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Abstract: Handwriting recognition refers to recognizing a handwritten input that includes charac-
ter(s) or digit(s) based on an image. Because most applications of handwriting recognition in real
life contain sequential text in various languages, there is a need to develop a dynamic handwriting
recognition system. Inspired by the neuroevolutionary technique, this paper proposes a Dynamically
Configurable Convolutional Recurrent Neural Network (DC-CRNN) for the handwriting recogni-
tion sequence modeling task. The proposed DC-CRNN is based on the Salp Swarm Optimization
Algorithm (SSA), which generates the optimal structure and hyperparameters for Convolutional
Recurrent Neural Networks (CRNNSs). In addition, we investigate two types of encoding techniques
used to translate the output of optimization to a CRNN recognizer. Finally, we proposed a novel
hybridized SSA with Late Acceptance Hill-Climbing (LAHC) to improve the exploitation process. We
conducted our experiments on two well-known datasets, IAM and IFN/ENIT, which include both
the Arabic and English languages. The experimental results have shown that LAHC significantly
improves the SSA search process. Therefore, the proposed DC-CRNN outperforms the handcrafted
CRNN methods.

Keywords: handwriting recognition; Neural Architecture Search (NAS), configuration search; meta-
heuristics optimization; deep learning

1. Introduction

Handwritten text recognition was one of the first problems that artificial intelligence
attempted to solve. Accurate recognition of handwritten text has remained a prime problem
of interest for many decades. Handwriting recognition is an important task because of its
ubiquity in real life in which people communicate and interact [1].

In this context, many systems and mobile applications have been developed to per-
ceive and comprehend their visual surroundings using handwritten text recognition tech-
niques [2-5]. The goal of these systems is to read street signs and allow easier automated
navigation [6,7], search and index a large number of images or videos on the Internet [8-10],
detect product labels for autonomous stores [11] or help in real-time text recognition of
translations on smartphones [12]. These examples utilize machine vision systems that
rely on various machine learning algorithms. In particular, these systems focus on deep
learning techniques due to their rapid development [13].
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The first attempt at a text recognition system was intended to recognize an image that
includes an individual character. Recognition of the sequence of characters was achieved
after the rapid growth of computer ability and the development of machine learning
algorithms. The difference between character and string handwritten recognition (normal
or sequential classification) can be mathematically represented.

For a handwritten character classification problem, an input x is an image of a character
that needs to be labeled by the corresponding text character as an output called y. In other
words, let x be an image of a handwritten character; then, its corresponding class is
y€ A, B,C...Z. A training example set S consists of a number of samples, n and each
sample is a pair of (x,y). The training set S is assumed to have been drawn from the joint
distribution P(x,y). The intended task is to use the training set S to train the classifier / that
predicts the class y = h(x) of the new image x as accurately as possible.

Unlike the normal supervised learning framework, some of the real-world practical
applications do not fit the drawn image from the joint distribution P(x,y) because training
data are sequential and consist of a sequence of pairs of (x,;y). The handwritten sequential
classification problem can be formulated as follows:

The sequential dataset S consists of a number of samples n and S = (X, Y). where

. *
X = <x<‘><t>) is the sequential input and T is the timestep,i € 1,2,3,...1n,Tx =1,2,3,...¢

so x(N) = ¥ @) NG x| The input dimension X = (RT)" is the set of
all strings of length t of real valued vectors and their corresponding labels Y = (g)".
These labels are all sequences generated using a language G and its alphabet characters
g. For our problem domain, we considered g elements as the timestep, or the num-

ber of distinct points, for all input sequences. The output target Y = (y<i><t>) " is often

the same length as the input sequence X = (x<i><t>>* ; thus, the output target length

T,=1,23,...t <Ty=1,2,3,...t. The intended task is to use the training set S to train
the classifier # : X — Y that predicts the sequence labeling of the new image x as accurately
as possible.

Sequential classification is typically addressed using segmentation techniques. These
techniques segment string images into small pieces that correspond to individual characters
or parts of characters; these characters are then recognized as sequenced text. Thereafter, the
recognition results are combined with the path-search algorithms to derive the optimized
global results. These techniques utilize the over-segmentation strategy, but they also
face many practical issues, such as differing handwritten styles, background noise or
connected characters [14]. An alternative for the handwritten text recognition task makes
use of segmentation-free processes [15-19]. These techniques became standard methods
for handwritten text recognition and rely on deep learning algorithms. In particular,
these algorithms combine convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) [20,21], which are known as convolutional recurrent neural networks
(CRNNS) [22].

Recent CRNN-based studies use complex architectures and demonstrate improved
performance [23,24]. A large dataset and powerful computational infrastructure help
researchers to effectively train deeper, larger and increasingly complicated architectures.
However, a neural network’s performance cannot be improved by simply adding param-
eters or layers, as it requires the incorporation of ideas such as including skip connec-
tions [23] or creating more branches [25]. Furthermore, even popular processes such as
dropout [26] and batch normalization [27] cannot always improve the system performance
and must be used carefully. In contrast, architectural hyperparameters can considerably
change the system performance. Thus, human experts who use a trial-and-error manual
search method based on intuition closely supervise these factors.

An expert must make many choices when designing deep model specifications. These
choices interact with one another in a discrete manner and can affect the system’s perfor-
mance. A typical workflow helps the expert define and train a single model and thereafter
compute a validation score. Depending on earlier experiences, validation scores and
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data collected during training, human experts must decide whether a trained model’s
performance is satisfactory. When a model’s performance is found to be unsatisfactory,
experts then search for variations that may improve the performance. Based on the expert’s
perspective, it is more convenient to search for architecture modifications automatically,
such as simple scalar hyperparameters, e.g., the regularization coefficient and learning rate.
In recent years, many existing studies have applied neuroevolutionary mechanisms for
automatically detecting the appropriate CNN topology and hyperparameters based on
the target dataset [28-31]. Additionally, the existing automation-based CNN models have
been used for character recognition.

