again, and the orbital speed to calculate coverage rates. The responsiveness is modeled

as the time it takes the first asset to arrive at the disaster site. Satellites are assumed to

be on orbit and their first viewing is based on the revisit time for the orbit. The aircraft

responsiveness is modeled as the flight time from the airfield to the AOI. Since multiple

assets for a specific type of aircraft take the same time to fly to the site, there is no variation

in the time between 1, 2, and 3 assets.

The distributed swarm attributes are determined as follows. The camera swarm is

considered to be a series of small cameras like those in camera phones. They are launched on

Estes model rockets,with the altitude and coverage determined by the rocket performance and

camera field-of-view, respectively. The CanSat concept is based on amateur rockets whose

payloads fit in a cylindrical space about 3 inches in diameter and 12 inches in length [19].

These rockets fly higher, and the payload is larger, than those of the camera swarm.

The OPN model for all the different concept alternatives is shown in Figure 4-11. The

ORS OPN model begins with initialization. After choosing the number of assets, each of the

various alternative choices is enumerated, along with appropriate payload options for the

aircraft concepts. The uncrewed aircraft are modeled as having smaller payload capabilities

than the crewed aircraft, which is the reason for fewer options.

ORS Selection: Decision Analysis

Figures 4-12 and 4-13 show the trade spaces for all of the concept alternative combinations.

The plot in Figure 4-12 shows the (peak) resolution-versus-cost trade space with the satellite,

aircraft and swarm concepts identified by color. The aircraft concepts are modeled with

different payloads, so the visual sensing payloads are differentiated from the infrared (IR)

payloads. The lines connecting different design points represent the three levels of the number

of assets for each concept.

It can be seen that the three main concepts (satellites, aircraft, and distributed

swarms) occupy specific regions of the trade space, although there is some overlap between

satellites and the expensive types of aircraft. The distributed swarms are on the lower end
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Figure 4-11: ORS Selection OPN model

of the cost axis, and its resolution is on par with the other concepts. The satellites are on

the opposite end of the cost spectrum, with the best baseline alternatives achieving < 1 m

peak ground resolution. The aircraft concepts are more widely dispersed through the trade

space than the distributed swarm or satellite concepts, both because there are more of them

and because they vary in their sizes and capabilities. For example, the smallest, the RQ-11

Raven, is a hand-launched UAV that flies low to the ground while the P-3 Orion and Global

Hawk have high cruise speeds, high cruise altitudes, and high costs. The aircraft design

point with the best (lowest) resolution is the Raven, and that with the highest cost is the

Global Hawk. Finally, the difference in resolution between the visual and IR payloads is

clear in the offset between the two in the trade space.
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Figure 4-12: ORS Selection Resolution versus Cost Trade Space

Examination of the trade spaces for the other attributes reveals additional insights

into the problem. The top four plots in Figure 4-13 have cost along the horizontal axis, while

the bottom four have resolution. For the maximum coverage attribute, all of the concepts are

modeled as achieving total coverage except for the distributed swarm concepts, which can

only obtain data on about 0.3-10% of the 100,000 km2 AOI. The coverage times associated

with each concept are shown in the plot directly below the maximum coverage plot. The

satellites and swarms both cover area the quickest. The variation in coverage for different

aircraft concepts is based on the different speed and altitude characteristics of each.

An interesting trade space showing close tradeoffs between concepts is the lower right

plot showing the trade space for time between AOIs versus resolution. Here even the satellite

concepts and swarm concepts lie within close proximity, which is not the case when cost is

considered. Yet it is still the case that several aircraft concepts perform better than the

satellite and swarm concepts in these two attributes.

The large number of attributes and concepts makes it challenging to downselect to

a smaller set of alternatives. The approach for selecting which alternatives to consider

further uses the non-dominated designs from each trade space plot. For each two-attribute

trade space (where the concepts are compared for two of the attributes), there are certain

concepts that are non-dominated. The non-dominated designs can also be determined for a

three-attribute trade space. The concepts that repeatedly show up as non-dominated across
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Non-Dominance Occurrences
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Figure 4-14: ORS Selection Non-Dominated Alternatives

different trade spaces are those that perform well with respect to the entire set of attributes.

The downselection approach is then as follows. The non-dominated concepts are determined

for each two-attribute trade space, and then for each three-attribute trade space. Every time

a concept appears in a non-dominated set, a count is made for that concept. The better

overall concepts are those with the highest non-dominated occurrence count. The results for

these occurrences are shown in Figure 4-14.

From the information in the trade space plots as well as the count of non-dominated

alternatives, four concepts are chosen for more detailed examination: an unmanned air

vehicle similar in class to Global Hawk; a small aircraft similar to ScanEagle, which is a

catapult-launched UAV; a single engine, propeller-driven aircraft similar to a Cessna 206;

and a satellite based on the QuickBird system. The first two aircraft concepts are two of

the best performing in terms of the non-dominance count. In addition, they are two aircraft

concepts on opposite ends of the size spectrum. Global Hawk has a 116 ft wingspan and flies

missions as long as 24 hours at time [62]. ScanEagle, on the other hand, has a wingspan of

10 ft and can be transported in the back of a truck [38]. The Cessna-class aircraft is sized



between the two UAV concepts, is a crewed aircraft, and is also one of the best performing

in the non-dominance count. There are advantages that orbiting the planet affords, and

this provides the rationale for examining satellites in more detail. The QuickBird baseline

alternative is the highest scoring satellite in the non-dominance count.

4.2.3 ORS Refinement

The final phase class of the Engineering Framework is Refinement. An additional level of

detail is added in modeling the aircraft and satellite alternatives. Furthermore, a mission

scenario timeline is developed that models how the combination of satellite and aircraft

concepts together perform the task of monitoring a disaster situation.

ORS Refinement: Problem Characterization

In the refinement of the ORS problem, some updates are made to the attribute set. While

all the attributes remain important, the three more important ones are selected to represent

the fundamental features of the system. The first is the total ground area covered, measured

in square kilometers. The second is the average ground resolution, measured in meters. The

third and last attribute is acquisition cost, measured in thousands of dollars, and includes

research, development, testing, and non-recurring engineering costs.

The attribute of responsiveness, whose absence from the set of three attributes may

be questioned, is inherently related to the cost and coverage capabilities of the system. The

amount a potential customer is willing to pay to acquire such a system largely determines

how capable it is. For a system that includes a vast network of predeployed assets in space

and at ground locations where they can respond quickly to possible disasters, the cost will

be high and the response to any disaster will be very rapid. On the other hand, a more

sparse system of assets will be less expensive but not capable of as fast a response. The

three attributes of area covered, average resolution, and cost are therefore considered a

representative attribute set for measuring the combined system performance of concepts in

the Refinement phase class.



ORS Refinement: Alternative Generation

As mentioned at the end of Section 4.2.2, the four concepts carried forward from the Selection

phase class are three classes of aircraft (one based on the large Global Hawk UAV, the second

on the small ScanEagle UAV, and the third based on a Cessna 206 aircraft) and one satellite

(based on the QuickBird imaging satellite). For each of these concepts, design variables are

added to better differentiate the concepts. Table 4.11 shows the design variables.

Table 4.11: ORS Refinement Design Variables and Alternatives

Concept Design Variable Alternatives
Class Large UAV Small UAV Single Prop
Payload Aperture Diameter, cm 2 8
Payload Sensing Wavlength, pm 0.4 2
Takeoff Gross Weight low high
Number of Orbital Planes 1 2 3
Satellites per Orbital Plane 1 2 3

Satellites Altitude, km 300 900
Payload Aperture Diameter, m 0.5 2
Payload Sensing Wavlength, pm 0.4 3

The aircraft takeoff gross weight is the weight at takeoff, including the aircraft, pay-

load, and fuel. It represents the size of the aircraft within each class and is varied to see

how the endurance changes. The satellite orbit options describe different types of Walker

constellations with circular orbits [47]. The orbital planes are equally spaced, as are the

satellites in each plane.

ORS Refinement: Model Development and Evaluation

The Model Development and Evaluation activity has three main components for the ORS

Refinement phase class: aircraft modeling, satellite modeling, and a mission timeline model.

These are described individually.

Aircraft In order to carry out the concept design of aircraft for a disaster response mission,

aircraft sizing is conducted based on the ORS mission scenario. The primary equations for

this are the Bruguet range and endurance equations. Other aircraft specifications are based



on historical trends from existing aircraft data [67, 53]. The Bruguet range and endurance

equations are shown in Eqs. 4.3 and 4.4,

VL Wi-1
R = In (4.3)

CD Wz
1L Wi_ 1E = - In (4.4)
CD W

where V is the velocity, C is the specific fuel consumption (SFC), L/D is the lift to drag

ratio, and Wi_ 1/Wi is the mission segment weight fraction. For propeller-driven aircraft the

specific fuel consumption is expressed as a ratio of the propeller shaft power SFC, Cpower,

and is a function of the velocity and the propeller efficiency, Iprop, as shown in Eq. 4.5 [67].

V
Cprop= Cower (4.5)

prop

As explained further in the mission timeline description, the aircraft mission includes

a takeoff portion, cruise segment to get to the disaster area of interest, loiter segment in

which the data is gathered, and a cruise segment to return to the airfield. The mission

segment weight fractions shown in Table 4.12 (from Ref. [67]) are used for the portions of

the mission not considered cruise or loiter.

Table 4.12: Mission Segment Weight Fractions

Mission Segment Weight Fraction, Wi/Wi-1
Warmup and Takeoff 0.970

Climb 0.985
Landing 0.995

In addition, an allowance for fuel reserve is estimated from historical values to be

6% [67]. The total fuel fraction is therefore

Wf 1.0 6  1 W g (4.6)

where Wf is the fuel weight, Wg is the takeoff gross weight and W,/Wo is the total mission

weight fraction.
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The empty weight fractions for the different classes of aircraft can be estimated sta-

tistically from historical trends. For the three aircraft classes of Large UAV, Small UAV and

Single Prop, the empty weight fractions, We/W,, are as shown in Eqs. 4.7-4.9 [67].

Large UAV: We 1.02W0.06  (4.7)
Wg

Small UAV: e = 0.397WO.084  (4.8)

Wg
Single Prop: - 2.36W 0 .18s (4.9)

The takeoff gross weight, which is the sum of the the payload weight (Wp), fuel weight,

and empty weight, is related to the mission fraction as shown in Eq. 4.10.

Wg = Wp±W+We
1 Wf We

1= + +
Wg W9 Ws

1 = + 1.06 1 - +
W 1 ( W We)

W - 1 0.06 + W + ) = ki (4.10)
W9 1.06 Wg W

Then the total endurance is determined from the Bruguet equations (Eq. 4.11),

= k2 exp - RiCexp (- E)
W L/D Vi criseLD oiter

E (LD) [k) In1 C) (4.11)C loiter ki LD V
loe i=1 cruise

W 1 Wi WeT
where k - 1.06 0.06 + L+ We and k2 = (0.970)(0.985)(0.995).

For the cost attribute, the research, development, engineering, and testing (RDT&E)

costs are taken from Ref. [67]. For the area coverage attribute, the cruise speeds and altitudes

are interpolations based on the specifications from the baseline concepts in the Selection

phase class.
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Satellites For satellites, the important design elements are the orbit parameters and the

imaging capabilities from those orbits. Therefore an orbit propagation model is developed

that simulates various satellites in low-Earth orbit (LEO). Given any arbitrary target loca-

tion around the world, the model determines the coverage characteristics of the satellite or

constellation of satellites.