However, there is no analytical process that can automatically search for the optimum
CRNN topology and hyperparameters for handwritten text recognition. The main contri-
bution of this paper is our proposal of a novel approach that identifies an optimal structure
and hyperparameter set for the CRNN model using metaheuristic optimization techniques.
Our optimized CRNN is employed for handwriting recognition at a sequence level (word
level). In addition, the Salp Swarm Algorithm (SSA) is developed to optimize the CRNN.
The SSA is hybridized with Late Acceptance Hill-Climbing (LAHC) as a local search al-
gorithm that improves the SSA exploitation process. Additionally, we implemented a
neuroevolutionary CRNN based on the genetic algorithm for comparison purposes. Fur-
thermore, we investigated two solution encoding techniques for the genetic algorithm. The
technique with the best performance is then implemented with the hybridized SSA.

This paper is organized into five sections, including the current section, which intro-
duced the proposed study. Section 2 discusses related work in the field of handwriting
recognition. Section 3 describes this study’s proposed method. Section 4 presents the results
of our method and compares it to previous works. Finally, Section 5 draws conclusions
and provides final remarks and future directions.

2. Literature Review

This section presents a review of works that concern the handwriting recognition
problem. Specifically, this includes works that tackle this problem using deep learning
algorithms (CNNSs). Additionally, we review methods that studied CNN optimization,
known as neuroevolutionary methods.

2.1. Handwriting Recognition Based on Deep Learning

Ref [32] proposed a CNN-based deep feature embedding learning scheme for flex-
ible word detection and recognition from images comprising handwritten words. The
authors emphasized that reduced feature depiction could increase convolutional features’
discerning capability and allow scaling feasibility for large datasets. Furthermore, they
followed a lexicon-specific scheme that was applied to the IAM dataset. The IAM test
set was used to select lexicons, and the corresponding words were used for transcription.
Ref. [33] suggested implementing OCR using an integrated approach combining long
short-term memory (LSTM) and convolutional neural networks. The authors used the
proposed technique on challenging datasets comprising handwritten images in several
languages. Additionally, they used a weighted finite-state transducer (WFST) combined
with a neural model to decode complicated sets that are difficult to process using statistics-
based language frameworks. The CRNN framework’s training process does not include
WEST training. Original language text is employed for training CRNNs individually. The
WEST statistical language framework enhances recognition execution and has a more
robust decoding capability. The authors used several preprocessing steps: initially, line
segmentation was executed using horizontal and vertical projections and heuristics to
yield words. Subsequently, word shear was executed at the angle that provides an optimal
vertical projection of histogram peaks; several angles were evaluated, and the optimal
angle was selected. A straightforward slant image-fixing process was applied, and then
the data were input to the network.
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Ref. [34] indicates that by applying CNNs to initially compute the number of symbols
composing a word block, it is possible to resize the blocks into a canonical form suitable for
an FCN structure. An FCN can use the average symbol width to execute precision symbol
determination without postprocessing the data using connectionist temporal classification
(CTC). The model was pretrained using data from NIST and RIMES. Probabilistic CER
adjustment was performed and followed by the post-correction process, which was based
on a correction-specific lexicon derived from probabilistic CER. Ref. [35] implemented
word detection and recognition using a combination of Bidirectional Long Short-Term
Memory (BLSTM), the CTC structure, and the Spatial Transformer Network (STN). To
improve recognition performance, the authors conducted pretraining with synthetic data;
additionally, an STN layer was added to the CRNN model along with a language model-
based lexicon for postprocessing.

Additionally, the authors suggested using a CNN-RNN combination with prepared
data and domain-based image augmentation and normalization [36]. Researchers have also
determined module-specific recognition improvement at the word and line levels. Ref. [37]
used transfer learning (TL) on several databases with relatively fewer parameters but better
generalization ability. The authors reported that a CRNN framework trained extensively
using large datasets provides excellent generalization results for small historical datasets.
The IAM database [38] was used for network training; subsequently, 350 lines of text were
used for executing handwritten text recognition specific to the Parzival database [39]. Using
a binary version of these databases, the authors reduced the test character error rate (CER)
to 3.3%.

In [40], the researcher studied the impact of applying an enhanced postprocessing
phase to the sequence-to-sequence (seq-to-seq) model to improve handwritten word recog-
nition. Postprocessing consists of integrating an external language model into a sequence-
to-sequence model for handwritten word recognition. The language model scheme, desig-
nated candidate fusion, was trained and aligned using the optical recognizer to prevent
corpus-specific training bias; in addition, this language framework regulates decoding
to achieve the most probable character set. Ref. [41] proposed an offline technique for
recognizing full handwritten documents. This technique comprises a localized (text local-
ization) handwritten text pipeline. Images of words are transformed into strings using
text recognition. The CRNN framework comprises multiple CNNs used to extract image
features that serve as input to a bidirectional LSTM. The preprocessing phase comprised
data enrichment using shearing, random translation, and occlusions. The researchers
formulated a Language Denoiser Network (LDN) for postprocessing. This network uses
character-specific noise encoding and then produces clear output (words) to ensure that
only in-vocabulary words are present.

2.2. Neuroevolutionary Methods Based on Sequence-Less Datasets

“Neuroevolution” was an area of emphasis during the late 1980s. Its objective was to
use evolutionary computation to optimize neural networks. EPNet [42] is a popular word
in neuroevolution; others include neuroevolution of augmenting topologies (NEAT) [43]
and EANT [44]. Neuroevolution of augmenting topologies (NEAT) is a technique that
provides both neural network topology and weight to evolve several cases. Research in this
area emphasized shallow neural network learning frameworks and weight regulation. The
neuroevolution of deep learning can be categorized based on the encoding method used to
generate a customized neural network from the given solution representation [45]. Typi-
cally, the encoding method used in deep learning neuroevolution can be divided into two
categories: direct encoding and indirect encoding. For models with direct encoding, geno-
type representation can be directly used to map phenotypes [46—48]. Indirect encodings
require a translatable genotype (solution decision variables) to map phenotypes (neural
networks) [43,49-52]. The authors of [53] used an augmented particle swarm optimization
(PSO) method to efficiently progress through block-specific CNN search. Weight-sharing
algorithms were used to address the immense resources and time cost of assessing the
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fitness function. However, encoding addresses simple hierarchical associations. Skip con-
nections are not accounted for and may be useful for handling complex image datasets.
Similarly, encoding techniques consider the usage of only global optimization PSO without
enhancing the local search procedure.