Assuming a spherical Earth, the satellite orbits are propagated using Kepler's Equa-

tion (Eq. 4.12). To determine the position and velocity of the satellite over time, the initial-

value problem is solved using Lagrange coefficients, F and G (Eqs. 4.13 and 4.14):

_(t - to) = (E - e sin E) - (Eo - e sin Eo)

r = Fro+ Gvo

(4.12)

(4.13)

(4.14)v = Fro + Gvo

-= 1 - P(1 - cosO)

= [c o(1 - cos0 - Vsin0]top

= ro sin 0

= 1- (1 -coso)

and M is the mean anomaly, p = GM is the gravitational parameter, a is the semi-major

axis, t - to is the time, E is the eccentric anomaly, e is the eccentricity, r is the position

vector, v is the velocity vector, p is the semi-latus rectum, 0 = f - fo is the difference in

true anomalies, and o [3, 2].

To calculate the coverage statistics, the geometry of Figure 4-15 is used to derive

Eqs. 4.15-4.19,

p + Ao = r/2

sinp=cosAo = Re
Re + H

sin p sin A
1 - sinpcos A

S+ A + E = 7r/2

sin A
R, = Re.

sin r]

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

where p is the Earth angular radius, Ao is the Earth central angle, Re is the radius of the
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Earth, H is the altitude above Earth's surface, ri is the nadir angle, E is the elevation angle,
and R, is the slant range [47].

Horizon

Figure 4-15: Geometry for Viewing of Earth from Space [47]

The ground resolution is calculated according to the diffraction limit of the optics
payload, given in Eq. 4.20,

Aobs 1
Ax = 2.44H obs 1

D sine (4.20)

where Aobs is the observing wavelength and D is the aperture diameter, and 1/ sin is the

correction for off-nadir angles.

Figure 4-16 shows an example of a simulated orbit. The blue trace in the left graphic

is the inertial orbit, and the pink dotted trace is the ground track. The graphic on the right

shows the first two orbits on a 2-D projected ground track.

Mission Timeline Next an overall mission timeline is constructed in which both satellite

and aircraft concepts perform in the mission scenario. This allows the designer to assess

not only aircraft concepts and satellite concepts, but also their combined implementation.

With growing interest in designing collaborative systems, sometimes referred to as systems
of systems [50], this mission timeline model explores any synergistic behavior that emerges

when two different concepts work independently toward a common goal.
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Figure 4-16: ORS Orbit Model Example

The mission timeline model combines the satellite orbit coverage information with the

coverage performed by the aircraft. It can include any number of satellites and any number

of aircraft. As it steps through time, it calculates the area covered by each satellite and

aircraft. The satellite coverage is tracked whenever it meets a pre-defined ground resolution

threshold. As discussed in the Aircraft modeling section, the aircraft mission consists of

flying from the airfield to the disaster area, loitering at the area for a time determined by

its endurance, and then returning to the airfield. It then repeats this sequence to continue

covering the area of interest. A period of night is included in the mission timeline when

neither satellites nor aircraft are able to obtain coverage data. This feature is also amenable

to simulating poor visibility due to weather conditions.

To average out transient effects, the missions are all run for 24 hours of simulated

time. The three attributes are calculated with the mission timeline model. The area covered

adds all the area observed by each vehicle in the system. The resolution is averaged over

time and across vehicles. The cost of the system is the sum of the costs of the vehicles

comprising the system.

An example mission timeline is shown in Figure 4-17. (It is shown over 36 hours to

better visualize the day/night effects.) Time is along the horizontal axis. The left vertical

axis measures area coverage rate and the right shows the total area covered over time. The

colored lines show the area coverage rates for the aircraft and satellite concepts.

The aircraft concepts have zero coverage at the start since they have not reached the
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Figure 4-17: ORS Refinement Example Mission Timeline for Aircraft and Satellite Models

area of interest yet. Once they do, their coverage rate is constant since they are loitering

over the area and collecting data. When they reach their endurance limit, they return to

the airfield. This mission is then repeated. Each aircraft's coverage rate pattern therefore

appears as a series of step functions. For the different aircraft designs, the coverage rates,

endurance times, and response times vary. This is seen by the difference in the two aircraft

lines in the example mission timeline.

The satellite coverage is much more intermittent than that of the aircraft, but their

coverage rates are higher. The satellite coverage is zero until it views the AOI within the

resolution threshold. When this threshold is initially met, the coverage rate is high because

of the large, off-nadir footprint area. As the sub-satellite point nears the area of interest, the

ground resolution improves and the area coverage rate decreases. In fact, what looks like a

vertical line in the figure is actually a steep sinusoid curve that is flanked by two vertical

lines. The coverage rate jumps from zero to its maximum, decreases as it nears its closest

approach to the area of interest, increases again as it passes the AOI, and then drops back

to zero when it no longer meets the resolution threshold.

105

10 I I

8 162 3 0/ .... F

III
I'lIb1WIL tU

- Satellite 1
- Satellite 2

4.8 - Satellite 3
- Area Covered

3.6

-2.4

1.2

i
1 lr1 I1 L ' , , l . .. I , ,,



The black line represents the total area covered over time. For the times when only

the aircraft are gathering data on the area, the line has a constant slope. Whenever an

aircraft arrives at or leaves the area of interest, the slope changes. The largest changes in

slope occur when a satellite passes within range of the area. The flat portions of the black

curve indicate where the night period occurs.

ORS Refinement: Decision Analysis

Because of the more complicated analysis in the Refinement phase class, two approaches

are taken for analyzing the results. They incorporate both of the main design tools used in

this thesis. First the design space is explored using a Design of Experiments full-factorial

approach. Because the analysis is quite different from and more detailed than that of the

Selection phase class, this examination of the trade space better informs how to focus the

PSO analysis, as well as being able to verify the PSO results.