Additionally, [54] proposed an evolving CNN based on enhanced PSO called quantum
behaved particle swarm optimization with binary encoding (QBPSO). However, the sug-
gested binary encoding scheme was not yet suitable for more sophisticated CNN structures,
including skip connections. Similarly, [55] discussed two techniques for melanoma classifi-
cation. The first technique used HLPSO and ensemble learning-based feature identification
for their lesion categorization scheme. The second categorization scheme assumed that
varying CNN architectures possess the required topology and hyperparameters. Although
the hybrid clustering model and deep network exhibited higher competence on two skin
lesion benchmark datasets, the evolved hybrid learning PSO (HLPSO)-based CNN model
must verify its stabilities by applying more common image processing benchmark datasets.

Handwriting recognition for sequence-less datasets (classification of individual char-
acters or digits) is a common standard benchmark for several neuroevolutionary works.
Ref. [56] constructed a model that tuned the CNN parameters using an optimization
algorithm inspired music called the harmony search algorithm. The framework of the
CNN-based harmony search algorithm aims to enhance the handwriting recognition task.
Khalifa et al. [57] proposed a fixed CNN architecture for handwritten digit recognition
tasks. Additionally, the PSO technique was employed to enhance the final layer weights,
leading to better accuracy than most CNNs. Ref. [52] suggested a technique that could
manage several aspects of CNNs, such as recurrent layers, fully connected layers, convolu-
tional aspects, hyperparameters, and activation functions. The hyperparameters optimized
in the fully connected layers are layer-based (recurrent or feed-forward). Feed-forward
was selected as the optimal layer. The authors used a grammatical evolution algorithm
to evolve the CNN topology. Although the framework obtained a result compatible with
MNIST, a handwritten digit recognition dataset benchmark, the model did not consider
using sequence time step datasets, such as handwritten words or sentences, instead of
simple classification tasks. However, the use of RNNs was inefficient compared to the use
of a regular feed-forward layer in the final layer.

Furthermore, related works that aim to evolve recurrent units without the use of
convolutional neural networks have recently been published. Examples of these works
include [58-60]. Ref. [60] optimized the number LSTMs by evolving its units to find the
appropriate number of LSTM units for a given task. However, the work in [59] evolved only
the LSTM memory cell structures themselves. Similarly, ref. [58] worked on differentiating
recurrent neural networks (RNNs) by employing memory architectures such as the GRU,
LSTM, the A-RNN, the UGRNN, and the MGU. However, such augmentations led to high
complexity for large LSTM-RNN structures. Other researchers [61] focused on chaotic
time-series questions and compared two decomposition techniques for training RNNs and
feed-forward networks. Furthermore, connection identification pertaining to LSTM RNNs
and RNNs has been attempted using the ant colony optimization (ACO) technique [62,63].
Nevertheless, this technique is constrained by a fixed RNN structure; it lacks evolvability.

Most recent studies focused on evolving convolutional neural networks (CNN) and
tested them using a simple classification problem for sequence-less datasets, such as recog-
nition of individual handwritten digits or characters. Refs. [52,56,57]. The main deferent
in our work is that we tackle more challenging issues including sequence learning to
recognize handwritten words or sentences. This problem needs to utilize evolving adapted
deep learning algorithms which combine the benefits of the capabilities of convolutional
neural networks (CNN) algorithms along with the capabilities of recurrent neural net-
works (RNN). The adapted deep learning algorithm (CRNN) that we evolved using the
optimizing technique applied on the sequential text in various languages (Arabic and
English). Additionally, in the aforementioned studies, evolving of RNN units was utilized
separately without the use of any convolutional neural network. In addition, most studies
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used the PSO and ACO algorithms rather than investigating new swarm intelligence tech-
niques. Additionally, previous works that studied CNN optimization did not address their
imbalanced search.

3. Swarm Evolving-Based Automatically Configured CRNN

In this study, we propose a CRNN that addresses the problem of sequential classifi-
cation. Based on the related works, the performance of a deep NN is highly dependent
on its structure and hyperparameters. In this work, we focus on these two aspects of the
proposed CRNN. These aspects are formulated as an optimization problem. Then, we
propose a swarm intelligence algorithm known as the SSA, which is improved to solve the
optimization problem. The SSA is based on multiple solutions, and thus, it emphasizes
exploring the problem space rather than exploiting it. Hence, the SSA exploitation proce-
dure has been consolidated to balance these two features. This outcome was achieved by
incorporating a local search algorithm. In this study, we investigated two algorithms for
local searching: Simulated Annealing (SA) and the Late Acceptance Hill-Climbing (LAHC).

This section introduces our proposed framework, which is capable of optimizing the
hyperparameters and configuration structure of a deep learning model. Our model is called
the Dynamically Configurable Convolutional Recurrent Neural Network (DC-CRNN). In
this model, we used a CRNN that is dynamically configured by the proposed hybrid Salp
Swarm algorithm. The framework of our DC-CRNN is presented in Figure 1.

SSA

LAHC

Hybridize LAHCSSA
Fitness
/ \ LST™M
Leader salp L 7 Convolution Layers Layers FC Layer
I 01| / =
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Figure 1. The proposed DC-CRNN framework for handwritten sequential classification.

In Figure 1, the core algorithm for handwritten sequential classification is the CRNN.
Due to the sensitivity of the CRNN to its own structure and hyperparameters, this study
incorporates a swarm optimization algorithm called the salp swarm algorithm (SSA). This
algorithm is used to optimize the CRNN and finds the best hyperparameters and structure.
The SAA emphasizes exploring the CRNN optimization space problem space rather than
exploiting it. To achieve a balanced searching algorithm, we hybridize the SSA with a local
search algorithm, called late acceptance hill climbing (LAHC). The local search is applied
to the leader salp (encircled in blue in Figure 1), where the leader can influence the rest
of the swarm. The incorporation of the SSA with the CRNN is achieved by formulating
the hyperparameters and structure of the latter as an optimization problem. This section,
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Section III, (A) describes the CRNN, the solution representation is described in Section III
(B), and the hybridized SSA is described in Section III (C).

3.1. Convolutional Recurrent Neural Network (CRNN)

The convolutional recurrent neural network model was first proposed by [64] to
recognize sense text and it outperforms the standard CNN due to end-to-end training using
sequence labeling of image words instead of annotation for each character image. Another
beneficial aspect of the CRNN for handwriting recognition is its ability to automatically
extract valuable features without using traditional handcrafted features.