Design of Experiments Two full-factorial experiments are conducted, one for the aircraft

designs and one for the satellite designs. The trade spaces for the aircraft designs are

shown in Figure 4-18 Since there are three attributes, the results are displayed as three

2-dimensional trade spaces - area covered versus cost, average resolution versus cost, and

average resolution versus area covered. The rows of plots show the trade spaces highlighted

by different design alternatives.

In the area-versus-cost and resolution-versus-cost plots, there are distinct cost levels

that correspond to the combinations of the three classes of aircraft. At the low end of the

cost spectrum are the small UAV-class aircraft, and at the right are the combinations of two

large UAV-class aircraft. The resolution-versus-cost trade space tends to favor the smallest

designs, but the other two trade spaces have Pareto sets that include different concepts. In

the plots with the payload aperture diameter highlighted, there is not much differentiation

across the trade space. The same is true when looking at the wavelength choices. The

instrument payload does not appear to be a significant driver in the design.

The trade spaces in Figure 4-18 have a cluster of designs near the origin in each
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plot. Figure 4-19 shows the same trade spaces with logarithmic axes. This redistributes the

points visually and clarifies the details for the smaller values of the data. It is much easier

to discern the locations of certain designs in the trade spaces, especially for the different

aircraft classes.

The trade spaces highlighted by takeoff gross weight, W,, are shown in Figure 4-20

with both normal and logarithmic axes. There is a stratification that appears within each

aircraft class combination; that is, the groupings of three sets of designs for each combination

of aircraft classes (best seen as the horizontally separate colors in the area-versus-cost plot

of Figure 4-18) are identified as resulting from the three different options in selecting W,.

Next are the trade spaces for the satellites, shown in Figures 4-21 and 4-22, with the

same plotting format for the attributes as used in the aircraft plots.

In the top row, where the designs are highlighted by the number of orbital planes

and the number of satellites in each plane, there is a distribution of designs along the Pareto
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front that represent the tradeoffs associated with obtaining more satellite coverage. In the

plot for average resolution versus cost, for instance, the single-satellite designs occupy the

low-cost, poor resolution end of the Pareto front, and the three orbital plane, three satellites

per plane designs cost more but obtain better average resolution. Highlighting by altitude

indicates that the three attributes conflict in this design variable - the area-versus-cost plot

favors high altitudes, the resolution-versus-cost favors lower altitudes, and the resolution-

versus-cost is a tradeoff between the two. The same conflict in attributes occurs for the

optics payload design variables of aperture diameter and sensing wavelength.

The log-log plots of Figure 4-22 help in clearly separating the trade spaces visually.

Interpreting the data contained in these plots leads to an informed understanding of how

the design variables interact with one another and with the attributes. An example is how

the optics payload affects the resolution and area covered. One might initially think IR

wavelengths could cover more area than visual wavelengths because the ground area corre-

sponding to each pixel on the focal plane would be larger. However, having the resolution

threshold in the model restricts the time that the IR designs can cover area, leading to less

overall coverage. A similar effect occurs in the trade space for average resolution versus area,

highlighted by altitude. The lower altitudes do not completely dominate the average reso-

lution attribute because the higher satellite designs with good optics payloads spend more

time over the area of interest, thereby lowering the average resolution to be on par with the

lower altitude designs.

The next way to investigate the effects of the design variables on the trade spaces is

by using ANOVA. Figure 4-23 shows the ANOVA results for both the aircraft and satellite

Design of Experiments runs. The relative influences of the design variables are given for

each of the attributes. Looking at the aircraft results, the decisions of aircraft class and

takeoff gross weight show the most influence, meaning that these decisions are important

in determining where in the trade space the design falls. Less important are the payload

characteristics. For the satellite designs, there is more conflict among the attributes. This

was mentioned in the previous discussion as well. For area covered, the optics and altitude

have a high influence because they affect when the AOI is in view more than the number
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Figure 4-23: ORS Refinement ANOVA Results for Aircraft and Satellites

of satellites in orbit. The relative influence rankings for the cost attribute reveal the lack

of importance in the altitude decision. For the average resolution results, the number of

satellites takes a higher importance than the optics. This means that there is large variation

in the resolution attribute for different numbers of satellites and is explained by the fact

that having more satellites increases the likelihood that one or more of them will orbit more

directly overhead than at a low elevation angle.

Particle Swarm Optimization Now with the DoE results as a reference for choosing a

good PSO strategy, the salient aspect of this problem is ready to be tested. For the PSO

implementation, the multi-concept mission timeline scenario is implemented. The design

objective is to identify which combinations of aircraft and satellites together obtain the best

attribute results.

The design vector for the PSO algorithm is shown in Table 4.13. Besides analyzing
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multiple concepts in the same mission timeline, there are two other differences in the design

vector from the DoE analyses. Instead of having either one two aircraft designs, where the

two could be the same, now there can be 0 or 1 of each class, making the total number range

from zero to three, without duplicates allowed. In addition, the non-integer variables take

on continuous values for PSO.

Table 4.13: ORS Refinement PSO Design Vector
Concept Design Variable Value

Number of Aircraft 0 or 1
Payload Aperture Diameter, cm 0 or 1
Payload Sensing Wavelength, jpm 0.4 to 2
Takeoff Gross Weight low to high
Number of Aircraft 0 or 1
Payload Aperture Diameter, cm 0 or 1
Payload Sensing Wavelength, pm 0.4 to 2
Takeoff Gross Weight low to high
Number of Aircraft 0 or 1
Payload Aperture Diameter, cm 0 or 1
Payload Sensing Wavelength, pm 0.4 to 2
Takeoff Gross Weight low to high
Number of Orbital Planes 1, 2 or 3
Satellites per Orbital Plane 1, 2 or 3

Satellites Altitude, km 300 to 900
Payload Aperture Diameter, m 0.5 to 2
Payload Sensing Wavelength, pim 0.4 to 3

Since there are three attributes to attempt to optimize with the PSO algorithm, the

following approach is implemented: conduct three 2-objective particle swarm optimization

runs, and one 3-objective optimization run. Each run uses a 30-particle population and

searches through 20 time step iterations, for a total of 600 design points evaluated. Using a

2.61 GHz AMD Athlon dual core processor and 3 GB of RAM, each run took between 2.5

hours and 3 hours to complete.

The first results examined are the 2-attribute optimization runs of PSO. The plots

in Figure 4-24 contain the information from three separate runs, one for each two-attribute

run. There is good coverage of the space as well as concentration around the Pareto front

for each run, more so in the resolution-versus-cost and resolution-versus-area plots. As a
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Figure 4-24: ORS Refinement 2-Objective PSO Results

comparison to the results from the Design of Experiments approach, Figure 4-25 shows the

same PSO data plotted with the data from the DoE explorations. In the area-versus-cost

plot, the non-dominated PSO designs are better than nearly all the aircraft designs from

the DoE. Just seven of the DoE satellite designs are better than the non-dominated PSO

designs. In the resolution-versus-cost plot, the PSO algorithm performed quite well. The

particles started converging toward the Pareto front, with many reaching attribute values

better than most of the DoE set. There are, however, some very low-cost designs that the

PSO algorithm does not appear to have found in its search, best seen in the log-log plot.

These low-cost designs are the small UAV-class aircraft. Because of the stochastic nature

of the PSO algorithm, if a particle does not find this particular design choice, the optimizer

will not know to investigate it further. This PSO run identified the small UAV-class aircraft

as a good design, but also had in its design vector a satellite concept. Therefore, the PSO
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Figure 4-25: ORS Refinement 2-0bjective PSO Results with Comparisons to DoE results

algorithm never found the design option of only one small DAV-class aircraft, which is why

the DoE results have designs that are superior in the resolution-versus-cost plot. For the

final two-attribute plot (resolution-versus-area), the PSO algorithm far outperformed the

aircraft DoE concepts, and only a few satellite DoE designs are near the PSO Pareto front.

This demonstrates the power of using the PSO algorithm to search through the design space.

Next the PSO trade spaces are highlighted by the design decisions. Figure 4-26

shows the trade space for the area-versus-cost PSO run. The left plot reveals which system

designs include satellites and which include aircraft. Interestingly there are some satellite

only concepts but no aircraft-only concepts in this trade space. The middle plot differentiates

the designs by aircraft alternatives. The small DAV-class aircraft covers much of the Pareto

front, with the large DAV and small DAV-Iarge DAV combination making up the rest. There

are two clumped regions differentiated in the cost attribute. The collection of designs above

the $1 billion point consist mostly of designs with a large DAV-class aircraft, and those below
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do not. Finally, the plot on the right is highlighted by how many satellites are in the design

concept. The three orbital plane, three satellites per plane design has the most points in the

trade space, indicating the algorithm's preference for that design option.

The resolution-versus-cost trade space is shown in Figure 4-27. Again there are some

satellite-only concepts, but not aircraft only. There are a lot of small UAV concepts pushing

on the lower-cost/smaller-resolution Pareto front. A good distribution of satellite concepts

is shown in the plot on the right, but the best for these attributes are the single orbital plane

designs.
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Figure 4-27: ORS Refinement 2-Objective PSO Resolution-versus-Cost Trade Space

The last two-attribute PSO run is for the resolution-versus-area trade space (Figure 4-
28). In looking at the region around the Pareto front, small UAV-class aircraft and a large
number of satellites (3 orbital planes, 3 satellites per plane) work well together to cover a
lot of area with good resolution. In the DoE runs, this combination of the two concepts was
not possible; the PSO formulation has revealed this interesting insight.

With the two-objective PSO runs as a means of comparison, the three-objective PSO
algorithm is implemented. A three-sub-swarm version of the multiobjective particle swarm
algorithm is used to optimize all three attributes. In this case, one-third of the population
attempts to optimize the attribute of area covered, one-third of the particles search for low-
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Figure 4-28: ORS Refinement 2-Objective PSO Resolution-versus-Area Trade Space

cost designs, and the remaining have the objective of finding the best average resolution. The

results are shown in Figure 4-29. The system designs highlighted by a pink star represent

the designs that are non-dominated in all three attributes. The two-attribute plots are thus

projections from the three-attribute objective space. Each of the 2-D projections of the

three-attribute Pareto front shows designs that are even better than what was achieved in

the two-attribute PSO runs. This three-objective run has identified quality designs that

perform well in all three attributes. In addition, the designs that are non-dominated in

all three attributes closely follow the 2-D Pareto fronts as well, which indicates that these

designs do not have characteristics that lead to poor performance in any particular attribute.
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Figure 4-29: ORS Refinement 3-Objective PSO Results

The trade spaces highlighting the design decisions are examined next for the three-

objective PSO data. Figure 4-30 shows the trade spaces with aircraft designs highlighted,
and Figure 4-31 shows the satellite designs. In the aircraft trade spaces, the small UAV

again appears to dominate the Pareto fronts, with good performance in all three trade

spaces. There is one large UAV-class design that is non-dominated in the area-versus-cost

trade space, and just two designs in the resolution-versus-area trade space that are not small

UAV-class designs. The optimizer has identified the small UAV-class aircraft as a very good

option. For the satellite trade spaces, there are more tradeoffs in the different trade spaces.

The area-versus-cost trade space shows four different satellite constellation designs along the

Pareto front. The good designs in the resolution-versus-cost trade space are mostly single

satellite designs. The resolution-versus-area trade space Pareto front is comprised mostly of

three orbital plane designs.
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With this three-attribute data set, it is of interest to try to visualize the 3-dimensional

trade space. Figure 4-32 shows the PSO designs as they are represented in the 3-D trade

space. The Pareto front (here a surface) is illustrated at the extreme portion of the trade

space where the cost is the lowest, the resolution is the lowest, and the coverage is the

highest. The PSO designs in 3-D space are projected onto the three 2-D axis planes to help

visualize their location in the trade space. These projections reproduce the two-dimensional

trade spaces. The bottom plot is displayed with logarithmic axes.