In the CRNN model, there is no need to employ a segmentation phase due to the
existence of a recurrent layer, which provides high flexibility for handwritten image data,
one type of sequence data. The first component in the CRNN model is a convolutional
neural network model that includes multiple convolutional layers. Each convolutional
layer may contain hyperparameters such as the activation function, batch normalization,
the pooling operation, the number of kernels and kernel size, and skip connections. In the
CRNN, the convolutional neural network is usually used for feature extraction. The pixel-
intensity values are fed to the first convolutional layer and move successively through
the CNN. The CNN’s output is a set of feature sequences that are fed to a recurrent
neural network (RNN). Finally, the transcription layer, called the connectionist temporal
classification (CTC), translates the resulting prediction into a label sequence. In this study,
we investigated variants of the RNN known as long short-term memory (LSTM) and
bidirectional long short-term memory (BLSTM). The LSTM network structure is based on a
gate mechanism capable of solving long-term dependence problems. The gate mechanism
includes an input gate, forget gate and output gate. Figure 2 presents the LSTM gate
mechanisms’ procedure.

Ewt ht—ii Ext ht—li

i 1 H i

E ‘e s 7

i i i i

i Wai Wni o Wno i

i i |

Xy 0 E iy E Forget Gate E Ot i
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Figure 2. The standard LSTM cell.

LSTM is often used to model data containing sequence information, such as text and
speech, and has been widely used in image processing and natural language processing.
The formal definition of LSTM is as follows:

it = c(Wilxg;re—q] + b;) 1)

fi = o (Wylxtirea] + by ) @
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or = o(Wo[xt;7t-1] + bo) ®3)
=1 ® tanh(Wc [Xt] + bc) + ft ® i1 (4)
hy = oy © tanh(cy) (5)

where o represents the sigmoid function, ® represents bitwise multiplication, and i, f, o¢
and c; represent the input gate, forget gate, output gate, and cell state of the LSTM at time
t, respectively. The process of choosing all of the hyperparameter values is explained in
detail in the next section. In addition, since there is a recurrent layer in the CRNN model,
which provides high flexibility for handwritten image sequence data, there is no need for a
segmentation phase.

This study focuses on determining the best CRNN structure and hyperparameters.
The next section describes the parameters that need to be optimized.

3.2. Solution Representation

In this study, the solution includes three primary components that determine the final
CRNN configuration: the general hyperparameters, the convolution hyperparameters, and
the long short-term memory network hyperparameters. The general hyperparameters are
responsible for providing the hyperparameters for the whole CRNN model as well as the
configuration network, which include the batch size, optimizer, learning rate, number of
convolution layers, and number of LSTM layers. These hyperparameters are described
as follows.

e Batch size: The total number of training samples presented in a single batch,
B € (16, 32, 64, 128).

e  Optimizer: The adaptive learning rate optimization algorithm is used to iteratively
update the CRNN network weights based on the training data. The optimization
algorithm can be any of the following: Adam, Nadam, RMSprop, Adadelta, SGD,
Adagrad, Adamax.

e Learning rate: The change in the weights during training. The learning rate is
represented by one decision variable in the solution, and is one of seven values:
IREAx107°5x107°1x10745%x10741x1073,5x1073,1 x 10721 x 10725 x 1072).

e  Number of convolution layers: This decision variable determines how many con-
volution layers to add to our CRNN. Since handwriting recognition is considered a
complex classification task, the first three layers are compulsory in all of the generated
individuals (i.e., the first three convolution layers are combined as a fixed layer) to
guarantee the automatic detection of the important features. However, an increase in
the number of convolution layers can result in an increase in the number of weights
as well as the model complexity. Consequently, we limit the convolution layers in our
CRNN to 10, and that maximum number of layers can be chosen in our DC-CRNN’s
search space.

e  Number of LSTM layers: This decision variable determines how many LSTM layers
to add to our CRNN.

e  Other decision variables used to determine the remaining hyperparameters, which
may vary for each convolution layer in the network, are:

o  Convolution kernels (ck): The number of kernels in each convolution layer, where
ck € (4, 8,16, 32, 64, 128, 265, 512).

e  Convolution kernel size (cs): The kernel size used in each convolution layer, where
cs€(2,3,45,6,7,8,9).

e Convolution batch normalization (cb): The use of batch normalization, which is
typically utilized to enhance a neural network’s speed and performance. It is applied
between the convolution layer and the nonlinearity layers, such as max pooling and
ReLU. In our solution, the decision variable for batch normalization is in a binary
(0, 1) range.

e  Convolution activation function (ca): The usual ReLU is the default and most common
activation function used in deep learning networks, especially convolutional neural
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networks. However, we attempt to choose a more suitable function for our network,
which may be: ‘relu’, ‘linear’, ‘elu’, ‘selu’ or ‘tanh’.

e  Convolution pooling size (cp): The pooling layer used to reduce the representation
size of the input handwritten image, which leads to a reduction in the number of
parameters and amount of computation in the network. While the use of pooling layers
is important for maintaining a reasonable computation time during the optimization
process that finds the optimum network structure, the overuse of pooling layers often
removes important features or even reaches a representation size of (1, 1). In our
decision variables, we limit the probability of using the pooling after each convolution
layer to 50%, the pooling size to (2, 2) and the stride to € {(2, 2), (2, 1)}.

e  Skip connection (cr): The use of skip connections, which improve the convergence
and performance during training.

Additional decision variables used to determine the hyperparameters for each LSTM
layer include the size of the hidden layer (Rh) and the type of LSTM layer, which could be
a bidirectional (Rb) layer.

All of these hyperparameters are translated to configure a CRNN structure that runs
on part of the dataset to rank the data based on the obtained character error rate (CER),
which must be minimized. The solution is optimized using the proposed HSSA and based
on the given configuration in Table 1.

Table 1. CRNN configurations solution representation.