Because it is useful during concept design to not only pay close attention to designs

on the Pareto front, but also those nearby, the PSO points can be probed further in the 3-D

attribute space. A way to get at this information is to look at the behavior of successive

Pareto fronts. This is accomplished by the following iterative scheme. First find the original

Pareto front. Remove all of those non-dominated designs from the data set. Again find the

Pareto front from this smaller set. Repeating in this manner allows successive Pareto fronts

to be identified. A visual portrayal of this is shown in Figure 4-33 with logarithmic axes

for ease of visualization. It can be seen that the Pareto surfaces exhibit nesting, which is

expected since the non-dominated designs are always better than or equal to the others for all

of the objectives. There are some regions that protrude more than others. If this is the true

behavior in that region of the trade space, that information can be used to choose designs

that lie in the appropriate "crevice" of the Pareto front. It could, though, be an artifact

of the sampling in that region, or an approximation of the true Pareto front. Analysis of

additional designs in that region would be necessary to resolve this. The information gained

by identifying the design variables that affect that region of the trade space can be used to

explore that portion of the Pareto front in more depth.

The last piece of information that becomes especially important in the realm of un-

certainty is the sensitivity of designs in the trade space. It was evident in examining the

two- and three-attribute PSO trade spaces that the small UAV-class aircraft performs well.

This concept is thus chosen for examination in the sensitivity study. After determining what

design is of interest in the trade space, the next thing to assess is the important design pa-

rameters. From the ANOVA results from the aircraft DoE (Figure 4-23), one of the design
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variables with the largest relative influence is the takeoff gross weight. Therefore, to see how

the designs are influenced by changes in the design variables, a sensitivity study is conducted

by varying the takeoff gross weight by 20%. Instead of using the Monte Carlo simulation

method as in the ALSR problem, the ORS sensitivity study is done using a Design of Exper-

iments approach. This is necessary because the run-time of the mission timeline and concept

models prohibit a large number of random variations. Similar information can be obtained

by using fewer runs that are organized in an experimental design. The sensitivity study is

conducted on the designs that are non-dominated in all three attributes.

Figure 4-34 shows the sensitivity results, where the boxes show one standard deviation

in each attribute direction. These results indicate that the small UAV-class aircraft are not

greatly affected by the change in takeoff gross weight. The variation can be seen more clearly
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by the boxes in the log-log plots, but they are quite small in comparison to the larger boxes

of the concepts toward the upper portions of the plots. This is due to the fact that the

20% change in the smaller aircraft designs has less effect than the same percentage change

in larger designs. With this information the designer can feel confident that choosing the

small UAV-class aircraft is likely to achieve good performance while not being extremely

susceptible to changes in one of the more important design variables.

4.2.4 ORS Conclusions

The ORS case study example has demonstrated the complete scope of the Engineering

Framework, all three phase classes and each of the four concept design tools. Not utilized

in the ALSR example, the Exploration methods proved very useful for working through an

ill-defined concept design problem. The method of stakeholder analysis provided justification

for the system attributes, and Pugh analysis helped make logical comparisons to systemat-

ically reduce the number of concepts considered. The OPN analysis on this smaller set of

concept alternatives constituted the Selection evaluation. Using existing baseline systems

for performance benchmarking, low-order models were used to determine which aircraft and

satellite concepts to examine in more detail. The last design iteration, Refinement, analyzed

aircraft classes and satellite constellation designs in a disaster scenario mission timeline.

Many interesting insights were obtained through the trade space exploration and

multiobjective optimization techniques. The aircraft class and size are found to be the most

important design variables for aircraft, more so than the particular payload. For satellites,

the optics payload plays a significant role in its ability to monitor the disaster site. Among the

decisions for the number of satellites in the constellation and their altitude, the importance of

each of these design variables varies depending on the particular attribute, and tradeoffs exist

between each particular set of options. Combining both aircraft and satellite concepts in the

mission timeline revealed an interesting combination to a system architecture-level design

solution - a small UAV-class aircraft with a three-orbital-plane satellite constellation. The

small UAV-class of aircraft performs well in all three attributes. Though more expensive,

the three-orbital plane constellation with three satellites per orbital plane exhibits good
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performance for the attributes of area covered and average resolution. Clearly tradeoffs exist

among the design choices, and other quality system designs exist. For the final choice of

which candidate system design to choose, exploring and visualizing the trade space helps

identify these tradeoffs and their relative magnitudes.

4.3 Case Study Conclusions

In this chapter, the Engineering Framework for Concept Development and the concept design

tools were applied to two concept design problems. The first was the design of the propul-

sion system for an Air-Launched Sounding Rocket (ALSR). The Selection and Refinement

phase classes were used to carry out the conceptual design. Using analytic models, OPN

enumerated all of the feasible propulsion system designs, and ANOVA identified the diameter

dimensions and propellant options as important design variables. After using the Selection

results to eliminate one-stage options as dominated design choices, a more advanced 2-DoF

flyout simulation code was implemented with the aid of particle swarm optimization. The

algorithm efficiently identified the designs along Pareto front. The detailed simulation re-

vealed the advantages of smaller diameter designs due to aerodynamic effects, something

not present in the analytic evaluations. The PSO trade space exploration and the ANOVA

results indicated the importance of ORBUS 6E as a propellant choice. The properties of

this propellant option were then examined in a sensitivity study to see which designs were

most senstive to variations. The results of the sensitivity study inform the designer about

decisions among Pareto front designs.

The other design study presented was that of a responsive disaster monitoring system.