Decision Variable Sectors

Total Decision Variable Hvperparameters No. of Bits for Each
Bits for Each Sector yperp Hyperparameter

General parameters

Convolution layer parameters x 7 11 bits x 7 layers = 77 bits

Recurrent network parameters X 4 3 bits x 4 layers = 12 bits

Bs (batch size)
Op (optimizer)
10 bits Lr (learning rate)
Nc (number of convolution layers)
Nr (number of LSTM layers)
Ck (number of kernels)
Cs (kernel size)
Cb (batch normalization)
Ca (activation function)
Cp (pooling size)
Cr (skip connection or not)
Rh (size of hidden layer)
Rb (bidirectional)

N

ENRRENRFRE R WWNNWR

3.3. Hybrid SSA (HSSA)

The Salp Swarm Algorithm (SSA) is a recent metaheuristic method proposed by [65].
The SSA is inspired by the swarming behavior of salp chains. Salps descend from the Salpi-
dae family and exhibit a transparent, barrel-shaped body. These creatures form a chain to
achieve better locomotion using quick, coordinated alterations and foraging. Salp chaining
behavior has been mathematically modeled to solve optimization problems [65]. The initial
modeling step divides the salp population into two categories: leaders and followers. The
leader heads the salp chain, and the rest are considered the followers. Typically, swarm
optimization methods simulate individuals by defining their position in an n-dimensional
searching space, where n is the number of variables in a processed problem. Similarly, the
SSA assigns each salp an n-dimensional position that is iteratively updated. Therefore, the
chain positions are stored in a two-dimensional matrix. Additionally, it is assumed that
there is a food source in the search space that is targeted by the storm and denoted by F. In
the SSA, the position of the leader is updated as follows:

1 { I“]'+C1((ubj*lbj)C2+lbj) c3>0 ©)

Y= F] — cl((ubj — lb])Cz + lb]) c3 <0



Sensors 2021, 21, 7306

10 of 25

where x! is the jth dimension of a chain leader, F; represents the jth dimension of the food
source, ub; and Ib; are the upper and lower boundaries of the jth dimension, respectively,
and ¢q, ¢y, and c3 are random numbers.

Coefficient ¢ is vital in this equation, as it is responsible for achieving a balance
between exploration and exploitation, which is defined as follows:

oy = 20 (/L) @)

where [ is the current cycle, and L is the maximum number of cycles.

The other two parameters, ¢, and c3, are random numbers generated uniformly in the
interval [0, 1]. These parameters dictate whether the next position in the jth dimension
moves toward negative infinity or positive infinity. Additionally, they determine the
step size.

Equation (8) presents the method for updating the leader’s position with respect to
the food source. Followers are updated based on Newton’s law of motion as follows:

1
i 42
X = Zat + vt (8)
where i is the index of the current follower (i > 1), x;. is the jth dimension of the ith follower,
t is time, v_0 is the initial speed, and a = %
In optimization, time indicates the number of iterations, where the difference be-
tween two iterations is one. Thus, by considering that the initial speed is zero (v_0 = 0),
Equation (4) can be expressed as follows:

x; = % (x; + x](’;l)) )

wherei > 1, and x; is the jth dimension of the ith follower. All of the SSA steps, which
include population initialization and salp movement, are presented in Algorithm 1.

Algorithm 1: Salp Swarm Algorithm (SSA)

N — number of salps in the swarm.

D — number of dimensions of the given problem.

X — Initialize a swarm of salps with respect to Ib and ub.
F — The best search agent (Food source).

while (Stopping criterion is not met) do
Calculate the fitness of the salps
cp =2 x =D
fori=(1toN)do
forj=(1toD)do

if i = 1 then

Update the position of salps’ leader using Equation (6).
else 4 .
X = 3 (x; + x}’_l)) ...... (See Equation (9))

fori= (1 to N) do
Fit x' to its boundaries.

if f(x') < f(F) then
F=xi
Output: F

The SSA uses a set of solutions to find the best possible structure and hyperparameters
for the proposed RCNN. That is, the SSA has the ability to explore the problem’s search
space. However, it is not as adept at exploitation. Therefore, this study incorporates a
local search algorithm for this purpose, as shown in Figure 1. To avoid being trapped in
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local optima, this study investigates local search methods with acceptance criteria, namely,
simulated annealing (SA) and Late Acceptance Hill-Climbing (LAHC). Local search enables
the algorithm to identify non-improving solutions so that local optima are ignored.

Generally, this searching process is based on the SSA; using a predefined local search
probability (Ip), the SSA invokes the local search, which may be LAHC or SA. In this
step, the SSA selects the best follower among the salps and passes it to the local search to
intensify the search process around its neighborhood, as shown in Algorithm 2.

Algorithm 2: Hybridized SSA.

Input: Handwritten text dataset (sequence of letters and digits)
N — number of salps in the swarm.
D — number of dimensions of the given problem.
X — Initialize a swarm of salps with respect to Ib and ub.
F — The best search agent (Food source).
while (Stopping criterion is not met) do
for each salp 2 X do
Decodes the salp to a CRNN network (See Section 3.2)
Train the CRNN on part of the training set.
Evaluates the salp’s fitness based on part of the validation set.
Update the positions of the salps.
F Get the best salp.
fori=(1toN)do
Fit xi to its boundaries.
if f(xi) < f(F) then
F=xi
if rand() < Ip then
F local search(F)
Output: Best CRNN con_guration (F)

LAHC is a hill-climbing (HC) algorithm with the ability to identify a non-improving
solution for the purpose of skipping potential local optima. However, the accepted solution
will ideally be of better quality than a solution from previous iterations. That is, the LAHC
search procedure depends on the search history, and thus, it maintains a special list for
recording that history. In practice, a new solution is compared to the last element in the list.
The new solution is chosen as a new searching point if it is better than the rescored value.
Then, the quality of the new solution is inserted at the front of the list, and the last element
is dropped. These steps are further explained in Algorithm 3.

Algorithm 3: Late Acceptance Hill-Climbing (LAHC)

X — Initial CRNN structure obtained from the SSA
L — length of the list
fori=1toL do

fi = f(X). > Initialize the fitness list.

X*=X. >Memorize the best solution.
fori=1to Max_iterations do
X" = NS(X). >Move from the current solution to a new one.

v=imod L
if f(X) < fv 1 {(X") < £(X) then
X =X0. >Accept the new solution.
if X0 < X_ then
X_=X0
fv = £(X). >Insert the current cost to the fitness list.
Output: X_
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The behavior of memorizing the previous iterations is similar to the tabu search
(TS) [66]. However, the TS memorizes only the movements, while LAHC memorizes the
fitness of previous solutions. Additionally, the TS compares the entire list to the movement
that led to a new solution, while LAHC considers only one value from its list. That is, a
time complexity of O(1) is required for comparing a new solution to the LAHC list. LAHC
accepts non-improving solutions intermediately and memorizes the best solution, which is
output by the searching procedure.