This Operationally Responsive System (ORS) problem utilized all three phase classes of the

Engineering Framework. Because the problem statement was not as well defined as the

ALSR problem, additional work was required in the Exploration phase class. This included

identifying types of possible disasters, stakeholders, and compiling a list of stakeholder-

derived attributes of the responsive system. Pugh analysis was used to conduct comparisons

between various dissimilar concept alternatives. This helped clarify each of the concept
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definitions and provided a ranking of the different alternatives. A smaller set of options

was carried on to the Selection phase class, where OPN was used to evaluate low-order

models. These models were based on representative existing systems used as performance

baselines. Trade spaces of pairs of attributes were visualized to examine the performances of

the satellite, aircraft, and distributed swarm concepts. A non-dominance occurrence count

approach was implemented to select the aircraft classes and satellites to investigate further.

Then the Refinement phase class explored more deeply the aircraft and satellite designs.

This included more detailed aircraft sizing models, satellite orbit and coverage models, and

a mission timeline model to simulate a disaster response scenario. Experimental designs were

run on both the aircraft and satellite concepts, and PSO was implemented to search the space

of system designs that incorporated both aircraft and satellite alternatives. These results

indicate that an aircraft in the class of a catapult-launched unmanned air vehicle (UAV)

used in conjunction with a two- or three-plane Walker constellation with three satellites per

orbital plane are system designs that perform well with respect to the stakeholder-derived

attributes of the system. From the ANOVA results, takeoff gross weight was identified as

an important design variable for the aircraft concepts. A sensitivity study on takeoff gross

weight for the Pareto front designs showed that the small UAV-class designs are relatively

insensitive to variation in this variable.

In both case studies, the Engineering Framework provides a systematic and cus-

tomizable approach to concept design problems. The concept design tools are also readily

applicable to both problems presented here. Their use aids the designer in evaluating design

options as well as interpreting the results to gain insight into the problem.
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Chapter 5

Conclusions & Future Work

"Design is so simple; that's why it is so complicated."

- Paul Rand

As the complexity of engineering systems continues to increase, so do the challenges

in their design. The decisions that are made early in the development of a concept are among

the most important. They are made when little information is known on the design and its

environmental context, as well as when the uncertainty in that information is high. These

decisions significantly impact the remainder of the program. It is therefore desirable to build

confidence that the design problem is well understood before large investments are made in

the program. To aid in achieving that goal, this thesis set out to improve the process by

which concept design is carried out.

The Engineering Framework for Concept Development was introduced as a guide to

formulating a design process suitable to a diverse range of concept design problems. The En-

gineering Framework describes the stages of design in terms of activities and phase classes.

The activities consist of Problem Characterization, Alternative Generation, Model Develop-

ment and Evaluation, and Decision Analysis. Design iterations consist of repetitions of the

four activities. The phase classes allow problems to be classified by the level of detail of

the problem. Design problems characterized by qualitative and subjective assessments fall

under the Exploration phase class. Problems that are described by quantitative measures
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that rank dissimilar concepts are categorized in the Selection phase class. The final phase

class, Refinement, involves problems with quantified, parameterized data and detailed mod-

els. The Refinement analysis explores the ranges of the design parameters to identify a

superior design concept.

Accompanying the Engineering Framework is a collection of design tools that aid the

designer in his or her progression through the stages of design. The Engineering Framework

allows the classification of the concept design tools based on their applicability to specific

activities and phase classes. The design tools demonstrated in this thesis are Pugh analysis,

Object-Process Network (OPN), particle swarm optimization (PSO), and analysis of variance

(ANOVA).

Pugh analysis is useful when disparate concepts are subjectively compared in the

Exploration phase class of the Engineering Framework. The technique consists of making

pair-wise comparisons of concepts for each attribute of the design. Conducting a Pugh

analysis helps to direct a discussion on the advantages and disadvantages of various concepts,

identify the characteristics of good and bad concepts, stimulate creative associations that

can lead to new concept ideas, and rank the concepts in order to choose among them.

The OPN tool, used in the Selection phase class, allows the designer to search through

a large design space of alternatives. This approach of trade space exploration provides

much more knowledge and insight into the design problem than single point design. OPN

also allows visualization of the design space to aid understanding of the interactions of

design choices. The mathematical functions in OPN are used to generate all of the feasible

combinations of alternatives in the design space. User-defined metrics can be calculated to

understand the drivers and tradeoffs among different designs.

As a designer moves through the phase classes of the Engineering Framework, increas-

ing levels of model fidelity and computation time may prohibit evaluating a large number of

designs. To help identify promising families of designs in an efficient manner, particle swarm

optimization is implemented in the Refinement phase class to conduct a global search of the

design space and rapidly focus on designs in the vicinity of the Pareto front.

One way to better understand the OPN and PSO results is by visualizing the impacts
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of different design decisions in the trade space. With trade space visualization techniques,

the tradeoffs associated with decisions are clearly presented for the designer to evaluate.

However, some design problems may include many design variables - the different design

options the designer wishes to explore. Others may include many attributes - the charac-

teristics of the design that the designer or decision-maker uses to assess how well the different

designs perform. For problems with many design variables or many attributes, statistical

techniques such as ANOVA can provide insight into the data that is difficult to obtain solely

via visualization methods. ANOVA provides the designer with information on which design

variables are most the important in terms of their effects on the attributes. This information

can be used to conduct sensitivity studies on the most important design parameters in both

the Selection and Refinement phase classes.

5.1 Demonstrated Applications

The Engineering Framework for Concept Development and the concept design tools were

applied to two concept design problems. One was the design of the propulsion system for

an Air-Launched Sounding Rocket (ALSR). Utilizing the Selection and Refinement phase

classes of the Engineering Framework, this case study demonstrated the advantages of using

OPN, PSO, and ANOVA in searching the space of feasible options and understanding the

important aspects of the propulsion system design. The results from this study show that

aerodynamic effects lead to smaller diameter options being favored, and the ORBUS 6E solid

propellant is the preferred choice.