SA mimics a physical phenomenon: metal annealing [67]. This activity consists of
annealing a metal to obtain a desired shape. In practice, the annealing process includes
heating and gradual cooling procedures. Thus, a metal undergoing this process can be
shaped as long as a certain temperature is maintained. Throughout the cooling phase, the
metal will be gradually hardened, and thus, its shape will become more difficult to adjust.
Inspired by this process, SA starts with an initial solution (metal) at a predefined tempera-
ture; then, it adjusts the solution until the desired solution is obtained. Accordingly, SA
allows less optimal movements for the sake of skipping local optima. However, accepting
a less optimal movement is conditioned by Equation (10).

e TR (10)

where T is the system temperature, AE is the energy difference between the new and
current solutions, and R is a uniform random number in the interval (0,1).

During the SA process, the temperature is decreased gradually to limit the acceptance
of low-quality solutions at late stages in the searching process. In practice, this decrement
is implemented using a geometrical scheduler. This scheduler consists of multiplying the
current temperature by a cooling factor «, i.e., T = T X . In this study, the value of ¥ was
set to 0.98. To illustrate SA’s algorithmic steps, the pseudocode is given in Algorithm 4.

Algorithm 4: Simulated annealing (SA)

X — Initial CRNN structure obtained from the SSA
T — Initial temperature

« — Cooling scheduler

T¢ — final temperature

X*=X > memorize the best solution

while (T > Tf) do
X" =NS(X)
if AiX’) < f(X) then
X=X
if X’ < X* then
X=X
else
if e(—AE/T) S R then
X=X
T=T*n
Output: X*

Algorithm 4 shows how the SSA solution (X) is improved based on the SA algorithm.
SA stops once a final temperature is reached, which is set experimentally in this study to
1075. A new solution is derived from X based on a predefined neighborhood structure
(NS). NS randomly swaps selected variables from the current solution to obtain a new
one. Then, the new solution is evaluated using the fitness function. Typically, the new
solution is accepted if its fitness value is better than the current one. Otherwise, the SA
acceptance criterion (Equation (10)) is applied to determine whether to accept or reject the
new solution.
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4. Experimental Design

This section presents the experiments conducted in this study. This design includes the
experimental setup, data sets, evaluation metrics, and the obtained results. The primary aim
of this study is to find the best possible CRNN hyperparameters and structure for the chosen
problem. To achieve this goal, several experiments were conducted for this work. These
include experiments regarding the encoding schemes used in the optimization process. In
this study, direct and indirect encoding are implemented using a standard genetic algorithm.
This experiment serves as a baseline for our proposed hybrid SSA. Subsequent experiments
are conducted to show the effectiveness of the proposed local search algorithms, i.e., SA
and LAHC. Finally, we discuss our proposed method in comparison to the related works.

4.1. Implementation Details

The deep neural network training process takes a long time to produce reliable and
competitive results. When the training method is used as part of the fitness computation
in a swarm optimization algorithm, it significantly increases the processing time. That is,
a swarm-based CRNN method that involves a population of 20 individuals evolving for
100 iterations will take 25 days, which is impractical. To address this problem, we trained
the network with only 10 epochs in each fitness computation and used a random 25%
sample of the training set in each epoch. As a result, we reduced the time requirement
of the swarm algorithm to 40 h. To execute these experiments, we used PyTorch [68],
an open-source machine learning library on a cluster of NVIDIA 2080-Ti GPUs with a
processer of 4.3 GHz, the AMD Ryzen7 2700x. The hyperparameter values have been tuned
based on the proposed swarm algorithm as described in Section 3.2.

4.2. Dataset

The proposed DC-CRNN is tested on two distinct languages: English and Arabic. The
English language dataset is called the IAM dataset, and the Arabic language dataset is
called the IFN/ENIT dataset. Due to the importance of the training-testing ratio of each
dataset, we used the official training, testing quantities which is about 80% for training and
20% for testing have been published for both (Arabic and English) datasets. This makes it
easier to compare with other works. This section presents the details of these data sets.

4.2.1. English Sequence Handwriting Dataset

We used the English dataset, called IAM, which is widely used in the field of document
analysis. The IAM dataset comprises 115,320 segmented and transcribed word images of
handwritten text. English texts from 657 writers were collected for the data set. The dataset
includes forms of unconstrained handwriting text, which were scanned at a resolution of
300 dpi and saved as PNG images with 256 gray levels. One advantage of the data set is
that official training, testing and validation quantities have been published. This makes it
easier to compare with other work.

4.2.2. Arabic Sequence Handwriting Dataset

An Arabic dataset, called the Institute of Communications Technology/Ecole Na-
tionale d’Ingénieurs de Tunis (IFN/ENIT) dataset [69,70], was used in this research
to demonstrate the impact of using different languages on our model’s performance.
IFN/ENIT contains 32,492 handwritten word images, and each word presents a name of a
Tunisian city or village. The dataset includes contributions from over four hundred writers
so that it includes several varieties of writing styles. The dataset was separated into five
sets: A, B, C, D, and E. The first four sets were adopted for training, while set E was used
for testing. The training sets include a total of 26,459 images, with 6033 images for testing.
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4.3. Evaluation Metrics

The system performance was evaluated using the Word Error Rate (WER) and Charac-
ter Error Rate (CER) metrics. The CER expression is specified below,

S+I+D
CER = —— 11
N (11
where S, D, and I denote the character count substitutions, deletions, and insertions, respec-

tively. N denotes the total number of characters that compose the original transcription.

Sw + Iw + Dw
WER = ——M——— 12
No (12)
The WER calculation is similar to that of the CER. Here, Sw, Iw, Dw, and Nw represent
words. The following experiments constrain the WER and CER to a range of 0-100. Here,

lower values indicate higher performance.