The other design study presented was a responsive disaster monitoring system. This

Operationally Responsive System (ORS) problem utilized all three phase classes of the En-

gineering Framework. In the Exploration phase class, Pugh analysis was used to conduct

early assessments of dissimilar concept alternatives. A subset of these options was carried

on to the Selection phase class, where OPN was used to evaluate low-order models using

representative existing systems as performance baselines. In the Refinement phase class,

more sophisticated aircraft and satellite models were used in a simulated mission timeline
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scenario. This timeline scenario modeled a representative disaster mission and was used to

compare multi-vehicle system architecture designs involving aircraft and satellite constella-

tion alternatives. The particle swarm optimization algorithm was used to efficiently search

through the space of design options, and it successfully found promising system designs in

a three-attribute trade space. The results from this study indicate that an aircraft in the

class of a catapult-launched unmanned air vehicle (UAV) used in conjunction with a two-

or three-plane Walker constellation with three satellites per orbital plane are system designs

that perform well with respect to the stakeholder-derived attributes of the system.

5.2 Future Work

This thesis has outlined a systematic guide for approaching concept design problems, as well

as demonstrating the use of concept design tools as part of that Engineering Framework.

There are ways in which each of these aspects to designing new systems can be improved or

supplemented. The following list includes some of these possible areas for future work.

* The two main concerns with trade space exploration are how to gain the most infor-

mation with the fewest number of design evaluations, and how to best understand the

results.

- This thesis demonstrated the full-factorial approach of OPN and the heuristic

search method of PSO. Other exploration techniques can be examined, especially

in the context of the latter two phase classes of design. For instance, how is the

information from the Selection Design of Experiments best utilized in formulating

the Refinement design variables, attributes, and objectives? Can the ANOVA and

sensitivity results be incorporated into the search strategy for the optimization

algorithm to better identify robust designs? Furthermore, certain combinations

of. tools may be more appropriate or more effective when used together. How

should other DoE techniques such as orthogonal arrays, for example, best be

implemented with statistical or optimization methods?
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- The other rich area for research related to trade space exploration is in under-

standing the resulting trade space. This includes gaining information on the

design tradeoffs, the design drivers, and the sensitivities to uncertainty. The ap-

proach in this thesis was to use trade space visualization and analysis of variance

to identify the important design variables. Then these results informed the focus

of the sensitivity study, and boxes of uncertainty were drawn to visually depict

sensitivity in the trade space. The challenge in visualizing the trade space data

is that only a certain amount of information can be presented effectively in a

single view. No more than three spatial dimensions can be used, and the use of

a number of other properties (color, shape, shading, transparency) is necessarily

limited by how much information someone can interpret simultaneously. Better

ways to present trade space information would be very useful.

- Another area for future work related to understanding the trade space is extract-

ing the statistics of the design data. ANOVA has been shown to provide insight

into the design space that might otherwise be missed when relying only on vi-

sualization methods. With large data sets, statistical approaches can possibly

extract additional useful information. Mathematical correlations discovered via

statistical evaluations can detect trends in the underlying data that can otherwise

go undetected.

e An objective considered but never implemented by the author was to incorporate more

design information into the sensitivity studies. In this thesis the sensitivity studies

were conducted on the Pareto front designs using the design variable identified via

the ANOVA results. Because of the uncertainty involved in concept design, there are

other sensitive parameters that may be of interest. Furthermore, there are dominated

designs that may prove to be non-dominated when more is known about the concept.

Therefore, it is desirable to determine which parameters should be considered in a

sensitivity study and on which designs to conduct the study. One approach might be

to include designs around the Pareto front in the sensitivity analysis. This could be

done in a fashion similar to the successive Pareto front approach utilized in the ORS



three-attribute trade space visualization. Also, the results from a Selection sensitivity

study could be used in Refinement to help identify robust designs.

" Pugh analysis was found to be a useful technique in this thesis for Exploration concept

selection. Other approaches such as Quality Function Deployment have been popular

in similar situations [22]. Future research can investigate these Exploration concept

design tools further. Specifically, the work in this thesis found Pugh to be a logical

and tractable method for assessing concepts with respect to their attributes. The QFD

House of Quality involves different levels of performance scoring, relative preference

weighting parameters, a correlation matrix, benchmarks, and engineering parameters.

Plus the full QFD contains more than just the House of Quality. When the concepts

of Exploration are necessarily vague and general, how much value is added by using

the more involved QFD approach? Do those results provide additional insight than by

using simple one-to-one comparisons? Are there problems better suited to QFD than

Pugh, and vice versa?

* The use of OPN for concept design problems has had limited uses thus far. The tool

has shown its value in modeling problems that have many interrelated options in the

design space [77], and in visualizing a network [69], but additional work would help

identify the types of problems for which it is most applicable. As a Selection phase

class tool, it borders the region between qualitative and quantitative data. Should OPN

be used more for subjective assessments and utilizing the visual aspects to facilitate

dialogue on concept comparisons? Should its mathematical features be improved and

harnessed to make it capable of more advanced evaluations?

* The goal of this thesis was not to fine-tune the PSO algorithm. Thus, there is room for

improving the PSO algorithm to find the best families of designs during the conceptual

stages. This includes not only the algorithm parameters, but also what to choose as

the design variables and objective function.

The Engineering Framework for Concept Development described in this thesis is part

of an ongoing effort at The C.S. Draper Laboratory to advance the methods for approaching

132



hard design problems early in their development. Research into its capabilities, including the

work presented here, is demonstrating the potential value that the Engineering Framework

can add to an engineering program. Further recognition of the ideas set forth in this thesis

by the larger systems engineering community will help to better organize the up-front stages

of concept design. Improved concept exploration and increased knowledge of the design

possibilities will not only increase the confidence of the designer and the decision-maker, it

will also lead to more successful programs and better engineering systems.
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