4.4. Convergence Analysis of the Proposed Method

This section discusses the convergence behavior of the hybrid SSA when it is used
to optimize the CRNN. In terms of convergence, we present the results of implementing
neuroevolution using the genetic algorithm as an optimization method. We implemented
the genetic algorithm for comparison purposes due to the lack of works that implemented
the evolution-based CRNN for the sequence modeling task of handwriting recognition. In
this implementation, we examined two encoding schemes: direct and indirect encoding.
We included both to measure their impact on the genetic algorithm when it is used to
optimize the CRNN. The second experiment shows the effectiveness of the proposed SSA
with respect to the encoding schemes. Additionally, the results of the hybridized SSA with
LAHC and SA are presented with respect to these encoding schemes (see Appendix A).
The fitness of each individual is displayed to show the proposed algorithm’s convergence
(see Figure 3).

Generation
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Figure 3. The convergence behavior of the hybrid LAHCSSA when optimizing the CRNN.
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Figure 3 shows the obtained CER over the last thirty generations for 20 individuals.
For each individual, a corresponding CRNN is built, and the CER is then calculated. The
individual with the minimum CER is the best solution obtained by the GA or the hybrid
SSA. For ease of interpretation, the heat map in Figure 3 uses color as a reference, where
brown refers to a high CER (low-quality solutions) and navy refers to a low CER (high-
quality solutions). Based on this color coding, navy individuals are increased in the last
generations. That is, the algorithm converges toward high-quality solutions. Similarly,
the number of brown individuals is significantly decreased, as only the fittest individuals
survive throughout the generations. To demonstrate the effectiveness of the proposed
hybrid SSA, we compare it against the genetic algorithm, as shown in Figure 4.

Best individual fitness based (cer)

N
—~——
\ —_
\7\\ N
D ——
N —
Generation

Figure 4. Best individual fitness from each optimization technique.

Figure 4 shows the fitness of the best individual across all optimization techniques.
These techniques include the genetic algorithm, the SSA hybridized with SA, and the
SSA hybridized with LAHC. This comparison indicates that the SSA performs better
than the genetic algorithm; this result is attributed to the SSA swarm behavior, as it
converges toward better optima faster than the GA. Additionally, the SSA outperformed
other techniques when it is hybridized with LAHC, as LAHC enforces the SSA exploitation
process. Hybridizing the SSA with LAHC revealed better exploitation than using SA as
local search. The latter requires a lengthy annealing process to obtain the desired CRNN
structure and hyperparameters. Figure 5 reveals that the CRNN structure output by the
hybrid SSA is the largest among the methods. This is due to the algorithm’s exploitation
process, which was enforced using simulated annealing (SA). This result can be clearly
seen when it is compared to the original SSA, where the latter produced a smaller network
by 0.5 million parameters than the hybrid SSA. That is, the hybrid SSA makes a tradeoff
between the network size and accuracy. Therefore, the hybrid SSA was able to obtain the
best accuracy in comparison to other methods.
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Figure 5. Results of the CRNN variants based on the IAM Dataset. Bold values indicate the best results for the corresponding
experimental configurations.

4.5. Ablation Experiment from the Optimized CRNN

To show the impact of the optimization model on the CRNN An ablation study we
removed all certain components like pre/post-processing to highlight ablation experiment
results. we compared three types of optimization methods against each other. These
methods are the GA, SSA, and Hybridized SSA. We first tested our system on the IJAM
English handwritten dataset. Figure 5 shows that the CRNN-based hybrid SSA is superior
to the other models. Additionally, this comparison includes the handcrafted CRNN as a
baseline model, which has been implemented in this study others [36].

The handcrafted CRNN used in this study is slightly inferior to the one in [36], which
can be attributed to the parameter settings. To show the impact of the solution’s encoding,
we examined direct and indirect encoding with the GA, i.e,, GAl and GA2. Indirect
encoding may minimize the error rate to 11.72% for the CER and 27.84% for the WER,
which outperforms direct encoding. Thus, only indirect encoding is used for the SAA
and hybrid SSA (SSA with SA and SSA with LAHC). The CRNN-based SSA obtained an
improved CER and WER in comparison to GA1 and GA2. Similarly, the CRNN-based
hybrid SSA achieved a minimal CER and WER in comparison to the other models. The
effectiveness of the CRNN-based hybrid SSA is attributed to the swarm behavior of the
SSA and its improved local search process. The local search in turn is tested using the
LAHC and SA algorithms. The SSA achieves better performance when it is hybridized
with LAHC rather than SA.

Additionally, the CRNN-based hybrid SSA outperformed the other models when they
were tested on IFN/ENIT, as shown in Figure 6. In Figure 6, the baseline model achieved
5.3% and 10.95% for the CER and WER, respectively. The CRNN-based hybrid SSA could
improve this result by approximately 50% for both the CER and WER. However, the CRNN-
based GA1 was slightly better than the baseline model. Additionally, the CRNN-based
GA2 and SSA were able to minimize the CER and WER by approximately 30%. Based
on these results, the hybridized SSA with LAHC was the best model for optimizing the
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CRNN-based model. However, this model yielded a larger network than other models, as
shown in Figure 7.
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4
2

Our CRNN GA+CRNN (Direct GA+CRNN (indirect SSA+CRNN (indirect Hyperized SASSA Hyperized LAHCSSA
implementation encoding) [70] encoding) encoding) +CRNN (indirect +CRNN (indirect
encoding) encoding)

IFN/ENIT Dataset
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Figure 6. Results of the CRNN variants using the IFN/ENIT Dataset. Bold values indicate the best results for the
corresponding experimental configurations.
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Figure 7. The number of parameters for each network.

4.6. Reliability of the Proposed DC-CRNN

The proposed DC-CRNN (a CRNN optimized by the SSA hybridized with LAHC)
has shown an efficient and consistent performance in comparison to the other models
implemented in this study (see Section 4.5). However, a comparison to related sequential
handwriting models is required to prove the reliability of the DC-CRNN. In this study, we
compared the DC-CRNN to eight state-of-the-art algorithms applied to the IAM dataset
based on the word-level and without pre-trained models, as shown in Table 2. Ref. [32]
included an SVM with the CNN for the recognition task, and it also included a postpro-
cessing step based on a lexicon approach. This work limits the transcription to words
appearing in lexicons derived from the IAM test set. The second method is based on the
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CRNN with a preprocessing step that includes simple slant correction and segments lines
into words using vertical and horizontal projections. Additionally, the CRNN in [33] was
followed by a language model called WFST. The method in [34] is based on the CNN-FCN,
which uses a pretrained model and probabilistic CER correction based on a lexicon.

Table 2. A comparison to CRNN related works using the IAM Dataset without a pre-trained model.
Bold values indicate the best results for the corresponding experimental configurations.

No. Recognizer Model CER WER
1. [32] 3.72 6.69
2. [33] 4.80 9.30
3. [34] 4.70 8.22

6.34 16.19
4 13°] 350 930

11.08 22.86
> [56] 488 12,61
6. [37] 3.30 Parzival No
7. [40] 4.27 8.36
8. [41] 8.5 -
9. Proposed method 3.40 6.18

Ref. [35] proposed a CRNN-STN based on a pretrained model using synthetic data.
Additionally, their model was tested with and without a lexicon as a postprocessing
step. Ref. [36] developed a CRNN-STN with preprocessed data using slant and slope
normalization, as well as postprocessing based on a test set lexicon. Additionally, the
CRNN-STN was trained on a pretrained model and three types of augmentation schemes
with test time augmentation. Ref. [37] binarized the IAM dataset before using the CRNN.
Ref. [40] used sequence-to-sequence (Seq2Seq) preceded by an augmentation step, and this
study built their model on a pretrained model. Additionally, [40] implemented a language
model named candidate fusion as a postprocessing step. The eighth work used a CRNN
proceeded by a language model, yet the study did not include a preprocessing stage.

In comparison to the aforementioned works, our proposed model outperforms all of
them in terms of the WER and CER. However, the model in [37] reported a slightly smaller
WER than our model due to their usage of a different testing set called (Parzival dataset).
Similarly, some works in Table 2 imported a pretrained model that was intensively trained.
Our model was trained from scratch and was able to outperform many of the previous
works. However, to ensure appropriate comparison to the related works, we incorporated
an augmentation procedure as a preprocessing step, as shown in Figure 8. Additionally, our
DC-CRNN is followed by WER correction based on the lexicon as a postprocessing step.

In addition to the reported results in Table 2, there are studies that obtained CER of
2.52% [36], and 3.2% [20] for the IAM dataset. In [20], the authors addressed the problem
based on sentences which made it easier to scan the words with the help of NLP prediction
tools. In comparison to our proposed method, these methods have obtained lower CER for
the IAM dataset. However, our method was able to scale well for other datasets of different
languages, i.e., the Arabic dataset, which carries entirely different features. That is, our
method does not rely on domain-specific NLP procedures, nor a pre-trained model of a
specific language. Considering these factors, our method was able to outperform others
when word-level is addressed. However, our method is not the best for OCR in comparison
to the related works.
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Figure 8. An Augmentation Samples from the IAM dataset.

Additionally, the proposed method was compared to related works using the IFN /ENIT
dataset (Table 3). This comparison includes seven distinct methods. The first [71] is based
on a dynamic temporal residual network for sequence modeling, (DTRN), which obtained
a 6.91% CER, while the WER was not reported. Ref. [72] achieved a 12.6% WER using
one-dimensional LSTM. A multidimensional LSTM was used by [73], which achieved an
11.62% CER. The method in [74] is based on a convolutional deep belief network (CDBN)
and obtained a 7.1% WER. Ref. [75] obtained a 4.8% WER using the CBN and CNN. Ref. [76]
proposed multidimensional LSTM, which achieved a 10.11% WER. Ref. [77] is based on
bi-LSTM (BLSTM) and recorded a 4.5% WER.

Table 3. A comparison against the related works based on the IFN/ENIT dataset.

No. Recognizer Model CER WER
1. [71] 6.91 -
2. [72] - 12.60
3. [73] 11.62 -
4. [74] - 7.10
5. [75] - 4.80
6. [76] - 10.11
7. [77] - 450
8. Proposed method 2.20 4.45

Most of the mentioned methods reported the WER due to the original dataset labels,
which only include words.

In comparison to the aforementioned methods, our method was able to minimize
the CER and WER to 2.20% and 4.45%, respectively. These results show a more than 50%
improvement over 1D LSTM due to the two-dimensional LSTM included in the proposed
CRNN. Similarly, an approximate 50% improvement was obtained when compared to [76]
as shown in Table 3. Additionally, the proposed method was better than the other methods
by at least 5% when compared to the BLSTM. This result is mainly attributed to the
automatic configuration of the proposed CRNN, which is achieved based on the hybrid SSA.
The hybrid SSA enabled the proposed model to obtain the structure and hyperparameters
that suit the IFN/ENIT dataset.
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5. Conclusions and Future Work

This study presented a dynamically configurable CRNN (DC-CRNN) for text sequence
modeling. The CRNN’s dynamic configuration was achieved using an SSA hybridized
with LAHC. That is, the best CRNN structure and hyperparameters are formulated as an
optimization problem, where the SSA is applied to solve it. The SSA algorithm is based on
the notion of swarm optimization, and thus, it emphasizes exploring the problem space
rather than exploiting it. To balance the search process, we hybridized the SSA with a
local search to enhance its exploitation capacity. The optimal choice for the local search
was investigated using the SA and LAHC algorithms. LAHC has demonstrated better
performance than SA. The DC-CRNN showed significant improvement over CRNNs with
handcrafted configurations. Additionally, we implemented the DC-CRNN based on the
genetic algorithm for comparison purposes. Note that optimizing the CRNN using a
metaheuristic process is expensive in terms of the runtime. Therefore, when we optimized
the CRNN, we shrunk the training data and used fewer epochs. Our model has obtained
3.40% and 6.18% for CER and WER, respectively. These results were the best in comparison
to related CRNN works when word-level is considered and without using pre-trained
models. In future research, other metaheuristics can be investigated to optimize the CRNN.
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STN Spatial Transformer Network

TL Transfer Learning

seq-to-seq  Sequence-To-Sequence

LDN Language Denoiser Network

NEAT Neuroevolution Of Augmenting Topologies
PSO Particle Swarm Optimization

QBPSO Particle Swarm Optimization With Binary Encoding
ACO Ant Colony Optimization

HSSA Hybrid Salp Swarm Optimization Algorithm
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